

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT ISO I EC
THE INTERNATIONAL INTERNATIONAL INTERNATIONAL
TELEGRAPH AND TELEPHONE ORGANIZATION FOR ELECTROTECHNICAL
CONSULTATIVE COMMITTEE STANDARDIZATION C O M M IS S IO N

BLUE BOOK

VOLUME X - FASCICLE X.6

CCITT HIGH LEVEL LANGUAGE (CHILL)

INTERNATIONAL STANDARD

RECOMMENDATION Z.200 I SO/1 EC 9 4 9 6

IXTH PLENARY ASSEMBLY
MELBOURNE. 14-25 NOVEMBER 1988

Reference number
ISO/IEC 9 4 9 6 : 1989 (E)

Geneva 1989

INTERNATIONAL TELECOMMUNICATION UNION

CCITT ISO IEC
THE INTERNATIONAL INTERNATIONAL INTERNATIONAL
TELEGRAPH AND TELEPHONE ORGANIZATION FOR ELECTROTECHNICAL
CONSULTATIVE COMMITTEE STANDARDIZATION C O M M IS S IO N

BLUE BOOK

VOLUME X - FASCICLE X.6

CCITT HIGH LEVEL LANGUAGE (CHILL)

INTERNATIONAL STANDARD
RECOMMENDATION Z.200 ISO/IEC 9 4 9 6

IXJH PLENARY ASSEMBLY
MELBOURNE, 14-25 NOVEMBER 1988

Reference number
ISO/IEC 9 4 9 6 : 1989 (E)

Geneva 1989

ISBN 92-61-03801-8

Printed in Switzerland

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

Volume I

FASCICLE 1.1

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume II

FASCICLE II.l

FASCICLE II.2

FASCICLE II.3

FASCICLE 11.4

FASCICLE II.5

FASCICLE II.6

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

BLUE BOOK

— Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

— Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

— Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

— Index of Blue Book.

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study G roup II).

— Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study G roup II).

— Telegraph and mobile services — Operations and quality of service. Recommenda
tions F.1-F.140 (Study G roup I).

— Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study G roup I).

— Message handling and directory services — Operations and definition of service. Recom
mendations F.400-F.422, F.500 (Study Group I).

- General characteristics of international telephone connections and circuits. Recommenda
tions G.100-G.181 (Study Groups XII and XV).

- International analogue carrier systems. Recommendations G.211-G.544 (Study G roup XV).

- Transmission media - Characteristics. Recommendations G.601-G.654 (Study Group XV).

- General aspects of digital transmission systems; terminal equipments. Recommenda
tions G.700-G.795 (Study Groups XV and XVIII).

- Digital networks, digital sections and digital line systems. Recommendations G.801-G.961
(Study Groups XV and XVIII).

Ill

FASCICLE III.6

FASCICLE III.7

FASCICLE III.8

FASCICLE III.9

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VIA

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI. 10

IV

Line transmission of non-telephone signals. Transmission of sound-programme and televi
sion signals. Series H and J Recommendations (Study Group XV).

Integrated Services Digital Network (ISDN) — General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Overall network aspects and functions,
ISDN user-network interfaces. Recommendations I.310-I.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Internetwork interfaces and maintenance
principles. Recommendations 1.500-1.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

Maintenance of international telegraph, phototelegraph and leased circuits. M aintenance of
the international public telephone network. M aintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

Maintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and inform a
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study
Group XI).

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

FASCICLE VI. 11

FASCICLE VI.12

FASCICLE VI. 13

FASCICLE VI.14

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

FASCICLE VII.3

FASCICLE VII.4

FASCICLE VII.5

FASCICLE VII.6

FASCICLE VII.7

Volume VIII

FASCICLE V III.l

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VIII.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

FASCICLE VIII.8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.1100-Q.1152 (Study
G roup XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip
ment. Series S Recommendations (Study Group IX).

Telegraph'switching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study G roup VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Model and nota
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).

Data communication networks: directory. Recommendations X.500-X.521 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements of outside plant. Series L Recom
mendations (Study Group VI).

V

Volume X

FASCICLE X.l

FASCICLE X.2

FASCICLE X.3

FASCICLE X.4

FASCICLE X.5

FASCICLE X.6

FASCICLE X.7

— Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z.110 (Study Group X).

— Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

— Annex F.l to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

— Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X).

— Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
G roup X).

— CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

— Man-M achine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

VI

R e c o m m e n d a tio n Z .200

C C IT T H IG H LEV E L L A N G U A G E (C H IL L)

(Geneva 1988)

CONTENTS

1 I n t r o d u c t io n ..1
1.1 General 1
1.2 Language s u r v e y ... 1
1.3 Modes and c l a s s e s ...2
1.4 Locations and their a c c e s s e s ... 2
1.5 Values and their o p e r a t i o n s ...3
1.6 A c t i o n s ...3
1.7 Input and ou tpu t .. 3
1.8 Exception handling ..4
1.9 Tim e supervision .. 4
1.10 Program structure........ ...4
1.11 Concurrent execution .. 3
1.12 General semantic properties ... 3
1.13 Im plem entation o p t i o n s 3
2 P r e l i m i n a r i e s ... t .. 7
2.1 The m e ta la n g u a g e .. 7
2.1.1 The context-free syntax d e s c r ip t io n ..7
2.1.2 The sem antic description ... 7
2.1.3 The examples ... 8
2.1.4 The binding rules in the m etalanguage ...8
2.2 V o c a b u l a r y .. 8
2.3 The use of spaces ...9
2.4 Com m ents .. 9
2.5 Form at e f f e c to r s 9
2.6 Com piler directives .. 10
2.7 Names and their defining occurrences ... 10
3 M o d e s a n d c lasses .. 12
3.1 General .. 12
3.1.1 Modes .. 12
3.1.2 Classes ...12
3.1.3 Properties of, and relations between, modes and c l a s s e s ..12
3.2 Mode d e f in i t io n s ... 13
3.2.1 G e n e r a l .. 13
3.2.2 Synm ode definitions ... 14
3.2.3 Newmode d e f i n i t i o n s .. 14
3.3 Mode c la s s if ic a t io n .. 15
3.4 Discrete modes ... 16
3.4.1 G e n e r a l ... 16
3.4.2 Integer m o d e s ... 16
3.4.3 Boolean m o d e s ... 17
3.4.4 C haracter m o d e s ...17
3.4.5 Set m o d e s .. 18
3.4.6 Range modes ... 19
3.5 Powerset m o d e s 20
3.6 Reference m o d e s ... 20
3.6.1 G e n e r a l .. 20
3.6.2 Bound reference m o d e s ..21
3.6.3 Free reference m o d e s ..21
3.6.4 Row modes ..21
3.7 Procedure modes ... 22

Fascicle X .6 — R ec . Z200 V II

3.8 Instance modes ... 23
3.9 Synchronisation m o d e s ... 23
3.9.1 G e n e r a l ... 23
3.9.2 Event modes .. .2 4
3.9.3 Buffer modes ..24
3.10 Inpu t-O u tp u t Modes ... 25
3.10.1 General2 5
3.10.2 A ssociation m o d e s ...25
3.10.3 Access m o d e s ..25
3.10.4 Text m o d e s .. 26
3.11 T im ing modes .. 27
3.11.1 G eneral ...27
3.11.2 D uration m o d e s ... 27
3.11.3 Absolute tim e modes ... 27
3.12 Com posite m o d e s .. 28
3.12.1 G eneral ...28
3.12.2 String m o d e s ..28
3.12.3 A rray modes ... 29
3.12.4 S tructure modes 31
3.12.5 Layout description for array modes and structure m o d e s .. 34
3.13 D ynam ic modes ... 37
3.13.1 General ... 37
3.13.2 Dynam ic string m o d e s .. 37
3.13.3 Dynam ic array modes ... 37
3.13.4 Dynam ic param eterised structure m o d e s ...37
4 L o c a tio n s a n d th e i r a c cesse s ... 39
4.1 D eclarations ... 39
4.1.1 General39
4.1.2 Location declarations . ..39
4.1.3 Loc-identity declarations ..40
4.2 L o c a t io n s 41
4.2.1 G e n e r a l ... 41
4.2.2 Access nam es ..42
4.2.3 Dereferenced bound r e f e r e n c e s ...42
4.2.4 Dereferenced free references ... 43
4.2.5 Dereferenced rows ...43
4.2.6 String elements ... 44
4.2.7 String s l i c e s .. 45
4.2.8 A rray elements ... 46
4.2.9 A rray slices .. 46
4.2.10 S tructure f i e l d s ..47
4.2.11 Location procedure c a l l s ... 48
4.2.12 Location built-in routine calls .. 48
4.2.13 Location c o n v e rs io n s .. . 49
5 V a lu e s a n d th e i r o p e r a t io n s .. 50
5.1 Synonym definitions ..50
5.2 P rim itive value .. 50
5.2.1 G e n e r a l ..50
5.2.2 Location contents ... 51
5.2.3 Value n a m e s ...51
5.2.4 L i t e r a l s ..52
5.2.4.1 G e n e r a l .. 52
5.2.4.2 Integer l i t e r a l s .. 53
5.2.4.3 Boolean l i t e r a l s ...53
5.2.4.4 C haracter literals . .. 54
5.2.4.5 Set l i t e r a l s 54
5.2.4.6 Em ptiness l i t e r a l 54
5.2.4.7 C haracter string l i t e r a l s ... 55
5.2.4.8 B it string l i t e r a l s ..56
5.2.5 Tuples ... 56
5.2.6 Value string e l e m e n t s ... 60

V I I I F ascicle X .6 — R ec . Z200

5.2.7 Value string slices ... 60
5.2.8 Value array e l e m e n t s .. 61
5.2.9 Value array slices .. 62
5.2.10 Value structu re fields ... 63
5.2.11 Expression c o n v e rs io n s ... 63
5.2.12 Value procedure calls ... 64
5.2.13 Value built-in routine c a l l s ...64
5.2.14 S tart expressions ... 65
5.2.15 Zero-adic o p e r a t o r .. 65
5.2.16 Parenthesised e x p r e s s io n, ... 65
5.3 Values and e x p r e s s io n s .. 66
5.3.1 G e n e r a l .. 66
5.3.2 Expressions ... 67
5.3.3 Operand-O ... 68
5.3.4 O perand-1 69
5.3.5 Operand-2 ... 69
5.3.6 Operand-3 ... 71
5.3.7 Operand-4 ... 72
5.3.8 Operand-5 ... 73
5.3.9 Operand-6 ... 74
6 A c t i o n s ...75
6.1 General ...7 5
6.2 Assignment a c t i o n ..75
6.3 If action ..77
6.4 Case a c t i o n .. 78
6.5 Do a c t i o n ..79
6.5.1 G e n e r a l .. 79
6.5.2 For control ... 80
6.5.3 W hile control 82
6.5.4 W ith p a r t ... 83
6.6 Exit action ... 83
6.7 Call action ... 84
6.8 Result and re tu rn action ...86
6.9 Goto action ... 87
6.10 Assert a c t i o n ..87
6.11 Em pty action .. 87
6.12 Cause a c t i o n ... 88
6.13 S tart action ..88
6.14 Stop action ...88
6.15 Continue action ...88
6.16 Delay a c t i o n ..89
6.17 Delay case a c t i o n ...90
6.18 Send action ...91
6.18.1 General ... 91
6.18.2 Send signal a c t i o n ... 91
6.18.3 Send buffer a c t i o n ..92
6.19 Receive case a c t i o n ..92
6.19.1 General ..92
6.19.2 Receive signal case action .. 93
6.19.3 Receive buffer case action .. 94
6.20 CHILL built-in routine calls .. 95
6.20.1 CHILL simple built-in routine calls ...95
6.20.2 CHILL location built-in routine calls .. 95
6.20.3 CHILL value built-in routine c a l l s ...96
6.20.4 Dynamic storage handling built-in r o u t i n e s ... 98
7 I n p u t a n d O u tp u t .. 100
7.1 I/O reference model ... 100
7.2 Association v a l u e s ...101
7.2.1 G e n e r a l .. 101
7.2.2 A ttributes of association values ... 101
7.3 Access values .. 102

Fascicle X .6 - R ec . Z200 IX

7.3.1 G e n e r a l ..102
7.3.2 A ttributes of access v a l u e s ’ ...102
7.4 Built-in routines for inpu t ou tpu t .. 102
7.4.1 G e n e r a l ..102
7.4.2 Associating an outside world object .. 103
7.4.3 Dissociating an outside world object ...103
7.4.4 Accessing association a ttrib u tes .. 104
7.4.5 M odifying association a t t r i b u t e s ... 104
7.4.6 Connecting an access location ..105
7.4.7 Disconnecting an access l o c a t i o n ... 107
7.4.8 Accessing a ttribu tes of access l o c a t i o n s 107
7.4.9 D ata transfer operations .. 108
7.5 Text inpu t o u t p u t ... 110
7.5.1 G e n e r a l ..110
7.5.2 A ttributes of tex t values .. 110
7.5.3 Text transfer o p e r a t io n s ...I l l
7.5.4 Form at control s t r i n g ... 113
7.5.5 Conversion ... 114
7.5.6 E d i t i n g ..116
7.5.7 I/O control ...117
7.5.8 Accessing the a ttrib u tes of a tex t l o c a t i o n ..118
8 E x c e p tio n h a n d l i n g ..120
8.1 General ..120
8.2 Handlers ..120
8.3 Handler identification .. 120
9 T im e s u p e r v i s i o n .. 122
9.1 General ..122
9.2 Tim eoutable processes ... 122
9.3 T im ing actions .. 122
9.3.1 Relative tim ing action ... 122
9.3.2 A bsolute tim ing action ...123
9.3.3 Cyclic tim ing action ... 123
9.4 Built-in routines for t i m e ..124
9.4.1 D uration built-in r o u t i n e s .. 124
9.4.2 Absolute tim e built-in r o u t i n e ... 124
9.4.3 T im ing built-in routine call ..125
10 P r o g r a m S t r u c tu r e ...127
10.1 G e n e r a l ..127
10.2 Reaches and n e s t i n g ...128
10.3 Begin-end b l o c k s ... 130
10.4 Procedure definitions 131
10.5 Process definitions ...133
10.6 M o d u l e s ...134
10.7 R e g i o n s ...135
10.8 P r o g r a m ...135
10.9 Storage allocation and l i f e t i m e ...136
10.10 C onstructs for piecewise program m ing ..136
10.10.1 Rem ote p i e c e s .. 136
10.10.2 Spec modules, spec regions and contexts ... 138
10.10.3 Quasi s t a t e m e n t s ..139
10.10.4 M atching between quasi defining occurrences and defining occurrences .. 140
11 C o n c u r r e n t e x e c u t i o n ...142
11.1 Processes and their definitions ...142
11.2 M utual exclusion and r e g io n s ... 142
11.2.1 General ... 142
11.2.2 R e g io n a l i ty ...143
11.3 Delaying of a process...144
11.4 R e-activation of a process 145
11.5 Signal definition statem ents ... 145
12 G e n e ra l s e m a n tic p r o p e r t i e s ... 146
12.1 Mode r u l e s ...146

X Fascicle X .6 — R ec . Z200

12.1.1 Properties of modes and c l a s s e s .. 146
12.1.1.1 Read-only property .. , .. 146
12.1.1.2 Param eterisable m o d e s .. 146
12.1.1.3 Referencing p r o p e r t y 146
12.1.1.4 Tagged param eterised property .. 146
12.1.1.5 Non-value property ...147
12.1.1.6 Root m o d e .. 147
12.1.1.7 Resulting class ... 147
12.1.2 Relations on modes and c l a s s e s .. 148
12.1.2.1 General ...148
12.1.2.2 Equivalence relations on modes ...148
12.1.2.3 The relation sim ilar .. 148
12.1.2.4 The relation v - e q u iv a le n t ... 149
12.1.2.5 The relation e q u iv a le n t ..149
12.1.2.6 The relation 1-equivalent ... 150
12.1.2.7 The relations equivalent and 1-equivalent for f i e l d s ... 150
12.1.2.8 The relation equivalent for layout ..150
12.1.2.9 The relation alike ...151
12.1.2.10 The relation alike for f i e l d s ... 152
12.1.2.11 The relation novelty bound ... 152
12.1.2.12 The relation re a d -c o m p a tib le ...153
12.1.2.13 The relations dynam ic equivalent and read-com patible ..154
12.1.2.14 The relation r e s t r i c t a b l e ..154
12.1.2.15 Com patibility between a mode and a c l a s s ...155
12.1.2.16 Com patibility between classes .. 155
12.2 Visibility and name binding .. 155
12.2.1 Degrees of v i s i b i l i t y ..156
12.2.2 Visibility conditions and nam e b i n d i n g ... 156
12.2.3 Visibility in reaches ...157
12.2.3.1 General .. 157
12.2.3.2 Visibility s t a t e m e n t s .. 158
12.2.3.3 Prefix rename c l a u s e ... 158
12.2.3.4 G rant s t a t e m e n t ... 159
12.2.3.5 Seize statem ent ... 161
12.2.4 Implied name strings .. 162
12.2.5 Visibility of field names .. 164
12.3 Case selection ...164
12.4 Definition and sum m ary of sem antic c a t e g o r i e s .. 166
12.4.1 N a m e s ...166
12.4.2 Locations .. 167
12.4.3 Expressions and v a l u e s .. 167
12.4.4 Miscellaneous semantic c a t e g o r i e s .. 168
13 Im p le m e n ta t io n o p t i o n s ...169
13.1 Im plem entation defined built-in r o u t i n e s ... 169
13.2 Im plem entation defined integer m o d e s ..169
13.3 Im plem entation delined process n a m e s ..169
13.4 Im plem entation defined handlers ...169
13.5 Im plem entation defined exception n a m e s ... 169
13.6 O ther im plem entation defined features .. 169
A p p e n d ix A : C h a r a c te r s e t fo r C H I L L .. 171
A p p e n d ix B : S p e c ia l sy m b o ls ..172
A p p e n d ix C: S p e c ia l s im p le n a m e s t r in g s ... 173
C .l Reserved simple name s t r i n g s ... 173
C.2 Predefined simple nam e strings .. . 174
C.3 Exception names ... 175
A p p e n d ix D : P r o g r a m e x a m p l e s ... 176
A p p e n d ix E : D e c o m m it te d f e a tu r e s .. 202
A p p e n d ix F : C o lle c te d s y n t a x ... 205
A p p e n d ix G : I n d e x o f p r o d u c t io n ru le s ... 228
A p p e n d ix H : I n d e x ..237

F ascicle X .6 — R ec . Z200 XI

1 INTRODUCTION

This recom m endation defines the C C IT T high level program m ing language CHILL. CHILL stands for C C IT T
High Level Language.

The following sub-sections in this chapter introduce some of the m otivations behind the language design and
provide an overview of the language features.

For inform ation concerning the variety of in troductory and train ing m aterial on this subject, the reader is
referred to the C C IT T M anuals, “Introduction to CHILL” and “CHILL user’s m anual” .

An alternative definition of CHILL, in a strict m athem atical form (based on the VDM no tation), is available in
the C C IT T M anual entitled “Formal definition of CHILL” .

1.1 G E N E R A L

CHILL is a strongly typed, block structured language designed prim arily for the im plem entation of large and
complex embedded systems.

CHILL was designed to:

• enhance reliability and run tim e efficiency by means of extensive com pile-tim e checking;

• be sufficiently flexible and powerful to encompass the required range of applications and to exploit a
variety of hardware;

• provide facilities th a t encourage piecewise and m odular development of large systems;

• cater for real-tim e im plem entations by providing built-in concurrency and tim e supervision primitives;

• perm it the generation of highly efficient object code;

• be easy to learn and use.

The expressive power inherent in the language design allow engineers to select the appropriate constructs from
a rich set of facilities such th a t the resulting im plem entation can m atch the original specification more precisely.

Because CHILL is careful to distinguish between static and dynam ic objects, nearly all the sem antic checking
can be achieved a t compile tim e. This has obvious run tim e benefits. V iolation of CHILL dynam ic rules results
in run-tim e exceptions which can be intercepted by an appropriate exception handler (however, generation of
such im plicit checks is optional, unless a user defined handler is explicitly specified).

CHILL perm its program s to be w ritten in a machine independent m anner. The language itse lf is m achine
independent; however, particular com pilation systems may require the provision of specific im plem entation
defined objects. It should be noted th a t program s containing such objects will not, in general, be portable.

1.2 L A N G U A G E S U R V E Y

A CHILL program consists essentially of three parts:

• a description of d a ta objects;

• a description of actions which are to be performed upon the d a ta objects;

• a description of the program structure.

D ata objects are described by d a ta statem ents (declaration and definition statem ents), actions are described by
action statem ents and the program structure is determ ined by program structuring statem ents.

The m anipulatable d a ta objects of CHILL are values and locations where values can be stored. The actions
define the operations to be performed upon the d a ta objects and the order in which values are stored in to and
retrieved from locations. The program structure determ ines the lifetime and visibility of d a ta objects.

CHILL provides for extensive static checking of the use of d a ta objects in a given context.

In the following sections, a sum m ary of the various CHILL concepts is given. Each section is an in troduction
to a chapter with the same title, describing the concept in detail.

F ascicle X .6 — R ec . Z 200 1

1.3 M O D E S A N D C L A S S E S

A location has a mode attached to it. The mode of a location defines the set of values which may reside in th a t
location and other properties associated w ith it (note th a t not all properties of a location are determ inable by
its mode alone). Properties of locations are: size, internal structure, read-onliness, referability, etc. Properties
of values are: internal representation, ordering, applicable operations, etc.

A value has a class attached to it. The class of a value determines the modes of the locations th a t may contain
the value.

CHILL provides the following categories of modes:

discrete modes integer, character, boolean, set (symbolic) modes and ranges thereof;
powerset modes sets of elements of some discrete mode;
reference modes bound references, free references and rows used as references to locations;
composite modes string, array and structure modes;
procedure modes procedures considered as m anipulatable d a ta objects;
instance modes identifications for processes;
synchronisation modes event and buffer modes for process synchronisation and communication;
inpu t-ou tpu t modes association, access and text modes for inpu t-o u tp u t operations;
tim ing modes duration and absolute time modes for tim e supervision.

CHILL provides denotations for a set of s tandard modes. Program defined modes can be introduced by means
of m ode definitions. Some language constructs have a so-called dynam ic mode attached. A dynam ic mode is a
m ode of which some properties can be determ ined only dynamically. Dynam ic modes are always param eterised
modes w ith run-tim e param eters. A mode th a t is not dynamic is called a static mode.

Classes have no denotation in CHILL. They are introduced in the m etalanguage only to describe static and
dynam ic context conditions.

1 .4 L O C A T IO N S A N D T H E I R A C C E S S E S

Locations are (abstract) places where values can be stored or from which values can be obtained. In order to
store or obtain a value, a location has to be accessed.

D eclaration statem ents define nam es to be used for accessing a location. There are:

1. location declarations;

2. loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The la tte r one
establishes new access names for locations created elsewhere.

A part from location declarations, new locations can be created by means of a G E T S T A C K or A L L O C A T E
built-in routine calls yielding reference values (see below) to the newly created location.

A location m ay be re fe ra b le . This means th a t a corresponding reference value exists for the location. This
reference value is obtained as the result of the referencing operation, applied to the r e fe ra b le location. By
dereferencing a reference value, the referred location is obtained. CHILL requires certain locations to be
r e f e r a b le and others to be not r e fe ra b le , but for other locations it is left to the im plem entation to decide
w hether or not they are r e fe ra b le . Referability m ust be a statically determ inable property of locations.

A location may have a re a d -o n ly mode, which means th a t it can only be accessed to obtain a value and not
to store a new value into it (except when initialising).

A location may be composite, which means th a t it has sub-locations which can be accessed separately. A
sub-location is not necessarily re fe ra b le . A location containing a t least one re a d -o n ly sub-location is said to
have the r e a d -o n ly p r o p e r ty . The accessing m ethods delivering sub-locations (or sub-values) are indexing
and slicing for strings and for arrays, and selection for structures.

2 F ascicle X .6 - R ec . Z200

A location has a m ode attached. If this mode is dynamic, the location is called a dynam ic m ode location.

The following properties of a location, although statically determ inable, are not part of the mode:

re f e r a b i l i ty : w hether or not a reference value exists for the location;

s to r a g e class: whether or not it is statically allocated;

re g io n a li ty : w hether or not the location is declared within a region.

1.5 V A L U E S A N D T H E IR O P E R A T IO N S

Values are basic objects on which specific operations are defined. A value is either a (CHILL) defined value or
an u n d e f in e d value (in the CHILL sense). The usage of an undefined value in specified contexts results in an
undefined situation (in the CHILL sense) and the program is considered to be incorrect.

CHILL allows locations to be used in contexts where values are required. In this case, the location is accessed
to ob tain the value contained in it.

A value has a class attached. S tro n g values are values th a t besides their class also have a mode attached . In
th a t case the value is always one of the values defined by the mode. The class is used for com patibility checking
and the mode for describing properties of the value. Some contexts require those properties to be known and a
s t r o n g value will then be required.

A value may be l i te r a l , in which case it denotes an im plem entation independent discrete value, known at compile
tim e. A value may be c o n s ta n t , in which case it always delivers the same value, i.e. it need only be evaluated
once. W hen the context requires a l i t e r a l or c o n s ta n t value, the value is assumed to be evaluated before
run-tim e and therefore cannot generate a run-tim e exception. A value may be in tr a - r e g io n a l , in which case it
can refer somehow to locations declared w ithin a region. A value may be composite, i.e. contain sub-values.

Synonym definition statem ents establish new names to denote c o n s ta n t values.

1.6 A C T IO N S

Actions constitute the algorithm ic p a rt of a CHILL program.

The assignm ent action stores a (com puted) value into one or more locations. The procedure call invokes a
procedure, a built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition
need not be w ritten in CHILL and whose param eter and result mechanism may be more general). To return
from an d /o r establish the result of a procedure call, the re turn and result actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions:

if action for a two-way branch;
case action for a m ultiple branch. The selection of the branch may be based upon several values,

sim ilarly to a decision table;
do action for iteration or bracketing;
exit action for leaving a bracketed action or a module in a structured manner;
cause action to cause a specific exception;
goto action for unconditional transfer to a labelled program point.

Action and d a ta statem ents can be grouped together to form a module or begin-end block, which form a
(com pound) action.

To control the concurrent action flow, CHILL provides the s ta rt, stop, delay, continue, send, delay case, and
receive case actions, and receive and s ta rt expressions.

1 .7 I N P U T A N D O U T P U T

The inpu t and ou tp u t facilities of CHILL provide the means to com m unicate with a variety of devices in the
outside world.

The inpu t-ou tpu t reference model knows three states. In the free sta te there is no in teraction w ith the outside
world.

Fascicle X .6 — R ec . Z 200 3

Through an A S SO C IA T E operation the file handling state is entered. In the file handling sta te there are
locations of association mode, which denote outside world objects. I t is possible via built-in routines to read
and modify the language defined a ttrib u tes of associations, i.e. e x is tin g , r e a d a b le , w r i te a b le , in d e x a b le ,
s e q u e n c ib le and v a r ia b le . File creation and deletion are also done in the file handling state.

T hrough the C O N N E C T operation, a location of access mode is connected to a location of an association mode,
and the d a ta transfer sta te is entered. The C O N N E C T operation allows positioning of a b a se index in a file.
In the d a ta transfer state various a ttrib u tes of locations of access mode can be inspected and the d a ta transfer
operations R E A D R E C O R D and W R IT E R E C O R D can be applied.

Through the tex t transfer operations, CHILL values can be represented in a hum an-readable form which can
be transferred to or from a file or a CHILL location.

1.8 E X C E P T IO N H A N D L IN G

The dynam ic sem antic conditions of CHILL are those (non context-free) conditions th a t, in general, cannot
be statically determ ined. (It is left to the im plem entation to decide whether or not to generate code to test
the dynam ic conditions at run tim e, unless an appropriate handler is explicitly specified.) The violation of a
dynam ic sem antic rule causes a run-tim e exception; however, if an im plem entation can determ ine statically th a t
a dynam ic condition will be violated, it may reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert
action. W hen, a t a given program point, an exception occurs, control is transferred to the associated handler
for th a t exception, if it is specifiable (i.e. it has a name) and is specified. W hether or not a handler is specified
for an exception a t a given point can be statically determined. If no explicit handler is specified, control may
be transferred to an im plem entation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an im plem entation defined exception
name, or a program defined exception nam e. Note th a t when a handler is specified for an exception name, the
associated dynam ic condition m ust be checked.

1.9 T IM E S U P E R V IS IO N

Tim e supervision facilities of CHILL provide the means to react to the elapse of time in the external world.
CHILL processes may be in terrupted only a t precise t im e o u ta b le points during execution. W hen this happens,
control is transferred to an appropriate handler.

Program s may detect the elapsing of a period of tim e or may synchronise to an absolute point of tim e or at
precise intervals w ithout cum ulated drifts. Built-in routines for time are provided to convert tim e and duration
values into integer values, to pu t a process in a waiting state and to detect the expiration of a tim e supervision.

1.10 P R O G R A M S T R U C T U R E

The program structuring statem ents are the begin-end block, module, procedure, process and region. The
program structuring statem ents provide the means of controlling the lifetime of locations and the visibility of
names.

The lifetime of a location is the tim e during which a location exists within the program . Locations can be
explicitly declared (in a location declaration) or generated (G E T ST A C K or A L L O C A T E built-in routine call),
or they can be im plicitly declared or generated as the result of the use of language constructs.

A nam e is said to be v is ib le a t a certain point in the program if it may be used a t th a t point. The scope of a
name encompasses all the points where it is v is ib le , i.e. where the denoted object is identified by th a t name.

Begin-end blocks determ ine bo th visibility of names and lifetime of locations.

Modules are provided to restrict the visibility of names to protect against unauthorised usage. By means of
visibility statem ents, it is possible to exercise control over the visibility of names in various program parts.

4 F ascicle X .6 - R ec . Z200

A procedure is a (possibly param eterised) sub-program th a t may be invoked (called) a t different places w ithin
a program . It may return a value (value procedure) or a location (location procedure), or deliver no result. In
the la tte r case the procedure can only be called in a procedure call action.

Processes and regions provide the means by which a structure of concurrent executions can be achieved.

A complete CHILL program is a list of modules or regions th a t is considered to be surrounded by an (im aginary)
process definition. This outerm ost process is started by the system under whose control the program is executed.

C onstructs are provided to facilitate various ways of piecewise development of programs. A spec module and
spec region are used to define the static properties of a program piece, a context is used to define the static
properties of seized names. In addition it is possible to specify th a t the tex t of a program piece is to be found
somewhere else through the rem ote facility.

1 .11 C O N C U R R E N T E X E C U T IO N

CHILL allows for the concurrent execution of program units. A process is the unit of concurrent execution.
The evaluation of a sta rt expression causes the creation of a new process of the indicated process definition.
The process is then considered to be executed concurrently w ith the starting process. CHILL allows for one or
more processes with the same or different definition to be active a t one tim e. The stop action, executed by a
process, causes its term ination.

A process is always in one of two states; it can be active or delayed. The transition from active to delayed is
called the delaying of the process; the transition from delayed to active is called the re-activation of the process.
The execution of delaying actions on events, or receiving actions on buffers or signals, or sending actions on
buffers, can cause the executing process to become delayed. The execution of a continue action on events, or
sending actions on buffers or signals, or receiving actions on buffers can cause a delayed process to become
active again.

Buffers and events are locations w ith restricted use. The operations send, receive and receive case are defined on
buffers; the operations delay, delay case and continue are defined on events. Buffers are a means of synchronising
and transm itting inform ation between processes. Events are used only for synchronisation. Signals are defined in
signal definition statem ents. They denote functions for composing and decomposing lists of values transm itted
between processes. Send actions and receive case actions provide for com m unication of a list of values and for
synchronisation.

A region is a special kind of module. Its use is to provide for m utually exclusive access to d a ta structures th a t
are shared by several processes.

1 .12 G E N E R A L S E M A N T IC P R O P E R T I E S

The sem antic (non context-free) conditions of CHILL are the mode and class com patibility conditions (mode
checking) and the visibility conditions (scope checking). The mode rules determ ine how names may be used;
the scope rules determ ine where names m ay be used.

The mode rules are form ulated in term s of com patibility requirem ents between modes, between classes and
between modes and classes. The com patibility requirem ents between modes and classes and between classes
themselves are defined in term s of equivalence relations between modes. If dynam ic modes are involved, mode
checking is partly dynamic.

The scope rules determ ine the visibility of names through the program structure and explicit visibility s ta te
ments. The explicit visibility statem ents influence the scope of the m entioned names and also of possibly
im p lie d names of the mentioned names. Names introduced in a program have a place where they are defined
or declared. This place is called the defining occurrence of the name. The places where the nam e is used are
called applied occurrences of the name. The name binding rules associate a unique defining occurrence w ith
each applied occurrence of the name.

1 .13 IM P L E M E N T A T IO N O P T IO N S

CHILL allows for im plem entation defined integer modes, im plem entation defined built-in routines, im plem enta
tion defined p ro c e s s names, im plem entation defined exception handlers and im plem entation defined exception
names.

F ascicle X .6 - R ec . Z200 5

An im plem entation defined integer mode m ust be denoted by an im plem entation defined m o d e name. This
name is considered to be defined in a newmode definition statem ent th a t is not specified in CHILL. Extending
the existing CHILL-defined arithm etic operations to the im plem entation defined integer modes is allowed within
the framework of the CHILL syntactic and sem antic rules. Examples of im plem entation defined integer modes
are long integers, and short integers.

A built-in routine is a procedure whose definition need not be w ritten in CHILL and th a t may have a more
general param eter passing and result transm ission scheme th an CHILL procedures.

A built-in p ro c e s s name is a p ro c e s s nam e whose definition need not be w ritten in CHILL and th a t may
have a more general param eter passing scheme than CHILL processes. A CHILL process may cooperate with
built-in processes or s ta rt such processes.

An im plem entation defined exception handler is a handler appended to a process definition. If this handler
receives control after the occurrence of an exception, the im plem entation decides which actions are to be taken.
An im plem entation defined exception is caused if an im plem entation defined dynam ic condition is violated.

6 Fascicle X .6 - R ec . Z200

2 PRELIMINARIES

2.1 T H E M E T A L A N G U A G E

The CHILL description consists of two parts:

• the description of the context-free syntax;

• the description of the semantic conditions.

2 .1 .1 T h e c o n te x t- f re e s y n ta x d e s c r ip t io n

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are
indicated by one or more English words, w ritten in slanted characters, enclosed between angular brackets
(< and >). This indicator is called a non-term inal symbol. For each non-term inal symbol, a production rule
is given in an appropriate syntax section. A production rule for a non-term inal symbol consists of the non
term inal symbol a t the lefthand side of the symbol and one or more constructs, consisting of non-term inal
a n d /o r term inal symbols a t the righthand side. These constructs are separated by a vertical bar (|) to denote
alternative productions for the non-term inal symbol.

Sometimes the non-term inal symbol includes an underlined part. This underlined p a rt does not form part of
the context-free description but defines a sem antic category (see section 2.1.2).

Syntactic elements may be grouped together by using curly brackets ({ and }). R epetition of curly bracketed
groups is indicated by an asterisk (*) or plus (+). An asterisk indicates th a t the group is optional and can
be further repeated any num ber of times; a plus indicates th a t the group m ust be present and can be further
repeated any num ber of times. For example, { A }* stands for any sequence of A ’s, including zero, while { A }+
stands for any sequence of a t least one A. If syntactic elements are grouped using square brackets ([and]),
then the group is optional. A curly or square bracketed group may contain one or more vertical bars, indicating
alternative syntactic elements.

A distinction is made between strict syntax, for which the sem antic conditions are given directly, and derived
syntax. The derived syntax is considered to be an extension of the strict syntax and the semantics for the
derived syntax is indirectly explained in term s of the associated stric t syntax.

It is to be noted th a t the context-free syntax description is chosen to suit the sem antic description in this
docum ent and is not made to suit any particular parsing algorithm (e.g. there are some context-free am biguities
introduced in the interest of clarity). The am biguities are resolved using the sem antic category of the syntactic
elements.

2 .1 .2 T h e s e m a n tic d e s c r ip t io n

Each syntactic category (non-term inal symbol) is described in sub-sections s e m a n tic s , s ta t ic p r o p e r t ie s ,
d y n a m ic p ro p e r t ie s , s ta t ic c o n d it io n s and d y n a m ic c o n d itio n s .

The section s e m a n tic s describes the concepts denoted by the syntactic categories (i.e. their m eaning and
behaviour).

The section s ta t ic p r o p e r t ie s defines statically determ inable sem antic properties of the syntactic category.
These properties are used in the form ulation of sta tic an d /o r dynam ic conditions in the sections where the
syntactic category is used.

The section d y n a m ic p r o p e r t ie s defines the properties of the syntactic category, which are known only
dynamically.

The section s ta t ic c o n d itio n s describes the context-dependent, statically checkable conditions which m ust be
fulfilled when the syntactic category is used. Some static conditions are expressed in the syntax by means of
an underlined part in the non-term inal symbol (see section 2.1.1). This use requires the non-term inal to be of
a specific sem antic category. E.g. < boolean expression> is identical to <expression> in the context free sense,
bu t sem antically it requires the expression to be of a boolean class.

The section d y n a m ic c o n d it io n s describes the context-dependent conditions th a t m ust be fulfilled during
execution. In some cases, conditions are sta tic if no dynam ic modes are involved. In those cases, the condition
is mentioned under s ta t ic c o n d it io n s and referred to under d y n a m ic c o n d it io n s . In other cases, dynam ic
conditions can be checked statically; an im plem entation may trea t this as a violation of a sta tic condition.

F ascicle X .6 - R ec . Z 200 7

In the semantic description, different fonts are used in the following ways: slanted font (w ithout < and >) is
used to indicate syntactic objects; corresponding term s in rom an font indicate corresponding sem antic objects
(e.g. a location denotes a location). Bolding is used to nam e sem antic properties; sometimes a property can be
expressed syntactically as well as sem antically (e.g. the sentence “the expression is c o n s ta n t” m eans the same
as “the expression is a constant expression”).

Unless otherwise specified, the semantics, properties and conditions described in the sub-section of a syntactic
category hold regardless of the context in which in other sections th a t syntactic category may appear.

The properties of a syntactic category A th a t has a production rule of the form A ::= B, where B is a syntactic
category, are the same as B unless otherwise specified.

2 .1 .3 T h e e x a m p le s

For m ost syntax sections, there is a section e x a m p le s giving one or more examples of the defined syntactic
categories. These examples are extracted from a set of program examples contained in Appendix D. References
indicate via which syntax rule each example is produced and from which example it is taken.

E.g. 6.20 (d+ 5)/5 (1.2) indicates an example of the term inal string (d + 5) /5 , produced via rule (1.2) of the
appropriate syntax section, taken from program example no. 6 line 20.

2 .1 .4 T h e b in d in g ru le s in t h e m e ta la n g u a g e

Sometimes the sem antic description mentions CHILL s p e c ia l simple nam e strings (see A ppendix C). These
s p e c ia l simple name strings are always used with their CHILL m eaning and are therefore not influenced by the
binding rules of an actual CHILL program .

2 .2 V O C A B U L A R Y

Program s are represented using the CHILL character set (see A ppendix A). The alphabet is represented by the
syntactic category < character> , from which any character th a t is in the CHILL character set can be derived
as term inal production.

T he lexical elements of CHILL are:

• special symbols

• simple nam e strings

• literals.

A part from the lexical elements there are also special character com binations. The special symbols and special
character com binations are listed in Appendix B.

Simple name strings are formed according to the following syntax:

s y n ta x :
< sim ple nam e string > ::= (1)

< letter> { < letter> | < digit> | _ }* (1-1)

<letter> ::= (2)
A 1 B 1 c 1 D | E | F | G \H | I | J | K | L | M (2.1)
N 0 1 P i Q i R 1 s 1 T | U \ V \ W \ X \ Y \ Z (2.2)
a | *> 1 c 1 d | e | f 1 g 1 h | i 1J 1* \ l \ m (2.3)
« 1 o | P 1q | r | s 1 * 1 u 1 v | w | x | y | z (2.4)

o 1 I | 2 I 3 1 4 | 5 1 6 1 7 1 3 1 9
(3)

(3.1)

s e m a n tic s : The underline character (_) forms p a rt of the simple nam e string; e.g. the simple nam e string
life_ tim e is different from the simple nam e string lifetim e. Lower case and upper case letters are
different, e.g. S tatus and sta tus are two different simple nam e strings.

8 F ascicle X .6 — R ec . Z200

The language has a num ber of sp e c ia l simple nam e strings w ith predeterm ined meanings (see
A ppendix C). Some of them are re s e rv e d , i.e. they cannot be used for o ther purposes.

The sp e c ia l simple name strings in a piece m ust either all be in upper case representation or all
be in lower case representation. The re s e rv e d simple nam e strings are only reserved in the chosen
representation (e.g. if the lower case fashion is chosen, ro w is reserved, R O W is not).

s ta t ic c o n d it io n s : A sim ple nam e string can not be one of the r e s e rv e d simple nam e strings (see Appendix
C . l) .

2.3 T H E U S E O F S P A C E S

A space term inates any lexical element or special character com bination. Lexical elements are also term inated
by the first character th a t cannot be part of the lexical element. For instance, IF B T H E N will be considered
a sim ple nam e string and not as the beginning of an action IF B T H E N , / / * will be considered as the
concatenation symbol (/ /) followed by an asterisk (*) and not as a divide symbol (/) followed by a comment
opening bracket (/*)•

2.4 C O M M E N T S

sy n ta x :
<c&mment> (1)

<bracketed com m ent> (1.1)
| <line-end com m ent> (1.2)

< bracketed com m ent> ::= (2)
/ * < character string> * / (2-1)

<line-end com m ent> ::= (3)
— <character string> <end-of-line> (3-1)

< character string > ::= (4)
{ <character> }* (4.1)

N.B. end-of-line denotes the end of the line in which the com m ent occurs.

s e m a n tic s : A com m ent conveys inform ation to the reader of a program . It has no influence on the program
semantics.

A com m ent may be inserted a t all places where spaces are allowed as delim iters.

A bracketed com m ent is term inated by the first occurrence of the special sequence: * /. A line-end
com m ent is term inated by the first occurrence of the end of the line.

e x a m p le s :
4.1 / * from collected algorithms from C A C M no. 93 * / (2.1)

2.5 F O R M A T E F F E C T O R S

The form at effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (H orizontal tabu la tion), LF
(Line feed), and VT (Vertical tabulation) of the CHILL character set (see A ppendix A, positions FEo to FE5)
are not m entioned in the CHILL context-free syntax description. W hen used, they have the same delim iting
effect as a space. Spaces and form at effectors may not occur w ithin lexical elements (except character string
literals).

F ascicle X .6 - R ec . Z200 9

2 .6 C O M P IL E R D IR E C T IV E S

s y n ta x :
< directive clause> (1)

<> <directive> { , <directive> }* < > (l . l j

< directive> ::= (2)
< im plem entation directive> (2-1)

s e m a n tic s : A directive clause conveys inform ation to the compiler. This inform ation is specified in an
im plem entation defined form at.

An im plem entation directive m ust not influence the program semantics, i.e. a program w ith im
plem entation directives is correct, in the CHILL sense, if and only if it is correct w ithout these
directives.

A directive clause is term inated by the first occurrence of the directive ending symbol (< >)• A
directive may contain any character of the character set (see A ppendix A).

s ta t ic p r o p e r t ie s : A directive clause may be inserted a t any place where spaces are allowed. It has the same
delim iting effect as a space. The names used in a directive clause follow an im plem entation defined
nam e binding scheme which does not influence the CHILL nam e binding rules (see section 12.2).

2 .7 N A M E S A N D T H E I R D E F IN IN G O C C U R R E N C E S

s y n ta x :
<nam e> ::= (1)

< nam e string > (1-1)

<nam e str in g > (2)
<sim ple nam e string > (2-1)

| <prefixed name s tr in g > (2-2)

<prefixed nam e string> ::= (3)
<prefix> ! <sim ple nam e string> (2-1)

<prefix> ::= (4)
<sim ple pre fix> { ! <simple prefix> }* (4.1)

< sim ple prefix > (5)
<sim ple nam e string > (5.1)

<defining occurrence> (6)
<sim ple nam e string > (6.1)

<defining occurrence list> ::= , (7)
<defining occurrence> { , <defining occurrence> }* (7-1)

<field nam e> ::= (8)
<simple nam e string > (8.1)

<field nam e defining occurrence> (9)
<sim ple nam e string> (9-1)

<field nam e defining occurrence list> ::= (10)
<field nam e defining occurrence> { , <field nam e defining occurrence> }• (10.1)

< exception nam e> ::= (11)
<sim ple nam e string> (11.1)

| <prefixed nam e s tr in g > (11.2)

< tex t reference nam e> ::= (12)
<sim ple nam e string> (12.1)

| <prefixed nam e s tr in g > (12.2)

10 F ascicle X .6 - R ec . Z 200

sem an tics: Names in a program denote objects. Given an occurrence of a nam e (formally: an occurrence
of a term inal production of nam e) in a program, the binding rules of section 12.2 provide defining
occurrences (formally: occurrences of term inal productions of defining occurrence) to which th a t
(occurrence of) nam e is b o u n d . The name then denotes the object defined or declared by the
defining occurrences. (There can be more than one defining occurrence for a nam e only in the case
of set element nam es or of nam es with quasi defining occurrences.) Defining occurrences are said
to define the name. A nam e is said to be an applied occurrence of the nam e created by the defining
occurrence to which it is b o u n d . The name has its rightm ost simple nam e string equal to th a t of
the name.

Similarly, field nam es are b o u n d to field nam e defining occurrences and denote the fields (of a
structure mode) defined by those field name defining occurrences.

Exception names are used to identify exception handlers according to the rules sta ted in C hapter 8.

Text reference names are used to identify descriptions of pieces of source text in an im plem entation
defined way, subject to the rules in section 10.10.1.

W hen a nam e is b o u n d to more than one defining occurrence, each of the defining occurrences to
which the name is b o u n d defines or declares the same object (see 10.10 and 12.2.2 for precise rules).

d efin itio n o f n o ta tio n : Given a nam e string NS, and a string of characters P, which is either a prefix or is
em pty, the result of prefixing NS with P, w ritten P ! NS, is defined as follows:

• if P is empty, then P ! NS is NS;

• otherwise P ! NS is the nam e string obtained by concatenating all the characters in P, a
prefixing operator and all the characters in NS.

For example, if P is “q / r ” and NS is “s J n” then P ! NS is “q / r / s ! n” .

s ta t ic p ro p ertie s: Each sim ple nam e string has a canon ica l nam e string attached which is the sim ple nam e
string itself. A nam e string has a can on ical name string attached which is:

• if the nam e string is a sim ple nam e string, then the can on ica l nam e string of th a t sim ple
nam e string;

• if the nam e string is a prefixed name string, then the concatenation in left to right order of
all sim ple nam e strings in the nam e string, separated by prefixing operators, i.e. in terspersed
spaces, comments and form at effectors (if any) are left out.

In the rest of this document:

• the nam e string of a nam e, exception nam e or tex t reference nam e is used to denote the
can on ica l name string of the nam e string in th a t nam e, exception nam e or tex t reference
nam e, respectively;

• the name string of a defining occurrence, field nam e or field nam e defining occurrence is used
to denote the can on ica l nam e string of the simple nam e string in th a t defining occurrence,
field nam e or field nam e defining occurrence, respectively.

The binding rules are such tha t:

• nam es w ith a sim ple nam e string are b o u n d to defining occurrences w ith the same nam e
string;

• names w ith a prefixed nam e string are b o u n d to defining occurrences w ith the same nam e
string as the rightm ost sim ple nam e string in the prefixed nam e string of the name;

• field nam es are b o u n d to field name defining occurrences w ith the same nam e string as the
field names.

A nam e inherits all the static properties attached to the nam e defined by the defining occurrence
to which it is b o u n d . A field nam e inherits all sta tic properties attached to the field nam e defined
by the field nam e defining occurrence to which it is b o u n d .

F ascicle X .6 — R ec . Z200 11

3 MODES AND CLASSES

3.1 G E N E R A L

A location has a mode attached to it; a value has a class attached to it. The mode attached to a location defines
the set of values th a t may be contained in the location, the access m ethods of the location and the allowed
operations on the values. The class a ttached to a value is a means of determ ining the modes of the locations
th a t may contain the value. Some values are stro n g . A stron g value has a class and a mode attached. S tro n g
values are required in those value contexts where mode inform ation is needed.

3 .1 .1 M od es

CHILL has sta tic modes (i.e. modes for which all properties are statically determ inable) and dynam ic modes
(i.e. modes for which some properties are only known a t run tim e). Dynamic modes are always param eterised
modes w ith run-tim e param eters.

S tatic modes are term inal productions of the syntactic category mode.

In this docum ent, v irtual m o d e nam es are introduced to describe modes which are not denoted explicitly in
the program text. In such cases the m o d e nam e is preceded by an am persand symbol (<&).

Modes are also param eterised by values not explicitly denoted in the program text.

3 .1 .2 C lasses

Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has a class of one of these kinds:

• For a mode M there exists the M-value class. All values w ith such a class and only those values are
stro n g and the mode attached to the value is M.

• For a mode M there exists the M-derived class.

• For any mode M there exists the M-reference class.

• The nuU class.

• The aU class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A class is said to be dynam ic
if and only if it is an M-value class, an M -derived class, or an M-reference class, where M is a dynam ic mode.

3 .1 .3 P r o p e r tie s of, an d re la tio n s b e tw e e n , m o d es and c lasses

Modes in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property
is inherited from a defining mode to a m o d e nam e defined by it. Below a sum m ary is given of the properties
th a t apply to all modes (except for the first, they are all defined in section 12.1):

• A mode has a n o v e lty (defined in sections 3.2.2, 3.2.3 and 3.3).

• A mode can have the rea d -o n ly p ro p erty .

• A mode can be p a ra m eter isa b le .

• A mode can have the re feren cin g p ro p erty .

• A mode can have the ta g g e d p a ra m eter ised p rop erty .

• A mode can have the n o n -v a lu e p ro p erty .

Classes in CHILL may have the following properties (defined in section 12.1):

• A class can have a root mode.

• One or more classes may have a resu ltin g class.

12 F ascicle X .6 - R ec . Z200

O perations in CHILL are determ ined by the modes and classes of locations and values. This is expressed by
the mode checking rules which are defined in section 12.1 as a num ber of relations between modes and classes.
There exists the following relations:

• Two modes can be s im ila r .

• Two modes can be v -e q u i v a le n t.

• Two modes can be e q u iv a le n t.

• Two modes can be 1-eq u iv a le n t.

• Two modes can be alike.

• Two modes can be n o v e lty b o u n d .

• Two modes can be re a d - c o m p a tib le .

• Two modes can be d y n a m ic r e a d -c o m p a tib le .

• Two modes can be d y n a m ic e q u iv a le n t.

• A mode can be r e s t r ic ta b le to a mode.

• A mode can be c o m p a tib le w ith a class.

• A class can be c o m p a tib le w ith a class.

3 .2 M O D E D E F IN IT IO N S

3.2 .1 G e n e ra l

s y n ta x :
<m ode definition> ::= (1)

<defining occurrence list> = <defining m ode> (1-1)

<defining m ode> ::= (2)
<m ode> (2-1)

d e r iv e d s y n ta x : A m ode definition where the defining occurrence list consists of more th an one defining
occurrence is derived from several mode definitions, one for each defining occurrence, separated by
commas, w ith the same defining m ode. For example:

N E W M O D E dollar, pound = IN T \

is derived from:

N E W M O D E dollar = IN T , pound = IN T ;

s e m a n tic s : A mode definition defines a nam e th a t denotes the specified mode. Mode definitions occur in
synmode and newmode definition statem ents. A synmode is sy n o n y m o u s w ith its defining mode.
A newmode is not sy n o n y m o u s w ith its defining mode. The difference is defined in term s of the
property n o v e lty , th a t is used in the mode checking (see section 12.1).

s ta t ic p r o p e r t ie s : A defining occurrence in a m ode definition defines a m o d e name.

Predefined m o d e names and im plem entation defined integer m o d e names (if any, see section 3.4.2)
are also m o d e names.

A m o d e nam e has a d e f in in g mode which is the defining m ode in the m ode definition which defines
it. (For predefined and im plem entation defined m o d e names this d e f in in g mode is a v irtual mode).
The hereditary properties of a m o d e nam e are those of its d e f in in g mode.

A set of recursive definitions is a set of mode definitions or synonym definitions (see section 5.1)
such th a t the defining m ode in each m ode definition or constant value or m ode in each synonym
definition is, or directly contains, a m o d e name or a s y n o n y m nam e defined by a definition in the
set.

F ascicle X .6 — R ec . Z 200 13

A set of recursive mode definitions is a set of recursive definitions having only mode definitions.
(Any set of recursive definitions m ust be a set of recursive mode definitions; see section 5.1).

Any mode being or containing a m o d e nam e defined in a set of recursive mode definitions is said
to denote a recursive mode. A p a th in a set of recursive mode definitions is a list of m o d e names,
each name indexed w ith a m arker such tha t:

• all names in the path have a different definition;

• for each name, its successor is or directly occurs in its defining mode (the successor of the
last name is the first name);

• the marker indicates uniquely the position of the name in the defining mode of its predecessor
(the predecessor of the first nam e is the last nam e).

(Example: N E W M O D E M = S T R U C T (i M, n R E F M); contains two paths: {M*} and {Mn}.)

A pa th is safe if and only if a t least one of its names is contained in a reference m ode, a row m ode,
or a procedure m ode a t the m arked place.

s t a t i c c o n d itio n s : For any set of recursive mode definitions, all its pa ths m ust be safe. (The first pa th of
the example above is not safe).

e x a m p le s :
1.15 operands m ode = IN T (I ' l)
3.3 com plex = S T R U C T (re,im IN T) (1.1)

3 .2 .2 S y n m o d e d e f in itio n s

s y n ta x :
< synm ode definition sta tem en t> (1)

S Y N M O D E <m ode definition> { , < m ode definition> }* ; (1-1)

s e m a n tic s : A synmode definition statem ent defines m o d e names which are s y n o n y m o u s w ith their defining
mode.

s ta t ic p r o p e r t ie s : A defining occurrence in a m ode definition in a synm ode definition sta tem ent defines a
s y n m o d e name (which is also a m o d e nam e). A s y n m o d e nam e is said to be sy n o n y m o u s with
a mode M (conversely, M is said to be sy n o n y m o u s w ith the s y n m o d e name) if and only if:

• either M is the d e f in in g mode of the s y n m o d e name;

• or the d e f in in g mode of the s y n m o d e nam e is itself a sy n m o d e nam e s y n o n y m o u s
with M.

The n o v e lty of a sy n m o d e nam e is th a t of its d e f in in g mode.

If the d e fin in g mode is a range mode, then the p a r e n t mode of the sy n o n y m nam e is th a t of its
d e f in in g mode. If the d e f in in g mode is a v a ry in g string mode, then the c o m p o n e n t mode of
the sy n o n y m name is th a t of its d e f in in g mode.

e x a m p le s :
6.3 S Y N M O D E m onth = S E T (jan, feb, mar, apr, may, ju n ,

ju l, aug, sep, oct, nov, dec); (1-V

3 .2 .3 N e w m o d e d e f in itio n s

s y n ta x :
<newm ode definition s ta tem en t> ::= (1)

N E W M O D E < m ode definition> { , <m ode definition> }* ; (1-1)

14 F ascicle X .6 - R ec . Z200

se m a n tic s : A newmode definition statem ent defines m o d e names which are not s y n o n y m o u s with their
defining mode.

s ta t ic p ro p e r t ie s : A defining occurrence in a m ode definition in a newm ode definition sta tem en t defines a
n e w m o d e name (which is also a m o d e name).

The n o v e lty of the n e w m o d e nam e is the defining occurrence which defines it. If the d e f in in g
mode of the n e w m o d e nam e is a range mode, then the virtual mode &name is introduced as the
p a r e n t mode of the n e w m o d e name. The d e f in in g mode of &nam e is the p a r e n t mode of the
range mode, and the n o v e lty of Srname is th a t of the n e w m o d e name.

If the d e fin in g mode is a v a ry in g string mode, then the v irtual mode &nam e is introduced as the
c o m p o n e n t mode of the n e w m o d e name. The defining mode of &name is the c o m p o n e n t mode
of the v a ry in g string mode, and the n o v e lty of &name is th a t of the n e w m o d e name.

If the defining occurrence of the mode definition is a q u a s i defining occurrence, then the n o v e lty
is a q u a s i n o v e lty , otherwise it is a reed n o v e lty .

s ta t ic c o n d itio n s : If the n o v e lty is a q u a s i n o v e lty , then a t m ost one re a l n o v e lty m ust be n o v e lty
b o u n d to it.

e x a m p le s :
11.6 N E W M O D E line = IN T (1:8); (1.1)
11.12 N E W M O D E board = A R R A Y (line) A R R A Y (colum n) square; (1-1)

3.3 M O D E C L A S S IF IC A T IO N

sy n ta x :
<m ode> ::= (i)

[R E A D] < non-com posite m ode> (i . i)
| [R E A D] < composite m ode> (1.2)

<non-composite m ode> ::= (2)
<discrete m ode> (2.1)

| <powerset m ode> (2.2)
| < reference m ode> (2.3)
| < procedure m ode> (2.4)
| <instance mode> (2.5)
| <synchronisation m ode> (2.6)
| < input-output m ode> (2.7)
| < tim ing m ode> (2.8)

s e m a n tic s : A mode defines a set of values and the operations which are allowed on the values. A mode may
be a r e a d -o n ly mode, indicating th a t a location of th a t mode may not be accessed to store a value.
A mode has a n o v e lty , indicating w hether it was introduced via a newmode definition statem ent
or not.

s ta t ic p r o p e r t ie s : A mode has the following hereditary properties:

• It is a r e a d -o n ly mode if it is an explicit or an im plicit r e a d -o n ly mode.

• It is an explicit re a d -o n ly mode if R E A D is specified or it is a p a r a m e te r i s e d array mode,
a p a r a m e te r is e d string mode or a p a r a m e te r i s e d structure mode, where the o r ig in array
mode name, o r ig in string mode nam e or o r ig in v a r ia n t structure mode nam e, respectively,
in it is a r e a d -o n ly mode.

F ascicle X .6 - R ec . Z 200 15

• It is an im plicit re a d -o n ly mode if it is not an explicit r e a d -o n ly mode and if:

— it is the e le m e n t mode of a re a d -o n ly array mode (see section 3.12.3);

— it is a f ie ld mode of a re a d -o n ly structure mode or it is the m ode of a ta g field of a
p a r a m e te r i s e d structure mode (see section 3.12.4).

A m ode has the same properties as the non-composite m ode or com posite m ode in it. In the following
sections, the properties are defined for predefined m o d e nam es and for m odes th a t are not m ode
names; the properties of m ode names are defined in section 3.2. R e a d -o n ly modes have the same
properties as their corresponding n o n -read -o n ly modes except for the r e a d -o n ly p r o p e r ty (see
section 12.1.1.1).

A m ode has the following non-hereditary properties:

• A n o v e lty th a t is either n il or the defining occurrence in a m ode definition in a newm ode
definition sta tem ent. The n o v e lty of a mode which is not a m ode nam e (nor R E A D m ode
nam e) is defined as follows:

— if it is a p a r a m e te r i s e d string mode, a p a r a m e te r i s e d array mode or a p a r a m e
te r i s e d structure mode, its n o v e lty is th a t of its o r ig in string mode, o r ig in array
mode or o r ig in v a r ia n t structure mode, respectively;

— if it is a range mode, its n o v e lty is th a t of its p a r e n t mode;

— otherwise its n o v e lty is n il.

The n o v e lty of a mode th a t is a m ode nam e (R E A D m ode nam e) is defined in sections
3.2.2 and 3.2.3.

• A s ize th a t is the value delivered by SIZE (SiM), where &M is a v irtual s y n m o d e name
sy n o n y m o u s w ith the m ode.

3 .4 D IS C R E T E M O D E S

3 .4 .1 G e n e ra l

s y n ta x :
<discrete m ode> ::= (1)

<integer m ode> (1-1)
| <boolean m ode> (1-2)
| < character m ode> (1-3)
| <set m ode> (1-4)
| <range m ode> (1-5)

s e m a n tic s : A discrete modes defines sets and subsets of well-ordered values.

3 .4 .2 I n te g e r m o d e s

s y n ta x :
<integer m ode> ::= (1)

<in teser m ode nam e> (E l)

p re d e f in e d n a m e s : The nam e IN T is predefined as an in te g e r m o d e name.

16 F ascicle X .6 - R ec . Z200

s e m a n tic s : An integer mode defines a set of signed integer values between im plem entation defined bounds over
which the usual ordering and arithm etic operations are defined (see section 5.3). An im plem entation
may define other integer modes w ith different bounds (e.g. L O N G ^IN T , S H O R T -IN T , . . .) th a t
may also be used as p a r e n t modes for ranges (see section 13.2). The in ternal representation of an
integer value is the integer value itself.

s ta t ic p r o p e r t ie s : An integer mode has the following hereditary properties:

• An u p p e r b o u n d and a lo w er b o u n d which are the literals denoting respectively the highest
and lowest value defined by the integer mode. They are im plem entation defined.

• A n u m b e r o f v a lu es which is u p p e r b o u n d - lo w er b o u n d + 1.

e x a m p le s :
1.5 IN T (1.1)

3 .4 .3 B o o le a n m o d e s

s y n ta x :
< boolean m ode> ::= (1)

< boolean m ode nam e> (1.1)

p re d e f in e d n a m e s : The nam e BO O L is predefined as a b o o le a n m o d e name.

se m a n tic s : A boolean mode defines the logical tru th values (T R U E and FALSE), w ith the usual boolean
operations (see section 5.3). The internal representations of F ALSE and T R U E are the integer
values 0 and 1, respectively. This representation defines the ordering of the values.

s ta t ic p r o p e r t ie s : A boolean mode has the following hereditary properties:

• An u p p e r b o u n d which is TRU E, and a lo w er b o u n d which is FALSE.

• A n u m b e r o f v a lu es which is 2.

e x a m p le s :
5.4 BO O L (1.1)

3 .4 .4 C h a r a c te r m o d e s

s y n ta x :
< character m ode> ::= (l)

< character m ode name> (1.1)

p re d e f in e d n a m e s : The nam e C H A R is predefined as a c h a r a c te r m o d e name.

se m a n tic s : A character mode defines the character values as described by the CHILL character set (see
A ppendix A). This alphabet defines the ordering of the characters and the integer values which are
their in ternal representations.

F ascicle X .6 - R ec . Z 200 17

s ta t i c p r o p e r t ie s : A character mode has the following hereditary properties:

e x a m p le s :

• An u p p e r b o u n d and a lo w er b o u n d which are the character literals denoting respectively
the highest and lowest value defined by CH AR.

• A n u m b e r o f v a lu e s which is 256.

8.4 C H A R (1.1)

3 .4 .5 S et m o d es

syn tax :
<set m ode> (1

S E T (<set list>) (1.1
| < set m ode nam e> (1.2

< set list> ::= (2
< num bered set list> (2.1

| < unnumbered set list> (2.2

< num bered set list> ::= (3
< num bered set elem ent> { , <numbered set elem ent> }* (3.1

<num bered set elem ent> ::= (4
<defining occurrence> = <integer literal expression> (4.1

< unnum bered set list> (5
<set element> { , <set elem ent> }* (5.1

<set elem ent> ::= (6
< defining occurrence > (6.1

sem a n tics: A set mode defines a set of nam ed and unnam ed values. The nam ed values are denoted by the
names defined by defining occurrences in the set list; the unnam ed values are the other values.
The in ternal representation of the nam ed values is the integer value associated w ith them . This
representation defines the ordering of the values.

s ta t ic p ro p ertie s: A defining occurrence in a set list defines a set e lem en t name. A se t e lem en t nam e
has a set mode attached, which is the set mode.

A set mode has the following hereditary properties:

• A set of set e lem en t nam es which is the set of names defined by defining occurrences in its
set list.

• Each set e lem en t nam e of a set mode has an in ternal representation value attached which
is, in the case of a num bered set elem ent, the value delivered by the integer literal expression
in it; otherwise one of the values 0, 1, 2, etc., according to its position in the unnumbered
set list. For exam ple in: SE T (a,b), a has representation value 0, and b has representation
value 1 attached.

• An u p p er b o u n d and a low er b o u n d which are its set e lem en t names w ith the highest
and lowest representation values, respectively.

• A n u m b er o f va lues which is the highest of the values attached to the se t e lem en t names
plus 1.

• I t is a n u m b ered set mode if the set list in it is a numbered set lis t ; otherwise it is an
u n n u m b ered set mode.

18 F ascicle X .6 — R ec . Z200

s ta t ic c o n d itio n s : For each pair of integer literal expressions ei, ei in the set list N U M (e\) and N U M (e2)
must deliver different non-negative results.

e x a m p le s :
11.7 S E T (occupied, free) (1-1)
6.3 m onth (1-2)

3 .4 .6 R an ge m o d es

syn tax:
<range m ode> ::= (1)

< discrete m ode nam e> (<literal range>) (1-1)
| R A N G E (<literal range>) (1-2)
| B IN (<integer literal expression>) (1-2)
| < range m ode nam e> O--^)

<literal range> ::= (2)
<lower bound> : < upper bound> (2-1)

<lower bound> ::= (3)
< discrete literal expression> (2-1)

< upper bound> ::= (4)
< discrete literal expression> (4-1)

d erived syn tax: The notation B IN (n) is derived from IN T (0 : 2n- l) , e.g. B IN (2+1) stands for IN T (0 :

V-

sem an tics: A range mode defines the set of values ranging between the bounds specified (bounds included) by
the literal range. The range is taken from a specific p aren t mode th a t determines the operations
on and ordering of the range values.

sta tic p ro p erties: A range mode has the following non-hereditary property: it has a p aren t mode, defined
as follows:

• If the range mode is of the form:

< discrete m ode nam e> (<literal range>)

then if the discrete m ode nam e is not a range mode, the p aren t mode is the discrete m ode
nam e ; otherwise it is the p a ren t mode of the discrete m ode name.

• If the range mode is of the form:

R A N G E (<literal range>)

then the p aren t mode is the ro o t mode of the resu ltin g class of the classes of the upper
bound and lower bound in the literal range.

• If the range mode is a range m ode name which is a sy n m o d e name, then its p aren t mode
is th a t of the d efin in g mode of the sy n m o d e name; otherwise it is a n ew m o d e nam e and
then its p aren t m ode is the virtually introduced p aren t mode (see section 3.2.3).

A range mode has the following hereditary properties:

• An u p p er b o u n d and a low er b o u n d which are the literals denoting the values delivered
by lower bound and upper bound, respectively, in the literal range.

• A n u m b er o f va lu es which is the value delivered by N U M (U) — N U M (L) -f 1, where U
and L denote respectively the u p p er b ou n d and low er b o u n d of the range mode.

• It is a n u m b ered range mode if its p aren t mode is a n u m b ered set mode.

F ascicle X .6 — R ec . Z200 19

s ta t ic c o n d itio n s : The classes of upper bound and lower bound m ust be c o m p a tib le and both m ust be
c o m p a tib le with the discrete m ode nam e, if specified.

Lower bound m ust deliver a value th a t is less th an or equal to the value delivered by upper bound,
and both values m ust belong to the set of values defined by discrete m ode nam e, if specified.

The integer literal expression in case of B IN m ust deliver a non-negative value.

e x a m p le s :
9.5 IN T (2:max) (1.1)
11.12 line (1.4)

3.5 P O W E R S E T M O D E S

sy n ta x :
<powerset m ode> ::= (1)

P O W E R S E T < m em ber m ode> (1-1)
| < powerset m ode nam e> (1-2)

<m em ber m ode> ::= (2)
<discrete m ode> (2-1)

se m a n tic s : A powerset mode defines values th a t are sets of values of its member mode. Powerset values range
over all subsets of the member mode. The usual set-theoretic operators are defined on powerset
values (see section 5.3).

s ta t ic p r o p e r t ie s : A powerset mode has the following hereditary property:

• A m e m b e r mode which is the m em ber m ode.

e x a m p le s :
8.4 P O W E R S E T C H A R ■ (1.1)
9.5 P O W E R S E T IN T (2:max) (1.1)
9.6 n u m b er-lis t (1-2)

3.6 R E F E R E N C E M O D E S

3.6 .1 G e n e ra l

(1)
(1 . 1)

(1.2)
(1.3)

se m a n tic s : A reference mode defines references (addresses or descriptors) to r e f e r a b le locations. By definition,
bound references refer to locations of a given sta tic mode; free references may refer to locations of
any sta tic mode; rows refer to locations of a dynam ic mode.

sy n ta x :
<reference m ode> ::=

<bound reference m ode>
| <free reference m ode>
I <row m ode>

20 F ascicle X .6 — R ec . Z200

The dereferencing operation is defined on reference values (see sections 4.2.3, 4.2.4 and 4.2.5), de
livering the location th a t is referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not
refer to a location (i.e. they are the value NULL).

3 .6 .2 B o u n d re fe re n c e m o d e s

s y n ta x :
< bound reference m ode> (1)

R E F <referenced m ode> (1-1)
| < bound reference m ode nam e> (1-2)

<referenced m ode> ::= (2)
<m ode> (2-1)

se m a n tic s : A bound reference mode defines reference values to locations of the specified referenced mode.

s ta t ic p ro p e r t ie s : A bound reference mode has the following hereditary property:

• A re fe re n c e d mode which is the referenced mode.

e x a m p le s :
10.42 R E F cell (1.1)

3 .6 .3 F ree re fe re n c e m o d e s

s y n ta x :
<free reference m ode> ::= (1)

< free reference m ode nam e> (1-1)

p re d e f in e d n a m e s : The name P T R is predefined as a f re e r e fe re n c e m o d e name.

s e m a n tic s : A free reference mode defines reference values to locations of any sta tic mode.

e x a m p le s :
19.8 P T R (1.1)

3 .6 .4 R o w m o d e s

s y n ta x :
<row m ode> (1)

R O W < string m o d e> (1.1)
| R O W < array m ode> (1-2)
| R O W < variant structure m ode> (1-3)
| <row m ode nam e> (1-4)

\

F ascicle X .6 — R ec . Z200 21

se m a n tic s : A row mode defines reference values to locations of dynam ic mode (which are locations of some
param eterised mode with statically unknown param eters).

A row value may refer to:

• string locations with statically unknown s t r in g le n g th ,

• array locations with statically unknown u p p e r b o u n d ,

• param eterised structure locations with statically unknown param eters,

s ta t ic p r o p e r t ie s : A row mode has the following hereditary property:

• A re fe re n c e d o r ig in mode which is the strine m ode, the array mode, or the variant structure
mode, respectively.

s ta t ic c o n d it io n : The variant structure m ode m ust be p a ra m e te r is a b le .

e x a m p le s :
8.6 R O W C H A R S (m ax) (1.1)

3 .7 P R O C E D U R E M O D E S

s y n ta x :
<procedure m ode> ::= (1)

P R O C ([<parameter list>]) [<result spec>]
[E X C E P T IO N S (< exception list>)] [R E C U R S IV E] (1.1

| < procedure m ode nam e> (1.2

<parameter Jist> ::= (2
<parameter spec> { , <param eter spec> }* (2.1

<parameter spec> ::= (3
<m ode> [<parameter a ttribu te>] (3.1

<parameter a ttribute> ::= (4
IN | O U T | IN O U T | L O C [D Y N A M IC] (4.1

<result spec> ::= (5
R E T U R N S (<m ode> [<result a ttribu te>]) (5.1

<result attribute> ::= (6
[N O N R E F] L O C [D Y N A M IC] (6.1

<exception list> ::= (7
<exception nam e> { , <exception nam e> }* (7.1

se m a n tic s : A procedure mode defines (g e n e ra l) procedure values, i.e. the objects denoted by g e n e ra l p r o
c e d u re names th a t are names defined in procedure definition statem ents. Procedure values indicate
pieces of code in a dynam ic context. Procedure modes allow for m anipulating a procedure dynam
ically, e.g. passing it as a param eter to other procedures, sending it as message value to a buffer,
storing it into a location, etc.

Procedure values can be called (see section 6.7).

Two procedure values are equal if and only if they denote the same procedure in the same dynam ic
context, or if they both denote no procedure (i.e. they are the value NULL).

22 F ascicle X .6 — R ec . Z200

s ta t ic p r o p e r t ie s : A procedure mode has the following hereditary properties:

• A list of p a r a m e te r sp ecs, each consisting of a mode and possibly a param eter a ttribu te .
The p a r a m e te r sp ecs are defined by the param eter list.

• An optional r e s u l t spec , consisting of a mode and an optional result a ttrib u te . The r e s u l t
sp e c is defined by the result spec.

• A possibly em pty list of e x c e p tio n names which are those m entioned in the exception list.

• A re c u rs iv i ty which is re c u rs iv e if R E C U R S IV E is specified; otherwise an im plem enta
tion defined default specifies either re c u rs iv e or n o n - re c u rs iv e .

s ta t ic c o n d itio n s : All names mentioned in exception list m ust be different.

Only if L O C is specified in the parameter spec or result spec may the m ode in it have the n o n -v a lu e
p r o p e r ty .

If D Y N A M IC is specified in the param eter spec or the result spec , the m ode in it m ust be
p a ra m e te r is a b le .

3 .8 IN S T A N C E M O D E S

sy n ta x :
<instance mode> (1)

<instance m ode nam e> (l - l)

p re d e f in e d n a m e s : The name IN ST A N C E is predefined as an in s ta n c e m o d e name.

se m a n tic s : An instance mode defines values which identify processes. The creation of a new process (see
sections 5.2.14, 6.13 and 11.1) yields a unique instance value as identification for the created process.

Two instance values are equal if and only if they identify the same process, or they bo th identify no
process (i.e. they are the value NULL).

e x a m p le s :
15.39 IN ST A N C E (1.1)

3.9 S Y N C H R O N IS A T IO N M O D E S

3.9 .1 G e n e ra l

sy n ta x :
<synchronisation mode> ::= “ (l)

<event m ode> (1-1)
| <buffer m ode> (1-2)

se m a n tic s : A synchronisation mode provides a means for synchronisation and com m unication between pro
cesses (see chapter 11). There exists no expression in CHILL denoting a value defined by a synchro
nisation mode. As a consequence, there are no operations defined on the values.

F ascicle X .6 — R ec . Z200 23

3 .9 .2 E v e n t m o d e s

s y n ta x :
<event m ode> ::= (l)

E V E N T [(<event length>)] (1-1)
| < event m ode nam e> 0--2)

<event length> ::= (2)
<integer literal expression> (2-1)

s e m a n tic s : An event mode location provides a means for synchronisation between processes. The operations
defined on event mode locations are the continue action, the delay action and the delay case action,
which are described in section 6.15, 6.16 and 6.17, respectively.

The event length specifies the maxim um number of processes th a t may become delayed on an event
location; th a t num ber is unlim ited if no event length is specified.

s ta t ic p r o p e r t ie s : An event mode has the following hereditary property:

• An optional e v e n t le n g th which is the value delivered by event length.

s ta t i c c o n d it io n s : The event length m ust deliver a positive value.

e x a m p le s :
14.10 E V E N T (1.1)

3 .9 .3 B u ffe r m o d e s

s y n ta x :
< buffer m ode> ::= (1)

B U F F E R [(< buffer len g th y)] <buffer element m ode> (1-1)
| < buffer m ode nam e> (1-2)

"< buffer leng th> :;= (2)
<integer literal expression> (2-1)

< buffer element m ode> ::= (3)
<m ode> (2-1)

s e m a n tic s : A buffer mode location provides a means for synchronisation and com m unication between pro
cesses. The operations defined on buffer locations are the send action, the receive case action and
the receive expression, described in section 6.18, 6.19 and 5.3.9, respectively.

The buffer length specifies the m axim um number of values th a t can be stored in an event location;
th a t num ber is unlim ited if no buffer length is specified.

s ta t i c p r o p e r t ie s : A buffer mode has the following hereditary properties:

• An optional b u f fe r le n g th which is the value delivered by buffer length.

• A b u ffe r e le m e n t mode which is the buffer element mode.

24 - F ascicle X .6 — R ec . Z200

s ta t i c c o n d itio n s : The buffer length m ust deliver a non-negative value.

The buffer element m ode m ust not have the n o n -v a lu e p r o p e r ty .

e x a m p le s :
16.30 B U F F E R (1) user-messages
16.34 user_ buffers

3 .10 I N P U T - O U T P U T M O D E S

3 .10 .1 G e n e ra l

(i)
(1 .1)
(1 .2)
(1.3)

s e m a n tic s : An in pu t-ou tpu t mode provides a means for inpu t-ou tpu t operations as defined in chapter 7. There
exists no expression in CHILL denoting a value defined by an in pu t-ou tpu t mode. As a consequence,
there are no operations defined on the values.

e x a m p le s :
20.17 A SSO C IA T IO N ' (1.1)

s y n ta x :
< input-ou tpu t m ode> ::=

< association m ode>
| <access m ode>
| < tex t m ode>

3 .1 0 .2 A s s o c ia tio n m o d e s

s y n ta x :
<association m ode> ::= (1)

< association m ode nam e> (1-1)

p re d e f in e d n a m e s : The nam e A SSO C IA T IO N is predefined as an a s s o c ia t io n m o d e name.

s e m a n tic s : An association mode location provides a means for representing a relation to an outside world
object. Such a relation is called an association in CHILL; associations can be created by the built-in
routine A SSO C IA T E and be ended by D ISSO C IATE.

3 .1 0 .3 A ccess m o d e s

s y n ta x :
<access m ode> ::= (1)

A C C E S S [(< index m ode>)] [<record m ode> [D Y N A M IC]] (1.1)
| < access m ode nam e> (1-2)

<record m ode> ::= (2)
< m ode> (2-1)

< index m ode> ::= (3)
< discrete m ode> (3-1)

| <literal range> (3-2)

F ascicle X .6 — R ec . Z 200 25

d e r iv e d s y n ta x : The index mode notation literal range is derived from the discrete mode R A N G E (literal
range).

se m a n tic s : An access mode location provides a means for positioning a file and for transferring values from
a CHILL program to a file in the outside world, and vice versa.

An access mode may define a record mode; this record mode defines the ro o t m ode of the class of
the values th a t can be transferred via a location of th a t access mode to or from a file. The mode
of the transferred value may be dynamic, i.e. the size of the record may vary, when the a ttrib u te
D Y N A M IC is specified in the access mode denotation or when record m ode is a v a ry in g string
mode. In the la tte r case D Y N A M IC need not be specified.

An access m ode may also define an index mode; such an index mode defines the size of a “window”
to (a part of) the file, from which it is possible to read (or write) records randomly. Such a window
can be positioned in an (indexable) file by the connect operation. If no index m ode is specified, then
it is possible to transfer records only sequentially.

s t a t i c p r o p e r t ie s : An access mode has the following hereditary properties:

• An optional r e c o rd mode which is the record m ode if present. It is a d y n a m ic r e c o rd
mode if D Y N A M IC is specified or if record m ode is a v a ry in g string mode, otherwise it is
a s t a t i c r e c o rd mode.

• An optional in d e x mode which is the index mode.

s ta t ic c o n d it io n s : The optional record m ode m ust not have the n o n -v a lu e p r o p e r ty .

If D Y N A M IC is specified, the r e c o rd mode m ust be p a ra m e te r is a b le and m ust not be a ta g le s s
structure mode.

The index m ode m ust neither be a n u m b e r e d set mode nor a n u m b e re d range mode.

e x a m p le s :
20.18 A C C E S S (in d ex -se t) reco rd -typ e (1-V
22.20 A C C E S S string D Y N A M IC (1.1)
20.18 record- type (2.1)
20.18 in d e x -se t (3-1)

3 .1 0 .4 T e x t m o d e s

s y n ta x :
< te x t m ode> ::= (1)

T E X T (< tex t length>) [< index m ode>] [D Y N A M IC] fLIJ

< te x t le n g th y ::= ' (2)
<integer literal expressiony (2-1)

s e m a n tic s : A tex t mode location provides a means for transferring values represented in hum an-readable form
from a CHILL program to a file in the outside world, and vice versa. A text mode location has
a t e x t r e c o rd and an access sub-locations. The t e x t r e c o rd sub-location is initialised w ith an
em pty string.

A tex t mode has a t e x t le n g th , which defines the maxim um length of the records th a t can be
transferred, and possibly an in d e x mode th a t has the same meaning as for access modes.

26 F ascicle X .6 — R ec . Z200

s ta t i c p r o p e r t ie s : A tex t mode has the following hereditary properties:

• A t e x t le n g th which is the value delivered by text length.

• A t e x t r e c o rd mode which is C H A R S (< te x t length>) V A R Y IN G .

• It has an access mode which is A C C E S S [(< index m ode>)] C H A R S (< te x t length>)
[D Y N A M IC] (< index m ode> and D Y N A M IC are part of the m ode only if they are
specified).

e x a m p le s :
26.8 T E X T (80) D Y N A M IC (1.1)

3 .11 T IM IN G M O D E S

3 .11 .1 G e n e ra l

s y n ta x :
< tim ing m o d e> ::= (1)

<duration m ode> (1-1)
| < a bsolute tim e m ode> (1-2)

se m a n tic s : A tim ing mode provides a means for time supervision of processes as described in chapter 9.
Tim ing values are created by a set of built-in routines. The relational operators are defined on
tim ing values.

3 .1 1 .2 D u r a t io n m o d e s

s y n ta x :
<duration m ode> (l)

< duration m ode nam e> (1-1)

p re d e f in e d n a m e s : The nam e D U R A T IO N is predefined as a d u r a t io n m o d e name.

s e m a n tic s : A duration mode defines values which represent periods of time. The set of values defined by
the duration mode is im plem entation defined. An im plem entation may choose to represent duration
values as pairs of precision and value. D uration values are ordered in the in tu itive way.

3 .1 1 .3 A b s o lu te t im e m o d e s

s y n ta x :
< a bsolute tim e m ode> (1)

< absolute tim e m ode nam e> (1-1)

p re d e f in e d n a m e s : The nam e T IM E is predefined as an a b s o lu te t im e m o d e name.

F ascicle X .6 — R ec . Z200 27

se m a n tic s : An absolute tim e m ode defines values which represent points in time. The set of values defined by
the absolute tim e mode is im plem entation defined. Absolute tim e values are ordered in the intuitive
way.

3 .12 C O M P O S IT E M O D E S

3 .12 .1 G en era l

syn tax :
<com posite m ode> ::= (1)

<string m ode> (1.1)
| < array m ode> (1-2)
| < structure m ode> 0--3)

sem an tics: A composite mode defines composite values, i.e. values consisting of sub-components which can
be accessed or obtained (see sections 4.2.6-4.2.10 and 5.2.6-5.2.10).

3 .12 .2 S tr in g m od es

syn tax :
< string m ode> ::= (1)

<string type> (<string length>) [V A R Y IN G] (1.1)
| <parameterised string m ode> (1.2)
| <string m ode nam e> (1-3)

<parameterised string m ode> ::= (2)
<origin string m ode nam e> (< string length>) (2-1)

| < parameterised string m ode nam e> (2-2)

<origin string m ode nam e> ::= (3)
<string m ode nam e> (3-1)

< string type> ::= (4)
B O O L S (4.1)

| C H A R S (4.2)

< string length> ::= (5)
<integer literal expression> (3-1)

sem an tics: A fix ed string mode defines bit or character string values of a length indicated or im plied by the
string mode. A vary in g string mode defines bit or character string values whose a c tu a l le n g th
can vary dynam ically from 0 to the s tr in g len g th . The length is known only a t runtim e from the
value of the a ttr ib u te a c tu a l le n g th . For a fixed string mode the a ctu a l le n g th is always equal
to the str in g le n g th . C haracter strings are sequences of character values; bit strings are sequences
of boolean values.

String values are either em pty or have string elements which are numbered from 0 upward.

The string values of a given string mode are well-ordered in accordance with the ordering of the
com ponent values and the following definition.

Two strings s and t are equal if and only if they are em pty or have the same length I and s(£) = t(i)
for all 0 < i < I. A string s precedes t when either:

• there exists an index j such th a t s (j) < t(j) and s(0 : j — 1) = <(0 : j — 1), or

• L E N G T H (a) < L E N G T H (t) and s = t{0 U P L E N G T H (s)).

The concatenation operator is defined on string values. The usual logical operators are defined on
b it string values and operate between their corresponding elements (see section 5.3).

28 F ascicle X .6 — R ec . Z200

s ta t ic p rop erties: A string mode has the following hereditary properties:

• A strin g le n g th which is the value delivered by string length.

• An u p p er b o u n d and a low er b ou n d which are the values delivered by str in g le n g th —1
and 0, respectively. ,

• It is a b it string mode or a character string mode, depending on w hether string type specifies
B O O L S or C H A R S , or whether origin string m ode name is a b it or ch aracter string mode.

• It is a varyin g string mode if V A R Y IN G is specified or if the origin string m ode nam e is
a varying string mode; otherwise it is a fix ed string mode.

A string mode is p a ra m eter ised if and only if it is a parameterised string mode.

A p ara m eter ised string mode has an orig in string mode which is the mode denoted by origin
string m ode name.

A varying string mode has the following non-hereditary property: it has a co m p o n en t mode,
defined as follows:

• If the varyin g string mode is of the form:

<string type> (< string length>) V A R Y IN G

then it is < string type> (< string length>).

• If the varyin g string mode is of the form:

<origin string m ode nam e> (< string length>)

then the co m p o n en t mode is &name (string length), where Srname is a v irtually introduced
sy n m o d e nam e sy n o n y m o u s w ith the co m p o n en t mode of the origin string m ode nam e.

• If the vary in g string mode is a string m ode nam e which is a sy n m o d e name, then its
co m p o n en t mode is th a t of the defining mode of the sy n m o d e name; otherwise it is a
n ew m o d e nam e and then its co m p o n en t m ode is the v irtually introduced co m p o n en t
mode (see section 3.2.3).

s ta tic co n d ition s: The string length m ust deliver a non-negative value.

The value delivered by the string length directly contained in a parameterised string m ode m ust be
less than or equal to the str in g le n g th of the origin string m ode name. This condition applies only
to the p a ra m eter ised string modes th a t are not introduced virtually.

exam p les:
7.51 C H A R S (20) (1.1)
22.22 C H A R S (20) V A R Y IN G (1.1)

3 .12 .3 A rray m od es

syn tax :
< array m ode> ::= (1)

A R R A Y (< index m ode> { , <index m ode> }*)
Celement m ode> { <elem ent layout> }* (1-1)

| <parameterised array m ode> (1-2)
| < array m ode nam e> (1-3)

<parameterised array m ode> ::= (2)
<origin array m ode nam e> (< upper in d e x >) (2-1)

| < parameterised array m ode nam e> (2.2)

< origin array m ode nam e> ::= (3)
< array m ode nam e> (3-1)

< upper index> ::= (4)
< discrete literal expression> (4-1)

<element m ode> ::= (5)
<m ode> (5-V

F ascicle X .6 — R ec . Z200 29

d e r iv e d s y n ta x : An array m ode w ith more than one index mode (denoting a m ulti-dim ensional array), is
derived syntax for an array m ode w ith an element m ode th a t is an array mode. For example:

A R R A Y (1:20,1:10) IN T

is derived from:

A R R A Y (R A N G E (1:20)) A R R A Y (R A N G E (1:10)) IN T

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number
of element layout occurrences m ust be less than or equal to the number of index m ode occurrences.
In th a t case, the leftm ost elem ent layout is associated w ith the innerm ost element m ode, etc.

s e m a n tic s : An array mode defines com posite values, which are lists of values defined by its element mode.
The physical layout of an array location or value can be controlled by element layout specification
(see section 3.12.5). Two array values are equal if and only if all corresponding element values are
equal.

s ta t ic p r o p e r t ie s : An array mode has the following hereditary properties:

• An in d e x mode which is the index m ode if it is not a parameterised array m ode, otherwise
the in d e x mode is the range m ode constructed as:

Scname (lower bound : upper bound)

where Srname is a v irtual s y n m o d e nam e s y n o n y m o u s w ith the in d e x mode of origin
array m ode nam e, lower bound is the lower bound of the in d e x mode of the origin array
m ode name and upper bound is the upper index.

• An u p p e r b o u n d and a lo w e r b o u n d which are the u p p e r b o u n d and the lo w er b o u n d
of its in d e x mode, respectively.

• An e le m e n t mode which is either M or R E A D M , where M is the element mode, or the
e le m e n t mode of the origin array m ode nam e, respectively. The e le m e n t mode will be
R E A D M if and only if M is not a r e a d -o n ly mode and the array m ode is a re a d -o n ly
mode. The e le m e n t mode is an im plicit re a d -o n ly mode if it is R E A D M .

• An e le m e n t la y o u t which, if it is a parameterised array m ode, is the e le m e n t la y o u t
of its origin array m ode name; otherwise it is either the specified element layout, or the
im plem entation default, which is either P A C K or N O P A C K .

• A n u m b e r o f e le m e n ts which is the value delivered by:

NU M (upper bound) — N U M (lower bound) + 1

where upper bound and lower bound are respectively the u p p e r b o u n d and the lo w er
b o u n d of its in d e x mode.

• It is a m a p p e d mode if element layout is specified and is a step.

An array mode is p a r a m e te r i s e d if and only if it is a parameterised array mode.

A p a r a m e te r is e d array mode has an o r ig in array mode which is the mode denoted by origin array
m ode name.

s ta t i c c o n d it io n s : The class of upper index m ust be c o m p a tib le with the in d e x mode of the origin array
m ode name and the value delivered by it m ust lie in the range defined by th a t in d e x mode.

e x a m p le s :
5.29 A R R A Y (1:16) S T R U C T (c4, c2, cl BO O L) (1.1)
11.12 A R R A Y (line) A R R A Y (column) square (1-V
11.17 board (1-3)

30 F ascicle X .6 — R ec . Z200

3 .1 2 .4 S t r u c tu r e m o d es

s y n ta x :
<structure mode> ::= (1)

S T R U C T (< field> { , <field> }*) (1.1)
| < parameterised structure m ode> (1-2)
j <structure m ode nam e> (1-3)

< field> ::= (2)
< fixed field> (2-1)

| < alternative field> (2.2)

<fixed field> ::= (3)
<field name defining occurrence list> < m ode> [<field layout>] (3-1)

<alternative field> ::= ' (4)
C A S E [< tag list>] O F
< variant alternative> { , < variant alternative> }*
[E L S E [< variant field> { , <variant field> }*]] E S A C (4-lJ

< variant alternative> ::= (5)
[<case label specification> } : [< variant field> { , < variant field> }*] (3-1)

< tag list> ::= (6)
< tas field nam e> { , < tag field name> }* (3.1)

<variant field> ::= (7)
<field name defining occurrence list> < m ode> [<field layout> } (?-l)

<parameterised structure m ode> ::= (8)
< origin variant structure m ode name> (<literal expression list>) (3-1)

| < parameterised structure m ode nam e> (3-2)

<origin variant structure m ode nam e> ::= (9)
< variant structure m ode nam e> (9-1)

<literal expression list> ::= (10)
< discrete literal expression> { , <discrete literal expression> }* (10.i j

d e r iv e d s y n ta x : A fixed field occurrence or variant field occurrence, where field nam e defining occurrence
list consists of more than one field nam e defining occurrence, is derived syntax for several fixed field
occurrences or variant field occurrences with one field nam e defining occurrence respectively, each
w ith the specified m ode and optional field layout. In the case of field layout, th is field layout m ust
not be pos. For example:

S T R U C T (I,J BO O L P A C K J

is derived from:

S T R U C T (I BO O L P A C K , J BOOL P A C K J

s e m a n tic s : S tructure modes define composite values consisting of a list of values, selectable by a component
name. Each value is defined by a mode th a t is a ttached to the com ponent nam e. S tructure values
may reside in (composite) structure locations, where the com ponent nam e serves as an access to the
sub-location. The com ponents of a structure value or location are called fields and their names f ie ld
names.

There are fix ed structures, v a r ia n t structures and p a r a m e te r i s e d structures.

F ix e d structures consist only of fixed fields, i.e. fields th a t are always present and th a t can be
accessed w ithout any dynam ic check.

F ascicle X .6 — R ec . Z200 31

V a r ia n t structures have variant fields, i.e. fields th a t are not always present. For ta g g e d v a r ia n t
structures, the presence of these fields is known only a t run tim e from the value(s) of certain asso
ciated fixed field(s) called ta g fields. T ag -less v a r ia n t structures do not have ta g fields. Because
the composition of a v a r ia n t structure may change during run tim e, the size of a variant structure
location is based upon the largest choice (worst case) of variatit alternatives.

In an alternative field the variant alternative chosen is th a t for which values give in the case label
specification match; if no value m atch, the variant alternative following E L S E (which will be present)
is chosen.

A p a r a m e te r is e d structure is determ ined from a v a r ia n t structure mode for which the choice of
variant alternatives is statically specified by means of literal expressions. The com position is fixed
from the point of the creation of the param eterised structure and may not change during run time.
The ta g fields, if present, are r e a d -o n ly and autom atically initialised w ith the specified values.
For a param eterised structure location, a precise am ount of storage can be allocated a t the point
of declaration or generation. Note th a t dynam ic p a r a m e te r i s e d structure modes also exist; their
semantics are defined in section 3.13.4.

The layout of a structure location or value can be controlled by means of a field layout specification
(see section 3.12.5).

Two structure values are equal if and only if the corresponding component values are equal. How
ever, if the structure values are ta g - le s s v a r ia n t structure values, the result of comparison is
im plem entation defined.

s ta t ic p r o p e r t ie s :

g e n e ra l:

A structure mode has the following hereditary properties:

• It is a fix ed structure mode if it is a structure m ode th a t does not directly contain an
alternative field occurrence.

• It is a v a r ia n t structure mode if it is a structure m ode and contains a t least one alternative
field occurrence.

• It is a p a r a m e te r is e d structure mode if it is a parameterised structure mode.

• It has a set of fie ld names. This set is defined below for the different cases. A nam e is said
to be a f ie ld name if and only if it is defined in a field nam e defining occurrence list in fixed
fields or variant fields in a structure mode.

Each fixed field, variant field and therefore each f ie ld nam e of a structure mode has a fie ld
mode attached th a t is either M or R E A D M , where M is the m ode in the fixed field or
variant field. The f ie ld mode is R E A D M if M is not a re a d -o n ly mode and either the
structure mode is a re a d -o n ly mode, or the field is a ta g field of a p a r a m e te r i s e d structure
mode. The f ie ld mode is an im plicit re a d -o n ly mode if it is R E A D M.

A fixed field, variant field and therefore a f ie ld nam e of a given structure mode has a f ie ld
la y o u t attached to it th a t is the field layout in the fixed field or variant field, if present;
otherwise it is the default field layout, which is either P A C K or N O P A C K .

• It is a m a p p e d mode if its f ie ld names have a field layout th a t is pos.

f ix e d s t r u c tu r e s :

A fix e d structure mode has the following hereditary property:

• A set of fie ld names which is the set of names defined by any field nam e defining occurrence
list in fixed fields. These fie ld names are f ix e d f ie ld names.

v a r ia n t s t ru c tu re s :

A v a r ia n t structure mode has the following hereditary properties:

• A set of fie ld names which is the union of the set of names defined by any field name
defining occurrence list in fixed fields and the set of names defined by any field nam e defining
occurrence list in alternative fields. F ie ld names defined by a field nam e defining occurrence
list in fixed fields are the f ix e d fie ld names of the v a r ia n t structure mode; its other fie ld
names are the v a r ia n t fie ld names.

A fie ld nam e of a v a r ia n t structure mode is a t a g fie ld nam e if and only if it occurs in
any tag list of an alternative field. A lternative fields in which no tag list are specified are
ta g - le s s alternative fields.

32 F ascicle X .6 — R ec . Z200

• A variant structure mode is a tag -less variant structure mode if all its alternative field
occurrences are ta g -le ss . Otherwise it is a ta g g ed variant structure mode.

• A variant structure mode is a p a ra m eter isa b le variant structure m ode if it is either a
tagged variant structure mode or a ta g -le ss variant structure mode where for each of the
alternative field occurrences a case label specification is given for all the variant alternative
occurrences in it.

• A p aram eter isab le variant structure mode has a list of classes attached , determ ined as
follows:

— if it is a ta g g ed variant structure mode, the list of M* -value classes, where Mi are
the modes of the ta g field names in the order th a t they are defined in fixed fields;

— if it is a ta g -le ss variant structure mode, the list is built up from the individual
resu ltin g lis ts o f classes of each alternative field by concatenating them in the
order as the alternative fields occur. The r e su ltin g lis t o f c la sses of an alternative
field occurrence is the resu ltin g list o f c la sses of the list of case label specification
occurrences in it (see section 12.3).

p a ra m eter ised stru ctu res:

A p aram eter ised structure mode has the following hereditary properties:

• An origin variant structure mode which is the mode denoted by origin variant structure
m ode name.

• A set of field names which is the union of the set of fix ed fie ld names of its orig in variant
structure mode and the set of those variant fie ld names of its orig in variant structure
mode tha t are defined in variant alternative occurrences th a t are selected by the list of values
defined by literal expression list.

The set of ta g field names of a parameterised structure m ode is the set of ta g fie ld names
of its origin variant structure mode.

• A list of values attached, defined by literal expression list.

• It is a ta g g ed p a ra m eter ised structure mode if its orig in variant structure mode is a
ta g g ed variant structure mode; otherwise the p a ra m eter ised structure mode is ta g -le ss .

For dynamic p a ra m eter ized structure modes see section 3.13.4.

s ta t ic con d ition s:

general:

All field names of a structure mode m ust be different.

If any field has a field layout which is pos, all the fields m ust have a field layout which m ust be pos.

variant structures:

A ta g field name m ust be a fix ed field name and m ust be textually defined before all the alternative
field occurrences in whose tag list it is mentioned. (As a consequence, a ta g field precedes all the
variant fields th a t depend upon it). The mode of a ta g fie ld nam e m ust be a discrete mode.

The mode of variant field may have neither the n o n -v a lu e p r o p e r ty nor the ta g g e d p a ra m e
ter ised prop erty .

In a variant structure mode the alternative field occurrences m ust be either all ta g g e d or all tag-
le ss . For tag -less alternative fields, case label specification may be om itted in all variant alternative
occurrences together, or m ust be specified for each variant alternative occurrence.

If, for a tag-less variant structure mode, any of its alternative fields has case label specification
given, all its alternative fields m ust have case label specification.

For alternative fields, the case selection conditions m ust be fulfilled (see section 12.3), and the
same completeness, consistency and com patibility requirem ents m ust hold as for the case action (see
section 6.4). Each of the ta g fie ld names of tag list (if present) serves as a case selector w ith the
M-value class, where M is the mode of the tag field name. In the case of ta g -le ss alternative fields,
the checks involving the case selector are ignored.

For a param eter isab le variant structure mode none of the classes of its a ttached list of classes may
be the all class. (This condition is autom atically fulfilled by a ta g g ed variant structure mode.)

F ascicle X .6 — R ec . Z200 33

p a r a m e te r i s e d s t r u c tu r e s :

The origin variant structure m ode nam e must be p a r a m e te r is a b le .

There m ust be as many l i t e r a l expressions in the literal expression list as there are classes in the
list of classes of the origin variant structure m ode name. The class of each l i t e r a l expression must
be c o m p a tib le w ith the corresponding (by position) class of the list of classes. If the la tte r class
is an M-value class, the value delivered by the l i te r a l expression m ust be one of the values defined
by M.

e x a m p le s :
3.3 S T R U C T (re, im IN T) (1.1)
11.7 S T R U C T (status S E T (occupied, free),

C A S E sta tus O F
(occupied): p piece,
(free):

E S A C) (1.1)
2.6 fraction (1.3)
11.7 sta tus S E T (occupied, free) (3-1)
11.8 sta tus (6-1)
11.9 p piece (1-1)

3 .1 2 .5 L ayout d escr ip tio n for array m o d es and s tru ctu re m od es

syn tax :
< elem ent layout> ::= (l)

P A C K | N O P A C K | <step> (1.1)

<field layout> ::= (2)
P A C K | N O P A C K | <pos> (2.1)

< step> ::= (3)
S T E P (<pos> [, < step size>]) N (3-1)

<pos> ::= (4)
P O S (<word> , < start bit> , <length>) (4-1)

| P O S (<word> [, <start bit> [: <end bit>]]) (4-2)

<word> ::= (5)
<integer literal expression> (5.1)

< step size> ::= (6)
<integer literal expression> (5.1)

< start bit> ::= (7)
< integer literal expression> (7-1)

<end bit> ::= (8)
<integer literal expression> (3-1)

<length> ::= (9)
<integer literal expression> (9.1)

sem an tics: It is possible to control the layout of an array or a structure by giving packing or m apping
inform ation in its mode. Packing inform ation is either P A C K or N O P A C K , m apping inform ation
is either step in the case of array modes, or pos in the case of structure modes. The absence of
elem ent layout or Held layout in an array or structure mode will always be in terpreted as packing
inform ation, i.e. either as P A C K or as N O P A C K .

If P A C K is specified for elements of an array or fields of a structure, it means th a t the use of
m em ory space is optim ised for the array elements or structure fields, whereas N O P A C K implies
th a t the access tim e for the array elements or the structure fields is optim ised. N O P A C K also
implies referab le .

34 F ascicle X .6 — R ec . Z200

The P A C K , N O P A C K inform ation is applied only for one level, i.e. it is applied to the elements
of the array or fields of the structure, not for possible components of the array element or structure
field. The layout inform ation is always attached to the nearest mode to which it may apply and
which does not already have layout attached. For example, if the default packing is N O P A C K :

S T R U C T (f A R R A Y (0:1) m P A C K]

is equivalent to:

S T R U C T (f A R R A Y (0:1) m P A C K N O P A C K]

It is also possible to control the precise layout of an array or a structure by specifying positioning
inform ation for its components in the mode. This positioning inform ation is given in the following
ways:

• For array modes, the positioning inform ation is given for all elements together, in the form
of a step following the array mode.

• For structure modes, the positioning inform ation is given for each field individually, in the
form of a pos, following the mode of the field.

M apping inform ation with pos is given in term s of word and bit-offsets. A pos of the form:

P O S (<word> , <start bit> , < length>)

defines a bit-offset of

N U M (word) * W ID T H + NU M {start bit)

and a length of N U M (length) bits, where W ID T H is the (im plem entation defined) num ber of bits
in a word, and word is an integer literal expression.

W hen pos is specified in held layout it defines th a t the corresponding field s ta rts a t the given
bit-offset from the s ta rt of each location of th a t mode, and occupies the given length.

A step of the form: '

S T E P ' (<pos> , <step size>)

defines a series of bit-offsets 6; for i taking values 0 to n — 1 where n is the n u m b e r o f e le m e n ts
in the array and

i>j = i * N U M (step size).

The j-th. element of the array sta rts a t a bit-offset of p + bj from the s ta rt of each location of the
array mode, where p is the bit-offset specified in pos. Each element occupies the length given in pos.

D e fa u lts

The notation:

P O S (<word number> , <start bit> : <end bit>)

is sem antically equivalent to:

P O S (<word number> , <start bit> , N U M (<end bit>) - N U M (< start bit>) + 1)

The notation:

P O S (<word number> , <start bit>)

is sem antically equivalent to:

P O S (<word number> , <start bit> , BSIZE)

where B SIZE is the m inim um number of bits which is needed to be occupied by the com ponent for
which the pos is specified.

The notation:

P O S (<word num ber>)

is sem antically equivalent to:

P O S (<word number> , 0 , BSIZE)

F ascicle X .6 — R ec . Z 200 35

The notation:

S T E P (< pos>)

is sem antically equivalent to

S T E P (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from pos by the above rules.

s ta t ic p r o p e r t ie s : For any location of an array mode the element layout of the mode determines the referability
of its sub-locations (including sub-arrays, array slices) as follows:

• either all sub-locations are re fe ra b le^ or none of them are;

• if the element layout is N O P A C K all sub-locations are re fe ra b le .

For any location of a structure mode, the referability of the structure field selected by a f ie ld name
is determ ined by the field layout of the f ie ld nam e as follows:

• the f ie ld nam e is r e fe ra b le if the field layout is N O P A C K .

s ta t ic c o n d itio n s : If the e le m e n t mode of a given array mode or the fie ld mode of a fie ld name of a given
structure mode, is itse lf an array or structure mode, then it m ust be a m a p p e d mode if the given
array or structure mode is m a p p e d .

Each of word, start bit, end bit, length and step size m ust, if specified, deliver a non negative value;
and the values delivered by s ta r t bit and end bit m ust be less than W ID TH , the number of bits in
an im plem entation’s word; and the value delivered by start bit m ust be less th an or equal to th a t
of end bit.

Each im plem entation defines for each mode a m inim um num ber of bits its values need to occupy;
call this the m inim um bit occupancy. For discrete modes it is any number of bits not less th an log to
the base two of the n u m b e r o f v a lu es of the mode. For array modes it is the offset of the element
of the highest index plus its occupied bits. For structure modes it is the offset of the highest bit
occupied.

For each pos the length specified m ust not be less than the m inim um bit occupancy of the mode of
the associated field or array components.

For each m a p p e d array mode the step size m ust not be less than the length given or implied in the
pos.

C o n s is te n c y a n d fe a s ib ili ty

Consistency:

No component of a structure may be specified such th a t it occupies any bits occupied by another
component of the same object except in the case of two v a r ia n t f ie ld names defined in the same
alternative held occurrence; however, in the la tte r case the v a r ia n t fie ld names may not both be
defined in the same variant alternative nor bo th following E L S E .

Feasibility:

There are no language defined feasibility requirem ents, except for the one th a t can be deduced
from the rule th a t the referability of a sub-location of any (re fe ra b le or n o n -re fe rab le) location is
determ ined only by the (element or field) layout, which is a property of the mode of the location. This
places some restrictions on the m apping of com ponents th a t themselves have re fe ra b le components.

e x a m p le s :
17.5 P A C K (1.1)
19.14 P O S (1,0:15) (4.2)

36 Fascicle X .6 — R ec . Z200

3 .13 D Y N A M IC M O D E S

3.13 .1 G e n e ra l

A dynam ic mode is a mode of which some properties are known only a t run time. Dynamic modes are always
param eterised modes with one or more run-tim e param eters. For description purposes, v irtual denotations
are introduced in this document. These virtual denotations are preceded by the am persand symbol (&) to
distinguish them from actual notations which appears in a CHILL program text.

3 .1 3 .2 D y n a m ic s t r in g m o d e s

v i r tu a l d e n o ta t io n : &<origin string m ode nam e> (<integer expression>)

se m a n tic s : A dynamic string mode is a param eterised string mode w ith sta tica lly unknown length.

s ta t ic p r o p e r t ie s : Dynamic string modes have the same properties as string modes, except for the properties
described below.

d y n a m ic p ro p e r t ie s :

• A dynamic string m ode has a dynam ic s t r in g le n g th which is the value delivered by integer
expression.

• A dynamic string mode has an u p p e r b o u n d and a lo w er b o u n d which are the values
delivered by s t r in g le n g th —1 and 0, respectively.

3 .13 .3 D y n a m ic a r r a y m o d e s

v i r tu a l d e n o ta t io n : &<origin array m ode nam e> (< discrete expression>)

se m a n tic s : A dynamic array mode is a param eterised array mode w ith statically 'unknow n u p p e r b o u n d .

s ta t ic p r o p e r t ie s : Dynamic array modes have the same properties as array modes, except for the properties
described below.

d y n a m ic p ro p e r t ie s : '

• A dynamic array mode has a dynam ic u p p e r b o u n d which is the value delivered by discrete
expression, and a dynam ic n u m b e r o f e le m e n ts which is the value delivered by

NU M (discrete expression) — N U M (lower bound) + 1

where lower bound is the lo w e r b o u n d of the origin array m ode name.

3 .1 3 .4 D y n a m ic p a r a m e te r is e d s t r u c tu r e m o d e s

v i r tu a l d e n o ta t io n : &:<origin variant structure m ode nam e> (<expression list>)

Fascicle X .6 - R ec . Z200 37

se m a n tic s : A dynamic p a r a m e te r i s e d structure mode is a p a r a m e te r i s e d structure mode with statically
unknown param eters.

s ta t ic p r o p e r t ie s : The static properties of a dynam ic p a r a m e te r i s e d structure mode are those of a static
p a r a m e te r is e d structure mode except for the following:

• The set of fie ld names of a dynam ic p a r a m e te r i s e d structure mode is the set of f ie ld names
of its o r ig in v a r ia n t structure mode.

d y n a m ic p ro p e r t ie s :

• A dynamic p a r a m e te r i s e d structure mode has a list of values attached th a t is the list of
values delivered by the expressions in the expression list.

38 Fascicle X .6 — R ec . Z200

4 LOCATIONS AND THEIR ACCESSES

4 .1 D E C L A R A T IO N S

4 .1 .1 G e n e ra l

s y n ta x :
< declaration sta tem ent> ::= (1)

D C L <declaration> { , <declaration> }* ; ("l.lj

<declaration> ::= (2)
<location declaration> (2.1)

| <loc-identity declaration> (2-2)

s e m a n tic s : A declaration statem ent declares one or more names to be an access to a location.

e x a m p le s :
6.9 D C L j IN T := Ju lia n -d a y-n u m b er,

d, m , y IN T ; (1.1)
11.36 starting-square L O C ;= b (m .l in - l) (m .c o l-1) (2-2)

4 .1 .2 L o c a tio n d e c la ra t io n s

s y n ta x :
<location declaration> ::= (1)

<defining occurrence list> < m ode> [S T A T IC] [<initialisation>] (1-1)

<initialisation> ::= (2)
<reach-bound initialisation> (2-1)

j < lifetim e-bound initialisation> (2.2)

<reach-bound initialisation> ::= (3)
<assignment sym bol> <value> [<handler>] (2-1)

< lifetim e-bound initialisation> ::= (4)
IN IT < a ssignm ent sym bol> < constant value> (4-1)

s e m a n tic s : A location declaration creates as m any locations as there are defining occurrences specified in the
defining occurrence list. ,

W ith reach-bound initialisation, the value is evaluated each tim e the reach in which the declaration
is placed is entered (see section 10.2) and the delivered value is assigned to the location(s). Before
the value is evaluated the location(s) contain(s) the u n d e f in e d value.

W ith lifetim e-bound initialisation, the value yielded by the constant value is assigned to the loca
tio n ^) only once a t the beginning of the lifetime of the location(s) (see sections 10.2 and 10.9).

Specifying no initialisation is sem antically equivalent to the specification of a lifetim e-bound in itia l
isation w ith the u n d e f in e d value (see section 5.3.1).

The meaning of the u n d e f in e d value as in itialisation for a location which has attached a mode with
the ta g g e d p a r a m e te r is e d p r o p e r ty or the n o n -v a lu e p r o p e r ty is as follows:

• ta g g e d p a r a m e te r i s e d p r o p e r ty : the created ta g field sub-location(s) are initialised with
their corresponding param eter value.

• n o n -v a lu e p r o p e r ty :

— the created event an d /o r buffer (sub-)location(s) are initialised to “em pty” , i.e. no
delayed processes are a ttached to the event or buffer nor are there messages in the
buffer;

— the created association (sub-)location(s) are initialised to “em pty” , i.e. they do not
contain an association;

F ascicle X .6 — R ec . Z200 39

— the created access (sub-)location(s) are initialised to “em pty” , i.e. they are not con
nected to an association;

— the created text (sub-)location(s) have a t e x t r e c o rd sub-location which is initialised
w ith an empty string and an access sub-location which is initialised with “em pty” ,
i.e. it is not connected to an association.

The semantics of S T A T IC and handler can be found in section 10.9 and chapter 8, respectively.

s ta t ic p r o p e r t ie s : A defining occurrence in a location declaration defines a lo c a tio n name. The mode
attached to the lo c a tio n name is the m ode specified in the location declaration. A lo c a tio n name
is re fe ra b le .

s ta t ic c o n d itio n s : The class of the value or constant value m ust be c o m p a tib le w ith the m ode and the
delivered value should be one of the values defined by the m o d e , or the u n d e f in e d value.

If the m ode has the re a d -o n ly p r o p e r ty , initialisation m ust be specified. If the m ode has the
n o n -v a lu e p r o p e r ty , reach-bound initialisation m ust not be specified.

If initialisation is specified, the value m ust be re g io n a lly safe for the location (see section 11.2.2).

d y n a m ic c o n d itio n s : In the case of reach-bound initialisation, the assignm ent conditions of value w ith respect
to the m ode apply (see section 6.2).

ex a m p le s :
5.7 k2, x, w, t, s, r BOOL (1.1)
6.9 := ju lia n ^d a y^ num ber (3-1)
8.4 I N I T := [’A ’.-’Z*] (4.1)

4 .1 .3 L o c - id e n ti ty d e c la ra t io n s

s y n ta x :
< loc-identity declaration> ::= (1)

<defining occurrence list> < m ode> L O C [D Y N A M IC]
< a ssignment sym bol> <location> [<handler>] (1-V

s e m a n tic s : A loc-identity declaration creates as m any access names to the specified location as there are
defining occurrences specified in the defining occurrence list. The mode of the location may be
dynam ic only if D Y N A M IC is specified.

If the location is evaluated dynamically, this evaluation is done each tim e the reach in which the
loc-identity declaration is placed is entered. In this case, a declared nam e denotes an u n d e f in e d
location prior to the first evaluation during the lifetime of the access denoted by the declared name
(see sections 10.2 and 10.9).

s ta t ic p r o p e r t ie s : A defining occurrence in a loc-identity declaration defines a lo c - id e n t i ty name. The
mode attached to a lo c - id e n ti ty nam e is, if D Y N A M IC is not specified, the m ode specified in
the loc-identity declaration; otherwise if is the dynam ically param eterised version of it th a t has the
same param eters as the mode of the location.

A lo c - id e n t i ty name is re fe ra b le if and only if the specified location is r e fe ra b le .

40 F ascicle X .6 — R ec. Z200

s ta t ic c o n d itio n s : If D Y N A M IC is specified in the loc-identity declaration, the m ode m ust be p a r a m e
te r is a b le . The specified m ode must be d y n a m ic r e a d - c o m p a t ib le w ith the mode of the location
if D Y N A M IC is specified and r e a d -c o m p a tib le w ith the mode of the location otherwise.

The location m ust not be a string element or string slice in which the m ode of the string location is
a v a ry in g string mode.

d y n a m ic c o n d it io n s : The R A N G E F A IL or TAG FAIL exception occurs if D Y N A M IC is specified, and the
above-m entioned d y n a m ic re a d -c o m p a tib le check fails.

e x a m p le s :
11.36 starting square E O C := b (m .l in - l) (m .c o l-1) (1-1)

4 .2 L O C A T IO N S
r

4 .2 .1 G e n e ra l

s y n ta x :
<location> ::=

< access name>
| < dereferenced bound reference>
| < dereferenced free reference >
| < dereferenced row>
| <string element>
| <string slice>
| < array elem ent>
| < array slice>
j < structure field>
| <location procedure call>
| <location built-in routine call>
| <location conversion>

(1)
1 . 1)

1 .2)

1.3)
1.4)
1.5)
1 . 6)

1.7)
LSI

(1.9)
1 .10)

1. 11)
1 . 12)

s e m a n tic s : A location is an object th a t can contain values. Locations have to be accessed to store or obtain
a value.

s ta t ic p r o p e r t ie s : A location has the following properties:

• A mode, as defined in the appropriate sections. This mode is either sta tic or dynamic.

• It is s ta t ic or not (see section 10.9).

• It is in t r a - r e g io n a l or e x tra - re g io n a l (see section 11.2.2).

• It is r e f e r a b le or not. The language definition requires certain locations to be r e fe ra b le and
others to be not r e fe ra b le as defined in the appropriate sections. An im plem entation may
extend referability to other locations except when explicitly disallowed.

F ascicle X .6 — R ec . Z200 41

4 .2 .2 A ccess n a m e s

s y n ta x :
< access nam e> ::= (1) ,

<location nam e> (l- l)
| <loc-identity nam e> (1.2)
| <location enumeration nam e> (1-3)
| <location do-with nam e> (1-4)

s e m a n tic s : An access nam e delivers a location. An access nam e is one of the following:

• a lo c a t io n name, i.e. a nam e explicitly declared in a location declaration or im plicitly declared
in a form al param eter w ithout the L O C attribu te ;

• a lo c - id e n t i ty name, i.e. a name explicitly declared in a loc-identity declaration or im plicitly
declared in a form al parameter w ith the L O C attribu te ;

• a lo c a t io n e n u m e r a t io n name, i.e. a loop counter in a location enum eration ;

• a lo c a t io n d o -w ith name, i.e. a f ie ld name used as direct access in the do action w ith a
with part.

If the location denoted by a location do-with name is a variant field of a tag-less variant structure
location, the sem antics are im plem entation defined.

s ta t ic p r o p e r t ie s : The (possibly dynam ic) mode attached to an access name is the mode of the location
nam e, loc-identitv nam e, location enumeration nam e or location do-with name, respectively.

An access nam e is r e fe ra b le if and only if it is a location nam e, a re fe ra b le loc-identitv nam e, a
r e f e r a b le location enumeration nam e, or a re fe ra b le location do-with name.

d y n a m ic c o n d it io n s : W hen accessing via a loc-identitv nam e, it m ust not denote an u n d e f in e d location.

W hen accessing via a loc-identitv name a location which is a v a r ia n t field, the variant field access
conditions for the location m ust be satisfied (see section 4.2.10). Accessing via a location do-with
nam e causes a TAG FAIL exception if the denoted location is a v a r ia n t field and the variant field
access conditions for the location are not satisfied.

e x a m p le s :

(1 . 1)

(1.2)
(1.3)
(1.4)

4.12 a
11.39 starting
15.35 each
5.10 cl

4 .2 .3 D e re fe re n c e d b o u n d re fe re n c e s

s y n ta x :
< dereferenced bound reference> ::= (1)

< bound reference prim itive value> - > [<m ode nam e>] (1-1)

se m a n tic s : A dereferenced bound reference delivers the location th a t is referenced by the bound reference
value.

42 F ascicle X .6 — R ec . Z200

s ta t i c p r o p e r t ie s : The mode attached to a dereferenced bound reference is the m ode nam e if specified,
otherwise the r e f e r e n c e d mode of the mode of the bound reference prim itive value. A dereferenced
bound reference is re fe ra b le .

s t a t i c c o n d it io n s : The bound reference prim itive value m ust be s tro n g . If the optional m ode nam e is spec
ified, it m ust be r e a d -c o m p a t ib le w ith the r e fe re n c e d mode of the mode of the bound reference
prim itive value.

d y n a m ic c o n d it io n s : The lifetime of the referenced location m ust not have ended.

The E M P T Y exception occurs if the bound reference prim itive value delivers the value NULL.

If the referenced location is a v a r ia n t field, the variant field access conditions for the location m ust
be satisfied (see section 4.2.10).

e x a m p le s :
1 0 . 5 4 p - > (1 . 1)

4 .2 .4 D e re fe re n c e d fre e re fe re n c e s

s y n ta x :
< dereferenced free reference > ::= (1)

< free reference prim itive value> -> <m ode nam e> (1-1)

s e m a n tic s : A dereferenced free reference delivers the location th a t is referenced by the free reference value.

s ta t ic p r o p e r t ie s : The mode attached to a dereferenced free reference is the m ode nam e. A dereferenced
free reference is r e fe ra b le .

s ta t ic c o n d itio n s : The free reference prim itive value m ust be s tro n g .

d y n a m ic c o n d it io n s : The lifetime of the referenced location m ust not have ended.

The E M P T Y exception occurs if the free reference prim itive value delivers the value NULL.

The m ode name m ust be r e a d -c o m p a tib le w ith the mode of the referenced location.

If the referenced location is a v a r ia n t field, the variant field access conditions for the location m ust
be satisfied (see section 4.2.10).

4 .2 .5 D e re fe re n c e d ro w s

s y n ta x :
<dereferenced row> ::= (l)

< row prim itive value> - > (i . i)

s e m a n tic s : A dereferenced row delivers the location th a t is referenced by the row value.

F ascicle X .6 — R ec . Z 200 43

s ta t ic p r o p e r t ie s : The dynam ic mode attached to a dereferenced row is constructed as follows:

& orisin m ode nam e (<parameter> { , <parameter> }*)

where orisin m ode nam e is a v irtual sy n m o d e name s y n o n y m o u s with the r e f e r e n c e d o rig in
mode of the m ode of the row prim itive value and where the param eters are, depending on the
re f e r e n c e d o r ig in mode:

• the dynam ic s t r in g le n g th , in the case of a string mode;

• the dynam ic u p p e r b o u n d , in the case of an array mode;

• the list of values associated with the mode of the param eterised structure location, in the
case of a v a r ia n t structure mode.

A dereferenced row is r e fe ra b le .

s ta t ic c o n d itio n s : The row prim itive value m ust be s tro n g .

d y n a m ic c o n d it io n s : The lifetim e of the referenced location m ust not have ended.

The E M P T Y exception occurs if the row prim itive value delivers NULL.

If the referenced location is a v a r ia n t field, the variant field access conditions for the location m ust
be satisfied (see section 4.2.10).

e x a m p le s :
8.11 inpu t - > (1-1)

4 .2 .6 S tr in g e le m e n ts

s y n ta x :
<string element> ::= (1)

<str in s location> (< start element>) (b l)

<start elem ent> (2)
<integer expressions (2-1)

se m a n tic s : A string element delivers a (sub-)location which is the element of the specified string location
indicated by start element.

s ta t ic p r o p e r t ie s : The mode attached to the string element is BOOL or C H A R depending on w hether the
mode of the sir in s location is a b i t string mode or a c h a r a c te r string mode.

If the mode of the string location is a v a ry in g string mode, then the string element is not re fe ra b le ,

d y n a m ic c o n d it io n s : The R A N G E F A IL exception occurs if the following relation does not hold:

0 < N U M (s ta r t elem ent) < L — 1

W here L is the a c tu a l le n g th of the strin s location.

e x a m p le s :
18.16 string -> (i) (b l)

44 F ascicle X .6 — R ec . Z200

4 .2 .7 S tr in g slices

s y n ta x :
<string slice> ::= k (1)

<strine location> (< left element> : <right element>) (1-1)
| <string location> (< start element> U P <slice size>) (1-2)

<left element> ::= (2)
<integer expression> (2-1)

<right element> ::= (3)
<integer expression> . (3.1)

<slice size> ::= (4)
<integer expression> (4-1)

s e m a n tic s : A string slice delivers a (possibly dynam ic) string location th a t is the part of the specified string
location indicated by left elem ent and right element or s ta r t element and slice size. The (possibly
dynamic) length of the string slice is determ ined from the specified expressions.

A string slice in which the right element delivers a value which is less than th a t delivered by the left
element or in which slice size delivers a non positive value denotes an empty string.

s ta t ic p r o p e r t ie s : The (possibly dynam ic) mode attached to a string slice is a p a r a m e te r i s e d string mode
constructed as:

&name (string size)

where &name is a v irtual s y n m o d e nam e s y n o n y m o u s w ith the (possibly dynam ic) mode of the
string location if it is a fix ed string mode, otherwise w ith the c o m p o n e n t mode, and where string
size is either

NU M (right elem ent) — N U M (left elem ent) + 1

or

NU M (slice size).

However, if an em pty string is denoted, string size is 0. The mode attached to a string slice is static
if string size is l i te ra l , i.e. le ft element and right element are l i te r a l or slice size is l i te ra l ; otherwise
the mode is dynamic.

If the mode of the strine location is a v a ry in g string mode, then the string slice is not r e fe ra b le .

s ta t ic c o n d itio n s : The following relations m ust hold:

0 < NU M (left elem ent) < L — 1

0 < NU M (right element) < L — 1

0 < NU M (start element) < L — 1

NU M (s ta rt elem ent) + N U M (slice size) < L

where L is the a c tu a l le n g th of the strine location. If L and the value all inteeer expressions are
known statically, the relations can be checked statically.

d y n a m ic c o n d itio n s : The R A N G E F A IL exception occurs if a dynam ic part of the check of the relations
above fails.

18.26 blanks (count : 9) (1-1)
18.23 string - > (scanstart U P 10) (1-2)

exam p les:

F ascicle X .6 — R ec. Z200 45

4 .2 .8 A r ra y e le m e n ts

sy n ta x :
< array elem ent> ::= (l)

<array location> (< expression list>) (l . l j

<expression list> ::= (2)
<expression> { , <expression> }* (2-1)

d e r iv e d s y n ta x : The notation: (<expression lis t>) is derived syntax for:

(<expression>) { (<expression>) }*

where there are as many parenthesised expressions as there are expressions in the expression list.
Thus an array element in the strict syntax has only one (index) expression.

s e m a n tic s : An array element delivers a (sub-)location which is the element of the specified array location
indicated by expression.

s ta t ic p r o p e r t ie s : The mode attached to the array elem ent is the e le m e n t mode of the mode of the array
location.

An array element is r e fe ra b le if the e le m e n t la y o u t of the mode of the array location is N O P A C K .

s ta t ic c o n d it io n s : The class of the expression m ust be c o m p a tib le w ith the in d e x mode of the mode of the
array location.

d y n a m ic c o n d itio n s : The R A N G E F A IL exception occurs if the following relation does not hold:

L < expression < U

where L and U are the lo w e r b o u n d and the (possibly dynam ic) u p p e r b o u n d of the mode of
the array location, respectively.

e x a m p le s :
11.36 b (m .lin _ l)(m .c o l- l) (l - l)

4 .2 .9 A r ra y slices

s y n ta x
<array slice> ::= _ (l)

<array location> (<lower elem ent> : <upper element>) (1-1)
| < array location> (<first element> U P <slice size>) (l-%)

<lower element> ::= (2)
<expression> (2-1)

< upper element> ::= (3)
< expressi on> (3.1)

<first element> ::= (4)
< expressi on > (4.2J

46 F ascicle X .6 — R ec. Z200

s e m a n tic s : An array slice delivers a (possibly dynam ic) array location which is the p a rt of the specified array
location indicated by lower element and upper element or first elem ent and slice size. The lo w er
b o u n d of the array slice is equal to the lower bound of the specified array; the (possibly dynam ic)
u p p e r b o u n d is determ ined from the specified expressions.

s ta t ic p ro p e r t ie s : The (possibly dynamic) mode attached to an array slice is a p a r a m e te r i s e d array mode
constructed as:

&name (upper index)

where Srname is a v irtual sy n m o d e nam e s y n o n y m o u s w ith the (possibly dynam ic) mode of the
array location and upper index is either .̂n expression whose class is c o m p a t ib le w ith the classes
of lower element and upper element and delivers a value such tha t:

N U M (upper in d ex) = N U M (L) -f NU M (upper elem ent) — N U M (lower elem ent)

or is an expression whose class is c o m p a tib le w ith the class of first element and delivers a value
such that:

N U M (upper in d ex) = N U M (L) + N U M (slice size) — 1

where L is the lo w er b o u n d of the mode of the array location.

The mode attached to an array slice is sta tic if upper index is l i te r a l , i.e. lower elem ent and upper
element are both l i te r a l or slice size is l i te ra l ; otherwise the mode is dynam ic.

An array slice is re fe ra b le if the e le m e n t la y o u t of the mode of the array location is N O P A C K .

s ta t ic c o n d itio n s : The classes of lower element and upper element or the class of first element m ust be
c o m p a tib le with the in d e x mode of the array location.

The following relations must hold:

L < lower element < upper element < U

1 < NU M (slice size) < N U M (U) - N U M (L) + 1

N U M (L) < N U M (first elem ent) < N U M (first element) + N U M (slice s i z e) - 1 < N U M (U)

where L and U are respectively the lo w e r b o u n d and u p p e r b o u n d of the mode of the array
location. If U and the value af all expressions are known statically, the relations can be checked
statically.

d y n a m ic c o n d itio n s : The R A N G E F A IL exception occurs if a dynam ic p a rt of the check of the relations
above fails.

e x a m p le s :
17.27 res (0 : count - 1) (1-1)

4 .2 .1 0 S t r u c tu r e fie ld s

s y n ta x :
<structure field> ::= (1)

<structure location> . < field nam e> (1-1)

se m a n tic s : A structure field delivers a (sub-)location which is the field of the specified structu re location
indicated by field name. If the structure location has a ta g - le s s v a r ia n t structure mode and the
field name is a v a r ia n t fie ld name, the semantics are im plem entation defined.

Fascicle X .6 — R ec . Z200 47

s ta t ic p r o p e r t ie s : The mode of the structure field is the mode of the field nam e.

A structure field is re fe ra b le if the f ie ld la y o u t of the field nam e is N O P A C K .

s ta t ic c o n d it io n s : The field nam e m ust be a nam e from the set of f ie ld names of the mode of the structure
location.

d y n a m ic c o n d it io n s : A location m ust not denote:

• a ta g g e d v a r ia n t structure mode location in which the associated ta g field value(s) indi
ca te ^) th a t the field does not exist;

• a dynam ic p a r a m e te r is e d structure mode location in which the associated list of values
indicates th a t the field does not exist.

The above m entioned conditions are called the variant field access conditions for the location (note
th a t the condition do not include the occurrence of an exception). The TAG FAIL exception occurs
if they are not satisfied for the structure location.

e x a m p le s :
10.57 last -> .in fo (l -V

4 .2 .1 1 L o c a tio n p ro c e d u r e calls

s y n ta x :
<location procedure call> ::= (1)

<location procedure call> (l - l)

s e m a n tic s : A location procedure call delivers the location returned from the procedure.

s ta t ic p r o p e r t ie s : The mode attached to a location procedure call is the mode of the r e s u l t sp e c of
the location procedure call if D Y N A M IC is not specified in it; otherwise it is the dynam ically
param eterised version of it th a t has the same param eters as the mode of the delivered location.

The location procedure call is re fe ra b le if N O N R E F is not specified in the r e s u l t sp e c of the
location procedure call.

d y n a m ic c o n d it io n s : The location procedure call m ust not deliver an u n d e f in e d location and the lifetime
of the delivered location m ust not have ended.

4 .2 .1 2 L o c a tio n b u i l t - in r o u t in e calls

s y n ta x :
<location built-in routine call> ::= (l)

<location built-in routine call> (1-1)

s e m a n tic s : A location built-in routine call delivers the location returned from the built-in routine call.

48 F ascicle X .6 — R ec . Z20Q

s t a t i c p r o p e r t ie s : The mode attached to the location built-in routine call is the mode of the r e s u l t sp e c of
the location built-in routine call.

d y n a m ic c o n d itio n s : The location built-in routine call m ust not deliver an u n d e f in e d location and the
lifetime of the delivered location m ust not have ended.

4 .2 .1 3 L o c a tio n c o n v e rs io n s

s y n ta x :
<location conversion> ::= (l)

<m ode name> (<static m ode location>) (1-1)

s e m a n tic s : A location conversion delivers the location denoted by sta tic m ode location. However, it overrides
the CHILL mode checking and com patibility rules and explicitly attaches a mode to the location.

The precise dynamic semantics of a location conversion are im plem entation defined.

s ta t ic p r o p e r t ie s : The mode of a location conversion is the m ode name.

A location conversion is re fe ra b le .

s ta t ic c o n d itio n s : The static m ode location m ust be re fe ra b le .

The following relation must hold:

SIZE (m ode name) = SIZE (sta tic m ode location)

F ascicle X .6 — R ec . Z200 49

5 VALUES AND THEIR OPERATIONS

5.1 S Y N O N Y M D E F IN IT IO N S

s y n ta x :
<synonym definition sta tem ent> ::= (l)

S Y N <synonym definition> { , < synonym definition> }* ; (l . l j

<synonym definition> ::= (2)
<defining occurrence list> [<m ode>] = < constant value> (2-1)

d e r iv e d s y n ta x : A synonym definition, where defining occurrence list consists of more th an one defining
occurrence, is derived from several synonym definition occurrences, one for each defining occurrence
w ith the same constant value and mode, if present. E.g. S Y N i , j = 3; is derived from S Y N i =
5, J — 3;.

s e m a n tic s : A synonym definition defines a nam e th a t denotes the specified c o n s ta n t value.

s ta t ic p r o p e r t ie s : A defining occurrence in a synonym definition defines a sy n o n y m name.

The class of the sy n o n y m name is, if a m ode is specified, the M-value class, where M is the m ode,
otherwise the class of the constant value.

A sy n o n y m name is u n d e f in e d if and only if the constant value is an u n d e f in e d value (see section
5.3.1).

A s y n o n y m nam e is l i te r a l if and only if the constant value is l i te ra l .

s ta t ic c o n d it io n s : If a m ode is specified, it m ust be c o m p a tib le with the class of the constant value and
the value delivered by the constant value m ust be one of the values defined by the mode.

Synonym definitions must not be recursive nor m utually recursive via other synonym definitions or
mode definitions, i.e. no set of recursive definitions may contain synonym definitions (see section
3.2.1).

e x a m p le s :
1.17 S Y N neutrals fo r-a d d = 0,

neutra l- for_ m ult = 1; (1-1)
2.18 neu tra l-fo r_ add fraction = [0,1] (2-1)

5.2 P R I M I T I V E V A L U E

5.2 .1 G e n e ra l

s y n ta x :
< prim itive value> ::=

<location contents>
| < value name>
| <literal>
j <tuple>
| < value string element>
| < value string slice>
| < value array elem ent>
| < value array slice>
| < value structure field>
| < expression conversion>

(1
(1.1
(1.2
(1.3
(1.4
(1.5
(1.6
(1.7
(1.8
(1.9

(1.10

50 F ascicle X .6 — R ec . Z200

| < value procedure call> (i . i i)
| < value built-in routine call> (1.12)
| <start expression> (1.13)
| <zero-adic operator > (1.14)
| <parenthesised expression> (1.15)

se m a n tic s : A prim itive value is the basic constituent of an expression. Some prim itive values have a dynam ic
class, i.e. a class based on a dynam ic mode. For these prim itive values the com patibility checks can
only be completed a t run tim e. Check failure will then result in the TAG FAIL or R A N G E F A IL
exception.

s ta t ic p r o p e r t ie s : The class of the prim itive value is the class of the location contents, value name, etc.,
respectively.

A prim itive value is c o n s ta n t if and only if it is a c o n s ta n t value nam e, a literal, a c o n s ta n t
tuple, a c o n s ta n t expression conversion, a c o n s ta n t value built-in routine call or a c o n s ta n t
parenthesised expression.

A prim itive value is l i te r a l if and only if it is a value name th a t is l i te r a l , a d is c r e te literal, or a
value built-in routine call th a t is l i te ra l .

5 .2 .2 L o c a tio n c o n te n ts

s y n ta x :
<location contents> ::= (1)

<location> (1-V

s e m a n tic s : A location contents delivers the value contained in the specified location. The location is accessed
to obtain the stored value.

s ta t i c p r o p e r t ie s : The class of the location contents is the M-value class, where M is the (possibly dynamic)
mode of the location.

s ta t ic c o n d itio n s : The mode of the location m ust not have the n o n -v a lu e p r o p e r ty .
(

d y n a m ic c o n d it io n s : The delivered value m ust not be u n d e f in e d ,

e x a m p le s :
3.7 c2.im (1-1)

5 .2 .3 V a lu e n a m e s

s y n ta x :
< value nam e> ::= (1)

< svnonym nam e> (1-1)
| < value enumeration nam e> (1-2)
| < value do-with nam e> (1-2)
| < value receive nam e> (1-4)
| < general procedure nam e> (1-5)

Fascicle X .6 — R ec . Z200 51

s e m a n tic s : A value nam e delivers a value. A value name is one of the following:

• a s y n o n y m nam e, i.e. a name defined in a synonym definition statem ent;

• a v a lu e e n u m e r a t io n name, i.e. a nam e defined by a loop counter in a value enum eration ;

• a v a lu e d o -w ith name, i.e. a fie ld name introduced as value nam e in the do action w ith a
with p a r t;

• a v a lu e re c e iv e name, i.e. a name introduced in a receive case action;

• a g e n e ra l p r o c e d u r e nam e (see section 10.4).

If the value denoted by a value do-with name is a variant field of a tag-less variant structure value,
the sem antics are im plem entation defined.

s ta t ic p r o p e r t ie s : The class of a value name is the class of the synonym nam e, value enumeration name,
value do-w ith nam e, value receive nam e or the M-derived class, where M is the m ode of the general
procedure nam e, respectively.

A value nam e is l i t e r a l if and only if it is a synonym name th a t is l i te ra l .

A value nam e is c o n s ta n t if it is a synonym name or a general procedure nam e denoting a p r o c e
d u r e nam e which has a ttached a procedure definition which is not surrounded by a block.

s ta t i c c o n d it io n s : The synonym nam e m ust not be u n d e f in e d .

d y n a m ic c o n d it io n s : Evaluating a value do-with name causes a TAG FAIL exception if the denoted value is
a v a r ia n t field and the variant field access conditions for the value are not satisfied.

e x a m p le s :
10.12 m a x (l - l)
8.8 i (1.2)
15.54 th is-coun ter (1-4)

5 .2 .4 L ite ra ls

5.2.4.1 General

s y n ta x :
<literal> (1)

<integer litera l> (l - l)
| < boolean literal> (1-2)
| <character literal> (1-2)
| <set litera l> (1-4)
| <em ptiness literal> (1-5)
| <character string literal> (1-6)
| < bit string li teral > (1.7)

s e m a n tic s : A literal delivers a c o n s ta n t value.
/

s ta t ic p r o p e r t ie s : The class of the literal is the class of the integer literal, boolean literal, etc., respectively.
A literal is d is c r e te if it is either an integer literal, a boolean literal, a character literal or a set
literal.

The le tter together w ith the following apostrophe which starts an integer literal, boolean literal, and
bit string literal (i.e. B ’, D ’, H ’, O ’, b \ d ’, h \ o ’) is a literal qualification.

52 F ascicle X .6 — R ec . Z200

5.2.4.2 Integer literals

syn tax:
<integer litera l> ::= (1)

<decimal integer literal> (1-1)
| < binary integer literal> (1.2)
| < octal in teger li teral > (1-3)
| < hexadecimal integer li teral > (1-4)

<decimal integer literal> ::= (2)
[{ ® I d } ’] { <digit> | _ }+ (2.1)

< binary integer litera l> (3)
{ B | b } ’ { 0 | J | _ } + (3.1)

<octal integer li teral > ::= (4)
{ O | o } ’ { < octal digit> | _ }+ (4.1)

<hexadecimal integer literal> ::= (5)
{ H | h } ’ { < hexadecimal d ig it> | _ }+ (3-1)

<hexadecimal digit> ::= (6)
< digit > | A I B | C | D | E | E | a | b | c | d | e | f (6.1)

<octal digit> ::= (7)
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 (7.1)

sem an tics: An integer literal delivers a non-negative integer value. The usual decimal (base 10) no tation is
provided as well as binary (base 2), octal (base 8) and hexadecimal (base 16). The underline character
(_) is not significant, i.e. it serves only for readability and it does not influence the denoted value.

s ta tic p ro p ertie s: The class of an integer literal is the IN T -derived class. An integer literal is co n sta n t and
litera l.

s ta tic co n d itio n s: The string following the apostrophe (’) and the whole integer literal m ust not consist
solely of underline characters.

exam p les:
6.11 1 -721_119 (1.1)

D ’l-7 2 1 -1 1 9 (1.1)
B ’101011-110100 (1.2)
0 ’53 -64 (1.3)
H ’AF4 (1.4)

5.2.4.3 Boolean literals

s y n ta x :
<boolean literal> ::= (1)

< boolean literal nam e> (l - l)

p re d e f in e d n a m e s : The names FALSE and T R U E are predefined as b o o le a n l i t e r a l names.

F ascicle X .6 - R ec . Z 200 53

s e m a n tic s : A boolean literal delivers a boolean value.

s ta t i c p r o p e r t ie s : The class of a boolean literal is the BOOL-derived class. A boolean literal is c o n s ta n t
and l i te ra l .

e x a m p le s :
5.46 FALSE (1.1)

5.2.4.4 C haracter literals

s y n ta x :
<character literal> (1)

’ < character> \ <control sequence> ’ (1-1)

se m a n tic s : A character literal delivers a character value. A part from the printable representation, the control
sequence representation may be used.

s t a t i c p r o p e r t ie s : The class of a character literal is the C-HAR-derived class. A character literal is c o n s ta n t
and l i te ra l .

s ta t ic c o n d itio n s : A control sequence in a character literal m ust denote only one character,

e x a m p le s :
7.9 ’M ’ (1.1)

5.2.4.5 Set literals

s y n ta x :
<set literal> ::= (1)

< set element nam e> (1-1)

s e m a n tic s : A set literal delivers a set value. A set literal is a name defined in a set mode.

s ta t i c p r o p e r t ie s : The class of a set literal is the M-derived class, where M is the s e t mode attached to the
set element nam e. A set literal is c o n s ta n t and l i te ra l .

e x a m p le s :
6.51 dec (1.1)
11.78 king (1.1)

5.2.4.6 Em ptiness literal

s y n ta x :
< em ptiness li teral > ::= (1)

< em ptiness literal nam e> (1-1)

54 F ascicle X .6 — R ec . Z200

p re d e f in e d n a m e s : The name N U LL is predefined as an e m p tin e s s l i te r a l name.

se m a n tic s : The emptiness literal delivers either the em pty reference value, i.e. a value which does not refer
to a location, the em pty procedure value, i.e. a value which does not indicate a procedure, or the
empty instance value, i.e. a value which does not identify a process.

s ta t ic p r o p e r t ie s : The class of the em ptiness literal is the n u l l class. An em ptiness literal is c o n s ta n t .

e x a m p le s :
10.43 NULL (1.1)

5.2.4.7 C haracter string literals

s y n ta x :
< character string litera l> ::= (1)

” { <non-reserved character> | <quote> | <control sequence> }* ” (1-1)

<quote> ::= (2)
(2 . 1)

< control sequence > (3)
(< integer literal expression> { , < integer literal expression> }*) (3.1)

| “ <non-special character> (3-2)
| " (3.3)

se m a n tic s : A character string literal delivers a character string value th a t may be of length 0. It is a list
of values for the elements of the string; the values are given for the elements in increasing order of
their index from left to right. To represent the character quote (”) w ithin a character string literal,
it has to be w ritten twice (””).

A part from the printable representation, the control sequence representation may be used. A control
sequence in which the circumflex character (“) is followed by an open parenthesis denotes the
sequence of characters whose representations are the integer literal expression in it; otherwise if
it is followed by another circumflex character it denotes itself, otherwise it denotes the character
whose representation is obtained by logically negating the b7 of the internal representation of the
non-special character in it (see A ppendix A).

s ta t ic p ro p e r t ie s : The s t r in g le n g th of a character string literal is the num ber of non-reserved character,
quote and characters denoted by control sequence occurrences.

The class of a character string literal is the C H A R S (nj-derived class, where n is the s t r in g le n g th
of the character string literal. A character string literal is c o n s ta n t .

s ta t ic c o n d itio n s : The value delivered by an in teser literal expression in a control sequence m ust belong to
the range of values defined by the representations of the characters in the CHILL character set (see
Appendix A).

8.20 ”A -B < Z A A 9 K ’ ” (1.1)
exam p les:

F ascicle X .6 — R ec . Z 200 55

5.2.4.8 Bit string literals

s y n ta x :
< bit string literal> ::= (l)

< binary bit string literal > (1-1)
| <octal bit string li teral > (1-2)
| <hexadecimal bit string li teral > (1.3J

< binary bit string literal> ::= (2)
{ B | b } ’ { 0 | l | _ } * ’ (2.1)

< octal bit string literal> ::= (3)
{ O | o } ’ { <octal digit> | _ }* ’ (2-1)

<hexadecim al bit string literal> ::= (4)
{ H | h } ’ { <hexadecimal digit> | _ }* ’ (4-1)

s e m a n tic s : A bit string literal delivers a b it string value th a t may be of length 0. Binary, octal or hexadecimal
notations may be used. The underline character (_) is insignificant, i.e. it serves only for readability
and does not influence the indicated value.

A bit string literal is a list of values for the elements of the string; the values are given for the
elements in increasing order of their index from left to right.

s ta t i c p r o p e r t ie s : The s t r in g le n g th of a bit string literal is either the num ber of 0 and 1 occurrences
after B ’, three times the num ber of octal digit occurrences after O ’ or four tim es the num ber of
hexadecimal digit occurrences after H ’.

The class of a bit string literal is the B O O L S (n)-derived class, where n is the s t r in g l e n g th of
the bit string literal. A bit string literal is c o n s ta n t .

e x a m p le s :
B ’101011-110100’ (1.1)
0 ’5 3 -6 4 ’ (1.2)
H ’A F 4 ’ (1.3)

5 .2 .5 T u p le s

(V
(1 . 1)

<powerset tuple> ::= (2)
[{ <expression> | < ran g e> } { , { <expression> | <range> } }*] (2-1)

<range> ::= (3)
<expression> : <expression> (2-1)

<array tuple> ::= (4)
< unlabelled array tuple> (4-1)

| <labelled array tuple> (4-2)

< unlabelled array tuple> ::= (5)
<value> { , <value> }* (5.1J

<labelled array tuple> ::= (6)
<case label list> : <value> { , Cease label list> : <value> }* (6-1)

<structure tuple> ::= (7)
<unlabelled structure tuple> (7-1)

[<labelled structure tuple> (7-2)

< unlabelled structure tuple> ::= (8)
<value> { , <value> }* ($-1)

s y n ta x :
< tuple> ::=

[< m ode nam e>] (: { <powerset tuple>
<array tuple> | <structure tuple> } :)

56 F ascicle X .6 — R ec . Z200

<labelled structure tuple> ::= (9)
<field name lis t> : < value> { , <field nam e list> : <value> }* (9-1)

<field nam e list> ::= (10)
. <field name> { , . <field nam e> }* (10-1)

d er iv ed syn tax : The tuple opening and closing brackets, [and], are derived syntax for (: and :), respectively.
This is not indicated in the syntax to avoid confusion w ith the use of square brackets as m eta
symbols.

sem a n tics: A tuple delivers either a powerset value, an array value or a structure value.

If it is a powerset value, it consists of a list of expressions an d /o r ranges denoting those member
values which are in the powerset value. A range denotes those values which lie between or are one of
the values delivered by the expressions in the range. If the second expression delivers a value which
is less than the value delivered by the first expression, the range is em pty, i.e. it denotes no values.
The powerset tuple may denote the empty powerset value.

If it is an array value, it is a (possibly labelled) list of values for the elements of the array; in the
unlabelled array tuple, the values are given for the elements in increasing order of their index; in
the labelled array tuple, the values are given for the elements whose indices are specified in the case
label list labelling the value. It can be used as a shorthand for large array tuples where many values
are the same. The label E L S E denotes all the index values not m entioned explicitly. The label *
denotes all index values (for further details, see section 12.3).

If it is a structure value, it is a (possibly labelled) set of values for the fields of the structure. In the
unlabelled structure tuple, the values are given for the fields in the same order as they are specified
in the attached structure mode. In the labelled structure tuple, the values are given for the fields
whose field names are specified in the field name list for the value.

The order of evaluation of the expressions and values in a tuple is undefined and they m ay be
considered as being evaluated in mixed order.

s ta t ic p ro p ertie s: The class of a tuple is the M-value class, where M is the m ode nam e , if specified. Otherwise
M depends upon the context where the tuple occurs, according to the following list:

• if the tuple is the value or constant value in an initialisation in a location declaration, then
M is the m ode in the location declaration;

• if the tuple is the righthand side value in a single assignment action, then M is the (possibly
dynamic) mode of the lefthand side location;

• if the tuple is the constant value in a synonym definition w ith a specified m ode, then M is
th a t mode;

• if the tuple is an actual parameter in a procedure call or in a start expression where D Y
N A M IC is not specified in the corresponding param eter spec, then M is the mode in the
corresponding parameter spec;

• if the tuple is the value in a return action or a result action, then M is the mode of the resu lt
sp ec of the p ro ced u re nam e of the result action or re tu rn action (see section 6.8);

• if the tuple is a value in a send action, then it is the associated m ode specified in the signal
definition of the signal nam e or the buffer e lem en t m ode of the m ode of the buffer location;

• if the tuple is an expression in an array tuple, then M is the e le m e n t m ode of the mode of
the array tuple;

• if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple
where the associated field nam e list consists of only one field nam e, then M is the m ode of
the field in the structure tuple for which the tuple is specified;

• If the tuple is the value in a G E T ST A C K or A L L O C A T E built-in routine call, then M is the
mode denoted by m ode argument.

A tuple is co n sta n t if and only if each value or expression occurring in it is co n sta n t.

F ascicle X .6 — R ec . Z 200 57

s ta t ic c o n d it io n s : The optional mode nam e may be deleted only in the contexts specified above. Depending
on whether a powerset tuple, array tuple or structure tuple is specified, the following com patibility
requirem ents m ust be fulfilled:

a. powerset tuple

1. The mode of the tuple m ust be a powerset mode.

2. The class of each expression m ust be c o m p a tib le w ith the m e m b e r mode of the
mode of the tuple.

3. For a c o n s ta n t powerset tuple the value delivered by each expression m ust be one of
the values defined by th a t m e m b e r mode.

b. a rray tuple

1. The mode of the tuple m ust be an array mode.

2. The class of each value m ust be c o m p a tib le with the e le m e n t mode of the mode of
the tuple.

3. In the case of an unlabelled array tuple, there m ust be as many occurrences of value
as the n u m b e r o f e le m e n ts of the array mode of the tuple.

4. In the case of a labelled array tuple, the case selection conditions m ust hold for the
list of-case label list occurrences (see section 12.3). The r e s u l t in g c lass of the list
m ust be c o m p a tib le w ith the in d e x mode of the mode of the tuple. The list of case
label specifications m ust be c o m p le te .

■ 5. In the case of a labelled array tuple, the values explicitly indicated by each case label
in a case label list m ust be values defined by the in d e x mode of the tuple.

6. In an unlabelled array tuple, a t least one value occurrence m ust be an expression.

7. For a c o n s ta n t array tuple, where the e le m e n t mode of the mode of the tuple is
a discrete mode, each specified value m ust deliver a value defined by th a t e le m e n t
mode, unless it is an u n d e f in e d value.

c. structure tuple

1. The mode of the tuple m ust be a structure mode.

2. This mode m ust not be a structure mode which has fie ld names which are in v is ib le
(see section 12.2.5).

In the case of an unlabelled structure tuple:

• If the mode of the tuple is neither a v a r ia n t structure mode nor a p a r a m e
te r is e d structure mode, then:

3. There m ust be as m any occurrences of value as there are fie ld names in
the list of f ie ld names of the mode of the tuple.

4. The class of each value m ust be c o m p a tib le w ith the mode of the cor
responding (by position) fie ld name of the mode of the tuple.

• If the mode of the tuple is a ta g g e d v a r ia n t structure mode or a ta g g e d
p a r a m e te r is e d structure mode, then:

5. Each value specified for a ta g field m ust be a discrete literal expression.

6. There m ust be as m any occurrences of value as there are f ie ld names
indicated as existing by the value(s) delivered by the discrete literal ex
pression occurrences specified for the ta g fields.

7. The class of each value m ust be c o m p a tib le with the mode of the cor
responding fie ld name.

• If the mode of the tuple is a ta g - le s s v a r ia n t structure mode or a ta g - le s s
p a r a m e te r is e d structure mode, then:

8. No unlabelled structure tuple is allowed.

58 F ascicle X .6 — R ec . Z200

In the case of a labelled structure tuple:

• If the mode of the tuple is neither a v a r ia n t structure m ode nor a p a r a m e
te r i s e d structure mode, then:

9. Each fie ld nam e of the list of fie ld names of the mode of the tuple m ust
be mentioned once and only once in a Held nam e lis t and in the same
order as in the mode of the tuple.

10. The class of each value m ust be c o m p a tib le w ith the mode of every
fie ld name specified in the field name list labelling th a t value.

• If the mode of the tuple is a ta g g e d v a r ia n t structure m ode or a ta g g e d
p a r a m e te r is e d structure mode, then:

11. Each value th a t is specified for a ta g field m ust be a discrete literal
expression.

12. Only fie ld names corresponding to fields indicated as existing by the
value(s) delivered by the discrete literal expression occurrences specified
for the ta g fields may be specified and all of them m ust be specified and
m ust be in the same order as in the mode of the tuple.

13. The class of each vaiue m ust be c o m p a tib le w ith the mode of any f ie ld
name specified in the field name list labelling th a t value.

• If the mode of the tuple is a ta g - le s s v a r ia n t structure mode or a ta g - le s s
p a r a m e te r is e d structure mode, then:

14. F ie ld names mentioned in field nam e list, which are defined in the same
alternative field, must be all defined in the same variant alternative or
defined after E L S E . All the fie ld names of a selected variant alternative
or defined after E L S E m ust be mentioned once and only once in the
same order as in the mode of the tuple.

15. The class of each value m ust be c o m p a tib le w ith the m ode of any fie ld
name specified in the field name list labelling th a t value.

16. If the mode of the tuple is a ta g g e d p a r a m e te r is e d structure mode, the list of values
delivered by the discrete literal expression occurrences specified for the ta g fields m ust
be the same as the list of values of the mode of the tuple.

17. For a c o n s ta n t structure tuple, each value specified for a field w ith a discrete mode
m ust deliver a value defined by the fie ld mode, unless it is an u n d e f in e d value.

18. At least one value occurrence must be an expression.

No tuple may have two value occurrences in it such th a t one is e x t r a - r e g io n a l and the other is
in t r a - r e g io n a l (see section 11.2.2).

d y n a m ic c o n d it io n s : The assignment conditions of any value with respect to the m e m b e r mode, e le
m e n t mode or associated f ie ld mode, in the case of powerset tuple, array tuple or structure tuple,
respectively (see section 6.2) apply (refer to conditions a2, b2, c4, c7, clO, c l3 and cl5).

If the tuple has a dynam ic array mode, the RA N G E F A IL exception occurs if any of the conditions
b3 or b5 are not satisfied.

If the tuple has a dynam ic p a r a m e te r is e d structure mode, the TAG FAIL exception occurs if any
of the conditions c l4 or c l6 are not satisfied.

The value delivered by a tuple m ust not be u n d e f in e d .

e x a m p le s :
9.6 num ber^ list [] (i . i)
9.7 [2:max] (2.1)
8.26 [(’A ’):3 ,(’B ’, ’K ’, ’Z ’).T ,(E L SE):0] (6.1)
17.5 [(*):’ 1 (6.1)
12.35 (:NULL, NULL, 536:) (7.1)
11.18 [.status:occupied,.p:[white, rooir]] (9.1)

F ascicle X .6 — R ec . Z200 59

5 .2 .6 V a lu e s t r in g e le m e n ts

s y n ta x :
< value string elem ent> ::= (1)

<string prim itive value> (< start element>) (1-1)

N.B. if the string prim itive value is a string location , the syntactic construct is am biguous and will
be in terpreted as a string elem ent (see section 4.2.6).

s e m a n tic s : A value string element delivers a value which is the element of the specified string value indicated
by s ta rt element.

s ta t ic p r o p e r t ie s : The class of the value string elem ent is the BOOL-value class or CH AR-value class
depending on whether the m ode of the string prim itive value is a b i t string mode or a c h a r a c te r
string mode.

d y n a m ic c o n d itio n s : The value delivered by a value string element m ust not be u n d e f in e d .

The R A N G E F A IL exception occurs if the following relation does not hold:

0 < N U M (start elem ent) < L — 1

W here L is the a c tu a l l e n g th of the string prim itive value.

5 .2 .7 V a lu e s t r in g slices

s y n ta x :
< value string slice> ::= (l)

< string prim itive value> (d e f t elem ent> : <right elem ent>) (1.1)
| <string prim itive value> (< start element> U P <slice size>) (1.2)

N.B. if the string prim itive value is a s tring location , the syntactic construct is am biguous and will
be in terpreted as a string slice (see section 4.2.7).

s e m a n tic s : A value string slice delivers a (possibly dynam ic) string value which is the part of the specified
string value indicated by le ft element and right element or start element and slice size. The (possibly
dynam ic) length of the string slice is determ ined from the specified expressions.

A string slice in which the right element delivers a value which is less than th a t delivered by the left
element or in which slice size delivers a non positive value denotes an em pty string.

s ta t ic p r o p e r t ie s : The (possibly dynam ic) class of a value string slice is the M-value class if the string
prim itive value is s t r o n g and otherwise the M-derived class, where M is a p a r a m e te r i s e d string
mode constructed as:

&name (string size)

where &name is a v irtual s y n m o d e nam e sy n o n y m o u s with the (possibly dynam ic) r o o t mode
of the string prim itive value if it is a f ix e d string mode, otherwise with the c o m p o n e n t mode, and
where string size is either

N U M (right element) — N U M (left elem ent) + 1

or

N U M (slice size).

However, if an em pty string is denoted, string size is 0. The class of a value string slice is s ta tic if
string size is l i te r a l , i.e. le ft element and right element are l i te r a l or slice size is l i te ra l ; otherwise
the class is dynam ic.

60 Fascicle X .6 - R ec . Z200

s ta t i c c o n d itio n s : The following relations m ust hold:

0 < N U M (le ft elem ent) < L — 1

0 < N U M (ligh t elem ent) < L — 1

0 < N U M (start elem ent) < L — 1

N U M (start elem ent) + N U M (slice size) < L

where L is the a c tu a l l e n g th of the string prim itive value. If L and the value all integer expressions
are known statically, the relations can be checked statically.

d y n a m ic c o n d itio n s : The value delivered by a value string slice m ust not be u n d e f in e d .

The RA N G E F A IL exception occurs if a dynam ic part of the check of the relations above fails.

5 .2 .8 V a lu e a r r a y e le m e n ts

s y n ta x :
< value array elem ent> ::= (1)

<array prim itive value> (< expression list>) (1-1)

N.B. If the array prim itive value is an array location the syntactic construct is ambiguous and will
be interpreted as an array element (see section 4.2.8).

d e r iv e d sy n ta x : See section 4.2.8.

s e m a n tic s : A value array element delivers a value which is the element of the specified array value indicated
by expression.

s ta t ic p r o p e r t ie s : The class of the value array element is the M-value class, where M is the e le m e n t mode
of the mode of the array prim itive value.

s ta t ic c o n d itio n s : The class of the expression m ust be c o m p a tib le w ith the in d e x mode of the mode of the
array prim itive value.

d y n a m ic c o n d itio n s : The value delivered by a value array element m ust not be u n d e f in e d .

The R A N G E F A IL exception occurs if the following relation does not hold:

L < expression < U

where L and U are the lo w er b o u n d and (possibly dynam ic) u p p e r b o u n d of the mode of the
array prim itive value, respectively.

F ascicle X .6 - R ec . Z200 61

5.2 .9 V alue array slices

s y n ta x :
< value array slice> ::= (l)

< array prim itive value> (<lower elem ent> : < upper element>) (1.1 j
| < array prim itive value> (<first elem ent> U P <slice size>) (1-2)

N.B. If the array prim itive value is an array location, the syntactic construct is ambiguous and will
be interpreted as an array slice (see section 4.2.9).

s e m a n tic s : A value array slice delivers an (possibly dynam ic) array value which is the part of the specified
array value indicated by lower element and upper element, or first element and slice size. The
lo w er b o u n d of the value array slice is equal to the lo w er b o u n d of the specified array value; the
(possibly dynamic) u p p e r b o u n d is determ ined from the specified expressions.

s ta t ic p r o p e r t ie s : The (possibly dynam ic) class of a value array slice is the M-value class, where M is a
p a r a m e te r is e d array mode constructed as:

&name (upper index)

where &name is a v irtual s y n m o d e name sy n o n y m o u s with the (possibly dynam ic) mode of the
array prim itive value and upper index is either an expression whose class is c o m p a tib le w ith the
classes of lower element and upper element and delivers a value such tha t:

NU M (upper in d ex) = N U M (L) + N U M (upper elem ent) — NU M (lower elem ent)

or is an expression whose class is c o m p a t ib le w ith the class of first element and delivers a value
such tha t:

NU M (upper in d ex) = N U M (L) -f N U M (slice size) — 1

where L is the lo w er b o u n d of the mode of the array prim itive value.

The class of a value array slice is sta tic if upper index is l i te ra l , i.e. lower element and upper element
both are l i te r a l or slice size is l i te ra l ; otherwise the class is dynam ic.

s ta t ic c o n d itio n s : The classes of lower element and upper element or the class of first element m ust be
c o m p a tib le with the in d e x mode of the array prim itive value.

The following relations m ust hold:

L < lower element < upper element < U

1 < NUM (slice size) < N U M (U) - N U M (L) + 1

N U M (L) < N U M (first element) < N U M (first element) -f N U M (slice size) — 1 < N U M (U)

where L and U are, respectively, the lo w er b o u n d and u p p e r b o u n d of the mode of the array
prim itive value. If U and the value a f all expressions are known statically, the relations can be
checked statically.

d y n a m ic c o n d itio n s : The value delivered by a value array slice m ust not be u n d e f in e d .

The RAN G EFAIL exception occurs if a dynam ic p a rt of the check of the relations above fails.

62 F ascicle X .6 — R ec . Z200

5 .2 .10 V alue s tru ctu re fields

s y n ta x :
<value structure field> (1)

Cstructure prim itive value> . <field nam e> fT lJ

N.B. If the structure prim itive value is a structure location, the syntactic construct is ambiguous
and will be interpreted as a structure field (see section 4.2.10).

s e m a n tic s : A value structure field delivers a value which is the field of the specified structure value indicated
by field name. If the structure prim itive value has a ta g - le s s v a r ia n t structure mode and the field
nam e is a v a r ia n t f ie ld name, the semantics are im plem entation defined.

s ta t ic p r o p e r t ie s : The class of value structure field is the M-value class, where M is the mode of the field
nam e.

s ta t ic c o n d itio n s : The field name must be a nam e from the set of f ie ld nam es of the mode of the structure
prim itive value.

d y n a m ic c o n d itio n s : The value delivered by a value structu re field m ust not be u n d e f in e d .

A value m ust not denote:

• a ta g g e d v a r ia n t structure mode value in which the associated t a g field value(s) indicate(s)
th a t the denoted field does not exist;

• a dynamic p a r a m e te r is e d structure mode value in which the associated list of values indi
cates th a t the field does not exist.

The above mentioned conditions are called the variant field access conditions for the value (note
th a t the condition do not include the occurrence of an exception). The TAG FAIL exception occurs
if they are not satisfied for the structure prim itive value.

e x a m p le s :
16.51 (R E C E IV E user- buffer).allocator (1-V

5 .2 .11 E x p re s s io n c o n v e rs io n s

s y n ta x :
< expression conversion> ::= (1)

<m ode name> (<expression>) (l . l)

N.B. If the expression is a static m ode location, the syntactic construct is am biguous and will be
interpreted as a location conversion (see section 4.2.13).

s e m a n tic s : An expression conversion overrides the CHILL mode checking and com patibility rules. It explicitly
attaches a mode to the expression. If the mode of the m ode nam e is a discrete mode and the class of
the value delivered by the expression is discrete, then the value delivered by the expression conversion
is such that:

N U M (m ode nam e (expression)) = N U M (expression)

Otherwise the value delivered by the expression conversion is im plem entation defined and depends
on the internal representation of values.

s ta t ic p r o p e r t ie s : The class of the expression conversion is the M-value class, where M is the m ode name.
An expression conversion is c o n s ta n t if and only if the expression is c o n s ta n t .

F ascicle X .6 — R ec . Z200 63

s ta t ic c o n d it io n s : The m ode nam e m ust not have the n o n -v a lu e p r o p e r ty . An im plem entation may impose
additional sta tic conditions.

d y n a m ic c o n d it io n s : If the class of the value delivered by expression is discrete and if the mode of the
m ode nam e is a discrete mode which does not define a value w ith an in ternal representation equal
to N U M (expression), then the O V E R F L O W exception occurs. An im plem entation may im pose
additional dynam ic conditions th a t, when violated, result in the occurrence of an exception defined
by the im plem entation.

5 .2 .1 2 V a lu e p r o c e d u r e calls

s y n ta x :
< value procedure call> ::= (1)

<value procedure call> (1-1)

s e m a n tic s : A value procedure call delivers the value returned from a procedure.

s t a t i c p r o p e r t ie s : The class of the value procedure call is the M-value class, where M is the mode of the
r e s u l t sp e c of the value procedure call.

d y n a m ic c o n d it io n s : The value procedure call m ust not deliver an u n d e f in e d value (see sections 5.3.1 and
6 . 8).

e x a m p le s :
6.50 Julian _ day _ num ber ([10, dec, 1979]) (1-1)
11.63 ok-b ish o p (b ,m) (1-1)

5 .2 .1 3 V a lu e b u i l t - in r o u t in e calls

s y n ta x :
< value built-in routine call> ::= (1)

< value built-in routine call> (l - V

se m a n tic s : A value built-in routine call delivers the value returned by the built-in routine.

s t a t i c p r o p e r t ie s : The class attached to the value built-in routine call is the class of the value built-in routine
call.

d y n a m ic c o n d it io n s : The value built-in routine call m ust not deliver an u n d e f in e d value (see sections 5.3.1
and 6.8).

64 F ascicle X .6 — R ec . Z200

5 .2 .1 4 S ta r t ex p ress io n s

s y n ta x :
<start expression> ::= (1)

S T A R T < process nam e> ([<actual param eter list>]) (1-1)

se m a n tic s : The evaluation of the sta rt expression creates and activates a new process whose definition is
indicated by the process name (see chapter 11). The s ta rt expression delivers the instance value
identifying the created process. Param eter passing is analogous to procedure param eter passing;
however, additional actual param eters may be given w ith an im plem entation defined m eaning.

s ta t ic p r o p e r t ie s : The class of the start expression is the IN ST A N C E -derived class.

s ta t ic c o n d it io n s : The num ber of actual param eter occurrences in the actual param eter lis t m ust not be
less th an the num ber of formal param eter occurrences in the form al param eter list of the process
definition of the process name. If the num ber of actual param eters is m and the num ber of formal
param eters is n (m > n), the com patibility and re g io n a li ty requirem ents for the first n actual
param eters are the same as for procedure param eter passing (see section 6.7). The sta tic conditions
for the rest of the actual param eters are im plem entation defined.

d y n a m ic c o n d it io n s : For param eter passing, the assignment conditions of any actual value w ith respect to
the mode of its associated formal param eter apply (see section 6.7).

The s ta r t expression causes the SPACEFAIL exception if storage requirem ents cannot be satisfied.

e x a m p le s :
15.35 S T A R T counterQ (1-1)

5 .2 .15 Z e ro -a d ic o p e r a to r

s y n ta x :
<zero-adic operator> ::= (1)

T H IS (1.1)

se m a n tic s : The zero-adic operator delivers the unique instance value identifying the process executing it.

s ta t ic p r o p e r t ie s : The class of the zero-adic operator is the INSTAN C E-dexived class.

5 .2 .16 P a r e n th e s i s e d e x p re s s io n

s y n ta x :
<parenthesised expression> ::= (1)

(<expression>) (l . l j

s e m a n tic s : A parenthesised expression delivers the value delivered by the evaluation of the expression.

F ascicle X .6 — R ec . Z 200 65

s ta t ic p r o p e r t ie s : T he class of the parenthesised expression is the class of the expression.

A parenthesised expression is c o n s ta n t (li te ra l) if and only if the expression is c o n s ta n t (l ite ra l) .

e x a m p le s :
5.10 (a l O R b l) (1.1)

5.3 V A L U E S A N D E X P R E S S IO N S

5 .3 .1 G e n e ra l

s y n ta x :
<value> ::= (l)

< expression> (1-1)
| <undefined value> (1-2)

<undefined value> (2)
(2 . 1)

| < undefined synonym nam e> (2-2)

s e m a n tic s : A value is either an u n d e f in e d value or a (CHILL defined) value delivered as the result of the
evaluation of an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of
an expression and their sub-constituents, etc., is undefined and they may be considered as being
evaluated in mixed order. They need only be evaluated to the point th a t the value to be delivered
is determ ined uniquely. If the context requires a c o n s ta n t or l i te r a l expression, the evaluation is
assumed to be done prior to run tim e and cannot cause an exception. An im plem entation will define
ranges of allowed values for l i te r a l and c o n s ta n t expressions and may reject a program if such a
prior-to-run-tim e evaluation delivers a value out of the im plem entation defined bounds.

s ta t ic p r o p e r t ie s : The class of a value is the class of the expression or undefined value, respectively.

The class of the undefined value is the a ll class if the undefined value is a *; otherwise the class is
the class of the undefined synonym name.

A value is c o n s ta n t if and only if i t is an undefined value or an expression which is c o n s ta n t . A
value is l i t e r a l if and only if it is an expression which is l i te ra l .

d y n a m ic p r o p e r t ie s : A value is said to be u n d e f in e d if it is denoted by the undefined value or when explicitly
indicated in this docum ent. A composite value is u n d e f in e d if and only if all its sub-components
(i.e. substring values, element values, field values) are u n d e fin e d .

6.40 (1 4 6 _ 0 9 7 * c)/4 + (l-4 6 1 * y)/4
+ (153+ m + c)/5+ day+ l_721_119 (1.1)

ex am p les:

66 F ascicle X .6 — R ec . Z200

5 .3 .2 E x p ression s

sy n ta x :
<expression> ::= (l)

<operand-0> (l . l)
| <conditional expression> (1-2)

<conditional expression> ::= (2)
I IF < boolean expression> < then alternative>

<else alternative> F I (2.1)
| C A S E Cease selector list> O F { < value case alternative> }+

[E L S E < sub expression>] E S A C (2.2)

< then alternative> ::= (3)
T H E N < sub expression> (3.1)

<else alternative> ::= (4)
E L S E < sub expression> (4.1)

| E L S IF < boolean expression>
<then alternative> < else alternative> (4-2)

<sub expression> ::= (5)
< expressi on> (5.1J

< value case alternative> ::= (6)
Cease label specification> : <sub expression> ; (6.1)

s e m a n tic s : If IF is specified, the boolean expression is evaluated and if it yields TRU E, the result is the value
delivered by the sub expression in the then alternative, otherwise it is the value delivered by the else
alternative.

The value delivered by an else alternative is the value of the sub expression if E L S E is specified,
otherwise the boolean expression is evaluated and if it yields TRU E, it is the value delivered by the
sub expression in the then alternative, otherwise it is the value delivered by the else alternative.

If C A S E is specified, the sub expressions in the case selector list are evaluated and if a case label
specification matches, the result is the value delivered by the corresponding sub expression, otherwise
it is the value delivered by the sub expression following E L S E (which will be present).

Unused sub expressions in a conditional expression are not evaluated.

s ta t ic p r o p e r t ie s : If an expression is an operand-0, the class of the expression is the class of the operand-0.
If it is a conditional expression, the class of the expression is the M-value class, where M is the mode
which depends on the context where the conditional expression occurs according to the same rules
th a t define the mode of the class of a tuple w ithout a m ode nam e (see section 5.2.5).

An expression is c o n s ta n t (l i te ra l) if and only if it is either an operand-0 which is c o n s ta n t
(li te ra l) , or a conditional expression in which all boolean expression or case selector list in it are
c o n s ta n t (l i te ra l) and in which all sub expressions in it are c o n s ta n t (lite ra l) .

s ta t ic c o n d it io n s : If an expression is a conditional expression the following conditions apply:

• a conditional expression may occur only in the contexts in which a tuple w ithout a m ode
nam e in front of it may occur;

• each sub expression m ust be c o m p a tib le with the mode th a t is derived from the context
w ith the same rules as for tuples. However, the dynam ic part of the com patibility relation
applies only to the selected sub expression;

Fascicle X .6 — R ec . Z200 67

• if C A S E is specified, the case selection conditions must be fulfilled (see section 12.3), and
the same completeness, consistency and com patibility requirements m ust hold as for the case
action (see section 6.4);

• no conditional expression may have two sub expression occurrences in it such th a t one is
e x tr a - r e g io n a l and the other is in t r a - r e g io n a l (see section 11.2.2).

d y n a m ic c o n d itio n s : In the case of a conditional expression , the assignment conditions of the value delivered
by the selected sub expression w ith respect to the mode M derived from the context apply.

5 .3 .3 O p e ran d -O

s y n ta x :
<operand-0> ::= (1)

< operand-1 > (1.1)
| <sub operand-0> { O R | O R IF | X O R } < operand-l> (1.2)

<sub operand-0> ::= (2)
<operand-0> (2.1)

s e m a n tic s : If O R , O R IF or X O R is specified, sub operand-0 and operand-1 deliver:

• boolean values, in which case O R and X O R denote the logical operators “inclusive dis
junction” and “exclusive disjunction” , respectively, delivering a boolean value. If O R IF is
specified and operand-0 delivers the boolean value TRU E, then this is the result, otherwise
the result is operand-1;

• bit string values, in which case O R and X O R denote the logical operations on each element
of the bit strings, delivering a bit string value;

• powerset values, in which case O R denotes the union of both powerset values and X O R
denotes the powerset value consisting of those member values which are in only one of the
specified powerset values (e.g. A X O R B = A -B O R B~A).

s ta t ic p r o p e r t ie s : If an operand-0 is an operand-1, the class of operand-0 is the class of operand-1. If O R ,
O R IF or X O R is specified, the class of operand-0 is the r e s u l t in g class of the classes of sub
operand-0 and operand-1.

An operand-0 is c o n s ta n t (l i te ra l) if and only if it is either an operand-1 which is c o n s ta n t
(l ite ra l) , or built up from an operand-0 and an operand-1 which are both c o n s ta n t(l i te r a l) .

s t a t i c c o n d it io n s : If O R , O R IF or X O R is specified, the class of sub operand-0 m ust be c o m p a tib le
w ith the class of operand-1. If O R IF is specified, both classes m ust have a boolean ro o t mode,
otherwise both classes m ust have a boolean, powerset or bit string ro o t mode, in which case the
a c tu a l l e n g th of sub operand-0 and operand-1 must be the same. This check is dynam ic if one or
both modes is (are) dynam ic or v a ry in g string modes.

d y n a m ic c o n d itio n s : In the case of O R or X O R , a R A N G E F A IL exception occurs if one or bo th operands
have a dynam ic class and the dynam ic p a rt of the above mentioned com patibility check fails.

e x a m p le s :
10.31 i< m in (1.1)
10.31 i< m in O R i> m a x (1.2)

68 Fascicle X .6 - R ec . Z200

5 .3 .4 O perand-1

sy n ta x :
< operand-1 > (1)

<operand-2> (1.1)
| < sub operand-l> { A N D | A N D IF } <operand-2> (1.2)

<sub operand-1 > ::= (2)
<operand-l > (2.1)

se m a n tic s : If A N D or A N D IF is specified, sub operand-1 and operand-2 deliver:

• boolean values, in which case A N D denotes the logical “conjunction” operation, delivering a
boolean value. If A N D IF is specified and sub operand-1 delivers the boolean value FALSE,
then this is the result, otherwise the result is operand-2;

• bit string values, in which case A N D denotes the logical operation on each element of the
bit strings, delivering a bit string value;

• powerset values, in which case A N D denotes the “intersection ” operation of powerset values
delivering a powerset value as a result.

s ta t ic p r o p e r t ie s : If an operand-1 is an operand-2, the class of operand-1 is the class of operand-2.

If A N D or A N D IF is specified, the class of operand-1 is the r e s u l t in g c lass of the classes of sub
operand-1 and operand-2.

An operand-1 is c o n s ta n t (lite ra l) if and only if it is either an operand-2 which is c o n s ta n t
(lite ra l) , or built up from an operand-1 and an operand-2 which are bo th c o n s ta n t (l i te ra l) .

s ta t ic c o n d itio n s : If A N D or A N D IF is specified, the class of sub operand-1 m ust be c o m p a tib le w ith the
class of operand-2. If A N D IF is specified, both classes m ust have a boolean r o o t mode, otherwise
both classes m ust have a boolean, powerset or b i t string r o o t mode, in which case the a c tu a l
le n g th of sub operand-1 and operand-2 m ust be the same. This check is dynam ic if one or both
modes is (are) dynamic or v a ry in g string modes.

d y n a m ic c o n d itio n s : In the case of A N D , a R A N G E F A IL exception occurs if one or b o th operands have a
dynamic class and the dynam ic part of the above m entioned com patibility check fails.

e x a m p le s :
5.10 (a lO T L b l) (1.1)
5.10 N O T k2 A N D (al O R b l) (1.2)

5 .3 .5 O p e ra n d -2

s y n ta x :
<operand-2> (1)

<operand-3> (1-1)
| <sub operand-2> <operator-3> <operand-3> (1.2)

<sub operand-2> ::= (2)
<operand-2> (2.1)

<operator-3> ::= (3)
<relational operator > (2-1)

| <membership operator> (2.2)
| <powerset inclusion operator> (3.3)

F ascicle X .6 - R ec . Z200 69

<relational operator> ::= (4)

= I /= I > I >=' I < I <= (4.1)

< m em bership operator> (5)
IN (5.1)

<powerset inclusion operator> ::= (6)
< = | > = | < | > (6.1)

se m a n tic s : The equality (=) and inequality (/=) operators are defined between all values of a given mode.
T he other relational operators (less than: < , less th an or equal to: < = , greater than: > , greater
th an or equal to: > =) are defined between values of a given discrete, tim ing or string mode. All the
relational operators deliver a boolean value as result.

The m embership operator is defined between a member value and a powerset value. The operator
delivers TR U E if the member value is in the specified powerset value, otherwise FALSE.

The powerset inclusion operators are defined between powerset values and they test whether or not a
powerset value is contained in: < = , is properly contained in: < , contains: > = or properly contains:
> the other powerset value. A powerset inclusion operator delivers a boolean value as result.

s t a t i c p r o p e r t ie s : If an operand-2 is an operand-3, the class of operand-2 is the class of operand-3. If an
operator-3 is specified, the class of operand-2 is the BOOL-derived class.

An operand-2 is c o n s ta n t (l i te ra l) if and only if it is either an operand-3 which is c o n s ta n t
(l i te ra l) or built up from a sub operand-2 and an operand-3 which are both c o n s ta n t (lite ra l) .

s t a t i c c o n d it io n s : If an operator-3 is specified, the following com patibility requirem ents between the class of
sub operand-2 and the class of operand-3 m ust be fulfilled:

• if operator-3 is = or / —, both classes m ust be c o m p a tib le ;

• if operator-3 is a relational operator other than = or / —, bo th classes m ust be c o m p a tib le
and must have a discrete, tim ing or string r o o t mode;

• if operator-3 is a mem bership operator, the class of operand-3 m ust have a powerset r o o t
mode and the class of sub operand-2 m ust be c o m p a tib le w ith the m e m b e r mode of th a t
r o o t mode;

• if operator-3 is a powerset inclusion operator, bo th classes m ust be c o m p a tib le and m ust
have a powerset r o o t mode.

d y n a m ic c o n d it io n s : In the case of a relational operator, a R A N G E F A IL or TAG FAIL exception occurs if one
or bo th operands have a dynam ic class and the dynam ic part of the above m entioned com patibility
check fails. The TAG FAIL exception occurs if and only if a dynam ic class is based upon a dynam ic
p a r a m e te r i s e d structure mode.

e x a m p le s :
10.50 N U LL (1.1)
10.50 last= N U LL (1.2)

70 F ascicle X .6 — R ec . Z200

5 .3 .6 O p eran d -3

s y n ta x
<operand-3> ::= (1)

<operand-4> (1-1)
| <sub operand-3> <operator-4> <operand-4> , (1.2)

< sub operand-3> (2)
<operand-3> (2.1)

< operator-4 > ::= (3)
<arithm etic additive operator> (3-1)

| <string concatenation operator> (3-2)
| <powerset difference operator> (3-3)

< arithm etic additive operator> ::= (4)
+ I " (4.1)

< string concatenation operator> ::= (5)
/ / (S-l)

<powerset difference operator> (6)
(6.1)

s e m a n tic s : If operator-4 is an arithm etic additive operator, bo th operands deliver integer values and the
resulting integer value is the sum (-f) or difference (-) of the two values.

If operator-4 is a string concatenation operator, both operands deliver either b it string values or
character string values; the resulting value consists of the concatenation of these values. Boolean
(character) values are also allowed; they are regarded as b it (character) string values of length 1.

If operator-4 is the powerset difference operator, bo th operands deliver powerset values and the
resulting value is the powerset value consisting of those member values which are in the value
delivered by sub operand-3 and not in the value delivered by operand-4.

s ta t ic p r o p e r t ie s : If an operand-3 is an operand-4, the class of operand-3 is the class of operand-4. If an
operator-4 is specified, the class of operand-3 is determ ined by operator-4 as follows:

• if operator-4 is a string concatenation operator, the class of operand-3 is dependent on the
classes of operand-4 and sub operand-3, in which an operand th a t is a boolean or a character
value is regarded as a value whose class is a B O O L S (1 j-derived class or C H A R S (1 j-derived
class, respectively:

— if none of them is s tro n g , the class is the B O O L S (hj-derived class or C H A R S (n)-
derived class, depending on whether bo th operands are b it or character strings, where
n is the sum of the s t r in g le n g th s of the r o o t modes of both classes;

— otherwise the class is the &name(n)-value class, where Scname is a v irtual s y n m o d e
name sy n o n y m o u s with the r o o t mode of the r e s u l t in g c lass of the classes of the
operands and n is the sum of the s t r in g le n g th s of the r o o t modes of both classes

(this class is dynam ic if one or both operands have a dynam ic class).

• if operator-4 is an arithm etic additive operator Or powerset difference operator, the class of
operand-3 is the r e s u l t in g c lass of the classes of operand-4 and sub operand-3.

An operand-3 is c o n s ta n t (l i te ra l) if and only if it is either an operand-4 which is c o n s ta n t
(l i te ra l) , or built up from an operand-3 and an operand-4 which are bo th c o n s ta n t (l i te ra l) and
operator-4 is either the arithm etic additive operator or the powerset difference operator.

If operator-4 is the string concatenation operator, an operand-3 is c o n s ta n t if it is built up from
an operand-3 and operand-4 which are both c o n s ta n t .

F ascicle X .6 — R ec . Z 200 71

s ta t ic c o n d it io n s : If an operator-4 is specified, the following com patibility requirem ents m ust be fulfilled:

• if operator-4 is the arithm etic additive operator, the classes of both operands m ust be co m
p a t ib le and they m ust both have an integer ro o t mode;

• if operator-4 is the string concatenation operator then:

— the classes of both operands m ust be c o m p a tib le and they m ust bo th have a b i t
string r o o t mode or bo th have a c h a ra c te r string r o o t mode, or

— the classes of both operands m ust be c o m p a tib le w ith the BO O L mode or bo th be
c o m p a tib le w ith the C H A R mode, or

— the class of one operand m ust have a b i t (c h a ra c te r) string r o o t m ode and the other
m ust be c o m p a tib le w ith the BOOL (C H AR) mode.

• if operator-4 is the powerset difference operator, the classes of b o th operands m ust be c o m
p a t ib le and both m ust have a powerset ro o t mode.

d y n a m ic c o n d it io n s : In the case of an operand-3 th a t is not c o n s ta n t , an O V E R F L O W exception occurs
if an addition (+) or a subtraction (-) gives rise to a value th a t is not one of the values defined by
the r o o t mode of the class of operand-3 .

e x a m p le s :
1.6 j (1.1)
1.6 i+ j (1.2)

5 .3 .7 O p e ra n d -4

s y n ta x
<operand-4> ::= (1)

< operand-5 > (1-1)
| <sub operand-4> < arithm etic m ultiplicative operator> <operand-5> (1-2)

<sub operand-4> ::= (2)
< operand-4 > (2-1)

< arithm etic m ultip licative operator> ::= (3)
* | / | M O D | R E M (3.1)

se m a n tic s : If an arithm etic m ultiplicative operator is specified, sub operand-4 and operand-5 deliver integer
values and the resulting integer value is either the product (*), the quotient (/), modulo (M O D)
or division rem ainder (R E M) of bo th values.

The m odulo operation is defined such th a t i M O D j delivers the unique integer value k, 0 < k < j
such th a t there is an integer value n such th a t i = n * j 4- k; j m ust be greater th an 0.

The quotient operation is defined such th a t all relations:

A B S (x /y) = A B S (x) /A B S (y) and
sign(®/y) = sign(®)/sign(y) and
A B S (x) - (A B S(a:)/A £S(y)) * A B S (y) = A B S (x) M O D A B S (y)

yield T R U E for all integer values x and y, where sign(®) = — 1 if x < 0, otherwise sign(®) = 1.

The rem ainder operation is defined such th a t x R E M y — x — (x /y) * y yields T R U E for all integer
values x and y.

s ta t ic p r o p e r t ie s : If operand-4 is an operand-5, the class of operand-4 is the class of operand-5; otherwise
the class of operand-4 is the r e s u l t in g class of the classes of sub operand-4 and operand-5.

An operand-4 is c o n s ta n t (l i te ra l) if and only if it is either an operand-5 which is c o n s ta n t
(l i te ra l) , or bu ilt up from an operand-4 and an operand-5 which are both c o n s ta n t (l i te ra l) .

72 F ascicle X .6 — R ec. Z200

s ta t i c c o n d it io n s : If an arithm etic m ultiplicative operator is specified, the classes of operand-5 and sub
operand-4 m ust be c o m p a tib le and both m ust have an integer r o o t mode.

d y n a m ic c o n d itio n s : In the case of an operand-4 th a t is not c o n s ta n t , an O V E R F L O W exception occurs
if a m ultiplication (*), a division (/) , a m odulo (M O D), or a rem ainder (R E M) operation gives
rise to a value th a t is not one of the values defined by the r o o t mode of the class of operand-4 or
is performed on operand values for which the operator is m athem atically not defined, i.e. division
or rem ainder w ith an operand-5 delivering 0 or a modulo operation w ith an operand-5 delivering a
non-positive integer value.

e x a m p le s :
6.15 1 .461 (1.1)
6.15 (4 * d + 3) / 1 .461 (1.2)

5 .3 .8 O p e ra n d -5

s y n ta x
<operand-5> ::= (1)

[<monadic operator>] <operand-6> (1-1)

<m onadic operator> ::= (2)
- | N O T (2.1)

| <string repetition operator> (2-2)

< string repetition operator> ::= (3)
(C integer literal expression>) (2-1)

s e m a n tic s : If the monadic operator is a change-sign operator (-), operand-6 delivers an integer value and the
resulting integer value is the previous integer value w ith its sign changed.

If the monadic operator is N O T , operand-6 delivers a boolean value, a bit string value, or a powerset
value. In the first two cases the logical negation of the boolean value or of the elements of the bit
string value is delivered. In the la tte r case, the set complement value, i.e. the set of those m em ber
values which are not in the operand powerset value, is delivered.

If the monadic operator is a string repetition operator, operand-6 is a character string literal or a
bit string literal. If the integer literal expression delivers 0, the result is the em pty string value;
otherwise the result is the string value formed by concatenating the string with itself as m any tim es
as specified by the value delivered by the literal expression minus 1.

s ta t ic p r o p e r t ie s : If operand-5 is an operand-6, the class of operand-5 is the class of operand-6.

If a m onadic operator is specified, the class of operand-5 is:

• if the monadic operator is - or N O T then the r e s u l t in g c lass of operand-6;

• if the monadic operator is the string repetition operator, then it is the C H A R S (n)- or
B O O L S (nj-derived class (depending on whether the literal was a character string literal
or bit string literal) where n = r * I, where r is the value delivered by the integer literal
expression and I is the s t r in g le n g th of the string literal.

An operand-5 is c o n s ta n t if and only if the operand-6 is c o n s ta n t . An operand-5 is l i t e r a l if and
only if the operand-6 is l i t e r a l and the monadic operator is - or N O T .

s ta t ic c o n d it io n s : If monadic operator is - , the class of operand-6 m ust have an integer r o o t mode.

If monadic operator is N O T , the class of operand-6 m ust have a boolean, b i t string or powerset
r o o t mode.

If monadic operator is the string repetition operator, operand-6 m ust be a character string literal
or a bit string literal. The integer literal expression m ust deliver a non-negative integer-value.

F ascicle X .6 - R ec . Z200 73

d y n a m ic c o n d it io n s : If operand-5 is not c o n s ta n t , an O V E R F L O W exception occurs if a change sign (-)
operation gives rise to a value which is not one of the values defined by the r o o t m ode of the class
of the operand-5.

e x a m p le s :
5.10 N O T k2 (1.1)
7.54 (6)’ ’ (1.1)
7.54 (6) (2.2)

5 .3 .9 O p e ra n d -6

(i)
(1.1)
(1 .2)
(1.3)

<referenced location> (2)
- > <location> (2-1)

<receive expression> (3)
R E C E IV E < buffer location> (3-1)

s e m a n tic s : A referenced location delivers a reference to the specified location.

The receive expression receives a value from the buffer location. The executing process may become
delayed and may re-activate another process, delayed on sending to the specified buffer location (see
section 6.19.3 for details).

s t a t i c p r o p e r t ie s : The class of an operand-6 is the class of the referenced location , receive expression or
prim itive value, respectively. The class of the referenced location is the M-reference class where M
is the mode of the location. The class of the receive expression is the M-value class, where M is the
b u f fe r e le m e n t mode of the mode of the buffer location.

An operand-6 is c o n s ta n t if and only if the prim itive value is c o n s ta n t or the referenced location
is c o n s ta n t . A referenced location is c o n s ta n t if and only if the location is s ta t ic . An operand-6
is l i t e r a l if and only if the prim itive value is l i te ra l .

s ta t ic c o n d it io n s : The location m ust be re fe ra b le .

d y n a m ic c o n d it io n s : The lifetime of the buffer location m ust not end while the executing process is delayed
on it.

e x a m p le s :
8.25 - > c (2.1)
16.51 R E C E IV E user-buffer (3 1)

s y n ta x :
<operand-6>

<referenced location>
| <receive expression>
| <prim itive value>

74 F ascic le X .6 — R ec. Z200

6 ACTIONS

6.1 G E N E R A L

sy n ta x :
< a ction sta tem ent> (1)

[<defining occurience> :] < a ction> [<handler>] [<sim ple nam e str in g >] ; (1.1)
| <m odule> (1-2)
| <spec m odule> (1-3)
| < context m o d u lo (1-4)

<action> ::= (2)
< bracketed action> (2-1)

| < a ssignm ent action> (2-2)
I <call action> (2-3)
| < exit action> (2.4)
| <return action> (2.5)
| <result action> (2.6)
| <goto action> (2-7)
| <assert action> (2-8)
| < em pty action> (2-9)
j <start action> (2.10)
| <stop action> (2-11)
j < delay action> (2-12)
| <continue action> (2.13)
| <send action> (2-14)
| Ccause a ction> (2-13)

<bracketed action> ::= (3)
< if action> (3-1)

| Cease action> (3-2)
| <do action> (3-3)
j <begin-end block> (3.4)
| <delay case action> (3.5)
| <receive case action> (3-8)
| < tim ing action> (3.7)

s e m a n tic s : Action statem ents constitu te the algorithm ic part of a CHILL program . Any action statem ent may
be labelled. Those actions th a t may never cause an exception may not have a handler appended.

s ta t ic p ro p e r t ie s : A defining occurrence in an action sta tem ent defines a la b e l name.

s ta t ic c o n d itio n s : The simple nam e string may only be given after an action which is a bracketed action or
if a handler is specified, and only if a defining occurrence is specified. The sim ple nam e string m ust
be the same nam e string as the defining occurrence.

6.2 A S S IG N M E N T A C T IO N

s y n ta x :
< a ssignm ent action> ::= (1)

<single assignment action> (1.1)
| <m ultip le assignment action> (1-2)

<single assignment action> ::= (2)
<location> <assignm ent sym bol> <value> (2-1)

| <location> < assigning operator> <expression> (2-2)

< m ultiple assignment action> (3)
<location> { , <location> }+ < assignment sym bo l> <value> (3-1)

F ascicle X .6 — R ec . Z200 75

<assigning operator> ::= (4)
<closed dyadic o p era to r> < a ssignm ent sym bol> (4-1)

<closed dyadic operator> (5)
O R | X O R | A N D (5.1)

| <powerset difference operator> (3-2)
| < a rithm etic additive operator> (5-3)
| < arithm etic m ultiplicative operator> (3-4)
| <string concatenation operator> (3-5)

< assignment sym bol> ::= (6)
(6.1)

s e m a n tic s : An assignm ent action stores a value into one or more locations.

If an assignm ent symbol is used, the value yielded by the right hand side is stored into the location(s)
specified a t the left hand side.

If an assigning operator is used, the value contained in the location is combined w ith the right hand
side value (in th a t order) according to the semantics of the specified closed dyadic operator, and the
result is stored back in to the same location.

The evaluation of the left hand side location(s), of the right hand side value, and of the assignment
themselves are perform ed in an unspecified and possibly mixed order. Any assignment may be
performed as soon as the value and a location have been evaluated.

If the location (or any of the locations) is the ta g field of a variant structure, the semantics for the
variant fields th a t depend on it are im plem entation defined.

s ta t ic c o n d itio n s : The modes of all location occurrences m ust be e q u iv a le n t and they m ust have neither
the r e a d -o n ly p r o p e r ty nor the n o n -v a lu e p r o p e r ty . Each mode m ust be c o m p a tib le with
the class of the value. The checks are dynam ic in the case where dynam ic mode locations an d /o r a
value w ith a dynam ic class are involved.

The value m ust be re g io n a lly safe for every location (see section 11.2.2).

If any location has a f ix e d string mode, then the s t r in g l e n g th of the mode and the a c tu a l le n g th
of the value m ust be the same; otherwise, if it has a v a ry in g string mode, then the s t r in g le n g th
of the mode m ust not be less than the a c tu a l l e n g th of the value. This check is dynam ic if one or
both modes is (are) dynam ic or v a ry in g string modes. This condition is called the string assignment
condition.

d y n a m ic c o n d itio n s : The R A N G E F A IL or TAG FAIL exception occurs if the m ode of the location an d /o r
th a t of the value are dynam ic modes and the dynam ic part of the above m entioned com patibility
checks fails.

The R A N G E F A IL exception occurs if the mode of the location an d /o r th a t of the value are v a ry in g
string modes and the dynam ic part of the above m entioned com patibility checks fails.

The R A N G E F A IL exception occurs if any location has a range mode and the value delivered by the
evaluation of value is neither one of the values defined by the range mode nor the u n d e f in e d value.

The above m entioned dynam ic conditions together w ith the string assignm ent condition are called
the assignment conditions of a value w ith respect to a mode.

76 F ascicle X .6 — R ec . Z200

In the case of an assigning operator, the same exceptions are caused as if the expression:

<location> < closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note th a t the location is
evaluated once only).

e x a m p le s :

4.12 a := b-j-c (1-1)
10.25 stackindex- := 1 (2-1)
19.19 x-> .prex, x -> .n e x t := N U LL (3-1)
10.25 - := (4.1)

6.3 I F A C T IO N

s y n ta x :
< if action> ::= (l)

IF < boolean expression> < then clause> [<else clause >] F I (l . l j

<then clause> ::= (2)
T H E N < action sta tem ent list> (2-1)

<else clause> (3)
E L S E < a ction sta tem ent list> (3-1)

| E L S IF < boolean expression> < then clause> [<else clause>] (3.2)

d e r iv e d s y n ta x : The notation:

E L S IF < boolean expression> < then clause> [<else clause>]

is derived syntax for:

E L S E IF < boolean expression> <then clause> [<else clause>] F I;

s e m a n tic s : An if action is a conditional two-way branch. If the boolean expression yields TR U E , the action
statem ent list following T H E N is entered; otherwise the action statem ent list following E L S E , if
present, is entered.

d y n a m ic c o n d itio n s : The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied,

e x a m p le s :

7.22 IF n >= 50 T H E N rn(r) := ’L ’;
n - := 50;
r+ := 1;

F I (1.1)
10.50 IF last = NULL

T H E N first,last := p;
E L S E last-> .succ := p;
p-> .pred := last;
last := p;

F I (1.1)

F ascicle X .6 — R ec . Z 200 77

6 .4 C A S E A C T IO N

s y n ta x :
<case action> ::= (l)

C A S E Cease selector list> O F [<range list> ;] { cease alternative> }+
[E L S E Caction sta tem ent list>] E S A C (1-V

Cease selector list> ::= (2)
< discrete expression> { , < discrete expression> }* (2-1)

C range list> (3)
< discrete m ode nam e> { , C discrete m ode nam e> }* (3-1)

Cease alternative> ::= (4)
Cease label specification> : < action sta tem en t list> (4-1)

s e m a n tic s : A case action is a m ultiple branch. It consists of the specification of one or more discrete expressions
(the case selector list) and a num ber of labelled action statem ent lists (case alternatives). Each
action statem ent list is labelled w ith a case label specification which consists of a list of case label
list specifications (one for each case selector). Each case label list defines a set of values. The use
of a list of discrete expressions in the case selector list allows selection of an alternative based on
m ultiple conditions.

The case action enters th a t action statem ent list for which values given in the case label specification
m atch the values in the case selector list; if no value m atch, the action sta tem ent list following E L S E
is entered.

The expressions in the case selector list are evaluated in an undefined and possibly mixed order.
They need be evaluated only up to the point where a case alternative is uniquely determ ined.

s ta t ic c o n d it io n s : For the list of case label specification occurrences, the case selection conditions apply (see
section 12.3).

The number of discrete expression occurrences in the case selector list m ust be equal to the num ber
of classes in the r e s u l t in g l is t o f c lasses of the list of case label list occurrences and, if present, to
the num ber of discrete m ode nam e occurrences in the range list.

The class of any discrete expression in the case selector list m ust be c o m p a tib le w ith the corre
sponding (by position) class of the r e s u l t in g l is t o f c la sses of the case label list occurrences and,
if present, c o m p a tib le w ith the corresponding (by position) discrete m ode nam e in the range list.
The la tte r mode m ust also be c o m p a tib le w ith the corresponding class of the r e s u l t in g l is t o f
c lasses.

Any value delivered by a discrete literal expression or defined by a literal range or by a discrete m ode
nam e in a case label (see section 12.3) m ust lie in the range of the corresponding discrete m ode nam e
of the range list, if present, and also in the range defined by the mode of the corresponding discrete
expression in the case selector list, if it is a s t ro n g discrete expression. In the la tte r case, the values
defined by the corresponding discrete m ode nam e of the range list, if present, m ust also lie in th a t
range.

The optional E L S E part according to the syntax may only be om itted if the list of case label list
occurrences is c o m p le te (see section 12.3).

d y n a m ic c o n d itio n s : The RA N G E F A IL exception occurs if a range list is specified and the value delivered
by a discrete expression in the case selector list does not lie w ithin the bounds specified by the
corresponding discrete m ode nam e in the range list.

The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied.

78 F ascicle X .6 - R ec . Z200

e x a m p le s :

4.11 C A S E order O F
(1): a := b+c;

R E T U R N ,
(2): d := 0;
(E L S E): d := 1;

E S A C (1.1)
11.43 starting.p.kind, starting.p.color (2-1)
11.58 (rook),(*):

IF N O T ok_rook(b ,m)
T H E N

C A U S E illegal;
F I; (4.1)

6.5 D O A C T IO N

6.5 .1 G e n e ra l

s y n ta x :
<do action> ::= (l)

D O [<control part> ;] < a ction statem ent list> O D (1-1)

< control part> ::= (2)
<for control> [< while control>] (2-1)

| < while control> * (2.2)
| <with part> (2-3)

s e m a n tic s : A do action has one out of three different forms: the do-for and the do-while versions, bo th for
looping, and the do-with version as a convenient short hand no tation for accessing structure fields
in an efficient way. If no control part is specified, the action statem ent list is entered once, each tim e
the do action is entered.

W hen the do-for and the do-while versions are combined, the while control is evaluated after the for
control, and only if the do action is not term inated by the for control.

If the specified control part is a for control an d /o r while control, then for as long as control stays
inside the reach of the do action, the action statem ent list is entered according to the control part,
bu t the do reach is n o t re-entered for each execution of the action sta tem ent list.

d y n a m ic c o n d it io n s : The SPAC EFAIL exception occurs if storage requirem ents cannot be satisfied.

e x a m p le s :

4.17 D O F O R i ;= 1 T O c;
op(a,b,d,order-1);
d := a;

O D (1.1)
15.58 D O W IT H each;

I F th is - counter = counter
T H E N

sta tus := idle;
E X IT find-counter;

F I ;
O D (1. 1)

F ascicle X .6 — R ec . Z 200 79

6 .5 .2 F o r c o n tro l

s y n ta x :
< for control> ::= (1)

F O R { <iteration> { , <iteration> }* | E V E R } (1-1)

< iteration> ::= (2)
< value enumeration> (2-1)

| <location enumeration> (2-2)

< value enumeration> ::= (3)
< step enum eration> (3-1)

| <range enum eration> (3-2)
| <powerset enumeration> (3-3)

< step enumeration> ::= (4)
<loop counter> <assignment sym bol>
< sta it value> [< step value>] [D O W N] < end value> (4-1)

<loop counter> ::= (5)
<defining occurrence> (3-1)

< start vaJue> (6)
< discrete expression> (3-1)

< step value> ::= (7)
B Y <integer expression> (7.1)

<end value> ::= (8)
T O <discrete expression> (3-1)

<range enumeration> ::= (9)
<loop counter> [D O W N] I N .< discrete m ode nam e> (9-1)

<powerset enumeration> ::= (10)
<loop counter> [D O W N] IN < powerset expression> (19.1)

<location enumeration> (11)
<loop counter> [D O W N] IN <composite object> (H - l)

<com posite object> ::= (12)
< array location> (12.1)

| < array expression> (12-2)
| < strin s location> (12-3)
| < string expression> (12-4)

N.B. If the com posite object is a (string, array) location, the syntactic am biguity is resolved by
interpreting com posite object as a location rather than an expression.

s e m a n tic s : The for control may m ention several loop counters. The loop counters are evaluated each time
in an unspecified order, before entering the action statem ent list, and they need be evaluated only
up to the point th a t it can be decided to term inate the do action. The do action is term inated if a t
least one of the loop counters indicates term ination.

1. do fo r ev e r:

The action list is indefinitely repeated. The do action can only term inate by a transfer of
control out of it.

2. v a lu e e n u m e ra t io n :

The action sta tem ent list is repeatedly entered for the set of specified values of the loop
counters. The set of values is either specified by a discrete m ode name (range enum eration),
or by a powerset value (powerset enum eration), or by a s ta rt value, step value and end value
(step enum eration).

The loop counter im plicitly defines a name which denotes its value or location inside the
action sta tem ent list.

80 F ascicle X .6 — R ec . Z200

In the case of range enum eration w ithout (with) D O W N specification, the in itial value of the
loop counter is the smallest (greatest) value in the set of values defined by the discrete m ode
name. For subsequent executions of the action statem ent list, the next value will be evaluated
as:

SU CC (previous value) (P R E D (previous value)).

Term ination occurs if the action statem ent list has been executed for the greatest (smallest)
value defined by the discrete m ode name.

p o w e rs e t e n u m e ra t io n :

In the case of powerset enum eration w ithout (with) D O W N specification, the in itia l value
of the loop counter is the smallest (highest) member value in the denoted powerset value. If
the powerset value is em pty, the action statem ent list will not be executed. For subsequent
executions of the action statem ent list, the next value will be the next greater (smaller)
member value in the powerset value. Term ination occurs if the action sta tem ent list has been
executed for the greatest (smallest) value. W hen the do action is executed, the p o w e rs e t
expression is evaluated only once.

s te p e n u m e ra tio n :

In the case of step enum eration w ithout (with) D O W N specification, the set of values of the
loop counter is determ ined by a s ta rt value, an end value, and possibly a step value. W hen the
do action is executed, these expressions are evaluated only once in an unspecified and possibly
mixed order. The step value is always positive. The test for term ination is m ade before each
execution of the action statem ent list. Initially, a test is m ade to determ ine whether the sta rt
value of the loop counter is greater (smaller) than the end value. For subsequent executions,
next value will be evaluated as:

previous value + step value (previous value — step value)

in the case of step value specification; otherwise as:

SU CC (previous value) (P RED (previous value)).

Term ination occurs if the evaluation yields a value which is greater (smaller) than the end
value or would have caused an O V E R F L O W exception.

3. lo c a tio n e n u m e ra tio n :

In the case of a location enum eration w ithout (with) D O W N specification, the action s ta te
m ent list is repeatedly entered for a set of locations which are the elements of the array
location denoted by array location or the com ponents of the string location denoted by string

. location. If an array or s tr in s expression is specified th a t is not a location, a location con
taining the specified value will be im plicitly created. The lifetime of the created location is
the do action. The mode of the created location is dynam ic if the value has a dynam ic class.
The semantics are as if before each execution of the action statem ent list the loc-identity
declaration:

D C L <loop counter> <m ode> L O C := <com posite object> (< index>);

were encountered, where m ode is the element mode of the array location or &:name(l) such
th a t &name is a v irtual s y n m o d e name sy n o n y m o u s w ith the mode of the string location if
it is a fix ed string mode, otherwise with the c o m p o n e n t mode, and where index is initially
set to the lo w er b o u n d (u p p e r b o u n d) of the mode of location and index before each
subsequent execution of the action statem ent list is set to SU CC (index) (P R E D (index)).
The action statem ent list will not be executed if the a c tu a l l e n g th of the string location
equals 0. The do action is term inated if index ju s t after an execution of the action statem ent
list is equal to the u p p e r b o u n d (low er b o u n d) of the mode of location. W hen the do
action is executed, the com posite object is evaluated only once.

s ta t ic p r o p e r t ie s : A loop counter has a nam e string attached which is the nam e string of its defining
occurrence.

v a lu e e n u m e ra tio n :

The nam e defined by the loop counter is a v a lu e e n u m e r a t io n name.

ran ge en u m eration :

F ascicle X .6 — R ec . Z 200 81

s te p en u m eration :

The class of the nam e defined by a loop counter is the r e s u l t in g c lass of the classes of the s ta rt
value, the step value, if present, and the end value.

r a n g e e n u m e ra t io n :

The class of the nam e defined by the loop counter is the M-value class, where M is the discrete m ode
name.

p o w e rs e t e n u m e ra tio n :

The class of the nam e defined by the loop counter is the M-value class, where M is the m e m b e r
mode of the mode of the (s tro n g) powerset expression.

lo c a tio n e n u m e ra t io n :

The nam e defined by the loop counter is a lo c a tio n e n u m e ra t io n name. Its mode is the e le m e n t
mode of the mode of the array location or array expression or the string mode & nam e(l), where
&name is a v irtual s y n m o d e nam e s y n o n y m o u s with the mode of string location or the r o o t
mode of the strin s expression.

A lo c a tio n e n u m e r a t io n nam e is r e f e r a b le if the element layout of the mode of the array location
is N O P A C K .

s ta t ic c o n d itio n s : The classes of start value, end value and step value, if present, m ust be pairwise c o m
p a tib le .

The r o o t mode of the class of a loop counter in a value enumeration m ust not be a n u m b e r e d set
mode.

d y n a m ic c o n d itio n s : A R A N G E F A IL exception occurs if the value delivered by step value is not greater
th an 0. This exception occurs outside the block of the do action.

e x a m p le s :

4.17 F O R i . - l T O c (l . l)
15.37 F O R E V E R (1.1)
4.17 i := 1 T O c (3.1)
9.12 j := M IN (sieve) B Y M IN (sieve) T O m ax (3.1)
14.28 i IN IN T (1:100) (3.2)

6 .5 .3 W h ile c o n tro l

s y n ta x :
< while control> (1)

W H IL E < boolean expression > (1-1)

s e m a n tic s : The boolean expression is evaluated ju s t before entering the action statem ent list (after the
evaluation of the for control, if present). If i t yields TR U E , the action statem ent list is entered;
otherwise the do action is term inated .

7.35 W H IL E n > = 2 (1.1)

exam p les:

82 F ascicle X .6 - R ec . Z200

6 .5 .4 W ith part

s y n ta x :
< with part> ::= (1)

W IT H < w ith control> { , < w ith control> }* (1.1)

<w ith control> ::= (2)
<structure location> (2-1)

| <structure prim itive value> (2-2)

N.B. If the with control is a structure location , the syntactic am biguity is resolved by in terpreting
with control as a location ra ther than a prim itive value.

se m a n tic s : The (v isib le) field names of the mode of the structure locations or s tructure value specified in
each with control are m ade available as direct accesses to the fields.

The visibility rules are as if a field nam e defining occurrence were introduced for each f ie ld name
attached to the mode of the location or prim itive value and w ith the same nam e string as the field
name.

If a structure location is specified, access names w ith the same nam e string as the field names of the
mode of the structure location are im plicitly declared, denoting the sub-locations of the structure
location.

If a structure prim itive value is specified, value names with the same nam e string as the field names
of the mode of the (s tro n g) structure prim itive value are im plicitly defined, denoting the sub-values
of the structure value.

W hen the do action is entered, the specified structure locations an d /o r structure values are evaluated
once only on entering the do action, in an unspecified, possibly mixed order.

s ta t ic p ro p e r t ie s : The (virtual) defining occurrence introduced for a f ie ld nam e has the same nam e string
as the field nam e defining occurrence of th a t fie ld name.

If a structure prim itive value is specified, a (virtual) defining occurrence in a with part defines a
v a lu e d o -w ith name. Its class is the M-value class, where M is the mode of th a t fie ld nam e of the
structure mode of the structure prim itive value which is made available as v a lu e d o -w ith name.

If a structure location is specified, a (virtual) defining occurrence in a with part defines a lo c a tio n
d o -w ith name. Its mode is the mode of th a t fie ld name of the mode of the structure location which
is made available as lo c a tio n d o -w ith name. A lo c a tio n d o -w ith nam e is r e f e r a b le if the field
layout of the associated fie ld nam e is N O P A C K .

e x a m p le s :

15.58 W IT H each (1.1)

6.6 E X IT A C T IO N

s y n ta x :
< exit action> ::= (1)

E X IT <label nam e> (1-1)

s e m a n tic s : An exit action is used to leave a bracketed action statem ent or a module. Execution is resumed
im m ediately after the closest surrounding bracketed action statem ent or m odule labelled w ith the
label name.

F ascicle X .6 — R ec . Z200 83

s ta t ic c o n d it io n s : The exit action m ust lie w ithin the bracketed action sta tem ent or m odule of which the
defining occurrence in front has the same nam e string as label name.

If the exit action is placed w ithin a procedure or process definition, the exited bracketed action
statem ent or module m ust also lie w ithin the same procedure or process definition (i.e. the exit
action cannot be used to leave procedures or processes).

No handler may be appended to an exit action.

e x a m p le s :

15.62 E X IT find-coun ter (1-V

6 .7 C A L L A C T IO N

s y n ta x :
<call action> (1)

<procedure call> (1-1)
| < built-in routine call> (1-2)

<procedure call> ::= (2)
{ < procedure nam e> | < procedure prim itive value> }
([<actual parameter list>]) (2-1)

< actual param eter list> ::= (3)
<actual param eter> { , < actual param eter> }* (2-1)

C actual param eter> ::= (4)
<value> (4-1)

| <location> (4-2)

< built-in routine call> ::= (5)
< built-in routine nam e> ([<built-in routine param eter list>]) (5-1)

< built-in routine parameter list> ::= (6)
< built-in routine param eter> { , <built-in routine param eter> }* (6.1)

< built-in routine param eter> ::= (7)
<value> (7-1)

| <location> (?-2)
| <non-reserved name> [(< built-in routine param eter list>)] (7-3)

N.B. If the actual parameter or built-in routine param eter is a location, the syntactic am biguity is
resolved by interpreting it as a location rather than a value.

se m a n tic s : A call action causes the call of either a procedure or a built-in routine. A procedure call causes
a call of the g e n e ra l procedure indicated by the value delivered by the procedure prim itive value
or the procedure indicated by the procedure nam e. The actual values and locations specified in the
actual param eter list are passed to the procedure.

A built-in routine call is either a CHILL built-in routine call or an im plem entation built-in routine
call (see sections 6.20 and 13.1, respectively).

A value, a location, or any program defined nam e th a t is not a r e s e rv e d simple name string may
be passed as built-in routine param eter. The built-in routine call may return a value or a location.

A built-in routine may be generic, i.e. its class (if it is a v a lu e built-in routine call) or its mode (if
it is a lo c a tio n built-in routine call) may depend not only on the built-in routine nam e bu t also on
the sta tic properties of the actual param eters passed and the sta tic context of the call.

84 F ascicle X .6 — R ec . Z200

s ta t ic p r o p e r t ie s : A procedure call has the following properties attached: a list of p a r a m e te r sp e c s , possibly
a r e s u l t spec , a possibly empty set of exception names, a g e n e ra l i ty , a r e c u r s iv i ty , and possibly
it is in tr a - r e g io n a l (the la tter is only possible with a procedure nam e, see section 11.2.2). These
properties are inherited from the procedure nam e or any mode c o m p a tib le w ith the class of the
procedure prim itive value (in the la tte r case, the generality is always g e n e ra l) .

A procedure call w ith a re s u l t sp e c is a location procedure call if and only if L O C is specified in
the r e s u l t spec; otherwise it is a value procedure call.

A built-in routine name is a CHILL or an im plem entation defined nam e th a t is considered to be
defined in the reach of the im aginary outerm ost process definition or in any context (see section
1 0 .8).

A built-in routine call is a lo c a tio n built-in routine call if it delivers a location; it is a v a lu e built-in
routine call if it delivers a value.

s ta t ic c o n d itio n s : The number of actual param eter occurrences in the procedure call m ust be the same as
the num ber of its param eter specs. The com patibility requirements for the actual param eter and
corresponding (by position) param eter spec of the procedure call are:

• If the param eter spec has the IN a ttrib u te (default), the actual param eter m ust be a value
whose class is c o m p a tib le w ith the mode in the corresponding param eter spec. The la tter
mode m ust not have the n o n -v a lu e p r o p e r ty . The actual param eter is a value which m ust
be re g io n a lly safe for the procedure call.

• If the param eter spec has the I N O U T or O U T a ttribu te , the actual param eter m ust be a
location, whose mode must be c o m p a tib le w ith the M-value class, where M is the mode in
the corresponding param eter spec. The mode of the (actual) location m ust be sta tic and must
not have the re a d -o n ly p r o p e r ty nor the n o n -v a lu e p r o p e r ty . The actual param eter is a
location. It can be viewed as a value which m ust be re g io n a lly sa fe for the procedure call.

• If the param eter spec has the IN O U T a ttribu te , the mode in the param eter spec m ust be
c o m p a tib le with the M-value class where M is the mode of the location.

• If the param eter spec has the L O C a ttrib u te specified w ithout D Y N A M IC , the actual pa
rameter must be a location which is bo th r e fe ra b le and such th a t the mode in the param eter
spec is re a d -c o m p a tib le w ith the mode of the (actual) location, or the actual param eter
must be a value which is not a location bu t whose class is c o m p a t ib le w ith the mode in the
param eter spec.

• If the param eter spec has the L O C a ttrib u te w ith D Y N A M IC specified, the actual param
eter m ust be a location which is bo th re fe ra b le and such th a t the mode in the param eter
spec is d y n a m ic re a d -c o m p a tib le w ith the mode of the (actual) location, or the actual
parameter must be a value which is not a location but whose class is c o m p a tib le w ith a
param eterised version of this mode.

• If the param eter spec has the L O C a ttrib u te then

— if the actual parameter is a location it m ust have the same re g io n a l i ty as the proce
dure call;

— if the actual parameter is a value then it m ust be re g io n a lly safe for the procedure
call.

d y n a m ic c o n d itio n s : A procedure call or built-in routine call can cause any of the exceptions from the
attached set of exception names. A procedure call causes the E M P T Y exception if the procedure
prim itive value delivers NULL; it causes the SPACEFAIL exception if storage requirem ents cannot
be satisfied. If the re c u rs iv i ty of the procedure is n o n - re c u rs iv e , then the procedure m ust not
call itself either directly or indirectly.

Param eter passing can cause the following exceptions:

• If the param eter spec has the IN or IN O U T attrib u te , the assignm ent conditions of the
(actual) value with respect to the mode of the param eter spec apply a t the point of the call
(see section 6.2) and the possible exceptions are caused before the procedure is called.

• If the param eter spec has the IN O U T or O U T a ttribu te , the assignm ent conditions of the
local value of the formal param eter w ith respect to the mode of the (actual) location apply
a t the point of return (see section 6.2) and possible exceptions are caused after the procedure
has returned.

F ascicle X .6 — R ec . Z 200 85

• If the param eter spec has the L O C a ttrib u te and the actual param eter is a value which is not
a location, the assignm ent conditions of the (actual) value w ith respect to the mode of the
param eter spec apply a t the point of the call and the possible exceptions are caused before
the procedure is called (see section 6.2).

T he procedure prim itive value m ust not deliver a procedure defined w ithin a process definition whose
activation is not the same as the activation of the process executing the procedure call (other than
the im aginary outerm ost process) and the lifetime of the denoted procedure m ust not have ended.

e x a m p le s :

4.18 op(a,b,d,order-1) (1.1)

6 .8 R E S U L T A N D R E T U R N A C T IO N

s y n ta x :
<return action> ::= (1)

R E T U R N [<result>] (l . l)

<result action> ::= (2)
R E S U L T <result> (2-1)

<result> ::= (3)
<value> (3.1)

| <location> (3-2)

d e r iv e d s y n ta x : The return action w ith result is derived from D O R E S U L T <result> ; R E T U R N ; O D .

s e m a n tic s : A result action serves to establish the result to be delivered by a procedure call. This result may
be a location or a value. A return action causes the return from the invocation of the procedure
w ithin whose definition it is placed. If the procedure returns a result, this result is determ ined by
the latest executed result action. If no result action has been executed, the procedure call delivers
an u n d e f in e d location or u n d e f in e d value, respectively.

s t a t i c p r o p e r t ie s : A result action and a return action have a p r o c e d u r e nam e attached, which is the name
of the closest surrounding procedure definition.

s t a t i c c o n d it io n s : A return action and a result action m ust be textually surrounded by a procedure definition.
A result action may only be specified if its p r o c e d u r e nam e has a r e s u l t sp ec .

A handler m ust not be appended to a return action (w ithout result).

If L O C (L O C D Y N A M IC) is specified in the r e s u l t sp e c of the p ro c e d u r e nam e of the result
action, the result m ust be a location, such th a t the mode in the r e s u l t sp e c is r e a d -c o m p a tib le
(d y n a m ic r e a d -c o m p a tib le) w ith the mode of the location. The location m ust be re fe ra b le if
N O N R E F is not specified in the r e s u l t sp ec . The result is a location which m ust have the same
re g io n a l i ty as the p ro c e d u r e name attached to the result action.

If L O C is no t specified in the r e s u l t sp e c of the p ro c e d u r e name of the result action, the result
m ust be a value, whose class is c o m p a tib le with the mode in the r e s u l t sp e c . The result is a
value which m ust be re g io n a lly safe for the p ro c e d u r e nam e attached to the result action.

86 F ascicle X .6 - R ec . Z200

d y n a m ic c o n d it io n s : If L O C is not specified in the r e s u l t sp ec of the p r o c e d u r e nam e, the assignm ent
conditions of the value in the result action with respect to the mode in the r e s u l t sp e c of its
p r o c e d u r e name apply.

e x a m p le s :

4.21 R E T U R N (1.1)
1.6 R E S U L T i+ j (2.1)
5.19 c (3.1)

6.9 G O T O A C T IO N

s y n ta x :
<goto a ction> ::= (l)

G O T O <label nam e>) (1.1)

s e m a n tic s : A goto action causes a transfer of control. Execution is resumed w ith the action sta tem ent labelled
w ith the label name.

s ta t ic c o n d it io n s : If a goto action is placed within a procedure or process definition, the label indicated by
the label nam e m ust also be defined w ithin the definition (i.e. it is not possible to ju m p outside a
procedure or process invocation).

A handler m ust not be appended to a goto action.

6 .10 A S S E R T A C T IO N

sy n ta x :
< a ssert action> ::= (l)

A S S E R T < boolean expression> (1.1)

s e m a n tic s : An assert action provides a means of testing a condition.

d y n a m ic c o n d it io n s : The A SSE R T F A IL exception occurs if the boolean expression delivers FALSE.

e x a m p le s :

4.7 A S S E R T b> 0 A N D c>0 A N D order>0 (1.1)

6.11 E M P T Y A C T IO N

sy n ta x :
< em p ty action> ::= (l)

< em p ty > (1.2)

< e m p ty > ::= (2)

s e m a n tic s : An em pty action causes no action.

s ta t ic c o n d it io n s : A handler m ust not be appended to an em p ty action.

F ascicle X .6 - R ec . Z200 87

6 .12 C A U S E A C T IO N

s y n ta x :
< cause a ction> ::= (1)

C A U S E <exception nam e> (1-1)
0

s e m a n tic s : A cause action causes the exception whose nam e is indicated by exception nam e to occur.

s ta t ic c o n d it io n s : A handler m ust not be appended to a cause action.

e x a m p le s :

4.9 C A U S E wrongs inpu t (1-V

6.13 S T A R T A C T IO N

s y n ta x :
< start action> ::= (1)

< start expression> (2.1)

s e m a n tic s : A s ta rt action evaluates the s ta rt expression (see section 5.2.14) w ithout using the resulting
instance value.

e x a m p le s :

14.45 S T A U T call-d istribu tor () (1-1)

6 .14 S T O P A C T IO N

s y n ta x :
< stop action> ::= (l)

S T O P (1.1)

s e m a n tic s : A stop action term inates the process executing it (see section 11.1). .

s ta t ic c o n d it io n s : A handler m ust not be appended to a stop action.

6 .15 C O N T IN U E A C T IO N

s y n ta x :
<continue action> ::= ' (l)

C O N T IN U E < event location> (1-1)

88 F ascicle X .6 — R ec . Z200

s e m a n tic s : A continue action evaluates the event location.

If the event location has a non-empty set of delayed processes attached, one of these, w ith the
highest priority, will be be re-activated. If there are several such processes, one will be selected in
an im plem entation defined way. If there are no such processes, the continue action has no further
effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a
member.

e x a m p le s :

13.25 C O N T IN U E resource, freed (1.1)

6 .16 D E L A Y A C T IO N

s y n ta x :
< delay action> ::= (1)

D E L A Y < event location> [< priority>] (1.1)

<priority> ::= (2)
P R I O R I T Y <inteeer literal expression> (2.1)

s e m a n tic s : A delay action evaluates the event location.

Then a D E LA YF A IL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member w ith a priority of the set of delayed
processes a ttached to the specified event location. The priority is the one specified, if any, otherwise
0 (lowest).

d y n a m ic p r o p e r t ie s : A process executing a delay action becomes t im e o u ta b le when it reaches the point of
execution where it may become delayed. It ceases to be t im e o u ta b le when it leaves th a t point.

s ta t ic c o n d it io n s : The integer literal expression m ust not deliver a negative value.

d y n a m ic c o n d it io n s : The D E LA YF A IL exception occurs if the event location has a mode w ith an e v e n t
le n g th a ttached which is equal to the number of processes already delayed on the event location.

The lifetime of the event location m ust not end while the executing process is delayed on it.

e x a m p le s :

13.18 D E L A Y resource, freed (1-1)

F ascicle X .6 — R ec . Z200 89

6 .17 D E L A Y C A S E A C T IO N

s y n ta x :
< delay case action> ::= (1)

D E L A Y C A S E [S E T <instance location> [<priority>] ; \ < priority> ;]
{ < delay alternative> }+
E S A C (1.1)

< delay alternative> ::= (2)
(<event list>) : <action sta tem ent list> (2-1)

< event list> ::= (3)
< event location> { , < event location> }* (3-IJ

se m a n tic s : A delay case action evaluates, in an unspecified and possibly mixed order, the instance location,
if present, and all event locations specified in a delay alternative.

Then a D E LA YF A IL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member w ith a priority of the set of delayed
processes a ttached to each of the specified event locations. The priority is the one specified, if any,
otherwise 0 (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an
event location, the corresponding action sta tem ent list is entered. If several delay alternatives specify
the same event location, the choice between them is not specified. Prior to entering, if an instance
location is specified, the instance value identifying the process th a t has executed the continue action
is stored in it.

d y n a m ic p r o p e r t ie s : A process executing a delay case action becomes t im e o u ta b le when it reaches the
point of execution where it may become delayed. It ceases to be t im e o u ta b le when it leaves th a t
point.

s t a t i c c o n d it io n s : The mode of the instance location m ust not have the re a d -o n ly p r o p e r ty . The
integer literal expression in priority m ust not deliver a negative value.

d y n a m ic c o n d it io n s : The D E L A YF A IL exception occurs if any event location has a mode w ith an e v e n t
le n g th a ttached which is equal to the number of processes already delayed on th a t event location.

T he lifetime of none of the event locations m ust end while the executing process is delayed on them .

The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied.

e x a m p le s :

14.26 D E L A Y C A S E
(opera tor-is-ready): / * some actions * /
(sw itch-is-c losed): D O F O R i IN IN T (1:100);

C O N T IN U E opera tor-is-ready;
/* em p ty the queue * /
O D ;

E S A C (1.1)

90 F ascicle X .6 - R ec . Z200

6.18 S E N D A C T IO N

6.18 .1 G e n e ra l

sy n ta x :
<send action> ::= (1)

<send signal action> (1-1)
| <send buffer action> (1-2)

s e m a n tic s : A send action in itia tes the transfer of synchronisation inform ation from a sending process. The
detailed semantics depend on whether the synchronisation object is a signal or a buffer.

6 .18 .2 S e n d s ig n a l a c t io n

sy n ta x :
<send signal action> ::= (1)

S E N D <signal nam e> [(<value> { , <value> }*)]
[T O <instance prim itive value>] [<priority>] f l . I j

se m a n tic s : A send signal action evaluates, in an unspecified and possibly mixed order, the list of values, if
present, and the instance prim itive value, if present.

The signal specified by signal nam e is composed for transm ission from the specified values and a
priority. The priority is the one specified, if any, otherwise 0 (lowest).

If the s ig n a l nam e has a p ro c e s s name attached, only processes with th a t name m ay receive the
signal; if an instance prim itive value is specified, only th a t process may receive the signal. Otherwise
any process may receive the signal.

If the signal has a non-em pty set of delayed processes attached, in which one or more may receive
the signal, one of these will be re-activated. If there are several such processes, one will be selected
in an im plem entation defined way. If there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a
member.

s ta t ic c o n d it io n s : The num ber of value occurrences m ust be equal to the number of modes of the signal
name. The class of each value m ust be c o m p a tib le with the corresponding mode of the signal name.
No value occurrence may be in t r a - r e g io n a l (see section 11.2.2). The integer literal expression in
priority m ust not deliver a negative value.

d y n a m ic c o n d itio n s : The assignment conditions of each value w ith respect to its corresponding mode of the
signal nam e apply.

The E M P T Y exception occurs if the instance prim itive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance prim itive value m ust not
have ended a t the point of the execution of the send signal action.

The SEND FAIL exception occurs if the signal name has a p ro c e s s name attached which is not the
nam e of the process indicated by the value delivered by the instance prim itive value.

exam p les:

15.78 S E N D ready T O received-user (1-1)
15.86 S E N D readout(count) T O user (1-1)

F ascicle X .6 — R ec. Z 200 91

6 .18 .3 S e n d b u ffe r a c t io n

s y n ta x :
<send buffer action> ::= (l)

S E N D < buffer location> (<value> J [<priority>] (1-1)

se m a n tic s : A send buffer action evaluates the buffer location and the value in any order.

If the buffer location has a non-em pty set of delayed processes attached, one of these will be re
activated. If there are several such processes, one will be selected in an im plem entation defined way.
If there are no such processes and the capacity of the buffer location is exceeded, the executing
process becomes delayed with a priority. Otherwise the value is stored w ith a priority. The priority
is the one specified, if any, otherwise 0 (lowest). The capacity of the buffer is exceeded if the buffer
location has a mode w ith a b u f fe r le n g th attached which is equal to the num ber of values already
stored in the buffer location.

If the executing process becomes delayed, it becomes a member of the set of delayed sending processes
a ttached to the buffer location. If a process becomes re-activated, it is removed from all sets of
delayed processes of which it was a member.

d y n a m ic p r o p e r t ie s : A process executing a send buffer action becomes t im e o u ta b le when it reaches the
point of execution where it may become delayed. It ceases to be t im e o u ta b le when it leaves th a t
point.

s ta t ic c o n d itio n s : The class of the value m ust be c o m p a tib le with the b u ffe r e le m e n t mode of the mode of
the buffer location. The value m ust not be in t r a - r e g io n a l (see section 11.2.2). The integer literal
expression in priority m ust not deliver a negative value.

d y n a m ic c o n d it io n s : The assignment conditions of the value w ith respect to the b u ffe r e le m e n t mode of
the mode of the buffer location apply; the possible exceptions occur before the process may become
delayed.

The lifetime of the buffer location m ust not end while the executing process is delayed on it.

e x a m p le s :

16.119 S E N D user->([ready, - > counter- buffer])k (1-1)

6.19 R E C E IV E C A S E A C T IO N

6.19 .1 G e n e ra l

s y n ta x :
< receive case action> ::= (l)

<receive signal case action> (1-1)
| <receive buffer case action> (1-2)

se m a n tic s : A receive case action receives synchronisation inform ation transm itted by a send action. The
detailed sem antics depend on the synchronisation object used, which is either a signal or a buffer.
Entering a receive case action does not necessarily result in a delaying of the executing process (see
chapter 11 for further details).

92 F ascicle X .6 — R ec . Z200

6 .1 9 .2 R ece iv e s ig n a l case a c tio n

sy n ta x :
<ieceive signal case action> (1)

R E C E IV E C A S E [S E T <instance location> ;]
{ <signal receive alternative> }+
[E L S E < a ction sta tem ent list>] E S A C (1-1)

<signal receive alternative> ::= (2)
(<signal name> [IN <defining occurrence list>]) : <action sta tem ent list> (2.1)

se m a n tic s : A receive signal case action evaluates the instance location , if present.

Then the executing process: (im m ediately) receives a signal or, if E L S E is specified, enters the
corresponding action sta tem ent list, otherwise becomes delayed. The executing process im m ediately
receives a signal if one of a signal nam e specified in a signal receive alternative is pending and may
be received by the process. If more than one signal may be received, one w ith the highest priority
will be selected in an im plem entation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes
attached to each of the specified signals. If the delayed process becomes re-activated by another
process executing a send signal action, it receives a signal.

If the executing process receives a signal, the corresponding action sta tem ent list is entered. Prior
to entering, if an instance location is specified, the instance value identifying the process th a t has
sent the received signal is stored in it. If the s ig n a l nam e of the received signal has a list of modes
attached, a list of v a lu e re c e iv e names is specified; the signal carries a list of values, and the v a lu e
re c e iv e names denote their corresponding value in7the entered action sta tem ent list.

s ta t ic p ro p e r t ie s : A defining occurrence in the defining occurrence list of a signal receive alternative defines
a v a lu e re c e iv e name. Its class is the M-value class, where M is the corresponding mode in the list
of modes attached to the signal nam e in front of it.

d y n a m ic p ro p e r t ie s : A process executing a receive signal case action becomes t im e o u ta b le when it reaches
the point of execution where it may become delayed. It ceases to be t im e o u ta b le when it leaves
th a t point.

s ta t ic c o n d itio n s : The mode of the instance location m ust not have the re a d -o n ly p r o p e r ty .

All signal nam e occurrences m ust be different.

The optional IN and the defining occurrence list in the signal receive alternative m ust be specified
if and only if the signal nam e has a non-em pty set of modes. The num ber of names in the defining
occurrence list m ust be equal to the num ber of modes of the signal name.

d y n a m ic c o n d itio n s : The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied.

F ascicle X .6 — R ec . Z200 93

e x a m p le s :

15.83 R E C E IV E C A S E
(advance): count + := 1;
(terminate):

S E N D readout (count) T O user;
E X IT work_loop;

E S A C (1.1)

6 .19 .3 R e c e iv e b u ffe r case a c tio n

sy n ta x :
<receive buffer case action> ::= (1)

R E C E IV E C A S E [S E T <instance location> ;]
{ < buffer receive alternative> }+
[E L S E < a ction sta tem ent list>]
E S A C (1.1)

< buffer receive aJternative> ::= (2)
(< buffer location> IN <defining occurrence>) : <action sta tem ent list> (2-1)

s e m a n tic s : A receive buffer case action evaluates, in an unspecified and possibly mixed order, the instance
location, if present, and all buffer locations specified in a buffer receive alternative.

Then the executing process: (im m ediately) receives a value or, if E L S E is specified, enters the
corresponding action statem ent list, otherwise becomes delayed. The executing process im m ediately
receives a value if one is stored in, or a sending process delayed on, one of the specified buffer
locations. If more than one value may be received, one with the highest priority will be selected in
an im plem entation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes
attached to each of the specified buffer locations. If the delayed process becomes re-activated by
another process executing a send buffer action, it receives a value.

If the executing process receives a value, the corresponding action sta tem en t list is entered. If several
buffer receive alternatives specify the same buffer location, the choice between them is not specified.
P rior to entering, if an instance location is specified, the instance value identifying the process th a t
has sent the received value is stored in it. The specified v a lu e re c e iv e nam e denotes the received
value in the entered action sta tem ent list.

Another process becomes re-activated if the executing process receives a value from a buffer location,
the attached set of delayed sending processes of which is not em pty. The re-activated process is one
w ith the highest priority attached, if the received value was stored in the buffer location, otherwise
the one sending the received value. In the former case, the value to be sent by the re-activated process
is stored in the buffer location (the capacity of which remains exceeded), and if more than one process
may be re-activated, one will be selected in an im plem entation defined way. The re-activated process
is removed from the set of delayed sending processes attached to the buffer location.

s ta t ic p r o p e r t ie s : A defining occurrence in a buffer receive alternative defines a v a lu e re c e iv e name. Its
class is the M-value class, where M is the b u f fe r e le m e n t mode of the mode of the buffer location
labelling the buffer receive alternative.

d y n a m ic p r o p e r t ie s : A process executing a receive buffer case action becomes t im e o u ta b le when it reaches
the point of execution where it may become delayed. It ceases to be t im e o u ta b le when it leaves
th a t point.

s ta t ic c o n d it io n s : The mode of the instance location m ust not have the r e a d -o n ly p r o p e r ty .

94 F ascicle X .6 — R ec. Z200

d y n a m ic c o n d itio n s : The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied.

The lifetime of none of the buffer locations m ust end while the executing process is delayed on them .

6.20 C H IL L B U IL T -IN R O U T IN E C A L L S

s y n ta x :
<C H ILL built-in routine call> ::= (1)

< CHILL simple built-in routine call> (1-1)
| <CHILL location built-in routine^call> (1-2)
| <CHILL value built-in routine call> (1-2)

p re d e f in e d n a m e s : The CHILL built-in routine names are predefined as b u i l t - in r o u t in e names (see section
6.7).

s e m a n tic s : A CHILL built-in routine call is either a CHILL sim ple built-in routine call, which delivers no
results (see section 6.20.1), a CHILL location built-in routine call, which delivers a location (see
section 6.20.2), or a CHILL value built-in routine call, which delivers a value (see section 6.20.3).

s ta t ic p r o p e r t ie s : A CHILL built-in routine call is a lo c a t io n built-in routine call if it is a CHILL location
built-in routine call; it is a v a lu e built-in routine call if it is a CHILL value built-in routine call.

6 .20 .1 C H IL L s im p le b u i l t - in r o u t in e calls

s y n ta x :
<C H ILL simple built-in routine call> (1)

<term inate built-in routine ca11> (1-1)
| < io simple built-in routine call> (1-2)
| < tim ing simple built-in routine call> (1-2)

s e m a n tic s : A CHILL simple built-in routine call is a built-in routine call which delivers neither a value nor a
location. The simple built-in routines for input ou tpu t are defined in C hapter 7. The simple built-in
routines for tim ing are defined in C hapter 9.

6 .20 .2 C H IL L lo c a tio n b u i l t - in r o u t in e cedis

s y n ta x :
<C H ILL location built-in routine ca11> ::= (1)

<io location built-in routine call> . ■ (T l)

se m a n tic s : A CHILL location built-in routine call is a built-in routine call th a t delivers a location. The
location built-in routines for input ou tpu t are defined in C hapter 7.

F ascicle X .6 — R ec . Z200 95

6 .2 0 .3 CH ILL value b u ilt-in ro u tin e calls

sy n ta x :
<C H ILL value built-in routine call> (l)

N U M (< discrete expression>) _ (1-1)
| PR E D (< discrete expression>) (1-2)
| SU CC (< discrete expression>) (1-3)
| A B S (< integer expression>) (1-4)
| C ARD (< powerset expression>) (1-5)
| M A X (< powerset expression>) . (1-6)
| M IN (< powerset expression>) (1-7)
| SIZE ({ <location> | <m ode argument> }) (1-8)
| UPPER (< upper lower argument>) (1.9J
| L O W E R (<upper lower argument>) (1-10)
| L E N G T H (<length argum ent>) (1-H)
\ <allocate built-in routine call> (1-12)
| < io value built-in routine call> (1-12)
| < tim e value built-in routine call> (1-14)

<m ode argument> ::= (2)
<m ode nam e> (2-1)

| < array m ode name> (<expression>) (2.2)
| <strins m ode name> (<integer expression>) ' (2-3)
| < variant structure m ode nam e> (< expression list>) (2-4)

< upper lower argument> ::= (3)
<array location> (3-1)

| <array exvression> (3-2)
| < array m ode name> (3-3)
| <string location> (3 - 4)

| <string expression> (3- 5)

| < string m ode name> (3- 6)

| < discrete location> (3- 7)

| < discrete expression> (3- 8)

| < discrete m ode name> (3-d)

<length argum ent> ::= (4)
<string location> (4.1)

| <string expression> (4-2)

N.B. If the upper lower argument is an (array, string, discrete) location , the syntactic am biguity is
resolved by interpreting upper lower argum ent as a location ra ther than an expression or prim itive
value. If the length argument is a string location, the syntactic am biguity is resolved by interpreting
length argument as a location rather than an expression.

sem a n tics: A CHILL value built-in routine call is a built-in routine call th a t delivers a value.

N U M delivers an integer value with the same internal representation as the value delivered by its
argum ent.

P R E D and SU C C deliver respectively the next lower and higher discrete value of their argum ent.

A B S delivers the absolute value of its argum ent.

C A R D , M A X and M IN are defined on powerset values. C A R D delivers the num ber of element
values in its argum ent.

96 F ascicle X .6 — R ec. Z200

M A X and M IN deliver respectively the greatest and smallest element value in their argum ent.

SIZE is defined on re fe ra b le locations and (possibly dynamic) modes. In the first case, it delivers
the num ber of addressable memory units occupied by th a t location; in the second case, the num ber
of addressable memory units th a t a re fe ra b le location of th a t mode will occupy. The m ode is sta tic
if the m ode argument is a m ode name, otherwise it is a dynam ically param eterised version of it, w ith
param eters as specified in the m ode argument. In the first case, the location will not be evaluated
a t run time.

UPPER and L O W E R are defined on (possibly dynamic):

• array, string and discrete locations, delivering the u p p e r b o u n d and lo w e r b o u n d of the
mode of the location,

• array and string expressions, delivering the u p p e r b o u n d and lo w e r b o u n d of the mode
of the value’s class,

• s t ro n g discrete expressions, delivering the u p p e r b o u n d and lo w e r b o u n d of the mode of
the value’s class,

• array, string and discrete m o d e names, delivering the u p p e r b o u n d and lo w e r b o u n d of
the mode.

L E N G T H delivers the a c tu a l l e n g th of its argum ent.

s t a t i c p r o p e r t ie s : The class of a N U M built-in routine call is the UVT-derived class. The built-in routine
call is c o n s ta n t if and only if the argum ent is either c o n s ta n t or l i te r a l .

The class of a P R E D or SU CC built-in routine call is the r e s u l t in g c lass of the argum ent. The
built-in routine call is c o n s ta n t (li te ra l) if and only if the argum ent is c o n s ta n t (lite ra l) .

The class of an A B S built-in routine call is the r e s u l t in g c lass of the argum ent. The built-in
routine call is c o n s ta n t (l i te ra l) if and only if the argum ent is c o n s ta n t (l i te ra l) .

The class of a C ARD built-in routine call is the IN T -derived class. The built-in routine call is
c o n s ta n t if and only if the argum ent is c o n s ta n t .

The class of a M A X or M IN built-in routine call is the M-value class, where M is the m e m b e r
mode of the mode of the powerset expression. The built-in routine call is c o n s ta n t if and only if
the argum ent is c o n s ta n t .

The class of a SIZE built-in routine call is the IN T -derived class. The built-in routine call is
c o n s ta n t if the mode of the argum ent is static.

The class of an U PPER and L O W E R built-in routine call is

• the M-value class if upper lower argument is an array location, array expression or array m ode
name, where M is the in d e x mode of array location, array expression or array m ode name,
respectively;

• the IN T -derived class if upper lower argument is a string location, string expression or
string m ode name;

• the M-value class if upper lower argument is a discrete location, discrete expression or
discrete m ode name, where M is the mode of discrete location, or discrete expression, or
discrete m ode nam e, respectively.

An UPPER or L O W E R built-in routine call is c o n s ta n t if the upper lower argum ent is an (array,
string or discrete) m ode name, if the mode of the array or string location is static , if the array or
string expression has a static class, or if upper lower argument is a discrete expression or a discrete
location.

The class of a L E N G T H built-in routine call is the INT-derived class.

s t a t i c c o n d itio n s : If the argum ent of a P RED or SU CC built-in routine call is c o n s ta n t , it m ust not deliver,
respectively, the smallest or greatest discrete value defined by the r o o t mode of the class of the
argum ent. The ro o t mode of the discrete expression argum ent of P R E D and SU C C m ust not be
an u n n u m b e r e d set mode.

If the argum ent of a M A X or M IN built-in routine call is c o n s ta n t , it m ust not deliver the em pty
powerset value.

F ascicle X .6 — R ec . Z 200 97

The location argum ent of SIZE m ust be re fe ra b le .

The discrete expression as an argum ent of UPPER and L O W E R m ust be s tro n g .

The following com patibility requirements hold for a m ode argument which is not a single mode
name:

• The class of the expression m ust be c o m p a tib le w ith the in d e x mode of the array m ode
nam e.

• The variant structure m ode name m ust be p a ra m e te r is a b le and there m ust be as many
expressions in the expression list as there are classes in its list of classes and the class of each
expression m ust be c o m p a tib le w ith the corresponding class in the list of classes.

d y n a m ic c o n d it io n s : P R E D and SU CC cause the O V E R F L O W exception if they are applied to the smallest
or greatest discrete value defined by the r o o t mode of the class of the argum ent.

N U M and C A R D cause the O V E R F L O W exception if the resulting value is outside the set of values
defined by IN T .

M A X and M IN cause the E M P T Y exception if they are applied to em pty powerset values.

A B S causes the O V E R F L O W exception if the resulting value is outside the bounds defined by the
r o o t mode of the class of the argum ent.

The R A N G E F A IL exception occurs if in the m ode argument:

• the expression delivers a value which is outside the set of values defined by the in d e x mode
of the array m ode nam e ;

• the integer expression delivers a negative value or a value which is greater th an the s t r in g
le n g th of the string m ode name;

• any expression in the expression list for which the corresponding class in the list of classes of
the variant structure m ode name is an M-value class (i.e. is s tro n g) delivers a value which
is outside the set of values defined by M.

e x a m p le s :
9.12 M IN (sieve) (1.7)
11.47 P R E D (c o l-1) (1.2)
11.47 SU C C (c o l-1) (1.3)

6 .2 0 .4 D y n a m ic s to r a g e h a n d l in g b u i l t - in r o u t in e s

s y n ta x :
< allocate built-in routine call> (l)

G E T S T A C K (<m ode argument> [, < va lue>]) (T l)
j A L L O C A T E (<m ode argument> [, < value>]) (1-2)

< term inate built-in routine call> ::= (2)
T E R M IN A T E (<reference prim itive value>) (2-1)

s e m a n tic s : G E T S T A C K and A L L O C A T E create a location of the specified mode and deliver a reference
value for the created location. G E T ST A C K creates this location on the stack (see section 10.9). A
location whose mode is th a t of the m ode argum ent is created and a value referring to it is delivered.
The created location is initialised with the value of value, if present; otherwise w ith the u n d e f in e d
value (see section 4.1.2).

T E R M IN A T E ends the lifetime of the location referred to by the value delivered by reference prim i
tive value. An im plem entation might as a consequence release the storage occupied by this location.

98 F ascicle X .6 - R ec . Z200

s ta t ic p r o p e r t ie s : The class of a G E T S T A C K or A L L O C A T E built-in routine call is the M-reference class,
where M is the mode of m ode argument. M is either the m ode name or a p a r a m e te r i s e d mode
constructed as:

&<array m ode nam e> (<expression>) or

&<strine m ode nam e> (< integer expression>) or

&< variant structure m ode nam e> (< expression list>),

respectively.

A G E T S T A C K or A L L O C A T E built-in routine call is i n t r a - re g io n a l if it is surrounded by a region,
otherwise it is e x tra - re g io n a l .

s ta t ic c o n d it io n s : The class of the value, if present, in the G E T ST A C K and A L L O C A T E built-in routine
call m ust be c o m p a tib le w ith the mode of m ode argument; this check is dynam ic in case the mode
of m ode argum ent is a dynam ic mode.

If the first argum ent of G E T S T A C K or A L L O C A T E has the re a d -o n ly p r o p e r ty , the second
argum ent m ust be present.

The value, if present, in the G E T S T A C K and A L L O C A T E built-in routine call, m ust be re g io n a lly
safe for the created location.

d y n a m ic p r o p e r t ie s : A reference value is an a l lo c a te d reference value if and only if it is returned by an
A L L O C A T E built-in routine call.

d y n a m ic c o n d itio n s : G E T S T A C K causes the SPACEFAIL exception if storage requirem ents cannot be
satisfied.

A L L O C A T E causes the A LLO C A T E F A IL exception if storage requirements cannot be satisfied.

For G E T S T A C K and A L L O C A T E the assignment conditions of the value delivered by value w ith
respect to the mode of m ode argum ent apply.

T E R M IN A T E causes the E M P T Y exception if the reference prim itive value delivers the value
NULL.

The reference prim itive value m ust deliver an a l lo c a te d reference value. The lifetim e of the refer
enced location m ust not have ended.

F ascicle X .6 — R ec . Z200 99

7 INPUT AND OUTPUT

7.1 I / O R E F E R E N C E M O D E L

A model is used for the description of the in p u t/o u tp u t facilities in an im plem entation independent way; it
distinguishes three states for a given association location: a free state, a file handling sta te and a d a ta transfer
state.

The diagram shows the three sta tes and the possible transitions between the states.

A SSO C IA T E

C O N N E C T

D ISSO C IA TE

The association location contains no value.
No relation to an outside world object.

The association location contains an association.
O perations like create and delete a file,
or change its properties.

D ISC O N N E C T

An access location is connected to the association
location. Transfer da ta to /from a file:
read and write operations.

The model assumes th a t objects, in im plem entations often referred to as datasets, files or devices, exist in the
outside world, i.e. the external environm ent of a CHILL program . Such an outside world object is called a file
in the model. A file can be a physical device, a com m unication line or ju s t a file in a file m anagem ent system;
in general, a file is an object th a t can produce a n d /o r consume data.

M anipulating a file in CHILL requires an association; an association is created by the associate operation and it
identifies a file. An association has a ttribu tes; these a ttribu tes describe the properties of a file th a t is or could
be attached to the association.

In the free state, there is no in teraction or relation between the CHILL program and outside world objects. The
associate operation changes the sta te of the model from the free state into the file handling state. This operation
takes as one argum ent an association location and an im plem entation defined denotation for an outside world
object for which an association m ust be created; additional argum ents may be used to indicate the kind of
association for the object and the in itia l values for the attribu tes of the association. A particular association
also implies an (im plem entation dependent) set of operations th a t may be applied on the file th a t is attached
to th a t association.

In the file handling state, it is possible to m anipulate a file and its properties via an association, provided th a t
the association enables the particu lar operation; for operations th a t change the properties of a file, an exclusive
association for the file will be necessary in general.

T he model assumes associations in general are exclusive, i.e. only one association exists a t the same tim e for
a given outside world object. However, im plem entations may allow the creation of more associations for the
same object, provided th a t the object can be shared among different users (programs) an d /o r among different
associations within the same program . All operations in the file handling sta te take an association as an
argum ent.

The dissociate operation is used to end an association for an outside world object; this operation causes transition
from the file handling sta te back to the free state.

100 Fascicle X .6 — R ec . Z200

Transferring da ta to or from a file is possible only in the d a ta transfer state; transfer operations require an
access location to be connected to an association for th a t file. The connect operation connects an access
location to an association and changes the sta te of the model into the d a ta transfer state. The operation takes
an association location and an access location as arguments; the association location contains an association for
the file to, or from, which d a ta can be transferred via the access location. A dditional argum ents of the connect
operation denote for which type of transfer operations the access location m ust be connected, and to which
record the file m ust be positioned. At m ost one access location can be connected to an association location at
any one time.

The disconnect operation takes an access location as argum ent and disconnects it from the association it is
connected to; it changes the s ta te of the model back to the file handling state.

In the data transfer state, an access location m ust be used as an argum ent of a transfer operation; there are
two transfer operations provided, namely, a read operation to transfer d a ta from a file to the program and a
w rite operation to transfer d a ta from the program to a file. The transfer operations use the record mode of the
access location to transform CHILL values into records of the file, and vice versa.

A file is viewed in the model as an array of values; each element of this array relates to a record of the file.
The element mode of this array is determ ined by the connect operation to be the record mode of the access
location being connected. An index value is assigned to each record of the file; this value uniquely identifies
each record of the file. In the description of the connect and transfer operations, three special index values will
be used, namely, a b a se index, a c u r r e n t index and a t r a n s f e r index. The b a s e index is set by the connect
operation and remains unchanged until a subsequent connect operation; it is used to calculate the t r a n s f e r
index in transfer operations and the c u r r e n t index in a connect operation. The t r a n s f e r index denotes the
position in the file where a transfer will take place; the c u r r e n t index denotes the record to which the file
currently is positioned.

7.2 A S S O C IA T IO N V A L U E S

7.2 .1 G e n e ra l

An association value reflects the properties of a file th a t is or could be a ttached to it. A particular association
value also implies an (im plem entation dependent) set of operations on the file th a t is possibly attached to it.

Association values have no denotation bu t are contained in locations of association mode; there exists no
expression denoting a value of association mode. Association values can only be m anipulated by built-in
routines th a t take an association location as param eter.

7 .2 .2 A t t r ib u te s o f a s s o c ia t io n v a lu es

An association value has attribu tes; the a ttribu tes describe the properties of the association and the file th a t
may or could be attached to it.

The following a ttribu tes are language defined:

• e x is tin g : indicating th a t a (possibly empty) file is a ttached to the association;

• re a d a b le : indicating th a t read operations are possible for the file when it is attached to the association;

• w r ite a b le : indicating th a t write operations are possible for the file when it is a ttached to the association;

• in d e x a b le : indicating th a t the file, when it is attached to the association, allows for random access to
its records;

• seq u en c ib le : indicating th a t the file, when it is a ttached to the association, allows for sequential access
to its records;

• v a riab le : indicating th a t the size of the records of the file, when it is attached to the association, may
vary w ithin the file.

These a ttribu tes have a boolean value; the a ttribu tes are initialized when the association is created and may be
updated as a consequence of particu lar operations on the association. This list comprises the language defined
attribu tes only; im plem entations may add a ttribu tes according to their own needs.

F ascicle X .6 — R ec . Z200 101

7.3 A C C E S S V A L U E S

7 .3 .1 G e n e ra l

Access values are contained in locations of access mode. An access location is necessary to transfer d a ta from
or to a file in the outside world.

Access values have no denotation but are contained in locations of access mode; there exists no expression
denoting a value of access mode. Access values can only be m anipulated by built-in routines th a t take an access
location as param eter.

7 .3 .2 A t t r i b u t e s o f access v a lu es

Access values have attribu tes th a t describe their dynam ic properties, the semantics of transfer operations, and
the conditions under which exceptions can occur.

CHILL defines the following attributes:

• u sa g e : indicating for which transfer operation(s) the access location is connected to an association; the
a ttr ib u te is set by the connect operation.

• o u to ffile : indicating whether or not the t r a n s f e r index calculated by the last read operation was in the
file; the a ttrib u te is initialized to FALSE by the connect operation and is set by every read operation.

7 .4 B U IL T -IN R O U T IN E S F O R I N P U T O U T P U T

7.4 .1 G en era l

Language defined built-in routines are defined for operations on association locations and access locations, and
for inspecting and changing the a ttribu tes of their values.

The built-in routines will be described in the following sections,

syn tax :
< io value built-in routine call> ::= (1)

<association a ttr built-in routine call> (1-1)
| < isassociated built-in routine ca11> (1-2)
| <access a ttr built-in routine ca11> (1-3)
| <readrecord built-in routine call> (1-4)
| < gettext built-in routine call> (1.5)

<io sim ple built-in routine call> ::= (2)
<dissociate built-in routine call> (2.1)

| < modification built-in routine ca11 > (2-2)
| < connect built-in routine call> (2.3)
| <disconnect built-in routine ca11> (2-4)
| <writerecord built-in routine call> (2-5)
| < tex t built-in routine ca11> (2.6)
| < settext built-in routine call> (2-7)

<io location built-in routine ca11> ::= (3)
<associate built-in routine call> (3-1)

s ta t ic co n d itio n s: A built-in routine param eter in an io built-in routine th a t is an association, access or text
location m ust be referab le .

102 F ascicle X .6 - R ec. Z200

7 .4 .2 A sso c ia tin g an o u ts id e w orld o b je c t

sy n ta x :
<associate built-in routine call> ::= (1)

A SSO C IA T E (< association location> [, < associate param eter list>]) (1-1)

<isassociated built-in routine call> ::= (2)
ISA SSO C IA TE D (<association location>) (2.1)

<associate parameter list> ::= (3)
< associate param eter> { , < associate param eter> }* (2-1)

<associate parameter> ::= (4)
<location> (4.1)

| <value> (4.2)

se m a n tic s : A SSO C IA T E creates an association to an outside world object. It initializes the association
location with the created association. It initializes the a ttribu tes of the created association. The
association location is also returned as a result of the call. The particu lar association th a t is created
is determined by the locations a n d /o r values occurring in the associate param eter list; the modes
(classes) and the semantics of these locations (values) are im plem entation defined.

ISA SSO C IA TE D returns T R U E if association location contains an association and F A LSE o ther
wise.

s ta t ic p ro p e r t ie s : The class of an ISA SSO C IA T E D built-in routine call is the BOOL-derived class. The
mode of an A SSO C IA T E built-in routine call is the mode of the association location.

The re g io n a lity of an A SSO C IA T IO N built-in routine call is th a t of the association location.

s ta t ic c o n d itio n s : The mode and the class of each associate param eter is im plem entation defined.

d y n a m ic c o n d itio n s : A SSO C IA T E causes the A SSO C IA TE F A IL exception if the association location already
contains an association or if the association cannot be created due to im plem entation defined reasons.

e x a m p le s :
20.21 A SSO C IA T E (file..association,”D SK :R E C O R D S.D A T ”); (1.1)

7.4 .3 D is so c ia tin g a n o u ts id e w o rld o b je c t

s y n ta x :
<dissociate built-in routine call> (1)

D ISSO C IATE (< association location>) (1-1)

s e m a n tic s : D ISSO C IATE term inates an association to an outside world object. An access location th a t is
still connected to the association contained in an association location is disconnected before the
association is term inated.

d y n a m ic c o n d itio n s : D ISSO C IA TE causes the N O T A SSO C IA T E D exception if association location does
not contain an association.

e x a m p le s :
22.38 D ISSO C IATE (association); (1.1)

F ascicle X .6 — R ec . Z200 103

7 .4 .4 A ccess in g a sso c ia tio n a ttr ib u te s

syn tax :
<association a ttr built-in routine call> ::= (1)

E X IST IN G (< association location>) (1-1)
| R E A D A B L E (< association location>) (1-2)
| W R IT E A B L E (< association location>) (1-2)
| IN D E X A B L E (< association location>) (1-4)
| SEQ U E N C IB LE (< association location>) (1-5)
| V A R IA B L E (< association location>) (1-6)

sem a n tics: E X IST IN G , R E A D A B L E , W R IT E A B L E , IN D E X A B L E , SE Q U E N C IB LE and V A R IA B L E re
tu rn respectively the value of the ex istin g -, read ab le-, w ritea b le-, in d ex a b le -, seq u en cib le-
and v a r ia b le -a ttr ib u te of the association contained in association location.

s ta t ic p ro p ertie s: The class of an association a ttr built-in routine call is the BOOL-derived class.

d y n a m ic co n d itio n s: The association attr built-in routine call causes the N O T A SSO C IA T E D exception if
association location does not contain an association.

7.4 .5 M o d ify in g a sso c ia tio n a ttr ib u te s

syn tax :
< modification built-in routine call> ::= (1)

C R E A T E (< association location>) (1-1)
| D E L E T E (<association location>) (1-2)
| M O D IF Y (< association location> [, < m o dify param eter list>]) (1-3)

< m od ify param eter l is t> ::= (2)
< m odify param eter> { , <m odify param eter> }* (2-1)

<m o d ify param eter> ::= (3)
<value> (3.1)

| <location> (3-2)

sem an tics: C R E A T E creates an em pty file and attaches it to the association denoted by the association loca
tion. The e x is tin g -a ttr ib u te of the indicated association is set to T R U E if the operation succeeds.

D E L E T E detaches a file from the association denoted by association location and deletes the file.
The e x is tin g -a ttr ib u te of the indicated association is set to FALSE if the operation succeeds.

M O D IF Y provides the m eans of changing properties of an outside world object for which an asso
ciation exists and th a t is denoted by association location; the locations an d /o r values th a t occur in
m o d ify param eter list describe how the properties m ust be modified. The modes (classes) and the
sem antics of these locations (values) are im plem entation defined.

d y n a m ic co n d itio n s: C R E A T E , D E L E T E and M O D IF Y cause the N O T A SSO C IA T E D exception if the
association location does not contain an association.

C R E A T E causes the C R E A TE F A IL exception if one of the following conditions occurs:

• the e x is tin g -a ttr ib u te of the association is TRU E;

• the creation of the file fails (im plem entation defined).

104 F ascicle X .6 — R ec . Z200

D E L E T E causes the D E LE TE F A IL exception if one of the following conditions occurs:

• the e x is tin g -a ttr ib u te of the association is FALSE;

• the deletion of the file fails (im plem entation defined).

M O D IF Y causes the M O D IFYFAIL exception if the properties, defined by m o d ify param eter list
cannot or may not be modified; the conditions under which this exception can occur are im plem en
ta tion defined.

e x a m p le s :
21.39 C R E A T E (outassoc); (1-1)
21.69 D E L E T E (curassoc); (1-2)

7 .4 .6 C o n n e c t in g a n access lo c a tio n

s y n ta x :
<connect built-in routine call> ::= (1)

C O N N E C T (< transfer location> , <association location> ,
< usage expression> [, < where expression> [, <index expression>]]) (l - l)

< transfer location> ::= { (2)
< access location> (2-1)

| < tex t location> (2-2)

< usage expression> ::= (3)
< expressi on > (3-1)

< where expression> ::= (4)
< expressi on> (4-1)

<index expression> ::= (5)
< expressi on> (3-1)

p re d e f in e d n a m e s : To control the connect operation, performed by the built-in routine C O N N E C T, two
s y n m o d e names are predefined in the language, namely, U SAG E and W H ERE; their defining
modes are S E T (R E A D O N L Y ,W R IT E O N L Y ,R E A D W R IT E) and S E T (F IR S T ,S A M E ,L A S T),
respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location m ust
be connected to an association, while values of the mode W H E R E indicate how the file th a t is
a ttached to an association m ust be positioned by the connect operation.

s e m a n tic s : C O N N E C T connects the access location denoted by transfer location to the association th a t is
contained in association location; there m ust be a file a ttached to the denoted association; i.e. the
association’s e x is tin g -a ttr ib u te m ust be TRU E.

The access location denoted by transfer location is the location itself if it is an access location;
otherwise the access sub-location of the text location.

The value th a t is delivered by usage expression indicates for which type of transfer operations the
access location m ust be connected to the file. If the expression delivers R E A D O N L Y , the connection
is prepared for read operations only; if it delivers W R IT E O N L Y , the connection is set up for w rite
operations only; if it delivers R E A D W R IT E , the connection is prepared for bo th read and write
operations.

The in d e x a b le -a ttr ib u te of the denoted association m ust be T R U E if the access location has an
in d e x mode, while the se q u e n c ib le -a ttr ib u te m ust be T R U E if the location has no in d e x mode.

F ascicle X .6 — R ec . Z200 105

C O N N E C T (re)positions the file th a t is attached to the denoted association; i.e. it establishes a
(new) b a se index and cu rren t index in the file. The (new) b a se index depends upon the value
th a t is delivered by where expression:

• if where expression delivers F IR S T or is not specified, the b ase index is set to 0; i.e. the file
is positioned before the first record;

• if where expression delivers SA M E , the b ase index is set to the cu rren t index in the file;
i.e. the file position is not changed;

• if where expression delivers L A S T , the b a se index is set to N, where N denotes the num ber
of records in the file; i.e. the file is positioned after the last record.

After a b a se index is set, a cu rren t index will be established by C O N N E C T. This cu rren t index
depends upon the optional specification of an index expression:

• if no index expression is specified, the current index is set to the (new) b a se index;

• if an index expression is specified, the current index is set to

b a se index + N U M (v) - N U M (I)

where I denotes the low er b o u n d of the access location’s in d e x mode and v denotes the
value th a t is delivered by index expression.

If the access location is being connected for sequential write operations (i.e. the access location has
no in d e x mode and the usage expression delivers W R IT E O N L Y), then those records in the file th a t
have an index greater than the (new) cu rren t index will be removed from the file; i.e. the file may
be truncated or emptied by C O N N E C T.

An access location th a t has no index mode cannot be connected to an association for read and write
operations a t the same time.

Any access location to which the denoted association may be connected will be disconnected im plic
itly before the association is connected to the location th a t is denoted by transfer location.

C O N N E C T initializes the o u to ffile -a ttr ib u te of the access location to FALSE and sets the u sag e -
a ttrib u te according to the value th a t is delivered by usage expression.

s ta t ic p ro p ertie s: The mode attached to a transfer location is the mode of the access location or the access
mode of the tex t location, respectively.

s ta t ic co n d itio n s: The mode of transfer location m ust have an in d e x mode if an index expression is specified;
the class of the value delivered by index expression m ust be co m p a tib le w ith th a t in d e x mode.
The transfer location m ust have the same reg io n a lity as the association location.

The class of the value delivered by usage expression m ust be co m p a tib le w ith the USAGE-derived
class.

The class of the value delivered by where expression m ust be co m p a tib le w ith the W H ERE-derived
class.

d y n a m ic co n d itio n s: C O N N E C T causes the N O TA SSO C IA TE D exception if association location does not
contain an association.

C O N N E C T causes the C O N N E C TF A IL exception if one of the following conditions occurs:

• the association’s e x is tin g -a ttr ib u te is FALSE;

• the association’s re a d a b le -a ttr ib u te is FALSE and usage expression delivers R E A D O N L Y
or R E A D W R IT E ;

• the association’s w rite a b le -a ttr ib u te is FALSE and usage expression delivers W R IT E O N L Y
or R E A D W R IT E ;

• the association’s in d e x a b le -a ttr ib u te is FALSE and access location has an in d e x mode;

• the association’s se q u e n c ib le -a ttr ib u te is FALSE and access location has no in d e x mode;

• where expression delivers SA M E , while the association contained in association location is
not connected to an access location;

• the association’s v a r ia b le -a ttr ib u te is FALSE and the access location has a d y n a m ic record
mode, while usage expression delivers W R IT E O N L Y or R E A D W R IT E ;

106 F ascic le X .6 — R ec . Z 200

• the association’s v a ria b le -a ttr ib u te is TR U E and the access location has a s ta t i c r e c o r d
mode, while usage expression delivers R E A D O N L Y or R E A D W R IT E ;

• the access location has no in d e x mode, while usage expression delivers R E A D W R IT E ;

• the association contained in association location cannot be connected to the access location,
due to im plem entation defined conditions.

C O N N E C T causes the R A N G E F A IL exception if the in d e x mode of access location is a range mode
and the index expression delivers a value which lies outside the bounds of th a t range mode.

The E M P T Y exception occurs if the access re fe re n c e of the tex t location delivers the value NULL.

e x a m p le s :
20.22 C O N N E C T (record-file, file-association, R E A D W R IT E); (1.1)
20.22 R E A D W R IT E (3.1)

7 .4 .7 D is c o n n e c tin g a n access lo c a tio n

s y n ta x :
<disconnect built-in routine call> ::= (1)

D ISC O N N E C T (< transfer location>) (1-1)

se m a n tic s : D ISC O N N E C T disconnects the access location denoted by transfer location from the association
it is connected to.

d y n a m ic c o n d it io n s : D ISC O N N E C T causes the N O TC O N N E C TE D exception if the access location denoted
by transfer location is not connected to an association.

7 .4 .8 A cc e ss in g a t t r i b u t e s o f access lo c a tio n s

sy n ta x :
< a ccess a ttr built-in routine call> ::= (1)

G E T A SSO C IA T IO N (<transfer location>) (1.1)
| G E T U SA G E (<transfer location>) (1-2)
| O U TO FFILE (< transfer location>) (1-3)

s e m a n tic s : G E T A SSO C IA T IO N returns a reference value to the association location th a t the access location
denoted by transfer location is connected to; it returns NULL if the access location is not connected
to an association.

G E T U SA G E returns the value of the u sage-a ttrib u te ; i.e. R E A D O N L Y (W R IT E O N L Y) if the
access location is connected only for read (write) operations, or R E A D W R IT E if the access location
is connected for bo th read and w rite operations.

O U TO FFILE returns the value of the o u to ffile -a ttrib u te of access location; i.e. T R U E if the last
read operation calculated a t r a n s f e r index th a t was not in the file, FALSE otherwise.

s ta t ic p r o p e r t ie s : The class of a G E T A SSO C IA T IO N built-in routine call is the A SS O C IA T IO N -reference
class. The re g io n a l i ty of an G E T A SSO C IA T IO N built-in routine call is th a t of the transfer location.

The class of an O U TO FFILE built-in routine call is the jBOOL-derived class.

The class of a G E T U SA G E built-in routine call is the USAGE-derived class.

Fascicle X .6 — R ec . Z200 107

d y n a m ic c o n d it io n s : G E T U SA G E and O U TO FFILE cause the N O TC O N N E C TE D exception if the access
location is not connected to an association.

e x a m p le s :
21.47 O U TO FFILE (infiles (FALSE)) (1.3)

7 .4 .9 D a ta t r a n s f e r o p e ra t io n s

s y n ta x :
<readrecord built-in routine call> ::= (1)

R E A D R E C O R D (< access location> [, <index expression>]
[, <store location> }) (1-1)

<writerecord built-in routine call> ::= (2)
W R IT E R E C O R D (< access location> [, <index expression>] ,
< write expression>) (2-1)

<store location> (3)
< static m ode location> (3-1)

< write expression> ::= (4)
< expressi on> (4-1)

N.B. If the access location has an in d e x mode, the syntactic am biguity is resolved by interpreting
the second argum ent as an index expression ra ther than a store location.

se m a n tic s : For the transfer of d a ta to or from a file, the built-in routines W R IT E R E C O R D and R E A D
R E C O R D are defined. The access location m ust have a r e c o rd mode, and it must be connected
to an association in order to transfer d a ta to or from the file th a t is attached to th a t association.
The transfer direction m ust not be in contradiction w ith the value of the access location’s u sag e -
a ttribu te .

Before a transfer takes place, the t r a n s f e r index, i.e. the position in the file of the record to be
transferred, is calculated. If the access location has no in d e x mode, the t r a n s f e r index is the
c u r r e n t index increm ented by 1; if the access location has an in d e x mode, the t r a n s f e r index is
calculated as follows:

t r a n s f e r index := b a s e index + N U M (a) — N U M (I) + 1

where I is the lo w e r b o u n d of the mode of the access location’s in d e x mode and v denotes the
value th a t is delivered by index expression. If the transfer of the record with the calculated t r a n s f e r
index has been performed successfully, the c u r r e n t index becomes the t r a n s f e r index.

T h e r e a d o p e ra t io n :

R E A D R E C O R D transfers d a ta from a file in the outside world to the CHILL program.

If the calculated t r a n s f e r index is not in the file, the o u to ffile -a ttrib u te is set to T R U E ; otherwise
the file is positioned, the record is read, and the o u to ffile -a ttrib u te is set to FALSE.

The record th a t is read m ust not deliver an u n d e f in e d value; the effect of the read operation is
im plem entation defined if the record being read from the file is not a legal value according to the
r e c o r d mode of the access location.

If a store location is specified, then the value of the record th a t was read is assigned to this location.
If no store location is specified, the value will be assigned to an im plicitly created location; the
lifetime of this location ends when the access location is disconnected or reconnected. W hether the
referenced location is created only once by the connect operation, or every tim e a read operation is
performed, is not defined.

R E A D R E C O R D returns in bo th cases a reference value th a t refers to the (possibly dynam ic mode)
location to which the value was assigned.

If the o u to ffile -a ttr ib u te is set to T R U E as a result of the built-in routine call, then the NU LL
value is returned as a result of the call.

108 F ascicle X .6 — R ec . Z200

W R IT E R E C O R D transfers d a ta from the CHILL program to a file in the outside world. The file is
positioned to the record with the calculated index and the record is w ritten.

After the record has been w ritten successfully, the number of records is set to the t r a n s f e r index,
if the la tte r is greater than the actual num ber of records.

The record w ritten by W R IT E R E C O R D is the value delivered by write expression.

s ta t i c p r o p e r t ie s : The class of the value th a t was read by R E A D R E C O R D is the M-value class, where
M is the r e c o rd mode of the access location, if it has a s ta t ic r e c o rd mode, or a dynamically
param eterised version of it, if the location has a d y n a m ic re c o rd mode; the param eters of such a
dynamically param eterised record mode are:

• the dynam ic s t r in g le n g th of the string value th a t was read in case of a string mode;

• the dynamic u p p e r b o u n d of the array value th a t was read in case of an array mode;

• the list of (tag) values associated w ith the mode of the structure value th a t was read in case
of a v a r ia n t structure.

The class of the R E A D R E C O R D built-in routine call is the M-reference class if store location is not
specified, otherwise it is the S-reference class, where S is the mode of the store location.

The re g io n a li ty of a R E A D R E C O R D built-in routine call is th a t of the store location if it is
specified, otherwise it is th a t of the access location.

s ta t ic c o n d itio n s : The access location m ust have a r e c o rd mode.

An index expression may not be specified if access location has no in d e x mode and m ust be specified
if access location has an in d e x mode; the class of the value delivered by index expression m ust be
c o m p a tib le with th a t in d e x mode.

The store location m ust be re fe ra b le .

The mode of store location m ust not have the r e a d -o n ly p ro p e r ty .

If store location is specified, then the mode of store location must be e q u iv a le n t with the r e c o rd
mode of the access location, if it has a s ta t ic r e c o rd mode or a v a ry in g string r e c o r d mode, other
wise a dynam ically param eterised version of it; the param eters of such a dynam ically param eterised
mode are those of the value th a t has been read.

The class of the value delivered by write expression m ust be c o m p a tib le w ith the r e c o r d mode of
the access location, if it has a s ta t ic r e c o rd mode or a v a ry in g string r e c o rd mode; otherwise
there should exist a dynam ically param eterised version of re c o rd mode th a t is c o m p a tib le with
the class of write expression. The assignm ent conditions of the value of write expression w ith respect
to the above m entioned mode apply.

d y n a m ic c o n d itio n s : The R A N G E F A IL or TAG FAIL exceptions occur if the dynam ic part of the above
m entioned com patibility check fails.

The R E A D R E C O R D and W R IT E R E C O R D built-in routine call cause the N O TC O N N E C TE D
exception if the access location is not connected to an association.

The R E A D R E C O R D or W R IT E R E C O R D built-in routine call cause the R A N G E F A IL exception
if the in d e x mode of access location is a range mode and the index expression delivers a value th a t
lies-outside the bounds of th a t range mode.

The R E A D R E C O R D built-in routine call causes the REA D F A IL exception if one of the following
conditions occurs:

• the value of the u sa g e -a ttr ib u te is W R IT E O N L Y ;

• the value of the o u to ffile -a ttr ib u te is TR U E and the access location is connected for sequen
tial read operations;

• the reading of the record w ith the calculated index fails, due to outside world conditions.

T h e w r ite o p era tion :

F ascicle X .6 — R ec . Z200 109

The W R IT E R E C O R D built-in routine call causes the W R IT E F A IL exception if one of the following
conditions occurs:

• the value of the u sa g e -a ttr ib u te is R E A D O N L Y ;

• the w riting of the record w ith the calculated index fails, due to outside world conditions.

If the R A N G E F A IL exception or the N O T C O N N E C T E D exception occur then it occurs before the
value of any a ttrib u te is changed and before the file is positioned.

e x a m p le s :
20.24 R E A D R E C O R D (record-file, curindex, records buffer); (1-1)
22.25 R E A D R E C O R D (fleaccess); (1.1)
20.32 W R IT E R E C O R D (record -fie , curindex, record-buffer); (2-1)
21.61 W R IT E R E C O R D (ou tfle , buffers(f a g)); (2-1)
20.24 record- buffer (2-1)
21.61 buffers(f a g) (4-1)

7.5 T E X T I N P U T O U T P U T

7.5 .1 G e n e ra l

Text ou tpu t operations allow the representation of CHILL values in a hum an-readable form; tex t inpu t opera
tions perform the opposite transform ation.

Text transfer operations are defined on top of the basic CHILL in p u t/o u tp u t model and operate on files th a t
m ay be accessed either sequentially or random ly and whose records may have a fixed or variable length.

The model assumes th a t every record has a (possibly em pty) positioning inform ation attached, in im plem enta
tions often referred to as carriage control or control characters.

M anipulating a text file in CHILL requires an association; transferring d a ta to or from a tex t file requires a
t e x t location to be connected to an association for th a t file.

Text transfer operations can be applied to CHILL values th a t may become records of some tex t file, as well as
to CHILL locations th a t are not necessarily related to any i /o activity of the program .

The possibility to recover from a piece of text the same CHILL values th a t originated it cannot be guaranteed
in general, bu t rather it depends on the specific representation th a t has been used.

Text values are contained in locations of tex t mode. A tex t location is necessary to transfer d a ta in hum an-
readable form.

Text values have no denotation but are contained in locations of text mode; there exists no expression denoting
a value of text mode. Text values can only be m anipulated by built-in routines th a t take a text location as
param eter.

7 .5 .2 A t t r ib u te s o f t e x t v a lu es

Text values have a ttribu tes th a t describe their dynam ic properties. The following a ttrib u tes are defined:

• a c tu a l in d e x : indicating the next character position of the te x t r e c o rd to be read or w ritten. It has
a mode which is IN T (0:L), where L is the t e x t l e n g th of the value’s mode. It is initialised to 0 when
a text location is created.

• t e x t r e c o rd re fe re n c e : indicating a reference value to the t e x t r e c o r d sub-location of the tex t location.
It has a mode which is R E F M , where M is the t e x t r e c o rd mode of the value’s mode.

• access re fe re n c e : indicating a reference value to the access sub-location of the text location. It has a
mode which is R E F M , where M is the access mode of the value’s mode.

110 F ascicle X .6 — R ec . Z200

7 .5 .3 T e x t t r a n s f e r o p e ra t io n s

s y n ta x :
< tex t built-in routine call> ::= (1)

R E A D T E X T (< tex t io argument list>) (1.1)
| W R IT E T E X T (< tex t io argument list>) (1.2)

< tex t io argument list> ::= (2)
< tex t argum ent> [, <index expression>] ,
<form at argument> [, <io list>] (2.1)

< tex t argument> ::= (3)
< tex t location> (3.1)

| <character strine location> (3.2)
| < character strine expression> (3.3J

< form at argum ent> ::= (4)
< character strine exyression> (4-1)

<io list> ::= (5)
<io list element> { , < io list element> }* (5.1)

<io list element> ::= (6)
< value argum ent> (6.1)

| <location argument> (6.2)

<location argum ent> ::= (7)
< discrete location> (7.1)

| <string location> (7.2)

<value argum ent> ::= (8)
< discrete expressi on > (6-1)

| <string expression> (8.2)

N.B. If the io list element is a location, the syntactic am biguity is resolved by in terpreting the io list
element as a location argument rather than a value argument.

se m a n tic s : R E A D T E X T applies the conversion, editing and i/o control functions contained in the form at
argument to the t e x t r e c o rd denoted by the tex t argum ent; th is (possibly) produces a list of
values th a t are assigned to the elements of the io list in the sequence in which they are specified.
W R IT E T E X T performs the opposite operation. No im plicit i /o operations are performed.

If the text argument is a character string location or a character strine expression , then the conver
sion and editing functions are applied w ithout any relation w ith the external world. In this case the
a c tu a l in d e x denotes a location th a t is im plicitly created a t the beginning of the built-in routine
call and initialised to 0. The t e x t r e c o rd is the character string denoted by character string location
or character strine expression and the t e x t l e n g th its s t r in g le n g th .

The elements of the io list may be either:

• value arguments and location arguments, or

• v a r ia b le clause w idths as described below.

R e la t io n s h ip s b e tw e e n a fo rm a t a r g u m e n t a n d a n io l is t

The value delivered by a form at argument m ust have the form of a form at control string (see 7.5.4.)

Fascicle X .6 - R ec . Z200 111

D uring the execution of a text i/o built-in routine call the form at control string (see 7.5.4) denoted
by the form at argum ent and the io list are scanned from left to right. Each occurrence of a format
tex t and form at specification is interpreted and the appropriate action is taken as follows:

a. form at te x t:

In R E A D T E X T the t e x t r e c o rd should contain a t the a c tu a l in d e x position a string slice
which is equal to the string delivered by form at text. In W R IT E T E X T , the string delivered
by form at text is transferred to the t e x t r e c o rd . The semantics are the same as if a form at
specification which is %C and an io list element th a t delivers the same string value as th a t
delivered by form at tex t were encountered.

b. form at specification:

If the form at specification contains a repetition factor, then it is equivalent to a sequence of
as m any form at element occurrences as the num ber denoted by repetition factor.

If the form at specification is a form at clause, then it contains a control code. If the control
code is a conversion clause, then an io lis t element is taken from the io list and the conversion
function selected by the conversion code, conversion qualifiers and clause width is applied to
it (see section 7.5.5). If the control code is an editing clause or an io clause, then the editing
or io function selected by the editing code or io code and clause width is applied to the tex t
argument w ithout reference to the io list (see sections 7.5.6 and 7.5.7).

If the clause w idth is v a r ia b le , then a value is taken from the list, which denotes the w id th
param eter of the conversion or editing control function.

If the form at specification is a parenthesised clause, then the form at control string th a t is
contained in it is scanned.

The in terpretation of the form at control string term inates when the end of the string delivered by
form at control string has been reached.

The io list elements of the io list are scanned in the order th a t they are specified.

s t a t i c c o n d it io n s : If the tex t argument is a string location, its mode m ust be a v a ry in g string mode.

An index expression may not be specified if the text argum ent is not a text location or if it is and
its access mode has no in d e x mode and m ust be specified if the access mode has an in d e x mode;
the class of the value delivered by index expression m ust be c o m p a tib le w ith th a t in d e x mode.

A tex t argument in a W R IT E T E X T built-in routine call m ust be a location.

A string location in a text argument must be re fe ra b le .

d y n a m ic c o n d it io n s : The T E X T F A IL exception occurs if:

• the string value delivered by the form at argum ent cannot be derived as a term inal production
of the form at control string, or

• an a ttem p t to assign to the a c tu a l in d e x a value which is less than 0 or greater than t e x t
le n g th is made, or

• during the in terpretation, the end of the form at control string has been reached and the io
list is not completely scanned, or no more elements can be taken from the io list and the
form at control string contains more conversion codes or v a r ia b le clause widths, or

• an io clause is encountered and the tex t argum ent is not a tex t location, or

• a form at tex t is encountered in R E A D T E X T and the t e x t r e c o r d does not contain a t the
a c tu a l in d e x position a string which is equal to the string delivered by form at text.

112 F ascicle X .6 — R ec . Z200

Any exception defined for the R E A D R E C O R D and W R IT E R E C O R D built-in routine call can occur
if an i /o control function is executed and any one of the dynam ic conditions defined is violated.

e x a m p le s :
26.18 W R IT E T E X T (o u tp u t,”% B % /”,10) (1.2)

7.5 .4 F o rm a t c o n tro l s t r in g

s y n ta x :
C form at control string> ::= (i)

[<form at text>] { < form at specification> [<form at tex t>] }* (i . i)

<form at text> ::= (2)
{ <non-vercent character> \ <percent> '[(2.1)

<percent> ::= m
% % (3.1)

<form at specification> ::= H)
% [Crepetition factor>] < form at elem ent> (4.1)

<repetition factor> ::= (5)
{ <digit> }+ (5.1)

< form at element> ::= (e)
<form at clause> (6.1)

J <parenthesised clause> (6.2)

< form at clause > ::= (7)
< control code> [% .] (7.1)

< control code> ::= W
< conversion clause> (6.1)

| < editing clause> (8.2)
| <io clause> (8.3)

<parenthesised clause> ::= (9)
(<form at control string> %) (9.1)

N.B. A form at specification is term inated by the first character th a t cannot be p a rt of the form at
element. Spaces and form at effectors may not be used within form at elements. A period (.) may
be used to term inate a form at clause. It belongs to the form at clause and it has only a delim iting
effect. To represent the character percent (%) within a form at text, it has to be w ritten twice (%%).

s e m a n tic s : A form at control string specifies the external form of the values being transferred and the layout
of d a ta w ithin the records. A form at control string is composed of form at tex t occurrences, which
denote fixed parts of the records and of form at specification occurrences, which denote the external
representations of CHILL values, allowing the editing of the t e x t r e c o r d or controlling the actual
i /o operations.

A form at specification th a t contains a repetition factor and a form at clause is equivalent to as m any
identical form at specification occurrences for the form at clause as the repetition factor. A repetition
factor can be 0, in which case the form at specification is not considered. E.g. ”%3D4” is equivalent
to ”%D4%D4%D4”.

The decimal notation is assumed for the digits in a repetition factor.

A form at control string in a parenthesised clause is repeatedly scanned according to the repetition
factor. If none is specified, 1 is assumed by default.

F ascicle X .6 — R ec . Z200 113

ex am p les:
26.20 size = % C % / (1.1)

7.5 .5 C on version

syn tax :
< conversion clause> ::= (1)

<conversion code> { <conversion qualifier> }*
[<clause width>] (1-1)

< conversion code> ::= (2)
B \ O \ H \ C (2.1)

<conversion qualifier> ::= (3)
L | E | P <character> (3-1)

<clause w idth> ::= (4)
{ <digit> }+ | V - (4.1)

d er iv ed sy n ta x : A conversion clause in which a clause width is not present is derived syntax for a conversion
clause in which a clause width th a t is 0 is specified.

sem a n tics: A conversion in a R E A D T E X T built-in routine call transform s a string which is an external
representation into a CHILL value. A conversion in a W R IT E T E X T built-in routine call performs
the opposite transform ation. The conversion code together with the conversion qualifier specifiy
the type of the conversion and the details of the requested operation such as justification , overflow
handling and padding.

T he external representation is a string whose length usually depends on the value being converted.
T h a t string may contain the m inim um number of characters th a t are necessary to represent the
CHILL value (free form at) or may have a given length (fixed form at).

In the fixed form at a slice of w id th size starting from the actu a l in d ex position is read from
or w ritten into the te x t record according to the justification and padding selected by conversion
qualifiers, as follows:

• in R E A D T E X T : all padding characters (to the left or to the right according to the justifi
cation), if any, are removed. However, when characters or fixed character strings are being
read, the m axim um num ber N of padding characters th a t are removed is w id th — L , where
L is 1 or s tr in g le n g th , respectively. No characters are removed if N < 0. The rem aining
characters are taken as the external representation;

• in W R IT E T E X T : if the length of the external representation is less than or equal to w id th ,
then the characters are justified to the left or to the right in the slice (according to the
justification). The unused string elements, if any, are filled with the padding character.
O therwise the string is truncated (on the left if the justification to the right is selected,
otherwise on the right), or w id th “overflow” indicator characters (*) are transferred, if the
qualifier E is present. The truncation is applied to the external representation, including the
m inus sign, if any.

In the free form at the following holds:

• in R E A D T E X T : padding characters, if any, are skipped except when a character or a char
acter string is being read and the conversion qualifier P is not specified. Then, the external
representation is taken as the longest slice of characters th a t starts a t the a ctu a l in d e x and
is m ade of all the subsequent characters th a t may lexically belong to it as defined below.

• in W R IT E T E X T : the string delivered by the conversion is inserted starting from the a c tu a l
in d e x position.

In W R IT E T E X T the string which is the external representation is transferred to the te x t record
w ithout regard to its a c tu a l le n g th . After the transfer, the a ctu a l in d ex is autom atically advanced
to the next available character position and the actu a l le n g th is set to the m axim um value between
the a c tu a l in d ex and the (old) a ctu a l len g th .

114 F ascicle X .6 - R ec . Z200

A clause w idth is c o n s ta n t if it is made of digits. The decimal no tation is assumed. Otherwise it
is v a r ia b le .

If the w id th is zero, then the free form at is chosen, otherwise the w id th is the length of the fixed
form at.

If the w id th is too small to contain the string, the appropriate action is taken depending on the
conversion qualifier.

In a R E A D T E X T the external representation th a t is applied is the one defined below for the mode
of the location argument.

In a W R IT E T E X T the external representation th a t is applied is the one defined below for the mode
M of the M-value or M-derived class of the value delivered by the value argument.

C o n v e rs io n co d es

Conversion codes are represented as single letters. The following conversion codes are defined:

B: b inary representation;

O: octal representation;

H : hexadecimal representation;

C: conversion: indicates the default external representation of CHILL values, which depends on
the mode of the value being converted (see below).

The external representation depends on the conversion code and the mode of the value being con
verted.

C o n v e rs io n q u a lif ie rs

Conversion qualifiers are represented as single letters. The following conversion qualifiers are defined:

L: left justification. Right justification is assumed if it is not present. In the free form at the
qualifier has no effect.

E: overflow evidence. In W R IT E T E X T the overflow indication is selected; if the qualifier is not
present, then truncation is performed. In R E A D T E X T or in the free form at this qualifier
has no effect.

P: padding. The character th a t follows the qualifier specifies the padding character. If P is not
present, then the padding character is assumed to be space by default. In R E A D T E X T if
the free form at is selected, then spaces and HT (Horizontal Tabulation) are considered as
the same character for skipping purposes, either when specified after the qualifier or when
applied by default.

E x te r n a l r e p r e s e n ta t io n

The external representation of CHILL values is defined as follows:

a. integers

Integer values are lexically represented as one or more digits in a decimal default base w ithout
leading zeroes and w ith a leading sign if negative. A leading plus sign and leading zeroes are
discarded in R E A D T E X T . The following conversion codes are available: JB, O, C and H.
The conversion code C selects the decimal representation. The digits th a t may belong to the
representation are only those th a t are selected by the conversion code.

b. booleans

Boolean values are lexically represented as sim ple nam e string, th a t are T R U E and FALSE
(in upper-case (e.g. T R U E) or lower case (e.g. true) depending on the representation chosen
by the im plem entation for the sp e c ia l simple name strings). The following conversion code
is available: C.

c. characters

Character values are lexically represented as strings of length I . The following conversion
code is available: C.

F ascicle X .6 — R ec . Z200 115

d. sets

Set mode values are lexically represented as simple nam e strings, th a t are the set literals.
The following conversion code is available: C.

e. ranges

Range values have the same representation as the values of their ro o t mode. However, only
the representations of the values defined by the range mode belong to the set of external
representations associated to the range mode.

f. character strings

C haracter string values are lexically represented as strings of characters of length L. In
W R IT E T E X T L is the a c tu a l le n g th . In R E A D T E X T L is the s t r in g le n g th if the
string is a fix e d string, otherwise it is a v a ry in g string and L is the s t r in g le n g th , unless
there are less characters available in the (slice of) t e x t r e c o rd a t the a c tu a l in d e x posi
tion, in which case L is the num ber of available characters. The following conversion code is
available: C.

g. bit strings

Bit string values are lexically represented as strings of binary digits. The same rules as for
character strings apply to determ ine the number of digits. The following conversion code is
available: C.

d y n a m ic p r o p e r t ie s : A clause width has a w id th , which is the value delivered by digits or by a value from
the io list if the clause w idth is v a r ia b le .

d y n a m ic c o n d itio n s : The T E X T F A IL exception occurs if:

• in R E A D T E X T , the t e x t r e c o r d does not contain a string slice starting a t the a c tu a l in d e x
th a t (after the removal or skipping of padding characters, see above) can be interpreted as
an external representation of one of the values of the mode of the current location argument
(including an a ttem p t to read a non-em pty external representation from a t e x t r e c o rd when
a c tu a l in d e x = a c tu a l le n g th) , or

• in W R IT E T E X T , a string slice th a t is the external representation of the current value argu
m ent can not be transferred to the t e x t r e c o rd starting a t the a c tu a l in d e x , or

• in R E A D T E X T a conversion code is encountered and the current element in the io list is not
a location, or the mode of the location has the re a d -o n ly p r o p e r ty , or

• a v a r ia b le clause w idth is encountered and the corresponding io list element in the io list
does not have an integer class or it is less than 0.

e x a m p le s :
26.21 CL6 (1.1)

7 .5 .6 E d it in g

sy n ta x :
<editing clause> ::= (1)

<editing code> [<clause width>] (l - l)

<editing code> (2)
X | < | > | T , (2.1)

d e r iv e d s y n ta x : An editing clause in which a clause width is not present is derived syntax for an editing clause
in which a clause width th a t is 1 is specified if the editing code is not T, otherwise 0, respectively.

116 Fascicle X .6 — R ec . Z200

sem an tics: The following editing functions are defined:

X : space: w id th space characters are inserted or skipped.

>: skip right: the a ctu a l in d e x is moved rightw ard for w id th positions.

<: skip left: the actu a l in d e x is moved leftward for w id th positions.

T: tabulation: the a ctu a l in d e x is moved to the position w id th .

In W R IT E T E X T , if the actu a l in d e x is moved to a position which is greater th an the a ctu a l
len g th , then a string of N space characters, where N is the difference between the a c tu a l in d e x
and the (old) a ctu a l le n g th is appended to the te x t record . The a c tu a l le n g th is set to the
maxim um value between the a ctu a l in d e x and the (old) a ctu a l le n g th .

d yn am ic con d ition s: The TE X T F A IL exception occurs if:

• the a ctu a l in d e x is moved to a position which is less th an 0 or greater than te x t len g th ,
or

• in R E A D T E X T the a ctu a l in d e x is moved to a position which is greater th an the a ctu a l
len g th , or

• in R E A D T E X T the editing code X is specified and a string of w id th space or HT (Horizontal
Tabulation) characters is not present in the te x t record at the a ctu a l in d e x position.

exam p les: '
26.22 X (1.1)

7 .5 .7 I /O con tro l

syn tax:
<io clause> (l)

<io code> (1-1)

<io code> ::= (2)

/ I - I + I ? I ■' I = (2-1)

sem an tics: The i/o control functions (except %=) perform an i /o operation. They allow precise control over
the transfer of the te x t record . In R E A D T E X T , all the functions have the same effect, to read the
next record from the file. In W R IT E T E X T , the te x t record and the appropriate representation
of the carriage control inform ation are transferred. The initial position of the carriage a t the time
the text location is connected is such th a t the first character of the first te x t record is printed a t
the beginning of the first unoccupied line (regardless of any positioning inform ation attached to the
te x t record).

The carriage placement is described by means of the following abstrac t operations on the current
column, line and page (a:, y, z) considering columns as being numbered from zero starting a t the left
margin, and lines from zero starting a t the top m argin.

nl(tn): the carriage is moved w lines downward, a t the beginning of the line (new position:
(0, (y + w) mod p, z + (y + w)/p , where p is the num ber of lines per page));

np(tu): the carriage is moved w pages downward a t the beginning of the line (new position:
(0 , 0 , 2 + w)) .

F ascicle X .6 — R ec . Z 200 117

The following control functions are provided:

/ : next record: the record is printed on the next line (n l(l), print record, nl(0));

+: next page: the record is printed on the top of the next page (n p (l) , prin t record, nl(0));

—: current line: the record is printed on the current line (print record, nl(0));

?: prom pt: the record is printed on the next line. The carriage is left a t the end of the line
(n l(l), prin t record);

/: emit: no carriage control is perform ed (print record);

= : end page: defines the positioning of the next record, if any, to be a t the top of the next page
(this overrides the positioning perform ed before the printing of the record). I t does not cause
any i/o operation.

The I /O transfer is performed as follows:

• in R E A D T E X T , the semantics are as if a R E A D R E C O R D (A ,I,R), where A is the access
sub-location of the text location, I is the index expression (if any) and R denotes the te x t
re c o rd , were executed. After the I /O transfer a c tu a l in d e x is set to 0 and a c tu a l le n g th
to the s t r in g le n g th of the string value th a t was read;

• in W R IT E T E X T , the semantics are as if a W R IT E R E C O R D (A ,I,R), where A is the access
sub-location of the text location, I is the index expression (if any) and R denotes the te x t
r e c o rd , were executed. The associated positioning inform ation is also transferred. If the
r e c o rd mode of the access is not d y n a m ic , then the t e x t r e c o rd is filled a t the end with
space characters and its a c tu a l le n g th is set to t e x t le n g th before the transfer takes place.
After the I /O transfer a c tu a l in d e x and a c tu a l l e n g th are set to 0.

e x a m p le s :
26.21 / (1.1)

7 .5 .8 A c c e ss in g th e a t t r i b u t e s o f a t e x t lo c a tio n

s y n ta x :
< g ettex t built-in routine ca11> ::= (l)

G E T T E X T R E C O R D (< tex t location>) (1.1)
| G E T T E X T IN D E X (< tex t location>) (1.2)
| G E T T E X T A C C E SS (< tex t location>) (1.3)
| E O LN (< text location>) (1.4)

< settex t built-in routine call> ::= (2)
S E T T E X T R E C O R D (< tex t location> , < character str ins location>) (2.1)

| S E T T E X T IN D E X (< text location> , <integer expression>) (2-2)
| S E T T E X T A C C E S S (< text location> , < access iocation>) (2.3)

s e m a n tic s : G E T T E X T R E C O R D returns the t e x t r e c o rd re fe re n c e of text location.

G E T T E X T IN D E X returns the a c tu a l in d e x of tex t location.

G E T T E X T A C C E S S returns the access re fe re n c e of text location.

E O L N delivers T R U E if no more characters are available in the t e x t r e c o rd (i.e. if the a c tu a l
in d e x equals the a c tu a l le n g th) .

S E T T E X T R E C O R D stores a reference to the location delivered by character string location into
the t e x t r e c o rd re fe re n c e of the text location.

118 F ascicle X .6 - R ec . Z200

S E T T E X T IN D E X has the same semantics as an editing clause in W R IT E T E X T in which editing
code is T and clause width delivers the same value as integer expression, applied to the t e x t r e c o rd
denoted by tex t location.

S E T T E X T A C C E S S stores a reference to the location delivered by access location in to the access
re fe re n c e of the text location.

s ta t ic p r o p e r t ie s : The class of the G E T T E X T R E C O R D built-in routine call is the M-reference class, where
M is the t e x t r e c o rd mode of the text location.

The class of the G E T T E X T IN D E X built-in routine call is the IN T-derived class.

The class of the G E T T E X T A C C E SS built-in routine call is the M-reference class, where M is the
access mode of the tex t location.

The class of the EO LN built-in routine call is the BOOL-derived class.

A G E T T E X T R E C O R D or G E T T E X T A C C E S S built-in routine call has the same re g io n a l i ty as
the text location.

s ta t i c c o n d itio n s : The mode of the character string location argum ent of S E T T E X T R E C O R D m ust be
re a d -c o m p a tib le w ith the te x t r e c o rd mode of the tex t location.

The mode of the access location argum ent of S E T T E X T A C C E S S m ust be r e a d - c o m p a t ib le w ith
the access mode of the text location.

The location argum ent in S E T T E X T R E C O R D and S E T T E X T A C C E S S m ust have the same r e
g io n a lity as the tex t location.

d y n a m ic c o n d itio n s : The TE X T F A IL exception occurs if the integer expression argum ent of S E T T E X T IN
D E X delivers a value th a t is less than 0 or greater th an the t e x t l e n g th of the te x t location.

e x a m p le s :
26.23 G E T T E X T IN D E X (output) (1.2)

F ascicle X .6 — R ec . Z 200 119

8 EXCEPTION HANDLING

8.1 G E N E R A L

An exception is either a language defined exception, in which case it has a language defined exception name, a
user defined exception, or an im plem entation defined exception. A language defined exception will be caused by
the dynam ic violation of a dynam ic condition. Any exception can be caused by the execution of a cause action.

W hen an exception is caused, it may be handled, i.e. an action statem ent list of an appropriate handler will be
executed.

Exception handling is defined such th a t a t any statem ent it is statically known which exceptions m ight occur
(i.e. it is statically known which exceptions cannot occur) and for which exceptions an appropriate handler can
be found or which exceptions may be passed to the calling point of a procedure. If an exception occurs and no
handler for it can be found, the program is in error.

W hen an exception occurs a t an action statem ent or a declaration statem ent, the execution of the statem ent is
perform ed up to an unspecified extent, unless stated otherwise in the appropriate section.

8 .2 H A N D L E R S

s y n ta x :
<handler> ::= (l)

O N { <on-alternatire> }* [E L S E <action sta tem ent list>] E N D (1.1)

<on-alternative> (2)
(<exception list>) : <action sta tem ent list> (2.1)

s e m a n tic s : A handler is entered if it is appropriate for an exception E according to section 8.3. If E is m entioned
in an exception list in an on-alternative in the handler, the corresponding action sta tem ent list is
entered; otherwise E L S E is specified and the corresponding action sta tem ent list is entered.

W hen the end of the chosen action sta tem ent list is reached, the handler and the construct to which
the handler is appended are term inated.

s ta t ic c o n d it io n s : All the exception names in all the exception list occurrences m ust be different.

d y n a m ic c o n d it io n s : The SPACEFAIL exception occurs if an action statem ent list is entered and storage
requirem ents cannot be satisfied.

e x a m p le s :
10.47 O N

(A LLO C A TE F A IL): C A U S E overflow;
E N D (1.1)

8.3 H A N D L E R ID E N T IF IC A T IO N

W hen an exception E occurs a t an action or module A, or a d a ta statem ent or region D, the exception may be
handled by an appropriate handler; i.e. an action statem ent list in the handler will be executed or the exception
may be passed to the calling point of a procedure; or, if neither is possible, the program is in error.

For any action or m odule A, or d a ta statem ent or region D, it can be statically determ ined whether for a given
exception E a t A or D an appropriate handler can be found or whether the exception may be passed to the
calling point.

120 F ascicle X .6 - R ec . Z200

An appropriate handler for A or D w ith respect to an exception w ith exception nam e E is determ ined as
follows:

1. if a handler which m entions E in an exception list or which specifies E L S E is appended to or included
in A or D, and E occurs in the reach directly enclosing the handler, then th a t handler is the appropriate
one w ith respect to E;

2. otherwise, if A or D is directly enclosed by a bracketed action, a module or a region, the appropria te
handler (if present) is the appropriate handler for the bracketed action, m odule or region w ith respect
to E;

3. otherwise, if A or D is placed in the reach of a procedure definition then:

• if a handler which m entions E in an exception list or specifies E L S E is appended to the procedure
definition, then th a t handler is the appropriate handler,

• otherwise, if E is m entioned in the exception list of the procedure definition, then E is caused at
the calling point,

• otherwise there is no handler;

4. otherwise, if A or D is placed in the reach of a process definition, then:

• if a handler which m entions E in an exception list or specifies E L S E is appended to the process
definition, then th a t handler is the appropriate handler,

• otherwise there is no handler; however, in this situation an im plem entation defined handler may
be appropriate (see section 13.4);

5. otherwise, if A is an action of an action statem ent list in a handler, then the appropriate handler is the
appropria te handler for the action A ’ or d a ta statem ent or region D ’ w ith respect to E which the handler
is appended to or included in bu t considered as if th a t handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local
storage will be released when exiting from the block.

F ascicle X .6 - R ec . Z200 121

9 TIME SUPERVISION

9.1 G E N E R A L

It is assumed th a t a concept of tim e exists externally to a CHILL program (system). CHILL does not specify the
precise properties of tim e, bu t provides mechanisms to enable a program to interact w ith the external world’s
view of tim e.

9 .2 T IM E O U T A B L E P R O C E S S E S

The concept of a t im e o u ta b le process exists in order to identify the precise points during program execution
where a tim e in terrup t may occur, th a t is, when a tim e supervision may interfere with the norm al execution of
a process.

A process becomes t im e o u ta b le when it reaches a well-defined point in the execution of certain actions. CHILL
defines a process to become t im e o u ta b le during the execution of specific actions; an im plem entation may define
a process to become t im e o u ta b le during the execution of further actions.

9 .3 T IM IN G A C T IO N S

s y n ta x :
< tim ing action> ::= (1)

<relative tim ing action> ('l . l j
| < a bsolute tim ing action> (1-2)
| <cyclic tim ing action> (1-3)

se m a n tic s : A tim ing action specifies tim e supervisions of the executing process. A tim e supervision may be
in itia ted , it may expire and it may cease to exist. Because of the cyclic tim ing action and because
of the nesting of tim ing actions, several tim e supervisions may be associated w ith the same process.

A tim e in terrup t occurs when a process is t im e o u ta b le and at least one of its associated tim e
supervisions has expired. The occurrence of a tim e in terrupt implies th a t the first expired tim e
supervision ceases to exist; furtherm ore, it leads to the transfer of control associated w ith th a t tim e
supervision in the supervised process. If the supervised process was delayed, it becomes re-activated.

Tim e supervisions also cease to exist when control leaves the tim ing action th a t in itia ted them .

9 .3 .1 R e la t iv e t im in g a c t io n

s y n ta x :
< ielative tim ing action> ::= (1)

A F T E R < duration prim itive value> [D E L A Y] IN
< a ction sta tem ent list> < tim ing handler> E N D ("l.lj

< tim ing handler> ::= (2)
T IM E O U T < a ction sta tem ent list> (2-1)

se m a n tic s : The duration prim itive value is evaluated, a tim e supervision is in itia ted , and then the action
sta tem ent list is entered.

If D E L A Y is not specified, the tim e supervision is in itia ted before the action sta tem ent list is
entered; otherwise it is in itia ted when the executing process becomes t im e o u ta b le a t the point of
execution specified by the action sta tem ent in the action sta tem ent list.

If D E L A Y is specified, the tim e supervision ceases to exist if it has been in itia ted and the executing
process ceases to be t im e o u ta b le .

122 F ascicle X .6 — R ec . Z200

The tim e supervision expires if it has not ceased to exist when the specified period of tim e has
elapsed since initiation.

The transfer of control associated w ith the time supervision is to the action sta tem ent list of the
tim ing handler.

s ta t ic c o n d itio n s : If D E L A Y is specified the action sta tem ent list m ust consist of precisely one action
sta tem ent th a t may itself cause the executing process to become t im e o u ta b le .

d y n a m ic c o n d itio n s : The T IM E R F A IL exception occurs if the in itia tion of the tim e supervision fails for an
im plem entation defined reason.

9 .3 .2 A b s o lu te t im in g a c t io n

s y n ta x :
<absolute tim ing action> ::= (1)

A T < a bsolute tim e prim itive value> IN
< action sta tem ent list> < tim ing handler> E N D (1-V

se m a n tic s : The absolute tim e prim itive value is evaluated, a tim e supervision is initiated , and then the action
sta tem ent list is entered.

The tim e supervision expires if it has not ceased to exist a t (or after) the specified point in time.

The transfer of control associated w ith the time supervision is to the action sta tem en t list of the
tim ing handler.

d y n a m ic c o n d it io n : The T IM E R F A IL exception occurs if the in itia tion of the time supervision fails for an
im plem entation defined reason.

9 .3 .3 C yclic t im in g a c t io n

sy n ta x :
<cyclic tim ing action> ::= (1)

C Y C L E < duration prim itive value> IN
< a ction sta tem en t list> E N D (L l)

se m a n tic s : The cyclic tim ing action is intended to ensure th a t the executing process enters the action statem ent
list a t precise intervals w ithout cum ulated drifts (this implies th a t the execution tim e for the action
sta tem ent list on average should be less than the specified duration value). The duration prim itive
value is evaluated, a relative tim e supervision is in itia ted , and then the action sta tem ent list is
entered.

The tim e supervision expires if it has not ceased to exist when the specified period of tim e has elapsed
since initiation. Indivisibly with the expiration a new tim e supervision with the same duration value
is in itiated .

The transfer of control associated w ith the time supervision is to the beginning of the action sta te
m ent list.

Note th a t the cyclic tim ing action can only term inate by a transfer of control out of it.

d y n a m ic p r o p e r t ie s : The executing process becomes t im e o u ta b le if and when control reaches the end of
the action sta tem ent list.

F ascicle X .6 — R ec . Z200 123

d y n a m ic c o n d itio n s : The TIM E R F A IL exception occurs if any in itiation of a tim e supervision fails for an
im plem entation defined reason.

9 .4 B U IL T -IN R O U T IN E S F O R T IM E

sy n ta x :
d i m e value built-in routine call> ::= (1)

<duration built-in routine call> (1.1)
| <absolute tim e built-in routine call> (1.2)

s e m a n tic s : Im plem entations are likely to have quite different requirem ents and capabilities in term s of precision
and range of tim e values. The built-in routines defined below are intended to accom odate these
differences in a portab le m anner.

9 .4 .1 D u r a t io n b u i l t - in ro u t in e s

sy n ta x :
Cduration built-in routine call> ::= (1)

M ILLISEC S (c in teger expression>) (1.1)
| SECS (c integer expression>) (1.2)
| M IN U TE S (<integer expression>) (1.3)
| H O U RS (Cinteger expression>) (1.4)
| D A YS (<integer expression>) (1-5)

s e m a n tic s : A duration built-in routine call delivers a duration value w ith im plem entation defined and possibly
varying precision (i.e. M ILLISE C S (1000) and SE C S (1) may deliver different duration values); this
value is the closest approxim ation in the chosen precision to the indicated period of time.

s ta t ic p r o p e r t ie s : The class of a duration built-in routine call is the D U R A T IO N -derived class.

d y n a m ic c o n d itio n s : The R A N G E F A IL exception occurs if the im plem entation cannot deliver a duration
value denoting the indicated period of tim e.

9 .4 .2 A b s o lu te t im e b u i l t - in r o u t in e

s y n ta x :
< a bsolute tim e built-in routine call> (1)

A B S T IM E ([[[[[[<year expression> ,] <m onth expression> ,]
<day expression> ,.] < h o u r expression> ,]
< m inute expression> ,] <second expression>]) (1-1)

<year expression> ::= (2)
Cinteger expression> (2.1)

C m onth expression> ::= (3)
Cinteger expression> , (3-1)

C day expression> ::= (4)
Cinteger expression> (4-1)

124 Fascicle X .6 - R ec . Z200

<hour expiession> ::= (5)
<integer expression> (5.2J

<m inute expression> ::= (6)
< integer expression> (6-1)

<second expression> ::= (?)
<integer expression> (7.1J

s e m a n tic s : The A B S T IM E built-in routine call delivers an absolute tim e value denoting the point in tim e in
the Gregorian calendar indicated in the param eter list. W hen higher order param eters are om itted,
the point in tim e indicated is the next one th a t m atches the low Order param eters present (e.g.
A B S T IM E (15,12,00,00) denotes noon on the 15th in this or the next m onth.

W hen no param eters are specified, an absolute tim e value denoting the present point in tim e is
delivered.

s ta t ic p r o p e r t ie s : The class of the absolute tim e built-in routine call is the T IM E -derived class.

d y n a m ic c o n d itio n s : The R A N G E F A IL exception is caused if the im plem entation cannot deliver an absolute
tim e value denoting the indicated point in time.

9 .4 .3 T im in g b u i l t - in r o u t in e ca ll

s y n ta x :
< tim ing simple built-in routine call> ::= (l)

W A IT () (1.1)
| E X P IR E D () (1.2)
| IN T T IM E (< absolute tim e prim itive value> , [[[[< year location>

<m onth location> ,] < day location> ,]
<hour location> ,] < m inute location> ,]
<second location>) (1-3)

<year location> (2)
<inteser location> (2-1)

<m onth location> ::= (3)
<integer location> (2-1)

<day location> ::= (4)
<inteeer location > (4-1)

<hour location> ::= (5)
<inteser location>

< m inute location> ::= (6)
<integer location> (6-1)

<second location> ::= (7)
<integer location> (^-1)

s e m a n tic s : W A IT unconditionally makes the executing process t im e o u ta b le : its execution can only term inate
by a time interrupt.

E X P IR E D makes the executing process t im e o u ta b le if one of its associated tim e supervision has
expired; otherwise it has no effect.

IN T T IM E assigns to the specified integer locations an integer representation of the point in tim e in
the Gregorian calendar specified by the absolute tim e prim itive value.

F ascicle X .6 — R ec . Z200 125

s ta t ic c o n d it io n s : All specified integer locations m ust be re fe ra b le and their modes may not have the
re a d -o n ly p r o p e r ty .

d y n a m ic p r o p e r t ie s : W A IT makes the executing process t im e o u ta b le .

E X P IR E D makes the executing process t im e o u ta b le if there is an expired tim e supervision asso
ciated w ith it.

126 F ascicle X .6 — R ec . Z200

10 PROGRAM STRUCTURE

10.1 G E N E R A L

The i f action, case action, do action, delay case action, begin-end block, m odule, region, spec m odule, spec
region, context, receive case action, procedure definition and process definition determ ine the program structure;
i.e. they determ ine the scope of names and the lifetime of locations created in them .

• The word block will be used to denote:

— the action sta tem ent list in a do action including any loop counter and while control;

— the action sta tem ent list in a then clause in an i f action;

— the action sta tem ent list in a case alternative in a case action;

— the action sta tem ent list in a delay alternative in a delay case action;

— the begin-end block;

— the procedure definition excluding the result spec and parameter spec of all form al parameters of
the formal param eter list;

— the process definition excluding the param eter spec of all formal parameters of the formal param
eter list;

— the action sta tem ent list in a buffer receive alternative or in a signal receive alternative, including
any defining occurrences in a defining occurrence list after IN ;

— the action sta tem ent list after E L S E in an i f action or case action or a receive case action or
handler;

— the on-alternative in a handler;

— the action sta tem ent list in a relative tim ing action, an absolute tim ing action, a cyclic tim ing
action or in a tim ing handler.

• The word m odulion will be used to denote:

— a m odule or region, excluding the context list and defining occurrence, if any;

— a spec m odule or spec region, excluding the context list, if any;

— a context.

• The word group will denote either a block or a modulion.

• The word reach or reach of a group will denote th a t p a rt of the group th a t is not surrounded (see section
10.2) by an inner group.

A group influences the scope of each nam e created in its reach. Names are created by defining occurrences:

• A defining occurrence in the defining occurrence list of a declaration, m ode definition or synonym defini
tion or appearing in a signal definition creates a nam e in the reach where the declaration, m ode definition,
synonym definition or signal definition, respectively, is placed.

• A defining occurrence in a set m ode creates a nam e in the reach directly enclosing the set m ode.

• A defining occurrence appearing in the defining occurrence list in a formal param eter list creates a name
in the reach of the associated procedure definition or process definition.

• A defining occurrence in front of a colon followed by an action, region, procedure definition, or process
definition creates a nam e in the reach where the action, region, procedure definition, process definition,
respectively, is placed.

• A (virtual) defining occurrence introduced by a w ith part or in a loop counter creates a nam e in the
reach of the block of the associated do action.

• A defining occurrence in the defining occurrence list of a buffer receive alternative or a signal receive
alternative creates a name in the reach of the block of the associated buffer receive alternative or signal
receive alternative, respectively.

• A (virtual) defining occurrence for a language predefined or an im plem entation defined nam e creates a
nam e in the reach of the im aginary outerm ost process (see section 10.8).

Fascicle X .6 - R ec . Z200 127

The places where a name is used are called applied occurrences of the nam e. The nam e binding rules associate
a defining occurrence w ith each applied occurrence of the nam e (see section 12.2.2).

A nam e has a certain scope, i.e. th a t part of the program where its definition or declarations can be seen
and, as a consequence, where it may be freely used. The nam e is said to be v is ib le in th a t part. Locations
and procedures have a certain lifetime, i.e. th a t part of the program where they exist. Blocks determ ine both
visibility of names and the lifetime of the locations created in them . M odulions determ ine only visibility; the
lifetim e of locations created in the reach of a modulion will be the same as if they were created in the reach
of the first surrounding block. M odulions allow for restricting the visibility of names. For instance, a name
created in the reach of a module will not autom atically be v is ib le in inner or outer modules, although the
lifetim e m ight allow for it.

10 .2 R E A C H E S A N D N E S T IN G

syn tax :
< begin-end body> ::= (1

< data sta tem ent list> < action sta tem ent list> (1.1

<proc body> (2
< data sta tem ent list> <action sta tem ent list> (2.1

<process body> ::= (3
< data sta tem ent list> <action sta tem ent list> (3.1

<m odule body> (4
{ < data sta tem ent> | < visibility sta tem ent> j <region> |
<spec region> }* < action sta tem ent list> (4.1

<region body> ::= (5
{ < d a ta sta tem ent> | < visibility s ta tem en t> }* (5.1

<spec m odule body> ::= (6
{ <quasi data sta tem ent> | < visibility s ta tem en t> |
<spec m odule> | <spec region> }* (6.1

<spec region body> ::= (7
{ <quasi d a ta sta tem en t> | < visibility sta tem ent> }* (7.1

< context body> ::= (8
{ < quasi data sta tem ent> | < visibility s ta tem ent> |
<spec m o d u lo | <spec region> }* (8.1

<action sta tem ent list> (9
{ < a ction sta tem ent> }* (9.1

< data sta tem ent list> ::= (10
{ < data sta tem ent> }* (10.1

< data sta tem ent> ::= (11
<declaration sta tem ent> (11.1

| <definition sta tem ent> (11.2

<definition sta tem ent> ::= (12
<synm ode definition sta tem ent> (12.1

| <newm ode definition sta tem ent> (12.2
| < synonym definition sta tem ent> (12.3
| <procedure definition sta tem ent> (12.4
| <process definition sta tem ent> (12.5
| <signaJ definition sta tem ent> (12.6
j < em pty> ; (12.7

sem a n tics: W hen a reach of a block is entered, all the lifetim e-bound initialisations of the locations created
when entering the block are performed. Subsequently, the reach-bound initialisations in the block
reach, the possibly dynam ic evaluations in the loc-identity declarations, the reach-bound initialisa
tions in the regions and the actions are performed in the order they are textually specified.

128 F ascicle X .6 — R ec . Z200

W hen a reach of a m odulion is entered, the reach-bound initialisations, the possibly dynam ic evalu
ations in the loc-identity declarations, the reach-bound in itialisations in the regions and the actions
(if the modulion is a module) th a t are in the m odulion reach are perform ed in the order they are
textually specified.

A da ta statem ent, action, module or region, is term inated either by com pleting it, or by term inating
a handler appended to it.

W hen a reach-bound initialisation, loc-identity declaration, action, m odule, region, procedure or
process is term inated, execution is resumed as follows, depending on the sta tem ent or the kind of
term ination:

• if the statem ent is term inated by completing the execution of a handler, then the execution
is resumed with the subsequent statem ent;

• otherwise, if it is an action th a t implies a transfer of control, the execution is resumed w ith
the statem ent defined for th a t action (see sections 6.5, 6.6, 6.8, 6.9);

• otherwise, if it is a procedure, control is returned to the calling point (see section 10.4).

• otherwise, if it is a process, the execution of th a t process (or the program , if it is the outerm ost
process) ends (see section 11.1) and execution is (possibly) resumed w ith another process;

• otherwise control will be given to the subsequent statem ent,

s ta t ic p ro p ertie s: Any reach is directly enclosed in zero or more groups as follows:

• If the reach is the reach of a do action, begin-end block, procedure definition, process defini
tion, then it is directly enclosed in the group in whose reach the do action, begin-end block,
procedure definition or process definition, respectively, is placed, and only in th a t group.

• If the reach is the action statem ent list of a tim ing action or tim ing handler, or one of the
action sta tem ent lists of an i f action, case action or delay case action, then it is directly
enclosed in the group in whose reach the tim ing action, tim ing handler, i f action, case action
or delay case action is placed, and only in th a t group.

• If the reach is the action statem ent list, or a buffer receive alternative, or signal receive
alternative, or the action statem ent list following E L S E in a receive buffer case action or
receive signal case action, then it is directly enclosed in the group in whose reach the receive
buffer case action or receive signal case action is placed, and only in th a t group.

• If the reach is the action statem ent list in an on-alternative or the action sta tem en t list
following E L S E in a handler which is not appended to a group, then it is directly enclosed
in the group in whose reach the statem ent to which the handler is appended is placed, and
only in tha t group.

• If the reach is an on-alternative or action sta tem ent list after E L S E of a handler which
is appended to a group, then it is directly enclosed in the group to which the handler is
appended, and only in th a t group.

• If the reach is a m odule, region, spec m odule or spec region, then it is directly enclosed in
the group in whose reach it is placed, and also directly enclosed in the context directly in
front of the m odule, region, spec module or spec region, if any. This is the only case where
a reach has more than one directly enclosing group.

• If the reach is a context, then it is directly enclosed in the context directly in front of it. If
! there is no such context, it has no directly enclosing group.

A reach has directly enclosing reaches th a t are the reaches of the directly enclosing groups. A
statem ent has a unique directly enclosing group, namely, the group in which the statem ent is placed.
A reach is said to directly enclose a group (reach) if and only if the reach is a directly enclosing
reach of the group (reach).

A statem ent (reach) is said to be surrounded by a group if and only if either the group is the directly
enclosing group of the statem ent (reach) or a directly enclosing reach is surrounded by the group.

F ascicle X .6 — R ec . Z200 129

A reach is said to be entered when:

• M odule reach: the module is executed as an action (e.g. the m odule is not said to be entered
when a goto action transfers control to a la b e l nam e defined inside the module).

• Begin-end reach: the begin-end block is executed as an action.

• Region reach: the region is encountered (e.g. the region is not said to be entered when one
of its critica l procedures is called).

• Procedure reach: the procedure is entered via a procedure call.

• Process reach: the process is activated via the evaluation of a s ta rt expression.

• Do reach: the do action is executed as an action after the evaluation of the expressions or
locations in the control part.

• Buffer-receive alternative reach, signal receive alternative reach: the alternative is executed
on reception of a buffer value or signal.

• O n-alternative reach: the on-alternative is executed on the cause of an exception.

• O ther block reaches: the action statem ent list is entered.

An action statem ent list is said to be entered when and only when its first action, if present, receives
control from outside the action statem ent list.

A reach is a quasi reach if it is the one of a spec m odule, spec region or context, otherwise it is a
rea l reach.

A defining occurrence is a q u asi defining occurrence if:

• it is surrounded by a context and not by a module or region, or

• it is surrounded by a simple spec m odule or a simple spec region, or

• it is not surrounded by one of the above m entioned groups and it is surrounded by a m odule
spec or a region spec and it is contained in a quasi declaration, a quasi procedure definition
sta tem ent or a quasi process definition sta tem ent, and it is not the defining occurrence of a
se t e lem en t name,

otherwise it is a real defining occurrence.

10 .3 B E G IN -E N D B L O C K S

s y n ta x :
<begin-end block> ::= (1)

B E G IN <begin-end body> E N D (1-1)

se m a n tic s : A begin-end block is an action, possibly containing local declarations and definitions. It determ ines
bo th visibility of locally created names and the lifetimes of locally created locations (see sections
10.9 and 12.2).

d y n a m ic c o n d it io n s : The SPACEFAIL exception occurs if storage requirem ents cannot be satisfied,

e x a m p le s : see 15.73 - 15.90

130 F ascicle X .6 — R ec . Z200

10 .4 P R O C E D U R E D E F IN IT IO N S

s y n ta x :
<procedure definition sta tem ent> ::= (1)

<defining occurrence> : <procedure definition>
[<handler> } [<simple nam e string>] ; f l . l j

<procedure definition> ::= (2)
P R O C ([<formal param eter list>]) [<result spec>]
[E X C E P T IO N S (<exception list>)] <procedure a ttribu te list>
<proc body> E N D (2-1)

<form al param eter list> (3)
< form al parameter > { , < formal param eter> }* (3.1)

<form al p a ram e te r> (4)
<defining occurrence list> Cparameter spec> (4-1)

<procedure a ttribu te list> ::= (5)
[<generality>] [R E C U R S IV E] (5.1)

<generality> ::= (6)
G E N E R A L (6.1)

| S IM P L E (6.2)
| IN L IN E (6.3)

d e r iv e d s y n ta x : A formal parameter, where defining occurrence list consists of more than one defining
occurrence, is derived from several formal parameter occurrences, separated by commas, one for
each defining occurrence and each w ith the same parameter spec. E.g. i, j IN T L O C is derived
from i IN T L O C , j IN T L O C .

se m a n tic s : A procedure definition statem ent defines a (possibly) param eterised sequence of actions th a t may
be called from different places in the program . The procedure is term inated and control is returned
to the calling point either by executing a return action or by reaching the end of the proc body or
by term inating a handler appended to the procedure definition (falling through). Different degrees
of com plexity of procedures may be specified as follows:

a. s im p le procedures (S IM P L E) are procedures th a t cannot be m anipulated dynamically.
They are not treated as values, i.e. they cannot be stored in a procedure location nor can
they be passed as param eters to or returned as result from a procedure call.

b. g e n e ra l procedures (G E N E R A L) do not have the restrictions of s im p le procedures and
may be treated as procedure values.

c. in lin e procedures (IN L IN E) have the same restrictions as s im p le procedures and they
cannot be re c u rs iv e . They have the same semantics as norm al procedures, bu t the compiler
will insert the generated object code a t the point of invocation ra ther than generating code
for actually calling the procedure.

Only s im p le and g e n e ra l procedures may be specified to be (m utually) re c u rs iv e . W hen no
procedure a ttribu tes are specified, an im plem entation default will apply.

A procedure may return a value or it may return a location (indicated by the L O C a ttrib u te in the
result spec).

The defining occurrence in front of the procedure definition defines the nam e of the procedure,

p a r a m e te r p a ss in g :

There are basically two param eter passing mechanisms: the “pass by value” (IN , O U T and I N
O U T) and the “pass by location” (L O C).

F ascicle X .6 — R ec . Z 200 131

p a s s b y v a lu e

In pass by value param eter passing, a value is passed as a param eter to the procedure and stored in a
local location of the specified param eter mode. The effect is as if, a t the beginning of the procedure
call, the location declaration:

D C L <defining occurrence> < m ode> := <actual param eter>;

were encountered for the defining occurrences of the formal param eter. However the procedure
is entered after the actual param eters have been evaluated. Optionally, the keyword IN m ay be
specified to indicate pass by value explicitly.

If the a ttrib u te IN O U T is specified, the actual param eter value is obtained from a location and
ju s t before returning the current value of the formal param eter is restored in the actual location.

The effect of O U T is the same as for IN O U T with the exception th a t the in itial value of the actual
location is not copied into the form al param eter location upon procedure entry; therefore, the form al
param eter has an u n d e f in e d in itial value. The store-back operation need not be perform ed if the
procedure causes an exception at the calling point.

p a s s b y lo c a tio n

In pass by location param eter passing, a (possibly dynamic mode) location is passed as a param eter
to the procedure body. Only re f e r a b le locations can be passed in this way. The effect is as if a t
the entry point of the procedure the loc-identity declaration statem ent:

D C L <defining occurrence> <m ode>
L O C [D Y N A M IC] := <actual parameter>;

were encountered for the defining occurrences of the formal param eter. However the procedure is
entered after the actual param eters have been evaluated.

If a value is specified th a t is not a location, a location containing the specified value will be im plicitly
created and passed a t the point of the call. The lifetime of the created location is the procedure
call. The mode of the created location is dynamic if the value has a dynam ic class.

r e s u l t t r a n s m is s io n :

Both a value and a location may be returned from the procedure. In the first case, a value is specified
in any result action, in the la tte r case, a location (see section 6.8). If the a ttrib u te N O N R E F is
not given in the result spec, the location m ust be re fe ra b le . The returned value or location is
determ ined by the m ost recently executed result action before returning. If a procedure w ith a
result spec returns w ithout having executed a result action, the procedure returns an u n d e f in e d
value or an u n d e f in e d location. In this case the procedure call may not be used as a location
procedure call (see section 4.2.11) nor as a value procedure call (see section 5.2.12), bu t only as a
call action (section 6.7).

s ta t ic p r o p e r t ie s : A defining occurrence in a procedure definition sta tem ent defines a p r o c e d u r e name.

A p r o c e d u r e nam e has a procedure definition attached th a t is the procedure definition in the
statem ent in which the p ro c e d u re nam e is defined.

A p r o c e d u r e nam e has the following properties attached, as defined by its procedure definition:

• It has a list of p a r a m e te r sp e c s th a t are defined by the param eter spec occurrences in
the formal parameter list, each param eter consisting of a mode and possibly a param eter
a ttribu te .

• It has possibly a r e s u l t sp ec , consisting of a mode and an optional result a ttrib u te .

• It has a possibly empty list of exception names, which are the names m entioned in exception
list.

• It has a g e n e ra l i ty th a t is, if generality is specified, either g e n e ra l or s im p le or in lin e ,
depending on whether G E N E R A L , S IM P L E or IN L IN E is specified; otherwise an im ple
m entation default specifies g e n e ra l or s im p le . If the p ro c e d u r e nam e is defined inside a
region, its g e n e ra H ty is s im p le .

• It has a r e c u r s iv i ty which is r e c u rs iv e if R E C U R S IV E is specified; otherwise an im ple
m entation default specifies either re c u rs iv e or n o n - re c u rs iv e . However, if the g e n e ra l i ty
is in lin e or if the p r o c e d u r e nam e is c r i t ic a l (see section 11.2.1) the r e c u r s iv i ty is n o n
r e c u rs iv e .

132 F ascicle X .6 — R ec . Z200

A p r o c e d u r e nam e th a t is g e n e ra l is a g e n e ra l p ro c e d u r e name. A g e n e ra l p ro c e d u r e nam e
has a procedure mode attached, formed as:

P R O C ([<param eter list>]) [<result spec> }
[E X C E P T IO N S (< exception list>)] [R E C U R S IV E]

where <result spec>, if present, and <exception list> are the same as in its procedure definition
and <parameter list> is the sequence of <parameter spec> occurrences in the formal param eter
lis t , separated by commas.

A name defined in a defining occurrence list in the formal param eter is a lo c a t io n name if and
only if the param eter spec in the formal parameter does not contain the L O C a ttrib u te . If it does
contain the L O C a ttrib u te , it is a lo c - id e n t i ty name. Any such a lo c a t io n nam e or lo c - id e n t i ty
nam e is re fe ra b le .

s ta t ic c o n d itio n s : If a p r o c e d u r e nam e is in t r a - r e g io n a l (see section 11.2.2), its procedure definition m ust
not specify G E N E R A L .

If a p r o c e d u r e nam e is c r i t ic a l (see section 11.2.1), its definition may specify neither G E N E R A L
nor R E C U R S IV E .

No procedure definition may specify both IN L IN E and R E C U R S IV E .

If specified, the sim ple nam e string m ust be equal to the nam e string of the defining occurrence in
front of the procedure definition.

Only if L O C is specified in the param eter spec or result spec may the mode in it have the n o n -v a lu e
p r o p e r ty .

All exception names m entioned in exception list m ust be different.

e x a m p le s :

1.4 add:
P R O C (i j IN T) R E T U R N S (IN T) E X C E P T IO N S (O V E R F LO W);

R E S U L T i+j;
E N D add; (1.1)

10.5 P R O C E S S D E F IN IT IO N S

s y n ta x :
<process definition sta tem ent> (1)

<defining occurrence> : <process definition>
[<handler> } [<sim ple name string>] ; (1-1)

<process definition> ::= (2)
P R O C E S S ([<formal parameter list>]) <process body> E N D (?-l)

se m a n tic s : A process definition statem ent defines a possibly param eterised sequence of actions th a t may be
started for concurrent execution from different places in the program (see chapter 11).

s ta t ic p r o p e r t ie s : A defining occurrence in a process definition sta tem ent defines a p ro c e s s name.

A p ro c e s s nam e has the following property attached, as defined by its process definition:

• It has a list of p a r a m e te r sp e c s th a t are defined by the param eter spec occurrences in
the formal param eter list, each param eter consisting of a mode and possibly a param eter
a ttribu te .

F ascicle X .6 — R ec . Z 200 133

s ta t ic c o n d itio n s : If specified, the sim ple nam e string m ust be equal to the name string of the defining
occurrence in front of the process definition.

A process definition sta tem ent m ust not be surrounded by a region or by a block other than the
im aginary outerm ost process definition (see section 10.8).

The param eter a ttribu tes in the formal param eter list m ust not be IN O U T nor O U T .

Only if L O C is specified in the param eter spec in a formal parameter in the formal parameter list
may the mode in it have the n o n -v a lu e p r o p e r ty .

e x a m p le s :
14.13 P R O C E S S ();

wait:
P R O C (x IN T) ;

/ *some wait ac tion* /
E N D wait;
D O F O R E V E R ;

wait(10 / * seconds * /);
C O N T IN U E operator _is„ ready;

O D ;
E N D (2.1)

10.6 M O D U L E S

s y n ta x :
<m odule> ::= (l)

[< context list>] [<defining occurrence> :]
M O D U L E [B O D Y] < m odule body> E N D
[<handler>] [<simple nam e string>] ; (1-1)

| <rem ote modulion> (1-2)

s e m a n tic s : A module is an action statem ent possibly containing local declarations and definitions. A module
is a means of restricting the visibility of nam e strings; it does not influence the lifetime of the locally
declared locations.

The detailed visibility rules for modules are given in section 12.2.

s ta t ic p r o p e r t ie s : A defining occurrence in a m odule defines a m o d u le name as well as a la b e l name. The
nam e has the m odule (seen as a m odulion, i.e. excluding the context lis t and defining occurrence, if
any) attached.

A m odule is developed piecewisely if and only if a context list is specified.

A m odule is a m o d u le b o d y if and only if B O D Y is specified.

s ta t ic c o n d itio n s : If specified, the sim ple nam e string m ust be equal to the nam e string of the defining
occurrence.

A rem ote m odulion in a m odule m ust refer to a m odule.

134 F ascicle X .6 - R ec . Z200

e x a m p le s :
7.48 M O D U L E

S E IZ E convert;
D C L n I N T I N I T ;= 1979;
D C L in C H A R S (20) I N I T := (20)’ ’;
G R A N T n,rn;
convert ();
A S S E R T rn = ”M D C C C C L X X V I I i r / / (6) ’ ’;

E N D (1.1)

10 .7 R E G IO N S

s y n ta x :
<region> ::= (1)

[<context list>] [<defining occurrence> :]
R E G IO N [B O D Y] < iegion body> E N D
[<handler >] [<sim ple nam e string >] ; (1.1)

| <rem ote m odulion> (1-2)

se m a n tic s : A region is a means of providing m utually exclusive access to its locally declared d a ta objects for
the concurrent executions of processes (see chapter 11). It determines visibility of locally created
names in the same way as a module.

s ta t ic p r o p e r t ie s : A defining occurrence in a region defines a re g io n name. It has the region (seen as a
m odulion, i.e. excluding the context list and defining occurrence, if any) attached.

A region is developed piecewisely if and only if a context list is specified.

A region is a re g io n b o d y if and only if B O D Y is specified.

s ta t ic c o n d itio n s : If specified, the sim ple nam e string m ust be equal to the name string of the defining
occurrence.

A region m ust not be surrounded by a block other than the im aginary outerm ost process definition.

A remote m odulion in a region m ust refer to a region.

e x a m p le s : see 13.1 - 13.28

10.8 P R O G R A M

s y n ta x :
< program > ::= (1)

{ <m odule> | <spec m odule> | <region> \ <spec region> }+ (l - l)

s e m a n tic s : Program s consist of a list of modules or regions surrounded by an im aginary outerm ost process
definition.

The definitions of the CHILL pre-defined names (see A ppendix C.2) and the im plem entation defined
built-in routines and integer modes are considered, for lifetime purposes, to be defined in the reach
of the im aginary outerm ost process definition. For their visibility see section 12.2.

Fascicle X .6 - R ec . Z200 135

10.9 S T O R A G E A L L O C A T IO N A N D L IF E T IM E

The tim e during which a location or procedure exists w ithin its program is its lifetime.

A location is created by a declaration or by the execution of a G E T S T A C K or an A L L O C A T E built-in routine
call.

The lifetime of a location declared in the reach of a block is the tim e during which control lies in th a t block
or in a procedure whose call originated from th a t block, unless it is declared with the a ttrib u te S T A T IC . The
lifetime of a location declared in the reach of a m odulion is the same as if it were declared in the reach of the
closest surrounding block of the modulion. The lifetime of a location declared w ith the a ttr ib u te S T A T IC
is the same as if it were declared in the reach of the im aginary outerm ost process definition. This implies
th a t for a location declaration w ith the a ttr ib u te S T A T IC storage allocation is m ade only once, namely, when
starting the im aginary outerm ost process. If such a declaration appears inside a procedure definition or process
definition, only one location will exist for all invocations or activations.

The lifetime of a location created by executing a G E T S T A C K built-in routine call ends when the directly
enclosing block term inates.

The lifetime of a location created by an A L L O C A T E built-in routine call is the tim e starting from the A L L O
C A T E call until the tim e th a t the location cannot be accessed anymore by any CHILL program . The la tte r is
always the case if a T E R M IN A T E built-in routine is applied to an a l lo c a te d reference value th a t references
the location.

The lifetime of an access created in a loc-identity declaration is the directly enclosing block of the loc-identity
declaration.

The lifetime of a procedure is the directly enclosing block of the procedure definition.

s ta t ic p r o p e r t ie s : A location is said to be s ta t ic if and only if it is a static m ode location of one of the
following kinds:

• A location name th a t is declared w ith the a ttrib u te S T A T IC or whose definition is not
surrounded by a block other than the im aginary outerm ost process definition.

• A string element or string slice where the string location is s ta t ic and either the le ft element
and right element, or start element and slice size are c o n s ta n t .

• An array element where the array location is s ta t ic and the expression is c o n s ta n t .

• An array slice where the array location is s ta t ic and either the lower elem ent and upper
element or the first element and slice size are c o n s ta n t .

• A structure field where the structure location is s ta t ic .

• A location conversion where the location occurring in it is s ta t ic .

10 .10 C O N S T R U C T S F O R P IE C E W IS E P R O G R A M M IN G

Modules and regions are the elem entary units (pieces) in which a complete CHILL program th a t is developed
piecewisely can be subdivided. The text of such pieces is indicated by rem ote constructs (see section 10.10.1).
CHILL defines the syntax and semantics of complete program s, in which all occurrences of rem ote pieces have
been virtually replaced by the referred text.

10 .10 .1 R e m o te p ieces

s y n ta x :
<rem ote m odulion> ::=

[<sim ple nam e string> :] R E M O T E <piece designator> ;

<rem ote spec> ::=
[<sim ple nam e string> : S P E C R E M O T E <piece designator> ;

(1)
(1 . 1)

(2)
(2 . 1)

136 F ascicle X .6 — R ec . Z200

<rem ote context> ::= (3)
C O N T E X T R E M O T E <piece designator>
[<context body>] F O R (3.1)

< context m o d u lo ::= (4)
C O N T E X T M O D U L E R E M O T E <piece designator> ; (4.1)

<piece designators* (5)
< character string literal > (3-1)

| < tex t reference nam e> (3-2)
j < em pty> (5.3)

d e r iv e d s y n ta x : The notation:

C O N T E X T M O D U L E R E M O T E <piece designator>

is derived syntax for:

C O N T E X T R E M O T E <piece designator> F O R
M O D U L E S E IZ E A LL; E N D ;

1*UB. This construct is redundant bu t can be used for consistence checking.

se m a n tic s : R em ote m odulions, rem ote *specs, remote contexts and context m odules are means to represent
the source tex t of a program as a set of (interconnected) files.

A piece designator refers in an im plem entation defined way to a description of a piece of CHILL
source tex t, as follows:

• If the piece designator is empty, the source tex t is retrieved from a place determ ined by the
structure of the program .

• If the piece designator contains a character string litera l, the character string literal is used
to retrieve the source text.

• If the piece designator contains a text reference nam e , the tex t reference nam e is interpreted
in an im plem entation defined way to retrieve the source text.

A program w ith 1. remote modulions, 2. remote specs, is equivalent to the program built by replacing
each 1. rem ote m odulions, 2. remote specs, by the piece of CHILL tex t referred to by its piece
designator.

A program w ith rem ote contexts is equivalent to the program built by replacing each rem ote context
by the piece of CHILL tex t referred to by its piece designator in which the context body has been
virtually inserted im m ediately after the last occurrence of context body in the context list referred
to by the p iece designator.

If the designated piece is not available as CHILL text, then the piece designator in it is considered
to refer to an equivalent piece of CHILL text which is introduced virtually.

A lthough the semantics of a remote piece is defined in term s of replacem ent, CHILL does not im ply
any textual substitution.

s ta t ic c o n d it io n s : The piece designator in a 1. remote m odulion, 2. rem ote spec, 3. rem ote context, 4. context
m odule, m ust refer to a description of a piece of source tex t which is a term inal production of a 1.
modiile or region th a t is not a remote m odulion, 2. spec m odule or spec region th a t is not a rem ote
spec, 3.,4. context list which is not a rem ote context.

W hen the source tex t referred to by the piece designator in a rem ote m odulion s ta rts w ith a defining
occurrence, then the rem ote m odulion m ust s ta rt w ith a sim ple nam e s tring which is the name string
of th a t defining occurrence.

W hen the source tex t referred to by the piece designator in a rem ote spec s ta rts w ith a sim ple name
string, then the remote spec m ust s ta rt w ith the same sim ple nam e string.

F ascicle X .6 - R ec . Z200 137

e x a m p le s :
25.9 stack: R E M O T E ’’exam ple 27 or 28”;
25.9 ’’exam ple 27 or 28”

(1.1)
(5.1)

1 0 .1 0 .2 S p e c m o d u le s , sp e c re g io n s a n d c o n te x ts

s y n ta x :
<spec m o d u lo (1)

<sim ple spec m o d u lo (1-1)
| <m odule spec> (1-2)
| <rem ote spec> (1-3)

<sim ple spec m odule> (2)
[< context list>] [< sim ple nam e string> :] S P E C M O D U L E
<spec m odule body> E N D [<sim ple nam e s tr in g >] ; (2.1)

< m odule spec> ::= (3)
[< context list>] <sim ple nam e string> : M O D U L E S P E C
<spec m odule body> E N D [<simple nam e string>] ; (3-1)

<spec region> ::= (4)
<sim ple spec region> (4-1)

| <region spec> (4-2)
| < rem ote spec> (4.3)

<sim ple spec region> ::= (5)
[< context list>] [<sim ple nam e string> :] S P E C R E G IO N
<spec region body> E N D [<sim ple nam e string>] ; (5.1)

<region spec> ::= (6)
[< context list>] <sim ple name string> : R E G IO N S P E C
<spec region body> E N D [<sim ple nam e s trin g >] ; (3-1)

< context list> ::= (7)
< context> { <context> }* (7-1)

| < remote con tex t> (7-2)

<Context> ::= (8)
C O N T E X T < context body> F O R (3-1)

s e m a n tic s : Sim ple spec m odules, sim ple spec regions and contexts are used to specify static properties of
names. They are redundant bu t they can be used for piecewise program m ing.

Sim ple nam e strings in spec m odules and spec regions are not names, they are not b o u n d , and they
have no visibility rules.

1. spec m odules, 2. spec regions in a reed reach indicate the properties of one or more 1. m odules,
2. regions th a t are piecewisely compiled and th a t are considered to be enclosed in th a t reach. The
tex ts of such 1. m odules, 2. regions are indicated by occurrences of rem ote m odulions. A context
list indicates the surrounding reaches (note th a t a m odulion th a t is developed piecewisely always
has a context list in front of it).

For each nam e string OP ! N S v is ib le in the reach of a 1. m odule spec, 2. region spec and l in k e d
there to a q u a s i defining occurrence and th a t is granted into a re a l reach as N P ! N S, a (virtual)
grant statem ent w ith the same o ld nam e string OP ! N S and n e w name string N P ! N S is considered
to be introduced in the reach of the corresponding 1. m o d u le b o d y , 2. re g io n b o d y .

138 F ascicle X .6 - R ec . Z200

s ta t ic c o n d it io n s : In a spec m odule or a spec region, the optional simple nam e string following E N D may
only be present if the optional sim ple name string before S P E C is present. W hen both are present,
they m ust have equal nam e strings.

A context which has no directly enclosing group may not contain visibility statem ents.

A re a l reach th a t contains a 1. spec m odule, 2. spec region m ust also contain a t least a rem ote
m odulion and vice-versa.

If a r e a l reach contains a 1. m odule which is a m o d u le b o d y , 2. region which is a r e g io n b o d y ,
then it m ust contain also a 1. m odule spec, 2. region spec such th a t the sim ple nam e strings in front of
them have equal nam e strings. The 1. m odule spec, 2. region spec is said to have a c o r r e s p o n d in g
1. m o d u le b o d y , 2. re g io n b o d y .

A rem ote spec in a 1. spec m odule, 2. spec region m ust refer to a 1. spec m odule, 2. spec region.

e x a m p le s :
23.2 le tter_ count:

S P E C M O D U L E
S E IZ E max;
count: P R O C (input R O W C H A R S (m ax) IN ,

ou tpu t A R R A Y ('A ’:’Z ') IN T O U T) E N D ;
G R A N T count;

E N D le tter-co u n t; (1-1)

24.1 C O N T E X T
count. P R O C (R O W C H A R S (m ax) IN ,

A R R A Y (’A ’Z ’) IN T O U T) E N D ;
F O R (8.1)

10 .1 0 .3 Q u a s i s ta te m e n ts

s y n ta x :
<quasi data sta tem ent> ::= (1)

<quasi declaration sta tem ent> f l . l j
| <quasi definition sta tem ent> (1-2)

<quasi declaration sta tem ent> ::= (2)
D C L <quasi declaration> { , <quasi declaration> }* ; (2-1)

<quasi declaration> ::= (3)
<quasi location declaration> (3.1)

| <quasi loc-identity declaration> (3-2)

< quasi location declaration> ::= (4)
<defining occurrence list> <m ode> [S T A T IC] (4-1)

<quasi loc-identity declaration> ::= (5)
<defining occurrence list> <m ode>
L O C [N O N R E F] [D Y N A M IC] (5.1)

<quasi definition sta tem ent> ::= (6)
< synm ode definition sta tem ent> (6-1)

| <new m ode definition sta tem ent> (6-2)
| < synonym definition sta tem ent> (6-3)
| <quasi synonym definition sta tem ent> (6-4)
| <quasi procedure definition sta tem ent> (6-5)
| <quasi process definition sta tem ent> (6-6)
| <quasi signal definition sta tem ent> (6.7)
| < e m p ty > ; (6.8)

F ascicle X .6 - R ec . Z 200 139

<quasi synonym definition sta tem ent> ::= (7)
S Y N <quasi synonym definition> { , <quasi synonym definition> }* ; (7.1)

<quasi synonym definition> ::= (8)
<defining occurrence list> { <m ode> = [< constant value>] |
[< m ode>] = <literal expression> } (8.1)

<quasi procedure definition sta tem ent> (9)
< defining occurrence> : P R O C ([<quasi formal parameter list>])
[<result spec>] [E X C E P T IO N S (< exception list>)]
<procedure a ttribu te list> E N D [<sim ple nam e string>] ; (9.1)

<quasi form al param eter list> ::= (10)
<quasi form al param eter> { , <quasi formal param eter> }* ("iO.lj

<quasi form al param eter> ::= (11)
< sim ple nam e string> { , <simple nam e string> }* <parameter spec> (H- l)

<quasi process definition sta tem ent> ::= (12)
<defining occurrence> : P R O C E S S ([<quasi form al parameter list>])
E N D [<sim ple nam e string>] ; (12-1)

<quasi signal definition sta tem ent> (13)
S IG N A L <quasi signal definition> { ,<quasi signal definition> }* ; (12.1)

<quasi signal definition> ::= (14)
<defining occurrence> [= (<m ode> { , < m ode> }*)] [T O] (14.l)

se m a n tic s : Quasi statem ents are used in spec modules, spec regions and contexts to specify sta tic proper
ties of names. These specifications are redundant, bu t quasi statem ents can be used for piecewise
program m ing.

An im plem entation th a t can not guarantee the equality of the values between q u a s i c o n s ta n t
s y n o n y m nam es and the corresponding reed ones may disallow the indication of the constant
value.

Note th a t in CHILL no q u a s i defining occurrences exist for la b e l names.

s ta t ic p r o p e r t ie s : Quasi statem ents are restricted forms of the corresponding statem ents, and have the same
sta tic properties.

T he nam e defined by a defining occurrence in a quasi loc-identity declaration is r e f e r a b le if N O N -
R E F is not specified.

s ta t ic c o n d it io n s : Quasi statem ents are restricted forms of the corresponding statem ents and are subject to
their static conditions.

A quasi synonym definition sta tem ent may only be directly enclosed in a simple spec m odule, simple
spec region or context. A synonym definition sta tem ent in a quasi definition sta tem ent may only be
directly enclosed in a m odule spec or region spec.

1 0 .1 0 .4 M a tc h in g b e tw e e n q u a s i d e f in in g o c c u rre n c e s a n d d e f in in g o c c u r re n c e s

Two defining occurrences are said to m a tc h if they have identical sem antic categories and:

• If they are s y n o n y m names, then they must have the same re g io n a li ty and value, the ro o t mode of
their classes m ust be a lik e , they m ust both have an M-value, M-derived, M-reference, n u ll or a ll class,
and if the one which is quasi is l i te r a l , then so the other one must be.

• If they are s e t e le m e n t names, then the attached se t modes m ust be alike.

• If they are n e w m o d e nam es or sy n m o d e names, then their modes must be a like.

• If they are lo c a t io n names or lo c - id e n t i ty names, then they m ust have the same re g io n a li ty , they
bo th m ust be or b o th not be r e fe ra b le , they both m ust be or bo th not be s ta t ic , and their modes m ust
be alike .

140 F ascicle X .6 - R ec . Z200

• If they are p ro ced u re names, then they m ust have the same reg io n a lity and g en era lity , they both
m ust be or both not be critica l, they m ust satisfy the same conditions of alikeness as procedure modes,
and corresponding (by position) sim ple nam e strings in the form al param eter list and quasi form al
param eter list m ust be the same.

• If they are p ro cess names, then the param eters of their process definitions m ust satisfy the same
conditions of m atching and alikeness as the param eters of p ro ced u re names.

• If they are sign a l names, then they m ust both specify or both not specify TO , their lists of modes m ust
have the same number of modes, and corresponding modes m ust be alike.

If two structure modes are n o v e lty b o u n d in a reach R, then they m ust have the same set of v is ib le field
names in R.

The following rules apply:

• If a nam e string in a reach th a t is not the reach of a spec m odule , spec region or context is b o u n d to
a quasi defining occurrence, then it m ust also be b o u n d to a defining occurrence which is not a quasi
defining occurrence, and further:

— Let a nam e string be b o u n d to a quasi defining occurrence QD and be b o u n d also to a rea l
defining occurrence RD in reach R, then:

1. QD and RD m ust m a tch as defined above, and

2. RD and QD m ust bo th be enclosed in an enclosed group of R or both not be enclosed in
the group of R or, if R is the reach of a m odule or region which is a m o d u le b o d y or
reg ion b o d y , then QD m ust be enclosed in the group of the corresp o n d in g m odule spec
or region spec and RD m ust be enclosed in the group of R.

— If a nam e string in a real reach R is b o u n d to a quasi defining occurrence th a t is enclosed in the
group of R (i.e. surrounded by a spec modulion), then it m ust also be b o u n d to a rea l defining
occurrence th a t is surrounded by the group of a m odule or region th a t are indicated by a rem ote
m odulion directly enclosed in R (informally, if the interface grants, so m ust the im plem entation).
If the quasi defining occurrence is enclosed in the group of a m odule spec or a region spec, then
the real one m ust be enclosed in the group of the co rresp o n d in g modulion.

— If a nam e string in a real reach R is b o u n d to a real defining occurrence th a t is enclosed in the
group of a m odule or region th a t are indicated by a rem ote m odulion directly enclosed in R, then
it m ust also be b o u n d to a q uasi defining occurrence th a t is enclosed into the group of R (i.e.
surrounded by a spec m odulion. Informally, if the im plem entation grants, so m ust the interface).

— For each name string in the reach Q of a spec m odule or spec region directly enclosed in a real
reach R th a t is b o u n d to a defining occurrence not surrounded by Q, there m ust be an identical
name string in the reach of a m odule or region th a t is indicated by a rem ote m odulion directly
enclosed in R th a t is b o u n d to the same defining occurrence (informally, if the interface seizes,
so m ust the im plem entation).

• If two name strings are b o u n d to the same 1. real, 2. quasi defining occurrence in a reach, then both
name strings m ust be b o u n d to the same 1. quasi, 2. real defining occurrence, or bo th not be further
b ou n d .

• A rea l n o v e lty may not be n o v e lty b o u n d to two quasi n o v e lt ie s in any reach.

Let a quasi n o v e lty QN and a rea l n o v e lty RN be n o v e lty b o u n d to each other in a reach R; then
RN and QN m ust both be enclosed in an enclosed group of R or bo th not be enclosed in the group of R,
or if R is the reach of a m odule or region which is a m o d u le b o d y or reg ion b o d y , then RN m ust be
enclosed in the group of R and QN m ust be enclosed in the group of the co rresp o n d in g m odule spec
or region spec.

F ascicle X .6 — R ec . Z200 141

11 CONCURRENT EXECUTION

11.1 P R O C E S S E S A N D T H E I R D E F IN IT IO N S

A process is the sequential execution of a series of statem ents. It may be executed concurrently w ith other
processes. The behaviour of a process is described by a process definition (see section 10.5), th a t describes the
objects local to a process and the series of action statem ents to be executed sequentially.

A process is created by the evaluation of a s ta rt expression (see section 5.2.14). It becomes active (i.e. under
execution) and is considered to be executed concurrently w ith other processes. The created process is an
activation of the definition indicated by the p ro c e s s nam e of the process definition. An unspecified num ber
of processes w ith the same definition may be created and may be executed concurrently. Each process is
uniquely identified by an instance value, yielded as the result of the s ta rt expression or the evaluation of the
T H IS operator. The creation of a process causes the creation of its locally declared locations, except those
declared with the a ttribu te S T A T IC (see section 10.9), and of locally defined values and procedures. The
locally declared locations, values and procedures are said to have the same activation as the created process to
which they belong. The im aginary outerm ost process (see section 10.8), which is the whole CHILL program
under execution, is considered to be created by a s ta rt expression executed by the system under whose control
the program is executing. At the creation of a process, its formal param eters, if present, denote the values and
locations as delivered by the corresponding actual param eters in the sta rt expression.

A process is term inated by the execution of a stop action, by reaching the end of the process body or by
term inating a handler specified a t the end of the process definition (falling through). If the im aginary outerm ost
process executes a stop action or falls through, the term ination will be completed when and only when all other
processes in the program are term inated.

A process is, a t the CHILL program m ing level, always in one of two states: it is either active (i.e. under
execution) or delayed (i.e. waiting for a condition to be fulfilled). The transition from active to delayed is called
the delaying of the process; the transition from delayed to active is called the re-activation of the process.

11 .2 M U T U A L E X C L U S IO N A N D R E G IO N S

11 .2 .1 G e n e ra l

Regions (see section 10.7) are a means of providing processes with m utually exclusive access to locations declared
in them . Static context conditions (see section 11.2.2) are made such th a t accesses by a process (which is not
the im aginary outerm ost process) to locations declared in a region can be m ade only by calling procedures th a t
are defined inside the region and granted by the region.

A p r o c e d u r e name is said to denote a c r i t ic a l procedure (and it is a c r i t ic a l p r o c e d u r e name) if it is defined
inside a region and granted by the region.

A region is said to be free if and only if control lies in none of its c r i t ic a l procedures or in the region itself
perform ing reach-bound initialisations.

The region will be locked (to prevent concurrent execution) if:

• The region is entered (note th a t because regions are not surrounded by a block, no concurrent a ttem pts
can be made to enter the region).

• A c r it ic a l procedure of the region is called.

• A process, delayed in the region, is re-activated.

The region will be released, becoming free again, if:

• The region is left.

• The c r it ic a l procedure returns.

• The c r it ic a l procedure executes an action th a t causes the executing process to become delayed (see
section 11.3). In the case of dynam ically nested c r i t ic a l procedure calls, only the latest locked region
will be released.

• The process executing the c r i t ic a l procedure term inates. In the case of dynam ically nested c r i t ic a l
procedure calls, all the regions locked by the process will be released.

142 Fascicle X .6 - R ec . Z200

If, while the region is locked, a process a ttem p ts to call one of its critica l procedures or a process delayed in
the region is re-activated, the process is suspended until the region is released. (Note th a t the process rem ains
active in the CHILL sense).

W hen a region is released and more than one process has been suspended while a ttem pting to call one of its
cr itica l procedures or to be re-activated in one of its critica l procedures, only one process will be selected to
lock the region according to an im plem entation defined scheduling algorithm .

11 .2 .2 R eg io n a lity

To allow for checking statically th a t a location declared in a region can only be accessed by calling critica l
procedures or by entering the region for perform ing reach-bound initialisations, the following sta tic context
conditions are enforced:

• the reg io n a lity requirements m entioned in the appropriate sections (assignm ent action, procedure call,
send action, result action, etc.);

• in tra -reg io n a l procedures are not g en era l (see section 10.4);

• critica l procedures are neither g en era l nor recu rsive (see section 10.4).

A location and procedure call have a reg io n a lity which is in tra -reg io n a l or ex tra -reg io n a l. A value has a
reg io n a lity which is in tra -reg ion a l or e x tra -reg io n a l or nil. These properties are defined as follows:

1. L ocation

A location is in tra -reg ion a l if and only if any of the following conditions are fulfilled:

• It is an access name th a t is either:

— a location nam e declared textually inside a region or spec region and not defined in a formal
parameter of a cr itica l procedure,

— a loc-identitv nam e, where the location in its declaration is in tra -reg io n a l or th a t is
defined in a formal param eter of an in tra -reg io n a l procedure,

— a location enumeration nam e, where the array location or string location in the associated
do action is in tra -reg io n a l,

— a location do-with nam e, where the structure location in the associated do action is in tra-
regional.

• It is a dereferenced bound reference, where the bound reference prim itive value in it is in tra-
regional.

• It is a dereferenced free reference, where the free reference prim itive value in it is in tra -reg io n a l.

• It is a dereferenced row, where the row prim itive value in it is in tra -reg io n a l.

• It is an array element or array slice, where the array location in it is in tra -reg io n a l.

• It is a string element or string slice, where the string location in it is in tra -reg io n a l.

• It is a structure field, where the structure location in it is in tra -reg io n a l.

• It is a location procedure call, where in the location procedure call a procedure nam e is specified
which is in tra-reg ion al.

• It is a location built-in routine call, th a t the CHILL definition or the im plem entation specifies to
be in tra-region al.

• It is a location conversion, where the static m ode location in it is in tra -reg io n a l.

A location which is not in tra -reg io n a l is ex tra -reg ion a l.

2. V alue

A value has a reg ion a lity depending on its class. If it has the M -derived class or the aU class or the
n u ll class then it has reg io n a lity nil. Otherwise it has the M-value class or the M reference class and
it has a reg io n a lity depending on the mode M as follows:

If the value has the M-value class and M does not have the re feren cin g p r o p er ty then the regionaH ty is
nil; otherwise the value is an operand-6 (and has the referen cin g p ro p erty) or a conditional expression:

Fascicle X .6 — R ec . Z 200 143

If it is a prim itive value then:

• If it is a location contents th a t is a location , then it is th a t of the location.

• If it is a value name, then:

— if it is a synonym nam e then it is th a t of the constant value in its definition;

— if it is a value do-with nam e then it is th a t of the structure prim itive value in the associated
do action;

— if it is a value receive nam e then it is ex tra -reg io n a l.

• If it is a tuple then if one of the value occurrences in it has reg io n a lity not nil, then it is th a t of
th a t value (it does not m atter which choice is m ade, see section 5.2.5 static conditions); otherwise
it is nil.

• If it is a value array element or a value array slice then it is th a t of the array prim itive value in it.

• If it is a value structure Held then it is th a t of the structure prim itive value in it.

• If it is an expression conversion then it is th a t of the expression in it.

• If it is a value procedure call then it is th a t of the procedure call in it.

• If it is a value built-in routine call th a t the CHILL definition or the im plem entation specifies to
be in tra -reg ion a l or ex tra -reg io n a l.

If it is a referenced location then it is th a t of the location in it.

If it is a receive expression then it is ex tra -reg io n a l.

If it is a conditional expression, then if one of the sub expression occurrences in it has reg io n a lity not
nil, then it is th a t of th a t sub expression (it does not m atte r which choice is made, see section 5.3.2
sta tic conditions); otherwise it is nil.

3. P ro ced u re n am e

A procedure nam e is in tra -reg io n a l if and only if it is defined inside a region or spec region and it is
not cr itica l (i.e. not granted by the region). Otherwise it is ex tra -reg io n a l.

4. P r o c e d u r e call

A procedure call is in tra -reg io n a l if it contains a procedure nam e which is in tra-reg ion a l; otherwise
it is ex tra -reg ion a l.

A value is reg ion a lly safe for a non-term inal (used only for location, procedure call and procedure name) if
and only if:

• the non-term inal is ex tra -reg io n a l and the value is not in tra-reg ion al;

• the non-term inal is in tra -reg io n a l and the value is not ex tra -reg ion a l;

• the non-term inal has reg io n a lity nil.

11 .3 D E L A Y IN G O F A P R O C E S S

An active process may become delayed by executing (evaluating) one of the following actions (expressions):

• delay action (see section 6.16),

• delay case action (see section 6.17),

• receive expression (see section 5.3.9),

• receive signal case action (see section 6.19.2),

• receive buifer case action (see section 6.19.3),

• send buffer action (see section 6.18.3).

W hen a process becomes delayed while its control lies w ithin a cr itica l procedure, the associated region will
be released. The dynam ic context of the process is retained until it is re-activated. The process then attem pts
to lock the region again, which may cause it to be suspended.

144 F ascicle X .6 - R ec . Z200

11 .4 R E -A C T IV A T IO N O F A P R O C E S S

A delayed process may become re-activated if it is tim e supervised and a tim e in terrup t occurs (see chapter 9). It
may also become re-activated if another process executes (evaluates) one of the following actions (expressions):

• continue action (see section 6.15),

• send signal action (see section 6.18.2),

• send buffer action (see section 6.18.3),

• receive expression (see section 5.3.9),

• receive buffer case action (see section 6.19.3).

W hen a process, while having locked a region, re-activates another process, it rem ains active, i.e. it will not
release the region a t th a t point.

11 .5 S IG N A L D E F IN IT IO N S T A T E M E N T S

s y n ta x :
<signal definition sta tem ent> ::= (1)

S IG N A L <signal definition> { ,<signal definition> }* ; (1.1,)

<signal definition> ::= (2)
<defining occunence> [= (<m ode> { , <m ode> }*)] [T O < process nam e>] (2.1)

se m a n tic s : A signal definition defines a composing and decomposing function for values to be transm itted
between processes. If a signal is sent, the specified list of values is transm itted . If no process is
waiting for the signal in a receive case action, the values are kept until a process receives the values.

s ta t ic p r o p e r t ie s : A defining occurrence in a signal definition defines a s ig n a l name.

A s ig n a l name has the following properties:

• It has an optional list of modes attached, th a t are the modes m entioned in the signal definition.

• It has an optional p ro c e s s name attached th a t is the process nam e specified after T O .

s ta t ic c o n d itio n s : No m ode in a signal definition may have the n o n -v a lu e p r o p e r ty .

e x a m p le s :
15.27 S IG N A L in itia te = (IN STA N C E),

terminate; (1-1)

F ascicle X .6 — R ec . Z 200 145

12 GENERAL SEMANTIC PROPERTIES

12.1 M O D E R U L E S

1 2 .1 .1 P r o p e r tie s o f m o d es and c lasses

12.1.1.1 Read-only property

In form al

A m ode has the rea d -o n ly p ro p er ty if it is a rea d -o n ly mode or contains a com ponent or a sub-component,
etc. which is a rea d -o n ly mode.

Definition

A mode has the rea d -o n ly p ro p er ty if and only if it is:

• an array mode w ith an e lem en t mode th a t has the rea d -o n ly p rop erty ;

• a structure mode where a t least one of its field modes has the rea d -o n ly p ro p erty , where the field is
not a ta g field w ith an im plicit rea d -o n ly mode of a p a ra m eter ised structure mode;

• a rea d -o n ly mode.

12.1.1.2 Param eterisable modes

In form al

A mode is p a ra m eter isa b le if it can be param eterised.

D efin it io n

A m ode is p a ra m eter isa b le if and only if it is

• a string mode;

• an array mode;

• a p ara m eter isa b le variant structure mode.

12.1.1.3 Referencing property

In form al

A m ode has the re feren cin g p ro p er ty if i t is a reference mode or contains a com ponent or a sub-component,
etc. which is a reference mode.

D efin it io n

A mode has the re feren cin g p ro p er ty if and only if it is:

• a reference mode;

• an array mode w ith an e lem en t mode th a t has the referen cin g p rop erty ;

• a structure mode where a t least one of its fie ld modes has the re feren cin g p ro p erty .

12.1.1.4 Tagged param eterised property

In form al

A m ode has the ta g g e d p a ra m eter ised p ro p er ty if it is a ta g g e d p a ra m eter ised structure mode or contains
a com ponent or a sub-com ponent etc. which is a ta g g ed p a ra m eter ised structure mode.

146 F ascicle X .6 — R ec . Z200

D e fin itio n

A mode has the ta g g e d p a ra m eter ised p ro p erty if and only if it is:

• an array m ode w ith an e lem en t mode which has the ta g g ed p a ra m eter ised p rop erty;

• a structure mode where a t least one of its fie ld modes has the ta g g ed p a ra m eter ised p rop erty ;

• a ta g g e d p a ra m eter ised structure mode.

12.1.1.5 Non-value property

In form al

A mode has the n o n -v a lu e p ro p er ty if no expression or prim itive value denotation exists for the mode.

D efin it io n

A mode has the n o n -v a lu e p ro p er ty if and only if it is:

• an event mode, a buffer mode, an access mode, an association mode or a tex t mode;

• an array m ode with an e lem en t mode th a t has the n on -va lu e p rop erty;

• a structu re m ode where a t least one of its fie ld modes has the n o n -v a lu e p ro p erty .

12.1.1.6 R oot mode

Any mode M has a ro o t mode defined as:

• M, if M is not a range mode;

• the p a ren t mode of M, if M is a range mode.

Any M-value class or M-derived class has a root mode which is the root mode of M.

12.1.1.7 Resulting class

Given two c o m p a tib le classes (see section 12.1.2.16), which are either the all class, an M-value class or an
M-derived class, where M is either a discrete mode, a powerset mode or a string mode, the re su ltin g class is
defined in term s of the notion of resu ltin g mode R of M and N and the ro o t m ode P of M.

Given two sim ilar modes M and N, the resu ltin g mode R is defined as:

• if the ro o t mode of one is a fixed string mode and the other one is a vary in g string mode, then it is
the ro o t mode of the one (between M and N) whose root mode is a vary in g string mode;

• otherwise it is P.

The resu ltin g class is defined as:

• the r e su ltin g class of the M-value class and the N-value class is the R-value class;

• the r e su ltin g class of the M-value class and the N-derived class or the all class is the P-value class;

• the r e su ltin g class of the M-derived class and the N-derived class is the R-derived class;

• the r e su ltin g class of the M-derived class and the all class is the P-derived class;

• the r e su ltin g class of the all class and the all class is the all class.

Given a list C* of pairwise co m p a tib le classes (i = l , . . . ,n), the resu ltin g class of the list of classes is recursively
defined as the r e su ltin g class of the resu ltin g class of the list C* (i = l , . . - ,n - l) and the class Cn if n > 1;
otherwise as the r e su ltin g class of Ci and C i .

F ascicle X .6 — R ec . Z200 147

1 2 .1 .2 R e la tio n s on m o d es and c lasses

12.1.2.1 General

In the following sections, the com patibility relations are defined between modes, between classes, and between
modes and classes. These relations are used throughout the document to define sta tic conditions.

The com patibility relations themselves are defined in term s of other relations which are m ainly used in this
chapter for the above m entioned purpose.

12.1.2.2 Equivalence relations on modes

I n fo rm a l

The following equivalence relations play a role in the form ulation of the com patibility relations:

• Two modes are s im ila r if they are of the same kind; i.e. they have the same hereditary properties.

• Two modes are v -e q u iv a le n t (value-equivalent) if they are s im ila r and also have the same n o v e lty .

• Two modes are e q u iv a le n t if they are v -e q u iv a le n t and also possible differences in value representation
in storage or m inim um storage size are taken into account.

• Two modes are 1 -eq u iv a len t (location-equivalent) if they are e q u iv a le n t and also have the same r e a d
o n ly specification.

• Two modes are a lik e if they are indistinguishable; i.e. if all operations th a t can be applied to objects
of one of the modes can be applied to the other one as well, provided th a t n o v e lty is not taken into
account.

• Two modes are n o v e lty b o u n d if they are a lik e and have equal n o v e lty specification.

D e f in it io n

In the following sections, the equivalence relations on modes are given in the form of a (partial) set of relations.
The full equivalence algorithm s are obtained by taking the symmetric, reflexive and transitive closure of this
set of relations. The modes m entioned in the relations may be virtually introduced or dynam ic. In the la tte r
case, the com plete equivalence check can only be perform ed a t run time. Check failure of the dynam ic p a rt will
result in the R A N G E F A IL or TAG FAIL exception (see appropriate sections).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding
paths of the set of recursive modes by which they are defined. Equivalence between the modes holds if no
contradiction is found. (As a consequence, a p a th of the checking algorithm stops successfully if two modes
which have been com pared before, are com pared).

12.1.2.3 The relation similar

Two modes are s im ila r if and only if:

• they are integer modes;

• they are boolean modes;

• they are character modes;

• they are set modes such tha t:

1. they define the same n u m b e r o f v a lues;

2. for each se t e le m e n t nam e defined by one mode there is a s e t e le m e n t nam e defined by the
other mode which has the same nam e string and the same representation value;

3. they bo th are n u m b e r e d set modes or bo th are u n n u m b e re d set modes.

• they are range modes w ith s im ila r p a r e n t modes;

• one is a range mode whose p a r e n t mode is s im ila r to the other mode;

• they are powerset modes such th a t their m e m b e r modes are e q u iv a le n t;

• they are bound reference modes such th a t their r e fe re n c e d modes are e q u iv a le n t;

148 F ascicle X .6 — R ec . Z200

• they are free reference modes;

• they are row modes such th a t their r e fe re n c e d o r ig in modes are e q u iv a le n t;

• they are procedure modes such tha t:

1. they have the same number of p a r a m e te r sp ecs and corresponding (by position) p a r a m e te r
sp ecs have 1 -eq u iv a len t modes and the same param eter a ttribu tes, if present;

2. they both have or both do not have a r e s u l t spec . If present, the r e s u l t sp e c s m ust have
1 -eq u iv a len t modes and the same a ttribu tes, if present;

3. they have the same list of e x c e p t io n names;

4. they have the same re c u rs iv i ty ;

• they are instance modes;

• they are event modes such th a t they both have no e v e n t le n g th or both have the same e v e n t le n g th ;

• they are buffer modes such that:

1. they bo th have no b u ffe r l e n g th or both have the same b u ffe r le n g th ;

2. they have 1 -eq u iv a len t b u ffe r e le m e n t modes;

• they are association modes;

• they are access modes such that:

1. they both have no in d e x mode or both have in d e x modes which are e q u iv a le n t;

2. a t least one has no re c o rd mode, or both have re c o rd modes th a t are 1 -eq u iv a len t and th a t
are bo th s ta t ic r e c o rd modes or bo th d y n a m ic re c o rd modes;

• they are tex t modes such that:

1. they have the same te x t le n g th ;

2. they have 1 -eq u iv a len t t e x t r e c o rd modes;

3. they have 1 -eq u iv a len t access modes;

• they are duration modes;

• they are absolute tim e modes;

• they are string modes such th a t they are both b i t string modes or both are c h a r a c te r string modes;

• they are array modes such that:

1. their in d e x modes are v -e q u iv a le n t;

2. their e le m e n t modes are e q u iv a le n t;

3. their e le m e n t la y o u ts are e q u iv a le n t;

4. they have the same n u m b e r o f e le m e n ts . This check is dynam ic if one or bo th modes is (are)
dynam ic. Check failure will result in the RAN G EFAIL exception;

• they are structure modes which are not p a r a m e te r is e d structure modes such tha t:

1. in the strict syntax, they have the same number of fields and corresponding (by position) fields
are e q u iv a le n t;

2. if they are both p a r a m e te r is a b le v a r ia n t structure modes, their lists of classes m ust be c o m
p a tib le ;

• they are p a r a m e te r i s e d structure modes such that:

1. their o r ig in v a r ia n t structure modes are s im ila r;

2. their corresponding (by position) values are the same. This check is dynam ic if one or bo th modes
is (are) dynam ic. Check failure will result in the TAGFAIL exception.

12.1.2.4 The relation v-equivalent

Two modes are v -e q u iv a le n t if and only if they are s im ila r and have the same n o v e lty .

12.1.2.5 The relation equivalent

Two modes are e q u iv a le n t if and only if they are v -e q u iv a le n t and:

• if one is a range mode, the other m ust also be a range mode and both u p p e r b o u n d s m ust be equal
and both lo w er b o u n d s m ust be equal;

Fascicle X .6 - R ec . Z200 149

• if one is a f ix e d string mode, the other one m ust also be a f ix e d string mode, and they m ust have the
same s t r in g le n g th . This check is dynam ic in the case th a t one or both modes is (are) dynamic. Check
failure will result in the R A N G E F A IL exception;

• if one is a v a ry in g string mode, the other one m ust also be a v a ry in g string mode, and they m ust have
the same s t r in g le n g th . This check is dynam ic in the case th a t one or bo th modes is (are) dynamic.
Check failure will result in the R A N G E F A IL exception.

12.1.2.6 The relation 1-equivalent

Two modes are 1 -eq u iv a len t if and only if they are e q u iv a le n t and if one is a r e a d -o n ly mode, the other
must also be a r e a d -o n ly mode, and:

• if they are bound reference modes, their r e f e r e n c e d modes m ust be 1 -equ iv a len t;

• if they are row modes, their r e f e r e n c e d o r ig in modes m ust be 1 -equ iva len t;

• if they are array modes, their e le m e n t modes m ust be 1 -equ iv a len t;

• if they are structure modes which are not p a r a m e te r i s e d structure modes, corresponding (by position)
fields in the strict syntax m ust be 1 -eq u iv a len t; if they are p a r a m e te r i s e d structure modes, their
o rig in v a r ia n t structure modes m ust be 1 -eq u iv a len t.

12.1.2.7 The relations equivalent and 1-equivalent for fields

Two fields (both fields in the context of two given structure modes) are 1. e q u iv a le n t, 2. 1 -eq u iv a len t if and
only if both fields are fixed fields which are 1. e q u iv a le n t, 2. 1 -eq u iv a len t or both are alternative fields which
are 1. e q u iv a le n t, 2. 1 -eq u iv a len t.
The relations e q u iv a le n t and 1 -eq u iv a len t are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

• Fixed fields and variant fields

1. B oth fixed fields or variant fields m ust have e q u iv a le n t f ie ld la y o u t.

2. Both f ie ld modes m ust be 1. e q u iv a le n t, 2. 1 -eq u iv a len t.

• Alternative fields

1. B oth a lternative fields have tag lists or bo th have no tag lists. In the former case, the tag lists
m ust have the same num ber of t a g f ie ld names and corresponding (by position) ta g f ie ld names
m ust denote corresponding fixed fields.

2. Both m ust have the same num ber of variant alternatives and corresponding (by position) variant
alternatives m ust be 1. e q u iv a le n t, 2. 1 -eq u iv a len t.

3. Both m ust have no E L S E specified or bo th m ust have E L S E specified. In the la tte r case, the
same num ber of variant fields m ust follow and corresponding (by position) variant fields m ust be
1. e q u iv a le n t, 2. 1 -eq u iv a len t.

• Variant alternatives

1. Both variant alternatives m ust have the same num ber of case label lists and corresponding (by
position) case label lists m ust either be bo th irrelevant, or both define the same set of values.

2. B oth variant alternatives m ust have the same num ber of variant fields and corresponding (by
position) variant fields m ust be 1. e q u iv a le n t, 2. 1 -eq u iv a len t.

12.1.2.8 The relation equivalent for layout

In the rest of the section, it will be assumed th a t each pos is of the form:

P O S (< num ber> ,< start b it> ,< length>)

and th a t each step is of the form:

S T E P (< pos> ,< step size>)

Section 3.12.5 gives the appropriate rules to bring pos or step in the required form.

• Field layout

Two fie ld la y o u ts are e q u iv a le n t if they are bo th N O P A C K , or both P A C K , or bo th pos. In the
la tter case the one pos m ust be e q u iv a le n t to the other one (see below).

150 F ascicle X .6 — R ec . Z200

• Element layout

Two e le m e n t la y o u ts are e q u iv a le n t if they are bo th N O P A C K , both P A C K , or both step. In the
la tte r case the pos in the one step m ust be e q u iv a le n t to the pos in the other one (see below) and step
size m ust deliver the same values for the two e le m e n t la y o u ts .

• Pos

A pos is e q u iv a le n t to another pos if and only if bo th word occurrences deliver the same value, both
start bit occurrences deliver the same value and bo th length occurrences deliver the same value.

12.1.2.9 The relation alike

Two modes are a lik e if and only if they both are or bo th are not r e a d -o n ly modes and they both have n o v e lty
n il or bo th have the same n o v e lty and:

• they are integer modes;

• they are boolean modes;

• they are character modes;

• they are s im ila r set modes;

• they are range modes w ith equal u p p e r b o u n d s and equal lo w e r b o u n d s ;

• they are powerset modes such th a t their m e m b e r modes are alike;

• they are bound reference modes such th a t their r e f e r e n c e d modes are alike;

• they are free reference modes;
I

• they are row modes such th a t their r e f e re n c e d o r ig in modes are alike;

• they are procedure modes such tha t:

1. they have the same num ber, of p a r a m e te r sp e c s and corresponding (by position) p a r a m e te r
sp ecs have a lik e modes and the same param eter a ttribu tes, if present;

2. they both have or both do not have a r e s u l t sp ec . If present, the r e s u l t sp ecs m ust have a lik e
modes and the same attribu tes, if present;

3. they have the same list of e x c e p t io n names;

4. they have the same re c u rs iv i ty ;

• they are instance modes;

• they are event modes such th a t they both have no e v e n t l e n g th or both have the same e v e n t le n g th ;

• they are buffer modes such tha t:

1. they both have no b u ffe r le n g th or bo th have the same b u ffe r le n g th ;

2. they have b u ffe r e le m e n t modes which are a like;

• they are association modes;

• they are access modes such tha t:

1. they both have no in d e x mode or bo th have in d e x modes th a t are alike;

2. at least one has no r e c o r d mode or bo th have r e c o rd modes th a t are a lik e and th a t are both
s ta t ic r e c o rd modes or both d y n a m ic r e c o r d modes;

• they are text modes such that:

1. they have the same te x t le n g th ;

2. their t e x t r e c o rd modes are a like;

3. their access modes are a like;

• they are duration modes;

• they are absolute time modes;

F ascicle X .6 — R ec . Z200 151

• they are string inodes such that:

1. they both are b i t string modes or both are c h a r a c te r string modes;

2. they have the same s t r in g le n g th ;

3. they both are fix e d string modes or bo th are v a ry in g string modes;

• they are array modes such tha t:

1. their in d e x modes are alike;

2. their e le m e n t modes are alike;

3. their e le m e n t la y o u ts are e q u iv a le n t;

4. they have the same n u m b e r o f e le m e n ts ;

• they are structure modes th a t are not p a r a m e te r i s e d structure modes such tha t:

1. in the strict syntax they have the same num ber of Helds and corresponding (by position) Helds
are alike;

2. if they are both p a r a m e te r is a b le v a r ia n t structure modes, their lists of classes m ust be c o m
p a tib le ;

• they are p a r a m e te r is e d structure modes such tha t:

1. their o r ig in v a r ia n t structure modes are a like;

2. their corresponding (by position) values are the same.

12.1.2.10 The relation alike for fields

Two Helds (both Helds in the context of two given structure modes) are a lik e if and only if bo th Helds are Hxed
Helds which are a like or bo th are alternative Helds which are a like .

The relation a like is recursively defined for corresponding Hxed Helds, variant Helds, alternative Helds and
variant alternatives, respectively, in the following way:

• Fixed Helds and variant Helds

1. Both Hxed Helds or variant Helds m ust have e q u iv a le n t f ie ld la y o u t.

2. Both fie ld modes m ust be alike.

3. Both Hxed Helds or variant Helds m ust have the same nam e string attached.

• A lternative Helds

1. Both alternative Helds have tag lists or bo th have no tag lists. In the former case, the tag lists
m ust have the same num ber of ta g fie ld names and corresponding (by position) ta g fie ld names
m ust denote corresponding Hxed Helds.

2. Both must have the same num ber of variant alternatives and corresponding (by position) variant
alternatives m ust be alike.

3. Both must have no E L S E specified or bo th m ust have E L S E specified. In the la tte r case, the
same number of variant Helds m ust follow and corresponding (by position) variant Helds m ust be
alike.

• Variant alternatives

1. Both variant alternatives m ust have the same num ber of case label lists and corresponding (by
position) case label lists m ust either be both irrelevant, or bo th define the same set of values.

2. Both variant alternatives m ust have the same num ber of variant Helds and corresponding (by
position) variant Helds m ust be a like .

12.1.2.11 The relation novelty bound

In fo rm a l
In a program , each q u a s i newmode m ust represent a t m ost one re a l newmode. This is established as follows:
when a name string is b o u n d to both a r e a l and a q u a s i deHning occurrence all the newmodes involved are
paired. The relation n o v e lty b o u n d is then established between n o v e ltie s .

152 Fascicle X .6 — R ec . Z200

D e f in it io n '

The relation n o v e lty p a i r e d applies between two modes and a reach. For each nam e string b o u n d in a reach
R to bo th a r e a l and a q u a s i defining occurrence:

• if they are s y n o n y m names, then the r o o t modes of their classes are n o v e lty p a i r e d in R;

• if they are s e t e le m e n t names, then the modes of the attached se t modes are n o v e lty p a i r e d in R;

• if they are lo c a tio n or lo c - id e n t i ty names, then their location modes are n o v e lty p a i r e d in R;

• if they are p ro c e d u r e names, then the modes of the p a r a m e te r sp e c s and r e s u l t sp e c , if present, are
n o v e lty p a i r e d in R;

• if they are p ro c e s s names, then the modes of the p a r a m e te r sp e c s are n o v e lty p a i r e d in R;

• if they are s ig n a l names, then the modes in the list of modes are n o v e lty p a i r e d in R.

If two modes are n o v e lty p a i r e d in a reach R, then:

• if they are powerset modes, their m e m b e r modes are n o v e lty p a i r e d in R;

• if they are bound reference modes, their r e f e re n c e d modes are n o v e lty p a i r e d in R;

• if they are row modes, their r e f e re n c e d o r ig in modes are n o v e lty p a i r e d in R;

• if they are procedure modes, the modes of their p a r a m e te r sp e c s and r e s u l t sp e c , if present, are
n o v e lty p a i r e d in R;

• if they are buffer modes, their b u ffe r e le m e n t modes are n o v e lty p a i r e d in R;

• if they are access modes, their in d e x modes, if present, and r e c o r d modes, if present, are n o v e lty
p a i r e d in R;

• if they are text modes, their in d e x modes, if present, are n o v e lty p a i r e d in R;

• if they are array modes, their in d e x modes and e le m e n t modes are n o v e lty p a i r e d in R;

• if they are structure modes, their fie ld modes are n o v e lty p a i r e d in R.

If two modes are n o v e lty p a i r e d in a reach R and their n o v e ltie s are not equal, then the r e a l and q u a s i
n o v e ltie s of the modes are n o v e lty b o u n d to each other in R.

Two n o v e ltie s are considered the same if they are:

• the same r e a l n o v e lty , or

• a r e a l n o v e lty and a q u a s i n o v e lty th a t are n o v e lty b o u n d .

12.1.2.12 The relation read-com patible

I n fo rm a l

The relation r e a d -c o m p a tib le is relevant for e q u iv a le n t modes. A mode M is said to be re a d -c o m p a t ib le
w ith a mode N if it or its possible (sub-)com ponents have equal or more restrictive r e a d -o n ly specifications
and, if they are reference modes, refer to 1 -eq u iv a len t locations. This relation is therefore non-sym m etric.

Example:

R E A D R E F R E A D C H A R is r e a d -c o m p a tib le with R E F R E A D C H A R

D e f in it io n

A mode M is said to be re a d -c o m p a t ib le w ith a mode N (a non-sym m etric relation) if and only if M and N
are e q u iv a le n t and, if N is a r e a d -o n ly mode, then M m ust also be a r e a d -o n ly m ode and further:

• if M and N are bound reference modes, the r e f e r e n c e d mode of M m ust be 1 -eq u iv a len t w ith the
r e f e r e n c e d mode of N;

• if M and N are row modes, the r e f e re n c e d o r ig in m ode of M m ust be 1 -eq u iv a len t w ith the r e fe re n c e d
o r ig in m ode of N;

F ascicle X .6 — R ec . Z 200 153

• if M and N are array modes, the e le m e n t mode of M m ust be r e a d -c o m p a tib le w ith the e le m e n t
m ode of N;

• if M and N are structure modes which are not p a r a m e te r is e d structure modes, any f ie ld mode of M
m ust be r e a d -c o m p a tib le with the corresponding fie ld mode of N. If M and N are p a r a m e te r i s e d
structure modes, the o r ig in v a r ia n t structure mode of M m ust be r e a d -c o m p a tib le w ith the o r ig in
v a r ia n t structure mode of N.

12.1.2.13 The relations dynam ic equivalent and read-com patible

I n fo rm a l

The relations 1. d y n a m ic e q u iv a le n t, 2. d y n a m ic re a d -c o m p a tib le , are relevant only for modes th a t can
be dynam ic, i.e. string, array and v a r ia n t structure modes. A p a r a m e te r i s a b le mode M is said to be 1.
d y n a m ic e q u iv a le n t, 2. d y n a m ic r e a d -c o m p a tib le w ith a (possibly dynam ic) mode N, if there exists a
dynam ically param eterised version of M which is 1. e q u iv a le n t, 2. r e a d -c o m p a tib le w ith N.

D e f in it io n

A mode M is 1. d y n a m ic e q u iv a le n t to a mode N, 2. d y n a m ic r e a d -c o m p a tib le w ith a mode N (a non-
sym m etric relation) if and only if one of the following holds:

• M and N are string modes such th a t M(p) is 1. e q u iv a le n t, 2. r e a d -c o m p a tib le w ith N, where p is the
(possibly dynamic) length of N. The value p must not be greater than the s t r in g le n g th of M. This
check is dynam ic if N is a dynamic mode. Check failure will result in a R A N G E F A IL exception;

• M and N are array modes such th a t M(p) is 1. e q u iv a le n t, 2. r e a d -c o m p a tib le w ith N, where p is such
th a t N U M (p) — L O W E R (M) -f 1 is the (possibly dynam ic) n u m b e r o f e le m e n ts of N. The value p
m ust not be greater than the u p p e r b o u n d of M. This check is dynam ic if N is a dynam ic mode. Check
failure will result in a R A N G E F A IL exception;

• M is a p a r a m e te r is a b le v a r ia n t structure mode and N is a p a r a m e te r i s e d structure mode such th a t
M (p i , . . . , Pn) is 1. e q u iv a le n t, 2. r e a d -c o m p a tib le w ith N, where p i , . . . ,p n denote the list of values
of N.

12.1.2.14 The relation restrictable

I n fo rm a l

The relation r e s t r ic ta b le is relevant for e q u iv a le n t modes w ith the r e fe re n c in g p r o p e r ty . A mode M is
said to be r e s t r ic ta b le to a mode N if it or its possible (sub-)components refer to locations w ith equal or more
restrictive r e a d -o n ly specification than those referenced by N. This relation is therefore non-sym m etric.

Exam ple:

R E F R E A D IN T is r e s t r ic ta b le to R E F IN T
S T R U C T (P R E F R E A D BO O L) is r e s t r ic ta b le to S T R U C T (Q R E F BO O L)

D e f in it io n

A mode M is r e s t r ic ta b le to a mode N (a non-symmetric relation) if and only if M and N are e q u iv a le n t and
further:

• if M and N are bound reference modes, the r e fe re n c e d mode of M m ust be r e a d -c o m p a tib le with the
r e f e r e n c e d mode of N;

• if M and N are row modes, the r e fe re n c e d o rig in mode of M m ust be r e a d -c o m p a t ib le w ith the
r e f e r e n c e d o r ig in mode of N;

• if M and N are array modes, the e le m e n t mode of M m ust be r e s t r ic ta b le to the e le m e n t mode of N;

• if M and N are structure modes, each fie ld mode of M m ust be r e s t r ic ta b le to the corresponding fie ld
m ode of N.

154 Fascicle X .6 - R ec . Z200

12.1.2.15 C om patibility between a mode and a class

• Any m ode M is co m p a tib le w ith the all class.

• A mode M is c o m p a tib le w ith the n u ll class if and only if M is a reference mode or a procedure mode
or an instance mode.

• A mode M is c o m p a tib le w ith the N-reference class if and only if it is a reference m ode and one of the
following conditions is fulfilled:

1. N is a sta tic mode and M is a bound reference mode whose r e f e re n c e d mode is r e a d - c o m p a t ib le
with N;

2. N is a static mode and M is a free reference mode;

3. M is a row mode whose re fe re n c e d o r ig in mode is d y n a m ic re a d -c o m p a t ib le w ith N.

• A mode M is c o m p a tib le w ith the N-derived class if and only if M and N are s im ila r .

• A mode M is c o m p a tib le w ith the N-value class if and only if one of the following holds:

1. if M does not have the r e fe re n c in g p r o p e r ty , M and N m ust be v -e q u iv a le n t;

2. if M does have the re fe re n c in g p r o p e r ty , M m ust be r e s t r i c t a b le to N.

12.1.2.16 C om patibility between classes

• Any class is c o m p a tib le w ith itself.

• The a ll class is c o m p a tib le w ith any other class.

• The n u ll class is c o m p a tib le w ith any M-reference class.

• The n u ll class is c o m p a tib le w ith the M-derived class or M-value class if and only if M is a reference
mode, procedure mode or instance mode.

• The M-reference class is c o m p a tib le w ith the N-reference class if and only if M and N are e q u iv a le n t.
If M a n d /o r N is (are) a dynam ic mode, the dynam ic part of the equivalence check is ignored, i.e. no
exceptions can occur.

• The M-reference class is c o m p a tib le w ith the N-value class if and only if N is a reference mode and one
of the following conditions is fulfilled:

1. M is a sta tic mode and N is a bound reference mode whose re f e r e n c e d mode is e q u iv a le n t to M.

2. M is a sta tic mode and N is a free reference mode.

3. N is a row mode whose re fe re n c e d o r ig in mode is d y n a m ic e q u iv a le n t w ith M;

• The M-derived class is c o m p a tib le w ith the N-derived class or N-value class if and only if M and N are
s im ila r .

• The M-value class is c o m p a tib le w ith the N-value class if and only if M and N are v -e q u iv a le n t.

Two lists of classes are c o m p a tib le if and only if both lists have the same number of classes and corresponding
(by position) classes are c o m p a tib le .

12.2 V IS IB IL IT Y A N D N A M E B IN D IN G

The definition of visibility and name binding is based on the following terminology:

• nam e string: denotes a term inal string th a t has attached a c a n o n ic a l nam e string (see section 2.7) and
visibility properties;

• name: denotes a sim ple nam e string associated with the defining occurrence th a t has created it (see
section 10.1);

• name: denotes an applied occurrence of a nam e (with a possibly prefixed nam e string).

F ascicle X .6 — R ec . Z 200 155

1 2 .2 .1 D eg rees o f v is ib ility

The binding rules are based on the visibility of nam e strings in the reaches of a program . W ithin a reach, each
nam e string has one of the following four degrees of visibility:

V is ib il i ty P r o p e r t ie s (informal)

d ire c t ly s tro n g ly
v is ib le

N am e string is v is ib le by creation,
granting or seizing or inheritance
from spec to body

in d ir e c t ly s tro n g ly
v is ib le

Name string is predefined or
inherited via block nesting

w eak ly v is ib le Nam e string is im p lie d by a s tro n g ly
v is ib le nam e string

in v is ib le N am e string may not be applied

Table 1. Degrees of visibility

A nam e string is said to be s tro n g ly v is ib le in a reach if it is either d ire c t ly s tro n g ly v is ib le or in d i r e c t ly
s t ro n g ly v is ib le in th a t reach. A nam e string is said to be v is ib le if it is either w eak ly or s t ro n g ly v is ib le ,
in th a t reach. Otherwise the nam e string is said to be in v is ib le in th a t reach. The program structuring
statem ents and visibility statem ents determ ine uniquely to which visibility class each name string belongs.

W hen a nam e string is v is ib le in a reach, it can be d ire c t ly lin k e d to another nam e string in another reach,
or d i r e c t ly l in k e d to a defining occurrence in the program . The rules for d ir e c t lin k a g e are in section 12.2.3.
Notice th a t any application of a rule introduces a new d ire c t lin k ag e for a name string.

Based on d i r e c t lin k ag e , the notion of (not necessarily d ire c t) lin k ag e is defined as follows:

A nam e string N i, v is ib le in reach R i, is said to be l in k e d to nam e string N2 in reach R 2 or to defining
occurrence D, if and only if one of the following conditions holds:

• Ni in R i is d ir e c t ly l in k e d to N2 in R 2 or to D. However, if Nx is d ire c t ly lin k e d to more than
one defining occurrence in R i, then all but one of these defining occurrences are superfluous, and Ni is
l in k e d to an arb itrary one of them in R x.

• Ni in R x is d i r e c t ly l in k e d to some N in some R, and N in R is lin k e d to N2 in R 2 or to D.

12 .2 .2 V is ib ili ty c o n d it io n s a n d n a m e b in d in g

In each reach of a program , the following conditions m ust be satisfied:

• If a nam e string is s t ro n g ly v is ib le in a reach and has more than one d ire c t lin k ag e , then:

— it m ust be d ir e c t ly l in k e d to defining occurrences only, and these defining occurrences m ust
define the same set elements of set modes th a t are s im ila r, or

— it m ust be l in k e d to exactly one reed defining occurrence and one q u a s i defining occurrence.

A nam e string w eak ly v is ib le in a reach, and lin k e d as a w eak ly v is ib le name string in th a t reach to defining
occurrences th a t do not define the same set element of s im ila r set modes, is said to have a w eak c la sh in th a t
reach.

156 F ascicle X .6 - R ec . Z200

A nam e string NS, v is ib le in reach R, is said to be b o u n d in R to several defining occurrences according to
the following rules:

• If NS is s t ro n g ly v is ib le in R, NS is b o u n d to the defining occurrences to which it is l in k e d in R
(as a s tro n g ly v is ib le nam e string). If it is b o u n d both to a q u a s i dedining occurrence and a r e a l
defining occurrence, then the q u a s i one is redundant and does not participate further to visibility and
name binding (i.e. it is not seized, granted, inherited and does not introduce im p lie d names);

• else, if NS is w eak ly v is ib le in R, it is b o u n d to the defining occurrences to which it is l in k e d in R
(as a w eak ly v is ib le name string), provided NS has no w eak c la sh in R. (W eak c la sh es are allowed
in a reach if no nam e w ith a nam e string w ith a w eak c la sh exists in the reach);

• otherwise NS is not b o u n d in R.

s ta t ic c o n d itio n : The nam e s tring attached to each nam e directly enclosed in a reach m ust be b o u n d in
th a t reach.

>

b in d in g o f n a m e s : A nam e N w ith attached nam e string NS in a reach R is b o u n d to the defining occurrences
to which NS is b o u n d in R.

12 .2 .3 V is ib ility in r e a c h e s

12.2.3.1 General

A name string is d ir e c t ly s t ro n g ly v is ib le in a reach according to the following rules:

• the name string is seized into the reach (see 12.2.3.5);

• the name string is granted in to the reach (see 12.2.3.4);
(

• there is a defining occurrence w ith th a t name string in the reach. In th a t case, the nam e string in the
reach is d ire c t ly l in k e d to the defining occurrence. (Note th a t the nam e s tring may be d ire c t ly l in k e d
to several defining occurrences in the reach.)

• The reach is a 1. m odule body, 2. region body and the nam e string is d ir e c t ly s tro n g ly v is ib le in the
reach of a c o r re s p o n d in g 1. spec m odule, 2. spec region. The nam e string is d ir e c t ly lin k e d to the
name string in the corresponding reach.

A nam e string which is not d ir e c t ly s t ro n g ly v is ib le in a reach is in d ir e c t ly s t ro n g ly v is ib le in it according
to the following rules:

• The reach is a block, and the nam e string is s t ro n g ly v is ib le in the directly enclosing reach. The nam e
string is said to be inherited by the block, and is d ire c t ly lin k e d to the same nam e string in the directly
enclosing reach.

• The reach is not a block in which the name string is inherited and the nam e string is a language (see
Appendix C.2) or im plem entation defined nam e string. The name string is considered to be d ire c t ly
l in k e d to a defining occurrence in the reach of the im aginary outerm ost process definition for its prede
fined meaning.

A nam e string which is not s t ro n g ly v is ib le in a reach is w eak ly v is ib le in it if it is im p lie d by a nam e
string which is s tro n g ly v is ib le in the reach. The nam e string in the reach is d ir e c t ly l in k e d to an im p lie d
defining occurrence (see section 12.2.4).

F ascicle X .6 — R ec . Z200 157

12.2.3.2 Visibility statements

s y n ta x :
< visibility sta tem ent> (1)

<grant sta tem ent> (i - l j
| <seize sta tem ent> (1-2)

se m a n tic s : Visibility statem ents are only allowed in m odulion reaches and control the visibility of the name
strings mentioned in them and im plicitly of their im p lie d nam e strings.

s ta t i c p r o p e r t ie s : A visibility sta tem ent has one or two o r ig in reaches (see 10.2) and one or two d e s t in a t io n
reaches attached, defined as follows:

• If the visibility s ta tem en t is a seize s ta tem en t, its d e s t in a t io n reach is the reach directly
enclosing the seize sta tem ent, and its o r ig in reaches are the reaches directly enclosing th a t
reach.

• If the visibility s ta tem en t is a grant sta tem ent, then its o r ig in reach is the reach directly
enclosing the grant sta tem ent, and its d e s t in a t io n reaches are the reaches directly enclosing
th a t reach.

12.2.3.3 Prefix rename clause

s y n ta x :
<prefix rename clause> ::= (1)

(<old prefix> -> <new prefix>) ! < postfix> (1.1)

<old prelix> ::= (2)
<prefix> (2.1)

| < em pty > (2.2)

<new prefix> ::= (3)
<prefix> (3.1)

| < em pty> (3.2)

<postfix> ::= (4)
<seize postfix> { , <seize postfix> }* (4.1)

| <grant postfix> { , <grant postfix> }* (4.2)

d e r iv e d s y n ta x : A prefix rename clause where the postfix consists of more th an one seize postfix (grant
p o stfix) is derived syntax for several prefix rename clauses, one for each seize postfix (grant postfix),
separated by commas, with the same old prefix and new prefix.

For example:

G R A N T (p -> q) ! a , b ;

is derived syntax for

G R A N T (p -> q) ! a , (p -> q) ! b ;

se m a n tic s : Prefix rename clauses are used in visibility statem ents to express change of prefix in prefixed
nam e strings th a t are granted or seized. (Since prefix rename clauses can be used w ithout prefix
changes— when both the old prefix and the new prefix are em pty— they are taken as the semantic
base for visibility statem ents).

158 Fascicle X .6 — R ec . Z200

s ta t ic p r o p e r t ie s : A prefix rename clause has one or two o r ig in reaches attached, which are the o r ig in
reaches of the visibility statem ent in which it is w ritten.

A prefix rename clause has one or two d e s t in a t io n reaches attached, which are the d e s t in a t io n
reaches of the visibility sta tem ent in which it is w ritten.

A postfix has a set of nam e strings attached, which is the set of nam e strings a ttached to its seize
postfix or the set of nam e strings attached to its grant postfix . These nam e strings are the postfix
nam e strings of the prefix rename clause.

A prefix rename clause has a set of o ld nam e strings and a set of n e w nam e strings a ttached. Each
postfix name string attached to the prefix rename clause gives bo th an o ld nam e string and a n e w
nam e string attached to the prefix rename clause, as follows: the n e w name string is obtained by
prefixing the postfix nam e string with the new prefix; the o ld nam e string is obtained by prefixing
the postfix nam e string w ith the old prefix.

W hen a n e w nam e string and an o ld nam e string are obtained from the same postfix nam e string,
the o ld name string is said to be the source of the n e w nam e string.

v is ib il i ty ru le s : The n e w nam e strings attached to a prefix rename clause are s t ro n g ly v is ib le in their
d e s t in a t io n reaches and are d ire c t ly lin k e d in those reaches to their sources in the o r ig in reaches.
If the prefix rename clause is part of a seize (grant) sta tem ent, those nam e strings are seized (granted)
in their d e s t in a t io n reach (reaches).

A name string NS is said to be se izab le by m odulion M directly enclosed in reach R if and only if
it is s tro n g ly v is ib le in R and it is neither l in k e d in R to any nam e string in the reach of M nor
d ir e c t ly lin k e d to the defining occurrence of a predefined nam e string.

A name string NS is said to be g ra n ta b le by m odulion M directly enclosed in reach R if and only
if it is s tro n g ly v is ib le in the reach of M and it is neither l in k e d in it to any nam e string in R nor
d ire c t ly lin k e d in it to the defining occurrence of a predefined nam e string . '

s t a t ic c o n d itio n s : If a prefix rename clause is in a seize sta tem ent directly enclosed in the reach of m odulion
M then each of its o ld name strings m ust be:

• b o u n d in the reach directly enclosing the reach of M and

• se izab le by M.

If a prefix rename clause is in a grant sta tem ent directly enclosed in the reach of m odulion M then
each of its o ld nam e strings must be:

• b o u n d in the reach of M and

• g ra n ta b le by M.

A prefix rename clause th a t occurs in a grant (seize) sta tem en t m ust have a p ostfix th a t is a grant
(seize) postfix.

e x a m p le s :
25.35 (stack ! in t - > stack)! A L L (l - l)

12.2.3.4 G rant statem ent

s y n ta x :
<grant sta tem ent> (1)

G R A N T <prefix rename clause> { , <prefix rename clause> }* ; (1-1)
| G R A N T <grant window> [<prefix clause>] ; (1-2)

F ascicle X .6 — R ec . Z200 159

<grant window> ::= (2)
<grant postfix> { , <grant postfix> }* (2-1)

<grant postfix> ::= (3)
<name string> (2-1)

I <newm ode nam e string> <forbid clause> (3-2)
I [<prefix> !] A L L (3.3)

<prefix clause> ::= ■ (4)
P R E F IX E D [<prefix>] (4.1)

<forbid clause> ::= (5)
F O R B ID { <forbid name list> | A L L } (5-1)

< for bid name list> ::= . (6)
(<field nam e> { , <field nam e> }*) (6.1)

sem an tics: G rant statem ents are a means of extending the visibility of nam e strings in a m odulion reach
into the directly enclosing reaches. F O R B ID can be specified only for n e w m o d e names which
are structure modes. It means th a t all locations and values of th a t mode have fields which may be
selected only inside the granting modulion, not outside.

The following visibility rules apply:

• If the grant sta tem ent contains prefix rename clause(s), the grant sta tem ent has the effect of
its prefix rename clause(s) (see section 12.2.3.3).

• If the grant sta tem ent contains grant windows, i t is shorthand notation for a set of grant
sta tem ents w ith prefix rename clauses constructed as follows:

— For each g ran t postfix in the grant window, there is a corresponding grant sta tem ent.

— The old prefix in their prefix rename clause is em pty.

— The new prefix in their prefix rename clause is the prefix a ttached to the prefix clause
in the grant statem ent, or it is em pty if there is no prefix clause in the original grant
sta tem ent.

— The postfix in the prefix rename clause is the corresponding postfix in the grant
window.

• The notation F O R B ID A L L is shorthand no tation for forbidding all the field names of the
n ew m o d e name (see section 12.2.5).

• If a prefix rename clause in a grant sta tem ent has a grant postfix which contains a prefix and
A L L , then it is of the form:

(O P -> N P) ! P ! A LL

where OP and N P are the possibly em pty old prefix and new prefix, respectively, and P is
the prefix in the grant postfix. The prefix rename clause is then shorthand notation for a
clause of the form:

(O P ! P -> N P ! P) ,! A L L

s ta t ic p ro p ertie s: A prefix clause has a prefix attached, defined as follows:

• If the prefix clause contains a prefix, then th a t prefix is attached.

• Otherwise the attached prefix is a sim ple prefix whose nam e string is determ ined as follows:

— If the reach directly enclosing the prefix is a m odule or region, then the nam e string
is the same as the one of the m odulion nam e of th a t modulion.

— If the reach directly enclosing the prefix is a spec region or spec m odule, then the
nam e string is the name string in front of S P E C .

160 F ascicle X .6 - R ec . Z200

A grant postfix has a set of nam e strings attached, defined as follows:

• If it is a nam e strin g , or contains a newmode nam e string, then the set containing only th a t
nam e string.

• Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clause in which the
grant postfix is placed, the set contains all nam e strings of the form OP ! N (i.e. obtained by
prefixing N w ith OP) for any nam e string N such th a t OP ! N is s t ro n g ly v is ib le in the
reach of the m odulion in which the grant postfix is placed and g r a n ta b le by this m odulion.

s ta t i c c o n d it io n s : The newm ode nam e string w ith forbid clause m ust be s t ro n g ly v is ib le in the reach R of
the m odulion in which the grant statem ent is placed. The newm ode nam e string m ust be b o u n d
in R to the defining occurrence of a newmode which m ust be a structure mode, and each field nam e
in the Held name list m ust be a field name of th a t mode. The newmode defining occurrence m ust
be directly enclosed in R. All f ie ld names in a forbid nam e list m ust have different nam e strings.

If the grant sta tem ent is placed in the reach of a region or spec region, it m ust not g rant a nam e
string which is b o u n d in th a t reach to the defining occurrence of:

• a lo c a tio n name, or

• a lo c - id e n t i ty name, where the location in its declaration is in tr a - r e g io n a l , or

• a sy n o n y m nam e whose value is in tra - re g io n a l .

The prefix rename clause in a grant sta tem ent m ust have a grant postfix .

If a grant sta tem ent contains a prefix clause which does not contain a prefix, then its directly
enclosing modulion m ust not be a context and,

• if its directly enclosing m odulion is a module or region, then it m ust be nam ed (i.e. it m ust
be headed by a defining occurrence followed by a colon);

• if its directly enclosing m odulion is a spec m odule or a spec region, then it m ust be headed
by a simple nam e string.

e x a m p le s :
25.7 G R A N T (-> stack ! char) I A L L ; (1.1)
6.44 gregorian-date, Ju lia n -d a y-n u m b er (2-1)

12.2.3.5 Seize statem ent

s y n ta x :
<seize sta tem ent> ::= (1)

S E IZ E <prefix rename clause> { , <prefix rename clause> }* ; (l - l)
| S E IZ E <seize window> [<prefix clause>] ; (1-2)

<seize w indow > ::= (2)
<seize postfix> { , <seize postfix> }* (2-1)

<seize postfix> ::= (3)
<nam e strin g > (2-1)

| [<prefix> !] A L L (2-2)

s e m a n tic s : Seize statem ents are a means of extending the visibility of nam e strings in group reaches into the
reaches of directly enclosed modulions.

F ascicle X .6 — R ec . Z200 161

The following visibility rules apply:

• If the seize sta tem ent contains prefix rename clause(s), the seize sta tem ent has the effect of
its prefix rename clause(s) (see section 12.2.3.3).

• If the seize sta tem ent contains a seize window, it is shorthand notation for a set o f seize
sta tem ents w ith prefix rename clauses constructed as follows:

— For each seize postfix in the seize window, there is a corresponding seize sta tem ent.

— The old prefix in their prefix rename clause is the prefix attached to the prefix clause
in the seize sta tem ent, or is em pty if there is no prefix clause in the original seize
sta tem ent.

— The new prefix in their prefix rename clause is empty.

— The postfix in their prefix rename clause is the corresponding postfix of the seize
window.

• If a prefix rename clause in a seize sta tem ent has a seize postfix which contains a prefix and
A L L , then it is of the form:

(O P -> N P) ! P ! A L L

where OP and N P are the possibly em pty old prefix and new prefix, respectively, and P is
the prefix in the seize postfix . The prefix rename clause is then shorthand nota tion for a
clause of the form:

(OP ! P -> N P !P) ! A L L

s ta t ic p ro p ertie s: A seize postfix has a set of name strings attached, defined as follows:

• If the seize postfix is a nam e string , the set containing only the nam e string.

• Else, if the seize postfix is A LL, let OP be the (possibly em pty) old prefix of the prefix
rename clause of which the seize postfix is part, the set contains all nam e strings of the form
OP ! S, for any nam e string S, such th a t OP ! S is stro n g ly v is ib le in the reach directly
enclosing the m odulion in which the seize sta tem ent is placed and se iza b le by this modulion.

s ta t ic co n d itio n s: The prefix rename clause in a seize sta tem ent m ust have a seize postfix.

If a seize sta tem ent contains a prefix clause which does not contain a prefix, then its directly enclosing
m odulion m ust not be a context and,

• if its directly enclosing m odulion is a m odule or region, then it m ust be nam ed (i.e. it m ust
be headed by a defining occurrence followed by a colon);

• if its directly enclosing m odulion is a spec m odule or a spec region, then it m ust be headed
by a sim ple name string.

exam p les:
25.35 SE IZ E (stack ! in t -> stack) ! A L L ; (1-1)

12 .2 .4 Im p lied n a m e str in gs

Each nam e string stro n g ly v is ib le in a reach R has a set of im p lied nam e strings, which may be w eak ly
v isib le in R.

Each m ode has a possibly empty set of im p lied defining occurrences a ttached in a reach, as listed in Table 2.

Each nam e string NS, s tro n g ly v is ib le in reach R, has a set of im p lied defining occurrences, defined as
follows, where D is one of the defining occurrences to which NS is b o u n d in R:

• If D defines an a ccess nam e of mode M, the im p lied defining occurrences of NS in R are those im p lied
in R by M.

• If D defines a m o d e name, the im p lied defining occurrences of NS in R are those im p lied in R by the
defining m ode of the m o d e name.

162 F ascicle X .6 — R ec . Z200

• If D defines a p r o c e d u r e name, the im p lie d defining occurrences of NS in R are those im p lie d in R
by the modes of the p a r a m e te r sp e c s and the r e s u l t sp ec of the procedure, if any.

• If D defines a p ro c e s s name, the im p lie d defining occurrences of NS in R are those im p lie d in R by
the modes of the p a r a m e te r sp ecs , if any.

• If D defines a s ig n a l name, the im p lie d defining occurrences of NS in R are all defining occurrences
im p lie d in R by all modes attached to the signal.

• Otherwise the set is empty.

M o d e s S e t o f im p lie d d e fin in g o c c u r re n c e s

IN T , BOOL, C H AR, R A N G E (. . .)
B IN (n), P T R , IN ST A N C E , E V E N T ,
A SSO C IA T IO N , TIM E , D U R A T IO N ,
B O O L S N (n), C H A R S (n)

Em pty

m ode name The set of defining occurrences im p lie d in R by its
d e fin in g mode

m ode nam e (. . .) (param eterised) The set of defining occurrences im p lie d in R bv m ode name

M (m :n), R E F M, R O W M , R E A D M
P O W E R S E T M , B U F F E R M
T E X T (. . .) M

The set of defining occurrences im p lie d in R by M

S E T (. . .) The set of se t e le m e n t defining occurrences in the mode

P R O C (M x, . . . , M n)(M n+1) The union of the sets of the defining occurrences
im p lie d in R by Mi through Mn+i

A R R A Y (M) N , A C C E S S (M) N The union of the sets of the defining occurrences
im p lie d in R by M , and N

S T R U C T (N i M 1 , . . . ,N n Mn)
The union of the sets of defining occurrences
im p lie d in R by M{ for fields th a t are v is ib le in R.
For variant structures it is the union of
the defining occurrences im p lie d in R by .the
fields of the variant structure th a t are v is ib le in R

Table 2. Implied defining occurrences of modes in reach R

If a nam e string NS, s t ro n g ly v is ib le in a reach R, has im p lie d defining occurrences, each of those defining
occurrences specifies an im p lie d nam e string for NS in R: let D be a defining occurrence im p lie d by NS in R
and let Ni be the nam e string of D. There are two cases:

• NS is a sim ple nam e string. Then Ni is an im p lie d name string of NS.

• NS is of the form P ! S, where S is a sim ple name string. Then P ! Ni is an im p lie d nam e string of NS.

e x a m p le s :
m: M O D U L E

D C L x S E T (on, off);
G R A N T x P R E F IX E D ,

E N D ,
/* m ! x v is ib le here with im p lie d m ! on, m ! o ff * /

Fascicle X .6 - R ec . Z200 163

Field names may occur only in the following contexts:

• structure fields and value structure fields,

• labelled structure tuples,

• forbid clauses in grant sta tem ents.

In each of these cases, the name string of the field nam e can be b o u n d to a field name defining occurrence in
the mode M or in the defining mode of M, obtained as follows:

• M is the mode of the structure location or (stron g) structure prim itive value;

• M is the mode of the structure tuple;

• M is the mode of the defining occurrence to which the newm ode nam e string is b o u n d in the reach in
which the forbid clause is placed.

However, if the n o v e lty of M is a defining occurrence th a t defines a n ew m o d e name th a t has been granted
by a grant sta tem ent in a m odulion as a grant postfix w ith a forbid clause, then the field names m entioned in
the forbid name list are only visib le:

• in the group of the granting modulion,

• if the n o v e lty of M is n o v e lty b o u n d to a qu asi n o v e lty N, then in the group of the reach in which
N is directly enclosed,

• if the m odulion is a m odule spec or region spec, then in the reach of the corresp on d in g m odulion.

Outside these reaches the field names m entioned in the forbid nam e list are in v is ib le and cannot be used.

12 .2 .5 V is ib ility o f fie ld n am es

12.3 C A S E S E L E C T IO N

sy n ta x :
Cease label specification> ::= (l)

Cease label list> { , Cease label list> }* (1.1)

Cease label list> ::= (2)
(Cease label> { , Cease label> }*) (2.1)

| <irrelevant> (2.2)

Cease label> ::= (3)
< discrete literal expression> (3-1)

| <literal range> (3-2)
| C discrete m ode nam e> (3-3)
| E L S E (3.4)

<irrelevant> :;= (4)
(*) (4.1)

s e m a n tic s : Case selection is a means of selecting an alternative from a list of alternatives. The selection is
based upon a specified list of selector values. Case selection may be applied to:

• alternative fields (see section 3.12.4), in which case a list of variant fields is selected,

• labelled array tuples (see section 5.2.5), in which case an array element value is selected,

• conditional expressions (see section 5.3.2), in which case an expression is selected,

• case action (see section 6.4), in which case an action statem ent list is selected.

In the first, th ird and fourth situations, each alternative is labelled w ith a case label specification; in
the labelled array tuple, each value is labelled w ith a case label list. For ease of description, the case
label list in the labelled array tuple will be considered in this section as a case label specification
w ith only.one case label list occurrence.

164 Fascicle X .6 — R ec . Z200

Case selection selects th a t alternative which is labelled by the case label specification which m atches
the list of selector values. (The num ber of selector values will always be the same as the num ber of
case label list occurrences in the case label specification.) A list of values is said to m atch a case
label specification if and only if each value m atches the corresponding (by position) case label list
in the case label specification.

A value is said to m atch a case label list if and only if:

• the case label list consists of case labels and the value is one of the values explicitly indicated
by one of the case labels or im plicitly indicated in the case of E L S E ;

• the case label list consists of irrelevant.

The values explicitly indicated by a case label are the values delivered by any discrete literal ex
pression, or defined by the literal range or discrete m ode name. The values im plicitly indicated by
E L S E are all the possible selector values which are not explicitly indicated by any associated case
label list (i.e. belonging to the same selector value) in any case label specification.

sta tic p ro p erties:

• An alternative fields with case label specification, a labelled array tuple, a conditional expres
sion, or a case action has a list of case label specifications attached, formed by taking the case
label specification in front of each variant alternative, value or case alternative, respectively.

• A case label has a class attached, which is, if it is a discrete literal expression, the class of the
discrete literal expression; if it is a literal range, the resu ltin g class of the classes of each
discrete literal expression in the literal range; if it is a discrete m ode name, the resu ltin g
class of the M-value class where M is the discrete mode name; if it is ELSE, the all class.

• A case label list has a class attached, which is, if it is irrelevant, then the all class, otherwise
the resu ltin g class of the classes of each case label.

• A case label specification has a list of classes attached, which are the classes of the case label
lists.

• A list of case label specifications has a resu ltin g list o f c la sses attached. This resu ltin g
list o f c lasses is formed by constructing, for each position in the list, the resu ltin g class
of all the classes th a t have th a t position.

A list of case label specifications is c o m p le te if and only if for all lists of possible selector values, a
case label specification is present, which m atches the list of selector values. The set of all possible
selector values is determ ined by the context as follows:

• For a ta g g ed variant structure m ode it is the set of values defined by the mode of the
corresponding tag field.

• For a ta g -le ss variant structure mode it is the set of values defined by the root mode of
the corresponding r esu ltin g class (this class is never the all class, see section 3.12.4).

• For an array tuple, it is the set of values defined by the in d e x mode of the mode of the array
tuple.

• For a case action w ith a range list, it is the set of values defined by the corresponding discrete
mode in the range list.

• For a case action w ithout a range list, or a conditional expression it is the set of values defined
by M where the class of the corresponding selector is the M-value class or the M-derived class.

s ta tic con d ition s: For each case label specification the number of case label list occurrences m ust be equal.

For any two case label specification occurrences, their lists of classes m ust be co m p a tib le .

The list of case label specification occurrences must be co n sisten t, i.e. each list of possible selector
values matches a t most one case label specification.

exam p les:
11.9 (occupied) (2-1)
11.58 (rook),(*) (l . l)
8.26 (ELSEJ (2.1)

Fascicle X .6 — R ec . Z200 165

12.4 D E F IN IT IO N A N D S U M M A R Y O F S E M A N T IC C A T E G O R IE S

This section gives a sum m ary of all semantic categories which are indicated in the syntax description by means
of an underlined part. If these categories are not defined in the appropriate sections, the definition is given
here, otherwise the appropriate section will be referenced.

12 .4 .1 N a m e s

Mode names

absolute tim e m ode name: a name defined to be an absolute tim e mode.
access m ode name: a name defined to be an access mode.
arrav m ode name: a name defined to be an array mode.
association m ode name: a nam e defined to be an association mode.
boolean m ode name: a name defined to be a boolean mode.
bound reference m ode name: a name defined to be a bound reference mode.
buffer m ode name: a name defined to be a buffer mode.
character m ode name: a name defined to be a character mode.
discrete m ode name: a name defined to be a discrete mode.
duration m ode name: . a name defined to be a duration mode.
event m ode name: a name defined to be an event mode.
free reference m ode name: a name defined to be a free reference mode.
instance m ode name: a name defined to be an instance mode.
integer m ode name: a name defined to be an integer mode.
m ode name: see section 3.2.1
newm ode name: see section 3.2.3
parameterised arrav m ode name: a name defined to be a p a r a m e te r i s e d array mode.
parameterised string m ode name: a nam e defined to be a p a r a m e te r i s e d string mode.
parameterised structure m ode name: a name defined to be a p a r a m e te r i s e d structure mode.
powerset m ode name: a nam e defined to be a powerset mode.
procedure m ode name: a nam e defined to be a procedure mode.
range m ode name: a nam e defined to be a range mode.
row m ode name: a nam e defined to be a row mode.
set m ode name: a name defined to be a set mode.
string m ode name: a name defined to be a string mode.
structure m ode name: a nam e defined to be a structure mode.
svnm ode name: see section 3.2.2
variant structure m ode name: a name defined to be a v a r ia n t structure mode.

Access names

location name: see sections 4.1.2.
location do-with name: see section 6.5.4.
location enumeration name: see section 6.5.2.
loc-identitv name: see sections 4.1.3.

Value names

boolean literal name: see section 5.2.4.3.
emptiness literal name: see section 5.2.4.6.
svnonvm name: see section 5.1.
value do-with name: see section 6.5.4.
value enumeration name: see section 6.5.2.
value receive nam e: see sections 6.19.2, 6.19.3

166 F ascicle X .6 — R ec . Z200

Miscellaneous names

bound reference location name:
built-in routine name:

free reference location name:
general procedure name:
label name:

newm ode nam e string:

non-reserved name:

procedure name:
process name:
set element name:
signal name:

tag Held name:
undefined synonym name:

a location nam e w ith a bound reference mode.
any CHILL or im plem entation defined nam e denoting a built-in
routine.
a location nam e w ith a free reference mode,
a procedure nam e whose generality is g e n e ra l,
see sections 6.1, 10.6.
a nam e string b o u n d to the defining occurrence of a n e w m o d e
name.
a nam e which is none of the reserved names m entioned in Ap
pendix C .l.

see section 10.4.
see section 10.5.
see section 3.4.5.
see section 11.5.

see section 3.12.4.
see section 5.1.

1 2 .4 .2 L o c a tio n s

access location:
arrav location:

association location:
character string location:
buffer location:
discrete location:
event location:
instance location:

static m ode location:
string location:
structure location:
tex t location:

locationa
a locati
a locati
a locati
a locati
a locati
a locati
a locati
a locati
a locati
a locati
a location

w ith
on w ith
on w ith
on w ith
on With
on w ith
on w ith
on w ith

on w ith
on w ith
on w ith

with

an access mode,
an array mode,
an association mode,
a c h a r a c te r string mode,

a buffer mode,
a discrete mode,
an event mode,
an instance mode,
a sta tic mode,
a string mode,
a structure mode.

12 .4 .3 E x p re s s io n s a n d va lu es

absolute tim e prim itive value: a prim itive value whose class is c o m p a t ib le w ith an absolute
tim e mode.

arrav expression: an expression whose class is c o m p a t ib le w ith an array mode.
arrav prim itive value: a prim itive value whose class is c o m p a tib le w ith an array mode.
boolean expression: an expression whose class is c o m p a t ib le w ith a boolean mode.
bound reference prim itive value: a prim itive value whose class is c o m p a tib le w ith a bound refer

ence mode.
character string expression: an expression whose class is c o m p a tib le w ith a c h a r a c te r string

mode.

F ascicle X .6 — R ec . Z200 167

constant value:
discrete expression:
discrete literal expression:
duration prim itive value:

free reference prim itive value:

instance prim itive value:

integer expression:
integer literal expression:
powerset expression:
procedure prim itive value:

/

reference prim itive value:

row prim itive value:
string expression:
string prim itive value:
structure prim itive value:

a value which is c o n s ta n t .
an expression whose class is c o m p a t ib le w ith a discrete mode,
a discrete expression which is l i te ra l .
a prim itive value whose class is c o m p a t ib le w ith a duration
mode.
a prim itive value whose class is c o m p a t ib le w ith a free reference
mode.
a prim itive value whose class is c o m p a t ib le w ith an instance
mode.
an expression whose class is c o m p a tib le w ith an integer mode,
an integer expression which is l i te ra l .
an expression whose class is c o m p a t ib le w ith a powerset mode,
a prim itive value whose class is c o m p a tib le w ith a procedure
mode.
a prim itive value whose class is c o m p a t ib le w ith either a bound
reference mode, a free reference mode or a row mode,
a prim itive value whose class is c o m p a tib le w ith a row mode,
an expression whose class is c o m p a tib le w ith a string mode,
a prim itive value whose class is c o m p a t ib le w ith a string mode,
a prim itive value whose class is c o m p a t ib le w ith a structure
mode.

1 2 .4 .4 M isc e lla n e o u s s e m a n tic c a te g o rie s

array mode:
discrete mode:
location built-in routine call:
location procedure call:
non-reserved character:
non-special character:

string mode:
value built-in routine call:
value procedure call:

a m ode in which the composite m ode is an array mode,
a m ode in which the non-composite m ode is a discrete mode.
see section 6.7
see section 6.7
a character which is neither a quote (”) nor a circumflex (").
a character which is neither a circumflex (~) nor an open paren
thesis (().
a m ode in which the composite m ode is a string m ode.
see section 6.7
see section 6.7

168 F ascicle X .6 — R ec . Z200

13 IMPLEMENTATION OPTIONS

13.1 IM P L E M E N T A T IO N D E F IN E D B U IL T -IN R O U T IN E S

s e m a n tic s : An im plem entation may provide for a set of im plem entation defined built-in routines in addition
to the set of language defined built-in routines.

The param eter passing mechanism is im plem entation defined.

p re d e f in e d n a m e s : The nam e of an im plem entation defined built-in routine is predefined as a b u i l t - in
r o u t in e name.

s ta t ic p r o p e r t ie s : A b u i l t - in r o u t in e name may have a set of im plem entation defined exception names
attached. A built-in routine call is a v a lu e (lo c a tio n) built-in routine call if and only if the
im plem entation specifies th a t for a given choice of sta tic properties of the param eters and the given
sta tic context of the call, the built-in routine call delivers a value (location).

The im plem entation specifies also the r e g io n a li ty of the value (location).

13 .2 IM P L E M E N T A T IO N D E F IN E D IN T E G E R M O D E S

An im plem entation defines the u p p e r b o u n d and lo w er b o u n d of the integer mode IN T . An im plem entation
may define integer modes other th an the ones defined by IN T ; e.g. short integers, long integers, unsigned
integers. These integer modes m ust be denoted by im plem entation defined integer m o d e names. These names
are considered to be n e w m o d e names, s im ila r to IN T . Their value ranges are im plem entation defined. These
integer modes may be defined as ro o t modes of appropriate classes.

13.3 IM P L E M E N T A T IO N D E F IN E D P R O C E S S N A M E S

An im plem entation may define a set of im plem entation defined p ro c e s s names; i.e. p ro c e s s nam es whose
definition is not specified in CHILL. The definition is considered to be placed in the reach of the im aginary
outerm ost process or in any context. Processes of this name may be started and instance values denoting such
processes may be m anipulated.

13 .4 IM P L E M E N T A T IO N D E F IN E D H A N D L E R S

An im plem entation may specify th a t an im plem entation defined handler is appended to a process definition;
such a handler may handle any exception.

13.5 IM P L E M E N T A T IO N D E F IN E D E X C E P T IO N N A M E S

An im plem entation may define a set of exception names.

13.6 O T H E R IM P L E M E N T A T IO N D E F IN E D F E A T U R E S

• S tatic check of dynam ic conditions (see section 2.1.2)

• im plem entation directive (see section 2.6)

• tex t reference nam e (see sections 2.7 and 10.10.1)

• default r e c u r s iv i ty and g e n e ra l i ty (see sections 3.7 and 10.4)

• set of values of duration modes (see section 3.11.2)

• set of values of absolute tim e modes (see section 3.11.3)

• default e le m e n t la y o u t (see section 3.12.3) '

F ascicle X .6 — R ec . Z 200 169

• com parison of ta g - le s s v a r ia n t structure values (see section 3.12.4)

• num ber of bits in a word (see section 3.12.5)

• m inim um b it occupancy (see section 3.12.5)

• additional r e f e r a b le (sub-)locations (see section 4.2.1)

• sem antics of a location do-with name and value do-with nam e which is a v a r ia n t field of a ta g -
v a r ia n t structure location (see sections 4.2.2 and 5.2.3)

• sem antics of v a r ia n t fields of ta g - le s s v a r ia n t structures (see section 4.2.10, 5.2.13 and 6.2)

• sem antics of location conversion (see section 4.2.13)

• sem antics of expression conversion and additional conditions (see section 5.2.11)

• additional actual param eters in a start expression (see section 5.2.14)

• ranges of values for l i t e r a l and c o n s ta n t expressions (see section 5.3.1)

• scheduling algorithm (see sections 6.15, 6.18.2, 6.18.3, 6.19.2 and 6.19.3)

• releasing of storage in T E R M IN A T E (see section 6.20.4)

• denotation for files (see section 7.1)

• operations on associations (see sections 7.1 and 7.2.1)

• non-exclusive associations (see section 7.1)

• additional a ttribu tes of association values (see section 7.2.2)

• sem antics of associate parameters (see section 7.4.2)

• A SSO C IA T E F A IL exception (see section 7.4.2)

• sem antics of m o d ify param eters (see section 7.4.5)

• C R E A T E F A IL , D E LE TE F A IL and M O D IFYFAIL exception (see section 7.4.5)

• C O N N E C TF A IL exception (see section 7.4.6)

• sem antics of reading of records th a t are not legal values according to the record mode (see section 7.4

• additional t im e o u ta b le actions (see section 9.2)

• TIM E R F A IL exception (see sections 9.3.1, 9.3.2 and 9.3.3)

'• precision of duration values (see sections 9.4.1 and 9.4.2)

• indication of c o n s ta n t value in quasi synonym definitions (see section 10.10.3)

• r e g io n a l i ty of built-in routines (see section 11.2.2).

F ascicle X .6 - R ec . Z200

APPENDIX A: CHARACTER SET FOR CHILL

The character set of CHILL is an extension of the C C IT T A lphabet No. 5, International Reference Version,
Recom m endation V3. For the values whose representations are greater than 127, no graphical representation is
defined.

The integer representation is the binary num ber formed by bits bg to b i, where b i is the least significant bit.

brbebs 000 001 010 011 100 101 110 111

b4b 3b 2b i 0 1 2 3 4 5 6 7

0000 0 NUL
t c 7

(DLE) SP 0 @ P i P

0001 1
TCi

(SOH) DCx j 1 A Q a q

0010 2
t c 2

(STX) d c 2 2 B R b r

0011 3
t c 3

(ETX) d c 3 # 3 C s c s

0100 4
t c 4

(EOT) d c 4 $' 4 D T d t

0101 5
t c 5

(ENQ)
TCg

(NAK) % 5 E U e u

0110 6
t c 6

(ACK)
t c 9

(SYN) & 6 F V f V

0111 7 BEL
TC10
(ETB) 7 G W g w

1000 8
FE0
(B S)" CAN (8 H X h X

1001 9
FEi
(HT) EM) 9 I Y i y

1010 10
f e 2
(LF) SUB * J Z j z

1011 11
f e 3
(VT) ESC + J K [k {

1100 12
f e 4
(FF)

IS4
(FS) j < L \ 1 1

1101 13
f e 5
(CR)

IS3
(GS) - = M] m }

1110 14 SO
IS2
(RS) > N - n -

1111 15 SI
ISi

(US) / O
-

o DEL

Fascicle X .6 — R ec . Z 200 171

APPENDIX B: SPECIAL SYMBOLS
AND CHARACTER COMBINATIONS

Name Use

> semicolon term inator for statem ents etc.
J com m a separator in various constructs

(left parenthesis opening parenthesis of various constructs
) right parenthesis closing parenthesis of various constructs
[left square bracket opening bracket of a tuple
] right square bracket closing bracket of a tuple

0 left tuple bracket opening bracket of a tuple
■■) right tuple bracket closing bracket of a tuple

colon label indicator, range indicator
dot field selection symbol

:= assignm ent symbol assignment, initialisation
< less than relational operator

< = less than or equal relational operator
— equal relational operator, assignment,

initialisation, definition indicator
/ = not equal relational operator
> = greater than or equal relational operator
> greater than relational operator
+ plus addition operator
- minus subtraction operator
* asterisk m ultiplication operator, undefined value,

unnam ed value, irrelevant symbol
/ solidus division operator

/ / double solidus concatenation operator
- > arrow referencing and dereferencing,

prefix renaming
<> diam ond start or end of a directive clause
/ * comment opening bracket s ta rt of a comment
* / com m ent closing bracket end of a comment

apostrophe start or end symbol in various literals
quote s ta rt or end symbol in character string

literals
double quote quote w ithin character string literals

/ prefixing operator prefixing of names
B ’ literal qualification binary base for literal
D ’ literal qualification decimal base for literal
H ’ literal qualification hexadecimal base for literal
O ’ literal qualification octal base for literal
— line end line end delim iter of in-line comments

172 F ascicle X .6 — R ec . Z200

APPENDIX C: SPECIAL SIMPLE NAME STRINGS

C .l R E S E R V E D S IM P L E N A M E S T R IN G S

A C C E S S
A F T E R
A LL
A N D
A N D IF
A R R A Y
A S S E R T
A T

B E G IN
B IN
B O D Y
B O O L S
B U F F E R
B Y

C A S E
C A U S E
C H A R S
C O N T E X T
C O N T IN U E
C Y C L E

D C L
D E L A Y
D O
D O W N
D Y N A M IC

E L S E
E L S IF

E N D
E S A C
E V E N T
E V E R
E X C E P T IO N S
E X IT

F I
F O R
F O R B ID

G E N E R A L
G O T O
G R A N T

IF
IN
IN IT
IN L IN E
IN O U T

L O C

M O D
M O D U L E

N E W M O D E
N O N R E F
N O P A C K

N O T

O D
O F
O N
O R
O R IF
O U T

P A C K
P O S
P O W E R S E T
P R E F IX E D
P R I O R I T Y
P R O C
P R O C E S S

R A N G E
R E A D
R E C E IV E
R E C U R S IV E
R E F
R E G IO N
R E M
R E M O T E
R E S U L T
R E T U R N
R E T U R N S
R O W

S E IZ E

S E N D
S E T
S IG N A L
S IM P L E
S P E C
S T A R T
S T A T IC
S T E P
S T O P
S T R U C T
S Y N
S Y N M O D E

T E X T
T H E N
T H IS
T IM E O U T
T O

U P

V A R Y IN G

W H IL E
W IT H

X O R

F ascicle X .6 — R ec . Z200

C .2 P R E D E F IN E D S IM P L E N A M E S T R IN G S

A B S
A B S T IM E
A L L O C A T E
A SSO C IA T E
A SSO C IA T IO N

BO O L

C A R D
C H A R
C O N N E C T
C R E A T E

D A Y S
D E L E T E
D ISC O N N E C T
D ISSO C IA TE
D U R A T IO N

E O LN
E X IST IN G
E X P IR E D

FALSE
F IR S T

G E T A SSO C IA T IO N
G E T ST A C K
G E T T E X T A C C E S S
G E T T E X T IN D E X
G E T T E X T R E C O R D
G E TU SA G E

HOURS

IN D E X A B L E
IN ST A N C E
IN T
IN T T IM E
ISA SSO C IA TE D

L A S T
LE N G TH
LO W E R

M A X

M ILLISE C S
M IN
M IN U T E S
M O D IF Y

NU LL
NU M

O U TO FFILE

PR E D
P T R

R E A D A B L E
R E A D O N L Y
R E A D R E C O R D
R E A D T E X T
R E A D W R IT E

SA M E
SE C S
SEQ U EN C IBLE

S E T T E X T A C C E S S
S E T T E X T IN D E X
S E T T E X T R E C O R D
SIZE
SU CC

T E R M IN A T E
TIM E
TR U E

UPPER
USAGE

V A R IA B L E

W A IT
W H E R E
W R IT E A B L E
W R IT E O N L Y
W R IT E R E C O R D
W R IT E T E X T

174 Fascicle X .6 - R ec. Z200

C .3 E X C E P T IO N N A M E S

A LLO C A TE F A IL
A SSE R T F A IL
A SSO C IA TE F A IL
C O N N EC TFAIL
C R E A TE F A IL
D E LA YF A IL
D E LE TE F A IL
E M P T Y
M O D IFYFAIL
N O T C O N N E C T E D

N O T A SSO C IA T E D
O V E R F L O W
R A N G E F A IL
R E A D F A IL
SEND FAIL
SPACEFAIL
TAG FAIL
T E X T F A IL
TIM E R F A IL
W R IT E F A IL

F ascicle X .6 — R ec . Z200 175

APPENDIX D: PROGRAM EXAMPLES

1. O p era tio n s on in teg ers

1 integer_ operations:
2 M O D U L E
3
4 add:
5 P R O C (i j IN T) R E T U R N S (IN T) E X C E P T IO N S (O VERFLO W);

. 6 R E S U L T i+j;
7 E N D add;
8
9 mult:

10 P R O C (i j IN T) R E T U R N S (IN T) E X C E P T IO N S (O V E R F LO W);
11 R E S U L T i*j;
12 E N D m ult;
13
14 G R A N T add, m ult;
15 S Y N M O D E operand-m ode= IN T ;
16 G R A N T operand-m ode;
17 S Y N neu tra l-fo r-a d d = 0 ,
18 n e u tra l- fo r -m u lt= l;
19 , G R A N T n eu tra l-fo r-a d d ,
20 n e u tra l- fo r -m u lt;
21
22 E N D integer-operations;

2. S am e o p era tio n s on fraction s

1 fraction-operations:
2 M O D U L E
3 N E W M O D E fraction= S T R U C T (num ,denum IN T);
4
5 add:
6 P R O C (fl,f2 fraction) R E T U R N S (fraction) E X C E P T IO N S (O V E R F LO W);
7 R E T U R N [fl.num *f2 .denum + f2 .num *fl.denum ,fl.denum *f2 .denum];
8 E N D add;
9

10 mult:
11 P R O C (fl,f2 fraction) R E T U R N S (fraction) E X C E P T IO N S (O V E R F LO W);
12 R E T U R N [n.num ^.num ,f2.cZenu.m *fI.deiiuin];
13 E N D m u lt;
14
15 G R A N T add, m ult;
16 S Y N M O D E operand-m ode= fraction;
17 G R A N T operand-m ode;
18 S Y N n eu tra l- fo r-a d d fraction=[0,1],
19 n e u tra l- fo r -m u lt fraction=[1,1];
20 G R A N T n eu tra l-fo r-a d d ,
21 n e u tra l- fo r -m u lt;
22
23 E N D fraction-operations;

176 Fascicle X .6 — R ec . Z200

Sam e o p era tio n s on co m p lex n u m b ers

1 com plex_ operations:
2 M O D U L E
3 N E W M O D E com plex= S T R U C T (re,im IN T); '
4
5 add:
6 P R O C (cl,c2 complex) R E T U R N S (complex) E X C E P T IO N S (O V E R F LO W);
7 R E T U R N [cl.re+c2.re,cl.im +c2,im);
8 E N D add;
9

10 mult:
11 P R O C (cl,c2 complex) R E T U R N S (complex) E X C E P T IO N S (O V E R F LO W);
12 R E T U R N [cl.re*c2.re-cl.im *c2.im ,cl.re*c2.im + cl.im *c2.re);
13 E N D mult;
14
15 G R A N T add, mult;
16 S Y N M O D E operand- m ode=com plex;
17 G R A N T operand-m ode;
18 S Y N n eu tra l-fo r-add= com plex [0,0),
19 n eu tra l-fo r-m u lt= co m p lex [1 ,0);
20 G R A N T n eu tra l-fo r-a d d ,
21 n eu tra l-fo r-m u lt;
22
23 E N D com plex-operations;

G en era l order ar ith m etic

1 general-order-arithm etic: / * from collected algorithms from C A C M no. 93 * /
2 M O D U L E
3 op:
4 P R O C fa IN T IN O U T , b,c,order IN T)
5 E X C E P T IO N S (w ro n g -in p u t) R E C U R S IV E .
6 D C L d IN T ;
7 A S S E R T b>0 A N D c>0 A N D order>0
8 O N (A SSERTFAIL):
9 / C A U S E w rong-input;

10 E N D ,
11 C A S E order O F
12 (1): a := b+c;
13 R E T U R N ,
14 (2): d := 0;
15 (E L S E): d := 1;
16 E S A C ,
17 D O F O R i ;= 1 T O c,
18 op fa ,b,d,order-1);
19 d := a;
20 O D ,
21 R E T U R N ,
22 E N D op;
23
24 G R A N T op,
25
26 E N D general- order- arithmetic;

F ascicle X .6 — R ec . Z200

A d d in g b it b y b it and check ing th e resu lt

1 add_ b it_ by_ bit:
2 M O D U L E
3 adder:
4 P R O C fa S T R U C T (a2,al B O O L) IN , b S T R U C T fb2 ,b l BO O L) IN)
5 R E T U R N S fS T R U C T (c4,c2,cl BOOL));
6 D C L c S T R U C T (c4,c2,cl BOOL);
7 D C L k2 ,x ,w ,t,s ,r BOOL;
8 D O W IT H a,b,c,
9 k2 ;= a I A N D bl;

10 cl := N O T k2 A N D fa l O R bl);
11 x : = a2 A N D b2 A N D Jc2;
12 w := a2 O R b2 O R k2;
13 t := b2 A N D k2;
14 s := a2 A N D k2;
15 r := a2 A N D b2;
16 c4 := r O R s O R t;
17 c2 := x O R (w A N D N O T c4);
18 O D ,
19 R E T U R N c;
20 E N D adder;
21 G R A N T adder;
22 E N D a d d -b i t -b y -b i t ;
23
24 exhaustive- checker:
25 M O D U L E
26 S E IZ E adder;
27 D C L a S T R U C T fa2 ,al BOOL),
28 b S T R U C T (b2,bl BOOL);
29 S Y N M O D E re s= A R R A Y (1:16) S T R U C T (c4,c2,cl BOOL);
30 D C L r IN T , results res;
31 D O W IT H a,b;
32 r := 0;
33 D O F O R a2 IN BOOL;
34 D O F O R a 1 IN BOOL;
35 D O F O R b2 IN BOOL;
36 D O F O R b l IN BOOL;
37 r-h := 1;
38 results (r) := adder fa ,b);
39 O D ,
40 O D ,
41 O D ,
42 O D ,
43 O D ;
44 A S S E R T
45 results=res [[FALSE,FALSE,FALSE },[F A LSE ,F A LSE ,TR U E],
46 [F A LSE ,TRU E,FALSE } ,[F A L SE ,T R U E ,T R U E],
47 [FALSE ,F A LSE ,TR U E] , [FALSE ,TR U E ,F A LSE],
48 [F A L SE ,T R U E ,T R U E] ,[TR U E ,F A LSE ,F A LSE],
49 [F A LSE ,TRU E,FALSE] ,[F A L SE ,T R U E ,T R U E],
50 [TR U E ,FALSE,FALSE] ,[T R U E ,F A L SE ,T R U E],
51 [F A L SE ,T R U E ,T R U E] ,[TR U E ,F A LSE ,F A LSE j,
52 [T R U E ,F A L SE ,T R U E] ,[T R U E ,T R U E ,F A L SE]];
53 E N D exhaustive-checker;

F ascicle X .6 — R ec . Z200

6. P la y in g w ith d a tes

1 playing_ wi th _ dates:
2 M O D U L E /* from collected algorithm s from C AC M no. 199 * /
3 S Y N M O D E mo.nt.h=:SET (jan,feb,m ar,apr,m ayjun,
4 jul,aug,sep,oct,nov,dec);
5 N E W M O D E d a te = S T R U C T (day IN T (1:31), m o m onth , year IN T);
6
7 gregorian- date:
8 P R O C (ju lia n -d a y-n u m b er IN T) R E T U R N S (date);
9 D C L j IN T := ju lia n -d a y _ number,

10 d ,m ,y IN T ;
11 j - := 1 .7 2 1 .1 1 9 ;
12 y := (4 * J - l) / 146-097;
13 j := 4 * j - 1 - 146 .097 * y;
14 d := j / 4;
15 j := (4 * d + 3) / 1-461;
16 d := 4 * d + 3 - 1-461 * j;
17 d : = (d + 4) / 4 ;
18 m := (5 * d - 3) / 153;
19 d := 5 * d - 3 - 153 * m;
20 d := (d + 5) / 5;
21 y : = 1 0 0 * y + j ;
22 IF m<100 T H E N m + := 3;
23 E L S E m - := 9;
24 y + := 1;
25 F I ;
26 R E T U R N (m +1), y];
27 E N D gregorian-date;
28
29 Ju lian-day-num ber:
30 P R O C (d date) R E T U R N S (IN T);
31 D C L c,y,m IN T;
32 D O W IT H d;
33 m := NU M (m o)+ l;
34 IF m > 2 T H E N m - := 3;
35 E L S E m -j~ :— 9;
36 year - := 1;
37 F I;
38 c := year/100;
39 y := year-100*c;
40 R E T U R N (1 4 6 -0 9 7 * c)/4 + (l-4 6 1 * y)/4
41 + (1 5 3 + m + c)/5 + d a y + l-721-119;
42 O D ;
43 E N D Ju lian-day-num ber;
44 G R A N T gregorian-date, Ju lian -day-num ber;
45 E N D p laying -w ith -d a tes;
46
47 test:
48 M O D U L E
49 S E IZ E gregorian-date, Ju lian -day-num ber;
50 A S S E R T Ju lia n -d a y-n u m b er ([10,dec,1979])= ju lia n -d a y-n u m b er
51 (gregorian-date(ju lian-day-num ber([10,dec,1979])));
52 E N D test;

F ascicle X .6 — R ec . Z200 179

R o m a n n u m era ls

1 Rom an:
2 M O D U L E
3 S E IZ E n,rn;
4 G R A N T convert;
5 convert:
6 P R O C () E X C E P T IO N S (s tr in g - to o . small);
7 D C L r IN T := 0;
8 D O W H IL E n> = 1-000;
9 rn(r) := ’M ’;

10 K n - := 1-000;
11 r + := 1;
12 O D ;
13 I F n>500 T H E N rn(r) := ’D ’;
14 n - := 500;
15 r + := 1;
16 F I ;
17 D O W H IL E n>=100;
18 rn(r) := ’C 5;
19 n - := 100;
20 r + := 1;
21 O D ;
22 I F n> = 50 T H E N rn(r) := T ';
23 n - := 50;
24 r + := 1;
25 F I ;
26 D O W H IL E n>=10;
27 rn(r) := X ’;
28 n - := 10;
29 r + :=. 1;
30 O D ;
31 I F n>= 5 T H E N rn(r) := ’V ’;
32 n - := 5;
33 r + := 1;
34 F I ;
35 D O W H IL E n > = l;
36 rn(r) T ;
37 n - := 1;
38 r + := 1;
39 O D ;
40 R E T U R N ;
41 E N D O N (RAN G EFAIL): D O F O R i ;= 0 T O U PPER (rn);
42 , . rn(i)
43 O D ;
44 C A U S E string- too-sm all;
45 E N D convert;
46 E N D Roman;
47 test:
48 M O D U L E
49 S E IZ E convert;
50 D C L n IN T IN IT := 1979;
51 D C L rn C H A R S (20) I N I T (20)’ ’;
52 G R A N T n,rn;
53 convert ();
54 A S S E R T rn = ”M D C C C C L X X V IIH ”/ / (6) ’ ’;
55 E N D test;

F ascicle X .6 — R ec. Z200

8. Counting letters in a character string of arbitrary length

1 le tter-co u n t:
2 M O D U L E
3 S E IZ E max;
4 D C L le tter P O W E R S E T C H A R IN IT := [’A ’ : ’Z);
5 count:
6 P R O C (input R O W C H A R S (m ax) IN , output A R R A Y (*A’:’Z ’) IN T O U T J;
7 o u tp u t := [(E L S E] : 0];
8 D O F O R i := 0 T O U PPER (input ->);
9 I F inpu t - > (i) IN le tter

10 T H E N
11 ou tpu t (input -> (W + ••= 1;
12 F I;
13 O D ;
14 E N D count;
15 G R A N T count;
16 E N D le tte r- count;
17 test:
18 M O D U L E
19 S Y N M O D E r e s u lts = A R R A Y (’A ’:’Z ’)IN T ;
20 D C L c C H A R S (10) I N I T := ”A -B < Z A A 9 K ’ ”;
21 D C L ou tp u t results;
22 S Y N m ax= 10-000;
23 G R A N T max;
24 S E IZ E count;
25 count (-> c,output);
26 A S S E R T output= results [(’A ’) : 3 ,(’B \ 'K \ 'Z ') : 1, (E L SE J : 0];
27 E N D test;

9. P r im e n u m b ers

1 prime:
2 M O D U L E
3
4 S Y N m ax = H ’7FFF;
5 N E W M O D E n u m b er-lis t = P O W E R S E T IN T (2:max);
6 S Y N em p ty = n u m b er-lis t [];
7 D C L sieve n u m b er-lis t I N I T ;= [2:m ax],
8 prim es n u m b er-lis t I N I T := em pty;
9 G R A N T primes;

10 D O W H IL E sieve/= em pty;
11 prim es O R := [MIN (sieve)];
12 D O F O R j := M IN (sieve) B Y M IN (sieve) T O max;
13 sieve - := [j];
14 O D ;
15 O D ;
16 E N D prime;

10. Im p lem en tin g stack s in tw o d ifferent w ays, tran sp aren t to th e u ser

1 stack: M O D U L E
2 N E W M O D E element ^ S T R U C T (a IN T , b BOOL);
3 s ta c k s -1:
4 M O D U L E

F ascicle X .6 — R ec . Z200

5 S E IZ E element;
6 S Y N m ax= 1 0 -0 0 0 ,m in = l;
7 D C L stack A R R A Y (m in : m ax) element,
8 stackindex IN T IN I T ;= min;
9

10 push:
11 P R O C (e element) E X C E P T IO N S (overflow);
12 I F stackindex= m ax
13 T H E N C A U S E overflow;
14 F I ;
15 stackindex + := 1;
16 stack (stackindex) := e;
17 R E T U R N ,
18 E N D push;
19
20 pop:
21 P R O C () E X C E P T IO N S (underflow);
22 I F stackindex= m in
23 T H E N C A U S E underflow;
24 F I ;
25 stackindex - := 1;
26 R E T U R N ;
27 E N D pop;
28
29 elem:
30 P R O C (i IN T) R E T U R N S (element L O C) E X C E P T IO N S (bounds);
31 I F i< m in O R i> m ax
32 T H E N C A U S E bounds;
33 F I ;
34 R E T U R N stack (i);
35 E N D elem;
36
37 G R A N T push,pop,elem;
38 E N D stacks^ 1;
39 stacks- 2:
40 M O D U L E
41 S E IZ E element;
42 N E W M O D E ce!J= S T R U C T (pred,succ R E F cell,info element);
43 D C L p,last,first R E F ceil IN I T ;= NULL;
44
45 push:
46 P R O C (e element) E X C E P T IO N S (overflow);
47 p := A L L O C A T E (cell) O N
48 (A LLO C A TE F A IL) : C A U S E overflow;
49 E N D ;
50 I F last= N U LL
51 T H E N first := p;
52 last := p;
53 E L S E last -> . succ := p;
54 p -> . pred := last;
55 last := p; '
56 F I ;
57 last - > . info := e;
58 R E T U R N ;
59 E N D push;
60
61 pop:
62 P R O C () E X C E P T IO N S (underflow);
63 I F last= N U LL
64 T H E N C A U S E underflow;
65 F I ;

182 F ascicle X .6 — R ec . Z200

11.

66 p := last;
67 last := last - > . pred;
68 I F last = NU LL
69 T H E N first := NULL;
70 E L S E last - > . succ := NULL;
71 F I ;
72 T E R M IN A T E (p);
73 R E T U R N ;
74 E N D pop;
75
76 elem:
77 P R O C (i IN T) R E T U R N S (element L O C) E X C E P T IO N S (bounds);
78 I F first= NU LL
79 T H E N C A U S E bounds;
80 F I ;
81 p := first;
82 D O F O R j := 2 T O i;
83 IF p ->■ succ=NU LL
84 T H E N C A U S E bounds;
85 F I ;
86 p := p - > . succ;
87 O D ;
88 R E T U R N p -> . in fo ;
89 E N D elem;
90
91 / * G R A N T push,pop,elem ; * /
92 E N D s ta c k s -2;
93 E N D stack;

F ragm en t for p la y in g chess

1 chess- fragments:
2 M O D U L E
3 N E W M O D E p ie c e = S T R U C T (color S E T (white,black),
4 kind S E T (paw n,rook,knight,bishop,queen,king));
5 N E W M O D E coJum n=S E T (a ,b,c,d,e,f,g,h);
6 N E W M O D E lin e= IN T (1 : 8);
7 N E W M O D E sq u a re = S T R U C T (status S E T (occupied,free),
8 C A S E sta tus O F
9 (occupied) : p piece,

10 (free) :
11 E S A C J;
12 N E W M O D E b o a rd = A R R A Y (line) A R R A Y (column) square;
13 N E W M O D E m o v e = S T R U C T (l in - l , l in - 2 line,
14 c o l - 1,c o l-2 column);
15
16 initialise:
17 P R O C (bd board IN O U T);
18 bd := [(1): [.status: occupied, .p : [white,rook]],
19 (b,g): [.status: occupied, .p : [wiiite,i:iiigiit]],
20 (CJ) : [.status: occupied, .p : [white,bishop]],
21 (d): [.status: occupied, .p : [white,queen]],
22 (e): [.status: occupied, .p : [whitening]]],
23 (2): [(E L SE J:[.status: occupied, .p : [white,pawn]]],
24 (3:6):[(ELSE):[.status: free]],
25 (7) : [(ELSEJ:[.status: occupied, .p : [biac]:,pawn]]],
26 (8): [(a,h): [.status: occupied, .p : [biac£,rooJ:]],
27 (b,g)-' [.status: occupied, .p : [blach,]cnigiit]],

F ascicle X .6 — R ec . Z200 183

28 (CJ) : [.status: occupied, .p : [black,bishop]],
29 (d): [.status: occupied, .p : [black,queen]],
30 (e): [.status: occupied, .p : [biacJc,Jrijng]]]
31];
32 R E T U R N ;
33 E N D initialise;
34 register_ move:
35 P R O C (b board L O C ,m m ove) E X C E P T IO N S (illegal);
36 D C £ starting square L O C := b (m .l in - l) (m .c o l-1),
37 arriving square L O C := b (m .lin -2)(m .co l-2);
38 D O W IT H m;
39 IF starting.status= free T H E N C A U S E illegal; FI;
40 IF arriving.sta tus/= free T H E N
41 IF arriving.p.kind= king T H E N C A U S E illegal; F I;
42 F I ;
43 C A S E starting.p .kind, starting.p.color O F
44 (pawn), (whi te):
45 IF col-1 = c o l-2 A N D (arriving.status/= free
46 O R N O T (l in -2 = l in - l+ l O R l in -2 = lin - l+ 2 A N D lin -2 = 2))
47 O R (co l-2= P R E D (c o l-1) O R col_ 2=SU C C (c o l-1))
48 A N D arriving.status= free T H E N C A U S E illegal; FI;
49 IF arriving.sta tus/= free T H E N
50 IF arriving.p.color=white T H E N C A U S E illegal; FI; FI;
51 (pawn), (black):
52 IF col- l= c o l- 2 A N D (arriving.sta tus/= free
53 O R N O T (l in - 2 = l in - l - l O R l in - 2 = l in - 1-2 A N D l in - l = 7))
54 O R (co l-2= P R E D (c o l-1) O R co l-2= SU C C (c o l-1))
55 A N D arriving.status= free T H E N C A U S E illegal; F I;
56 IF arriving .sta tus/'=free T H E N
57 IF a rriving.p.color= black T H E N C A U S E illegal; F I; FI;
58 (rook),(*):
59 IF N O T o k -ro o k (b,m)
60 T H E N C A U S E illegal;
61 F I ;
62 (bishop),(*):
63 IF N O T ok_ bishop (b,m)
64 T H E N C A U S E illegal;
65 F I ;
66 (queen),(*):
67 IF N O T o k -ro o k (b,m) A N D N O T ok-b ish o p (b,m)
68 T H E N C A U S E illegal;
69 FI;
70 (knight), (*):
71 IF A B S (A B S (N UM (co l-2)-N U M (co l-1))
72 -A B S (l in -2 - l in -1)) / — 1
73 O R A B S (NUM (co l_2)-N U M (co l-1))
74 + A B S (l in - 2 - l in - 1) = / 3 T H E N C A U S E illegal; F I;
75 IF arriving.sta tus/= free T H E N
76 I F arriving.p.color=starting.p.color T H E N
77 C A U S E illegal; F I ; F I;
78 (k in g),(*):
79 IF A B S (N U M (co l-2)-N U M (co l-1)) > 1
80 O R A B S (l in -2 - l in -1) > 1
81 O R l in - 2 = l in - 1 A N D c o l-2 = c o l-1 T H E N C A U S E iiiegal; F I;
82 I F arriving.sta tus/= free T H E N
83 IF arriving.p.color=starting.p.color T H E N
84 C A U S E illegal; F I; F I ; /* checking king m oving to check not im plem ented * /
85 E S A C ;
86 O D ;
87 arriving := starting;
88 starting := [.status:free];

184 F ascicle X .6 — R ec . Z200

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

R E T U R N ;
E N D register, move;
o k . rook:
P R O C (b board,m move) R E T U R N S (BOOL);

D C L starting square := b (m .l in . l) (m .c o l . l) ,
arriving square := b (m .lin .2)(m .c o l.2);

D O W IT H m;
I F N O T (co l_ 2 = co l.l O R l in .l= l in _ 2) T H E N R E T U R N FALSE; FI;
IF arriving.status/= free T H E N

IF arriving.p.color=starting.p.color T H E N ;
R E T U R N FALSE; FI; FI;

IF co l. 1 =col_ 2
T H E N IF l in . K l i n . 2

T H E N D O F O R lin := l in . 1+1 T O l in .2 -1 ;
IF b (lin)(co l.l) .s ta tu s /= free

T H E N R E T U R N FALSE;
F I;

O D ;
E L S E D O F O R lin := l in . 1-1 D O W N T O l in .2 + 1 ;

IF b (lin)(col.1) . sta tu s/ = free
T H E N R E T U R N FALSE;

F I;
O D ;

F I ;
E L S IF co l. 1<col. 2

T H E N D O F O R col := SU CC (c o l . l) T O P R E D (c o l .2);
IF b (lin . 1) (col), sta tus/= free

T H E N R E T U R N FALSE;
FI;

O D ;
E L S E D O F O R col := SU CC (co l.2) D O W N T O P R E D (c o l .l) ;

IF b (lin .l)(co l) .s ta tu s /= free
T H E N R E T U R N FALSE;

FI;
O D ;

F I;
R E T U R N TRU E;

O D ;
E N D o k . rook;
o k . bishop:
P R O C (b board,m move) R E T U R N S (BOOL);

D C L starting square := b (m .l in . l) (m .c o l . l) ,
arriving square := b (m .l in .2)(m .co l. 2),
col colum n;

D O W IT H m;
C A S E l in .2 > l in . l ,c o l .2 > c o l . l O F

(T R U E),(T R U E): col := c o l . l ;
D O F O R lin := l in . 1+1 T O l in .2 -1 ;

col := SU C C (col);
I F b (lin)(co l).s ta tu s/=free

T H E N R E T U R N FALSE;
FI;

O D ;
I F SU CC (co l) /= co l.2

T H E N R E T U R N FALSE;
F I ;

(TR U E),(F A LSE): col := c o l . l ;
D O F O R lin := l in . 1+1 T O l in .2 - 1 ;

col := P R E D (col);

F ascicle X .6 - R ec . Z200 185

150 IF b (lin) (co l) .s ta tu s/=free
151 T H E N R E T U R N FALSE;
152 F I;
153 O D ;
154 IF P R E D (co l) /= co l.2
155 T H E N R E T U R N FALSE;
156 F I;
157 (F A LSE),(TR U E): col : = c o l . l ;
158 D O F O R lin := l in . 1-1 D O W N T O l in .2 + 1
159 col := SU C C (col);
160 IF b (lin) (col). s ta tu s/= free
161 T H E N R E T U R N FALSE;
162 F I;
163 O D ;
164 IF SU CC (c o l) /= c o l.2
165 T H E N R E T U R N FALSE;
166 F I;
167 (FALSE),(FALSE): col := col. 1;
168 D O F O R lin := l in . 1-1 D O W N T O lin .2 + 1
169 col := P R E D (col);
170 IF b (lin)(col).sta tus/= free
171 T H E N R E T U R N FALSE;
172 F I;
173 O D ;
174 IF P RED (col)/= col_2
175 T H E N R E T U R N FALSE;
176 F I;
177 E S A C ;
178 IF arriving.status=free T H E N R E T U R N TRU E;
179 E L S E R E T U R N arriving.p.color/=starting.p.color; F I ;
180 O D ;
181 E N D o k . bishop;
182 E N D chess, fragm ents;

12. B u ild in g an d m a n ip u la tin g a circu larly lin k ed list

1 circular, list:
2 M O D U L E
3 h a n d le , list:
4 M O D U L E
5 G R A N T insert, remove, node;
6 N E W M O D E a o d e = S T R U C T (pred, sue R E F node, value IN T);
7 D C L pool A R R A Y (l:1000)node;
8 D C L head node := (: N U LL,N U LL,0 :);
9

10 insert: P R O C (new node);
11 / * insert actions * /
12 E N D insert;
13
14 remove: P R O C ();
15 / * remove actions * /
16 E N D remove;
17
18 in itia lize , list:
19 B E G IN
20 D C L last R E F node := ->head;
21 D O F O R new IN pool;
22 new.pred := last;

186 F ascicle X .6 — R ec . Z200

23 last-> .suc := - >new;
24 last := -> new ;
25 new. value := 0;
26 O D ;
27 head.pred := last;
28 last-> .suc := ->head;
29 E N D in itia lize-list;
30
31 E N D handle-list;
32 manipulate:
33 M O D U L E
34 S E IZ E node, remove, insert;
35 D C L n o d e -a node := (: N U LL,N U LL,536 :);
36 removeQ;
37 removeQ;
38 insert(node-a);
39 E N D m anipulate;
40 E N D circular-list;

13. A re g io n fo r m a n a g in g c o m p e tin g accesses to a r e s o u rc e

1 allocate-resources:
2 R E G IO N
3 G R A N T allocate, deallocate;
4 N E W M O D E resource-set = IN T (0:9);
5 D C L allocated A R R A Y (resource-set)BO O L := (: (resource- set): FALSE :);
6 D C L resource-freed E V E N T ;
7
8 allocate:
9 P R O C () R E T U R N S (resource- set);

10 D O F O R E V E R ;
11 D O F O R i IN resource- set;
12 IF N O T allocated(i)
13 T H E N
14 allocated(i) := TRU E;
15 R E T U R N i;
16 F I;
17 O D ;
18 D E L A Y resource-freed;
19 O D ;
20 E N D allocate;
21
22 deallocate:
23 P R O C (i resource-set);
24 allocated(i) := FALSE;
25 C O N T IN U E resource-freed;
26 E N D deallocate;
27
28 E N D allocate-resources;

14. Q u e u in g calls to a s w itc h b o a rd

1 switchboard:
2 M O D U L E
3 / * This example illustrates a switchboard which queues incom ing calls
4 and feeds them to the operator a t an even rate. Every tim e the

Fascicle X .6 — R ec . Z200 187

5 operator is ready one and only one call is let through. This is
6 handled by a call d istributor which lets calls through at fixed
7 intervals. I f the operator is not ready or there are other calls
8 waiting, a new call m ust queue up to wait for its turn. * /
9 D C L opera tor-is-ready,

10 sw itc h - is - closed E V E N T ;
11
12 call- distributor:
13 P R O C E S S ();
14 wait:
15 P R O C (x IN T);
16 /* som e wait ac tion* /
17 E N D wait;
18 D O F O R E V E R ,
19 w ait(10 /*seconds*/);
20 C O N T IN U E operator-is-ready;
21 O D ;
22 E N D call-d istributor;
23
24 call-process:
25 P R O C E S S ();
26 D E L A Y C A S E
27 (opera tor-is-ready): / * some actions * / ;
28 (sw itch -is -d o sed): D O F O R i IN IN T (1:100);
29 C O N T IN U E opera tor-is-ready;
30 / * em p ty the queue* /
31 O D ;
32 E S A C ;
33 E N D call-process;
34
35 operator:
36 P R O C E S S ();
37 D C L tim e IN T ;
38 D O F O R E V E R ;
39 IF tim e = 1700
40 T H E N C O N T IN U E sw itch -is -d o sed ;
41 F I ;
42 O D ;
43 E N D operator;
44
45 S T A R T call-d istributor();
46 S T A R T operator();
47 D O F O R i IN IN T (1:100);
48 S T A R T call-process();
49 O D ;
50 E N D switchboard;

15. A llo c a tin g a n d d e a llo c a tin g a s e t o f re s o u rc e s

1 definitions:
2 M O D U L E
3 S IG N A L
4 acquire,
5 release= (IN STAN C E),
6 congested,
7 ready,
8 advance,
9 readout= (IN T);

188 F ascicle X .6 — R ec . Z 200

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

G R A N T A L L ;
E N D definitions;
counter_ m anager:
M O D U L E
/ * To illustrate the use o f signals and the receive case, (buffers

m igh t have been used instead) we will look at an exam ple where an
allocator manages a set o f resources, in this case a set o f
counters. The m odule is part o f a larger system where there are
users, tha t can request the services o f the counter-m anager. The
m odule is m ade to consist o f two process definitions, one for the
allocation and one for the counters. In itia te and term inate
are internal signals sent from the allocator
to the counters. A ll the other signals are external, being sent
from or to the users. * /

S E IZ E /* external signals * /
acquire, release, congested,ready,advance,readout;

S IG N A L in itia te = (IN STA N C E),
terminate;

allocator:
P R O C E S S ();

N E W M O D E n o -o f-co u n ters = IN T (1:100);
D C L counters A R R A Y (no-o f-counters)

S T R U C T (counter IN S T A N C E ,sta tus S E T (busy,idle));
D O F O R each IN counters;

each := (: S T A R T counterQ, idle :);
O D ;
D O F O R E V E R ;
B E G IN

D C L user IN STA N C E ;
await-signals:
R E C E IV E C A S E S E T user;
(acquire):

D O F O R each IN counters;
D O W IT H each;

IF sta tus = idle
T H E N

status := busy;
S E N D in itia te (user) T O counter;
E X IT await-signals;

FI;
O D ;

O D ;
S E N D congested T O user;

(release I N th is-counter):
S E N D term inate T O this_counter;
fin d - counter:
D O F O R each IN counters;

D O W IT H each;
I F th is-counter = counter

T H E N
sta tus := idle;
E X IT find-counter;

F I;
O D ;

O D find-counter;
E S A C await-signals;

E N D ;
O D ;
E N D allocator;
counter:

F ascicle X .6 — R ec . Z200 189

71 P R O C E S S ();
72 D O F O R E V E R ;
73 B E G IN
74 D C L user IN S T A N C E ,
75 count IN T := 0;
76 R E C E IV E C A S E
77 (in itia te IN received_ user):
78 S E N D ready T O received_ user;
79 user := received^ user;
80 E S A C ;
81 w ork-loop:
82 D O F O R E V E R ;
83 R E C E IV E C A S E
84 (advance): count -f ;= 1;
85 (term inate):
86 S E N D readout (count) T O user;
87 E X IT w ork-loop;
88 E S A C ;
89 O D w ork-loop;
90 E N D ;
91 O D ;
92 E N D counter;
93 S T A R T allocator();
94 E N D counter-m anager;

16. A llo c a tin g a n d d e a llo c a tin g a s e t o f re s o u rc e s u s in g b u ffe rs

1
2
3 user- world:
4 M O D U L E
5 / * This example is the same as no. 15 except tha t buffers are
6 used for com m unication in stead o f signals.
7 T he main difference is tha t processes are now identified
8 by means o f references to local message buffers rather than
9 by instance values. There is one message buffer declared

10 local to each process. There is one set o f message types
11 for each process definition. W hen started each process m ust
12 iden tify its buffer address to the starting process.
13 T he user_ world m odule sketches some o f the environm ent in
14 which the counter-m anager is used. * /
15
16 S E IZ E allocator;
17 G R A N T user- buffers,user- messages,
18 allocator-m essages, allocator-buffers,
19 counter-m essages, counters-buffers;
20 N E W M O D E
21 user-m essages =
22 S T R U C T (type S E T (congested, ready,
23 readout, a llocator-id),
24 C A S E type O F
25 (congested) : ,
26 (ready) : counter R E F counters_ buffers,
27 (readout) : count IN T ,
28 (allocator-id): allocator R E F allocator -bu ffers
29 E S A C),
30 user- buffers = B U F F E R (1) user^messages,
31 allocator-m essages =

190 F ascicle X .6 - R ec . Z200

32 S T R U C T (type S E T (acquire, release, counter-id),
33 C A S E type O F
34 (acquire) : user R E F user-buffers,
35 (release,
36 coun ter-id): counter R E F counters-buffers
37 E S A C J,
38 allocator-buffers = B U F F E R (1) allocator-messages,
39 counter-m essages =
40 S T R U C T (type S E T (initiate, advance, terminate),
41 C A S E type O F
42 (in itia te) : user R E F user-buffers,
43 (advance,
44 term inate):
45 E S A C J,
46 counters-buffers = B U F F E R (1) counter- messages;
47 D C L user_ buffer user_ buffers,
48 a l lo c a to r -b u fR E F allocator-buffers,
49 counter- b u f R E F counters-buffers;
50 S T A R T allocator(-> user- buffer);
51 allocator- b u f := ('R E C E IV E user-buffer), allocator;
52 E N D user_ world;
53 counter-m anager:
54 M O D U L E
55 S E IZ E user_ buffers,user- messages,
56 allocator-messages, allocator-buffers,
57 counter-m essages, counters-buffers;
58 G R A N T allocator;
59
60 allocator:
61 P R O C E S S (starter R E F user-buffers);
62 D C L allocator-buffer allocator-buffers;
63 N E W M O D E n o -o f-co u n te rs = IN T (1:10);
64 D C L counters A R R A Y (n o -o f-co u n ters)
65 S T R U C T (counter R E F counters-buffers,
66 sta tus S E T (busy, idle)),
67 message allocator-messages;
68 S E N D starter-> ([allocator-id, - > allocator- buffer]);
69 D O F O R each IN counters;
70 S T A R T counter (-> allocator-buffer);
71 each := [(R E C E IV E allocator-buffer).counter, idle];
72 O D ;
73 D O F O R E V E R ;
74 B E G IN
75 D C L user R E F user-buffers;
76 message := R E C E IV E allocator-buffer;
77 handle-m essages:
78 C A S E message, type O F
79 (acquire):
80 user := message, user;
81 D O F O R each IN counters;
82 D O W IT H each;
83 IF sta tus= idle
84 T H E N sta tus := busy;
85 S E N D counter->([initiate, user]);
86 E X IT handle-m essages;
87 F I;
88 O D ;
89 O D ;
90 S E N D user-> ([congested]);
91 (release):
92 S E N D m essage. coun ter-> ([ter m in a t e] J ;

F ascicle X .6 — R ec . Z200 191

93 find-counter:
94 D O F O R each IN counters;
95 D O W IT H each;
96 I F message.counter = counter
97 T H E N sta tus := idle;
98 E X IT find-counter;
99 F I ;

100 O D ;
101 O D find-counter;
102 (counter-id): ;
103 E S A C handle-m essages;
104 E N D ;
105 O D ;
106 E N D allocator;
107 counter:
108 P R O C E S S (starter R E F allocator-buffers);
109 D C L counter-buffer counters-buffers;
110 S E N D starter —> ([counter-id , —> counter-buffer]);
111 D O F O R E V E R ;
112 B E G IN
113 D C L user R E F user-buffers,
114 count IN T := 0,
115 message counter-m essages;
116 message := R E C E IV E counter-buffer;
117 C A S E m essage.type O F
118 (initiate): user := message.user;
119 S E N D user-> ([ready, -> counter-buffer]);
120 E L S E /* some error action * /
121 E S A C ;
122 work-loop:
123 D O F O R E V E R ;
124 message := R E C E IV E counter-buffer;
125 C A S E m essage.type O F
126 (advance) : count -f := 1;
127 (te rm in a te /S E N D user-> ([readout, count]};
128 E X IT w ork-loop;
129 E L S E /* some error action * /
130 E S A C ;
131 O D w ork-loop;
132 E N D ;
133 O D ;
134 E N D counter;
135 E N D counter-m anager;

17. S tr in g s c a n n e r l

1 string-scannerl: / * This program im plem ents strings by means
2 o f packed arrays o f characters. * /
3 M O D U L E
4 S Y N
5 blanks A R R A Y (0:9)C H AR P A C K = [(*}:’ ’], linelength = 132;
6 S Y N M O D E
7 stringptr = R O W A R R A Y (lineindex)C H AR P A C K ,
8 lineindex = IN T (0:linelength-l);
9

10 scanner:
11 P R O C (string stringptr, scanstart lineindex IN O U T ,
12 scanstop lineindex, stopset P O W E R S E T C H AR)

192 F ascicle X .6 — R ec . Z200

13 R E T U R N S (A R R A Y (0:9)CH AR P A C K);
14 D C L count IN T := 0,
15 res A R R A Y (0:9)CH AR P A C K ;= blanks;
16 D O
17 F O R c IN s tr in g -y (scanstart:scanstop)
18 W H IL E N O T (c IN stopset);
19 count + := 1;
20 O D ;
21 IF count>0
22 T H E N
23 IF coun ty 10
24 T H E N
25 count := 10;
26 FI;
27 res(0:count-l) := s tr in g -y (scanstart:scanstart-hcount-1);
28 F I;
29 R E S U L T res;
30 IF scanstart+count < scanstop
31 T H E N
32 scanstart := scanstart+count+1;
33 F I;
34 E N D scanner;
35
36 G R A N T scanner;
37
38 E N D string-scannerl;

S tr in g s c a n n e r2

1 string-scanner2: / * This exam ple is the same as no. 17 but i t uses
2 character string instead o f packed arrays * /
3 M O D U L E
4 S Y N
5 blanks = (10)’ ’, linelength = 132;
6 S Y N M O D E
7 stringptr = R O W C H A R S (linelength),
8 lineindex = IN T (0:linelength-l);
9

10 scanner:
11 P R O C (string stringptr, scansiart lineindex IN O U T ,
12 scanstop lineindex, stopset P O W E R S E T CH AR)
13 R E T U R N S (C H A R S (10));
14 D C L count IN T := 0;
15 D O F O R i := scanstart T O scanstop
16 W H IL E N O T (string-> (i) IN stopset);
17 count + := 1;
18 O D ;
19 IF coun ty 0
20 T H E N
21 IF c o u n ty =10
22 T H E N
23 R E S U L T s tr in g -y (scanstart U P 10);
24 E L S E
25 R E S U L T string -y(scanstart:scanstart+ coun t-l)
26 //b lanks(coun t:9);
27 • F I ;
28 E L S E
29 R E S U L T blanks;

Fascicle X .6 — R ec . Z200

30 F I ;
31 I F scanstart+count < scanstop
32 T H E N
33 scanstart := scanstart+count+1;
34 F I;
35 E N D scanner;
36
37 G R A N T scanner;
38
39 E N D strings scanner2;

19. R em o v in g an ite m from a d o u b le lin k ed list

1 queue: M O D U L E
2 S Y N M O D E in fo= IN T ;
3 queue-rem oval:
4 M O D U L E
5 S E IZ E info;
6 G R A N T remove;
7 remove:
8 P R O C (p P T R) R E T U R N S (info) E X C E P T IO N S (E M P T Y);
9 / * This procedure removes the item referred to

10 by p from a queue and returns the inform ation
11 contents o f tha t queue element * /
12 S Y N M O D E element = S T R U C T (
13 i info P O S (0,8:31),
14 prev P T R P O S (1,0:15),
15 nex t P T R P O S (1,16:31));
16 D C L x R E F element L O C elem ent(p), prev, nex t P TR ;
17 prev := x-> .prev;
18 next := x -> .nex t;
19 x-> .prev, x -> .n e x t := NULL;
20 R E S U L T x-> .i;
21 p := prev;
22 x -> .n e x t := next;
23 p := next;
24 x -> .prev := prev;
25 E N D remove;
26 E N D queue_ removal;
27 E N D queue;

20. U p d a te a record o f a file

1 rea d -m o d ify -w rite :
2 M O D U L E
3
4 / * this example indicates how the CHILL i /o concepts can be used * /
5 / * to write an application where a record o f a random accessible * /
6 / * file can be updated or added i f not ye t in use * /
7
8 N E W M O D E
9 in d e x -se t = IN T (1:1000),

10 record -type = S T R U C T (
11 free BO O L,
12 count IN T ,
13 name C H A R S (20));

194 F ascicle X .6 — R ec. Z200

14
15 D C L
16 curindex in d ex -se t,
17 file-association A SSO C IA T IO N ,
18 record-file A C C E S S (index-se t) record-type,
19 record- buffer record- type;
20
21 A SSO C IA T E (file- association, ”D SK .R E C O R D S.D A T ”); / * create association * /
22 C O N N E C T (record- file,file- associa tion ,R E A D W R ITE); / * connect to file * /
23 curindex := 123; / * position record * /
24 R E A D R E C O R D (record- file,curindex,record- buffer); / * read the record * /
25 I F record- buffer.free / * i f record is free * /
26 T H E N / * the claim and * /
27 record- buffer.free := FALSE / * initialize i t * /
28 record- buffer.count := 0;
29 record- buffer.name := ’’CHILL I /O concept ”;
30 FI;
31 record-buffer.count + := 1; / * increm ent its counfc/
32 W R IT E R E C O R D (record-file, curindex, record_ buffer); / * write the record * /
33 D ISSO C IA TE (file- association); / * end the association*=/
34
35 E N D rea d -m od ify -w rite ;

21. M e rg e tw o s o r te d files

1 merge_ sorted_ files:
2
Q

M O D U L E
0
4 / * this example shows how two sorted files can be merged in to one * /
5 / * new sorted file, where the field ’k e y ’ is used for sorting * /
6
7

/ * the old sorted files are deleted after the merging has been done * /
/
8 N E W M O D E
9 record- type = S T R U C T (

10 key IN T ,
11
12

name C H A R S (50));

13 D C L
14 flag BOOL,
15 infiles A R R A Y (BO O L) A C C E S S record-type,
16 outfile A C C E S S record- type,
17 buffers A R R A Y (BO O L) record-type,
18 innam es A R R A Y (BO O L) C H A R S (10) IN IT := [’’F IL E .IN .l ”, ’’FILE.
19 outnam e C H A R S (10) I N IT := ’’F ILE .O U T ”,
20 inassocs A R R A Y (BO O L) A SSO C IA TIO N ,
21,
22

ouiassoc A SSO C IA T IO N ;

23 /* associate both sorted inpu t files, connect an access to them for inpu t * /
24
25

/ * and read their first record in to a buffer * /

26 D O
27 F O R curfile IN infiles,
28 curbuffer IN buffers,
29 curassoc IN inassocs,
30 curname I N innames;
31 C O N N E C T (curfile, A SSO C IA T E (curassoc,curname), R E A D O N L Y);
32 R E A D R E C O R D (curfile, curbuffer);
33 O D :

F ascicle X .6 — R ec . Z200 195

34
35 / * associate the ou tpu t hie, create a hie for the association * /
36 / * and connect an access to i t for ou tpu t * /
37
38 A SSO C IA T E (outassoc,outname);
39 C R E A T E (outassoc);
40 C O N N E C T (outfile, outassoc, W R IT E O N L Y);
41 m erge-files:
42 D O F O R E V E R
43
44 / * determ ine which file, i f any at all, to process n e x t* /
45 / * ‘f a g ’ indicates the file * /
46
47 C A S E OU TO FFILE (infiles(FALSE)),O U TO FFILE (in files(TR U E)) O F
48 (T R U E), (TRU E): / * both files are em p ty * /
49 E X IT m erge-files;
50 (T R U E), (FALSE): / * one file is em p ty * /
51 flag := TRU E;
52 (FALSE), (TRU E): / * one file is em p ty * /
53 flag := FALSE;
54 (FALSE), (FALSE): / * no file is em p ty * /
55 flag := buffers(FALSE).key>buffers(TRU E).key;
56 E S A C ;
57
58 / * ou tpu t the buffer which currently contains a record w ith the * /
59 / * smallest value for ‘k e y ’, fill the buffer with a new record * /
60
61 W R IT E R E C O R D (outfile,buffers(flag));
62 R E A D R E C O R D (in files (flag), buffers (flag));
63 O D m erge-files;
64
65 / * delete the inpu t files and close the ou tpu t file * /
66
67 D O
68 F O R curassoc IN inassocs;
69 D E L E T E (curassoc); / * delete the file * /
70 D ISSO C IA TE (curassoc); / * and term inate association * /
71 O D ;
72 D ISSO C IA TE (outassoc); / * disconnect and term inate * /
73
74 E N D m erge-sorted-files;

22 . R ea d a file w ith variab le le n g th records

1 variable-length-records:
2 M O D U L E
3
4 /* This exam ple shows how a file which consists o f variable length * /
5 / * records can be treated. * /
6 / * The file consists o f a num ber o f strings o f varying length; the * /
7 / * algorithm will read a string, allocate an appropriate location * /
8 / * for it, and p u t the reference to this location in to a push down list * /
9

10 N E W M O D E
11 string = C H A R S (80),
12 link-record = S T R U C T (
13 n ext-record R E F link-record,
14 s tring -row R O W string);

196 F ascicle X .6 — R ec . Z200

15
16 D C L
17 pushdow nlist R E F link-record I N I T := NULL,
18 length IN T (1:80),
19 tem poraryrow R O W string,
20 Meaccess A C C E S S string D Y N A M IC ,
21 association A S S O C IA T IO N ;
22 filename C H A R S (20) V A R Y IN G IN IT := ”IN P U T .D A T A ”;
23 A S S O C IA T E (association,filename); /* associate the in p u t file * /
24 C O N N E C T (fileaccess, association, R E A D O N L Y); /* connect access for in p u t * /
25 tem poraryrow := R E A D R E C O R D (fileaccess); / * read the first record * /
26 D O /* while no t end-o f-file * /
27 W H IL E NO T(O U TO FFILE(fileaccess));
28 pushdownlist := A L L O C A T E (link-record, / * get a new link record * /
29 [pushdownlist,NULL]); / * and initialize i t * /
30 length := 1 + UPPER (tem poraryrow ->); /* determ ine length o f string * /
31 D O
32 W IT H pushdow list-> ; /* add new string to list * /
33 string -row := A L L O C A T E ("CHARS (length), / * allocate space for string * /
34 tem poraryrow->); / * and fill i t * /
35 O D ;
36 temporaryrow := R E A D R E C O R D (fileaccess); / * get next record in file * /
37 O D ;
38 D ISSO C IA TE (association); /* end the association V
39
40 E N D variable-length-records;

T h e u se o f sp e c m o d u le s

1 / * The examples 23 and 24 are exam ple 8 divided in two pieces. * /
2 le tter-co u n t:
3 S P E C M O D U L E
4 / * This is a spec m odule for the corresponding module in example 8. * /
5 S E IZ E max;
6 count:
7 P R O C (input R O W C H A R S (max) IN , ou tpu t A R R A Y (’A ’.-’Z ’) I N T O U T) E N D ;
8 G R A N T count;
9 E N D le t te r -c o u n t;

10 le t te i -c o u n t: R E M O T E ”exam ple 24 ”;
11 test:
12 M O D U L E
13 / * This is the m odule ‘test ’ from example 8. * /
14 / * I t can now be piecewise com piled together with * /
15 / * the above spec m odule * /
16 S Y N M O D E results = A R R A Y (’A ’: ’Z ’) INT;
17 D C L c C H A R S (10) I N I T ; = ”A - B < Z A A 9 K ’ ” ;
18 D C L o u tpu t results;
19 S Y N m a x = 10-000;
20 G R A N T max;
21 S E IZ E count;
22 count (- > c, output);
23 A S S E R T ou tpu t = results [(’A ’) : 3, (’B \ ’K ’, ’Z ’) : 1, (E L S E) : 0];
24 E N D test;

F ascicle X .6 — R ec . Z200 197

24. E xam p le o f a co n te x t

1 C O N T E X T
2 / * This is a context for the m odule “le tte r -c o u n t” * /
3 / * as used in exam ple 23, allowing the piecewise */.
4 / * compilation o f “le tte r -c o u n t” * /
5 S Y N m a x = 10-000;
6 F O R
7 le tter- count:
8 M O D U L E
9 S E IZ E max;

10 D C L le tter P O W E R S E T C H A R IN IT := [’A ’ : ’Z \ ,
11 count:
12 P R O C (input R O W C H A R S (m ax) IN , o u tpu t A R R A Y (’A ’: ’Z ’) IN T O U T J;
13 o u tpu t := [('ELSEJ : 0];
14 D O F O R i := 0 T O U PPER (input ->);
15 I F inpu t - > (i) IN letter TH E N
16 o u tpu t (input - > (i)) + := 1;
17 . F I ,
18 O D ,
19 E N D count;
20 G R A N T count;
21 E N D le tte r - count;

25. T h e u se o f p refix in g an d r em o te m o d u les

1 / * This exam ple uses the m odule (s ta ck ’ from exam ple 27 or 28. * /
2 / * It shows how prefixes can be used to prevent nam e clashes. * /
3 / * I t uses the rem ote construct to share the source code. * /
4 char-stack:
5 M O D U L E
6 S Y N M O D E element = CHAR;
7 G R A N T (-> stack ! char) ! A L L ;
8 stack: S P E C R E M O T E ”exam ple 29”;
9 stack:.. R E M O T E ”exam ple 27 or 28”;

10 E N D char-stack;
U
12 in t-s ta ck :
13 M O D U L E
14 S Y N M O D E element = IN T ;
15 G R A N T (-> stack ! in t) ! A L L ;
16 stack: S P E C R E M O T E ”exam ple 29”; .
17 stack: R E M O T E ’’exam ple 27 or 28”;
18 E N D in t-s ta ck ;
19 /* H e re ‘p u sh ’, ‘p o p ’ and ‘e lem ent’ are visible but * /
20 / * with prefixes ‘stack ! char’ and ‘stack ! i n t ’ for * /
21 / * the im plem entations with element = C H AR and * /
22 / * element = IN T , respectively. * /
23 /* Below are some possibilities o f using the granted * /
24 / * names inside modules. * /
25 M O D U L E
26 S E IZ E A L L P R E F IX E D stack ;
27 D C L c CHAR;
28 in t ! push (123) ;
29 char ! push (’a ’) ;
30 in t ! pop () ;
31 c = char ! elem (1) ;

198 Fascicle X .6 — R ec . Z200

32 E N D ;
33
34 M O D U L E
35 S E IZ E (stack ! in t -> stack) ! A L L ;
36 stack ! push (345) ;
37 stack ! pop () ;
38 E N D ;

26. T h e u se o f t e x t i / o

1 textio:
2 M O D U L E
3
4 / * This exam ple shows the use o f the tex t i /o features. * /
5
6 D C L
7 outfile A S S O C IA T IO N ,
8 ou tpu t T E X T (80) D Y N A M IC ,
9 size IN T := 12345,

10 flag BO O L := FALSE,
11 set S E T (a,b,c) := b,
12 s i C H A R S (5) := ’’C H ILL”,
13 s2 C H A R S (5) D Y N A M IC := ’’te x t”;
14
15 A SSO C IA T E (outfile,”O U T P U T .D A T A ”); — associate the ou tpu t file
16 C R E A T E (outfile); — create it
17 C O N N E C T (output,outfile, W R IT E O N L Y); — then connect tex t location
18 W R IT E T E X T (o u tp u t,”% B % /”,10); - -1 0 1 0
19 W R IT E T E X T (o u tp u t,”% C % /”,set); - - b .
20 W R IT E T E X T (o u tp u t,’’size = % C % /”,size); - - size = 12345
21 W R IT E T E X T (output, ”%CL6%C i /o % /”,si,s2); - - CHILL tex t i /o
22 W R IT E T E X T (o u tp u t,’’flag = % X % C ”,flag); - - flag = FALSE
23 size := G E T T E X T IN D E X . (output); - - 1 2
24 D ISSO C IA TE (outfile);
25 E N D textio;

27. A g e n e ric s ta c k

1 / * This exam ple im plem ents a generic stack. Please * /
2 / * no te tha t the element m ode has been left out. * /
3 / * The element m ode is defined in the surroundings. * /
4 / * The context is a virtually introduced context, * /
5 / * and it has no source. * /
6 C O N T E X T R E M O T E F O R
7 stack:
8 M O D U L E
9 S E IZ E element;

10 N E W M O D E cell = S T R U C T (pred,succ R E F cell,info element);
11 D C L p,last,first R E F cell IN IT := NULL;
12
13 push:
14 P R O C (e element) E X C E P T IO N S (overflow)
15 p := A L L O C A T E (cell) O N (A LLO C A TE F A IL): C A U S E overflow; E N D ;
16 IF last = NU LL T H E N
17 first := p;
18 last := p;

F ascicle X .6 — R ec . Z 200 199

19 E L S E
20 last -> .succ := p;
21 p - > .pred := last;
22 last := p;
23 FI;
24 last - > .info := e;
25 R E T U R N ,
26 E N D push;
27
28 pop:
29 P R O C () E X C E P T IO N S (underflow)
30 I F last = NU LL T H E N
31 C A U S E underflow;
32 F I ;
33 p ;= last;
34 last := last -> .pred;
35 IF last = NU LL T H E N
36 first := NULL;
37 E L S E
38 last -> .succ := NULL;
39 FI;
40 T E R M IN A T E (p);
41 R E T U R N ;
42 E N D pop;
43
44 elem:
45 P R O C (i IN T) R E T U R N S (elem ent L O C) E X C E P T IO N S (bounds)
46 IF first = NU LL T H E N
47 C A U S E bounds;
48 FI;
49 p : = first;
50 D O F O R j := 2 T O i;
51 IF p -> .succ = N U LL T H E N
52 C A U S E bounds;
53 F I;
54 p := p -> .succ; /
55 O D ;
56 R E T U R N p -> .info;
57 E N D elem;
58
59 G R A N T push,pop,elem ;
60 E N D stack;

28. A n a b stra c t d a ta ty p e

1 / * This exam ple im plem ents the functionality o f example 27 * /
2 / * dem onstrating how an abstract data type can be * /
3 / * im plem ented in two different ways in CHILL. * / \
4 C O N T E X T R E M O T E F O R
5 stack:
6 M O D U L E
7 S E IZ E element;
8 S Y N m a x = 10_000, m in = 1;
9 D C L stack A R R A Y (m in : m ax) element,

10 stackindex IN T I N I T : = m in -1;
11 push:
12 P R O C (e element) E X C E P T IO N S (overflowj
13 IF stackindex = m a x T H E N

200 F ascicle X .6 — R ec . Z200

14 C A U S E overflow;
15 FI;
16 stackindex +:= 1;
17 stack(stackindex) := e;
18 1 R E T U R N ;
19 E N D push;
20 pop:
21 P R O C () E X C E P T IO N S (underflow)
22 IF stackindex = m in T H E N
23 C A U S E underflow;
24 F I;
25 stackindex-: = 1;
26 R E T U R N ;
27 E N D pop;
28
29 elem:
30 P R O C (i IN T) R E T U R N S (element L O C) E X C E P T IO N S (bounds)
31 IF i < m in O R i > m a x T H E N
32 C A U S E bounds;
33 FI;
34 R E T U R N stack(i);
35 E N D elem;
36
37 G R A N T push,pop,elem ;
38 E N D stacks;

29. E x a m p le o f a sp e c m o d u le

1 /* T h is SP E C M O D U LE defines the interface o f exam ple 27 and 28. * /
2 stack: S P E C M O D U L E
3 S E IZ E element;
4 push: P R O C (e elem ent) E X C E P T IO N S (overflow) E N D ;
5 pop: P R O C () E X C E P T IO N S (underflow) E N D ; '
6 elem: P R O C (i IN T) R E T U R N S (element L O C) E X C E P T IO N S (bounds) E N D ;
7 G R A N T push,pop,elem ;
8 E N D stack;

F ascicle X .6 — R ec . Z200

APPENDIX E: DECOMMITTED FEATURES

The features described in the following are not p a rt of the present Recom m endation Z200, bu t were p a rt of
the Recom m endation Z200, 1984, Red Book, Volume VI — Fascicle VI.12. In the following a brief description
is given; for a complete definition of them , refer to the relevant sections of the Z200 1984, th a t are hereafter
mentioned. These features may be supported by an im plem entation.

1. F re e d ire c t iv e (S ee se c tio n 2 .6)

A free directive freed the r e s e rv e d simple nam e strings specified in the reserved simple nam e string list so th a t
they could be redefined.

2. I n te g e r m o d e s s y n ta x (S ee s e c tio n 3 .4 .2)

B IN was derived syntax for IN T .

3. S e t m o d e s w ith h o le s (S ee s e c tio n 3 .4 .5)

A set mode defined a set of nam ed or unnam ed values. A set m ode was a set mode w ith h o le s , if and only if
the num ber of its s e t e le m e n t names was less than the n u m b e r o f v a lu e s of the set mode.

/

4 . P r o c e d u r e m o d e s s y n ta x (S e e s e c tio n 3 .7)

A result spec w ithout the optional r e s e rv e d simple name string R E T U R N S was derived syntax for the result
spec w ith R E T U R N S .

5. A r ra y m o d e s s y n ta x (S ee s e c tio n 3 .1 1 .3)

The re s e rv e d simple name string A R R A Y was optional.

6. L ev e l s t r u c tu r e n o ta t io n (S e e s e c tio n 3 .1 1 .5)

A level structure m ode was derived syntax for a nested structure m ode. In the level s tructure no ta tion the fields
were preceded by a level number. If a structure contained fields th a t were themselves structures or arrays of
structures, a hierarchy of structures was formed and a level num ber could be associated w ith each field. Instead
of writing nested structure modes, it was allowed in the level structure m ode to write the level num ber in the
front of the field name.

7. M a p re fe re n c e n a m e s (S ee se c tio n 3 .1 1 .6)

M ap reference names could be used to specify m apping in an im plem entation defined way.

8. B a se d d e c la ra t io n s (S ee s e c tio n 4 .1 .4)

A based declaration w ithout a bound or free reference location nam e was derived syntax for a synmode defini
tion statem ent. A based declaration w ith a bound or free reference location name defined one or more access
names. These names served as an alternative way of accessing a location by dereferencing the reference value
contained in the specified reference location. This dereferencing operation was perform ed each tim e and only
when an access was made via a declared b a s e d name.

202 F ascicle X .6 — R ec . Z200

9. C h a r a c te r s t r in g l i te r a ls (S e e se c tio n 5 .2 .4 .6)

C haracter string literals were delim ited by apostrophe characters. A part from the prin table representation, the
hexadecim al representation could be used. C haracter string literals of length one served as character literals.

10. A d d r n o ta t io n (S ee s e c tio n 5 .3 .8)

A D D R (< location>) was derived syntax for - > <location>.
\

11. A s s ig n m e n t s y n ta x (S e e s e c tio n 6 .2)

The = symbol was derived syntax for the symbol.

12. C a se a c t io n s y n ta x (S e e s e c tio n 6 .4)

The range list of a case action could be specified more generally by a discrete m o d e , and not only by a
discrete m ode name.

13. D o fo r a c t io n s y n ta x (S e e s e c tio n 6 .5 .2)

The range in the range enumeration of a do-for action could be specified more generally by a discrete m ode,
and not only by a discrete m ode name.

14. E x p lic i t lo o p c o u n te r s (S ee s e c tio n 6 .5 .2)

If an access nam e was visible in the reach where the do action was placed, which was equal to one of the names
defined by a loop counters, then the loop counter was e x p lic it; otherwise it was im p lic i t . In the former case,
the value of the loop counter was stored into the denoted location ju s t prior to abnorm al term ination.

A distinction was m ade between n o rm a l and a b n o rm a l term ination. Norm al term ination occurred if the
evaluation of a t least one of the loop counters indicated term ination. A bnorm al term ination occured if the
evaluation of while condition delivered FALSE or if the do action was left by a transfer of control out of it.

15 . C a ll a c t io n s y n ta x (S ee se c tio n 6 .7)

The r e s e r v e d simple name string C A L L was optional. A call action w ith C A L L was derived from a call
action w ithout C A L L .

16. R E C U R S E F A IL e x c e p tio n (S ee se c tio n 6.7)

The R E C U R SE F A IL exception was caused when a n o n - re c u rs iv e procedure called itself recursively.

17. S t a r t a c t io n s y n ta x (S e e se c tio n 6 .13)

The start action w ith the S E T option was derived syntax for the single assignm ent action:
<instance location> := < start expression>

18. E x p lic it v a lu e re c e iv e n a m e s (S e e se c tio n 6 .19)

A receive signal case action and a receive buffer case action could introduce v a lu e re c e iv e names. If a nam e
was visible in the reach where the receive signal case action was placed, which was equal to one of the names
introduced after IN , then the v a lu e re c e iv e name was e x p lic it; otherwise it was im p lic i t . In the former
case, the received value was stored into the denoted location im m ediately before the execution of the action
sta tem ent list.

F ascicle X .6 — R ec . Z200 203

19. B lo ck s (S e e s e c tio n 8 .1)

The i f action, case action, do action and delay case action were not defined to be blocks.

20. E n t r y s t a te m e n t (S ee se c tio n 8 .4)

A procedure could have m ultiple entry points by means of entry statem ents. These statem ents were considered
to be additional procedure definitions. The defining occurrence in the entry sta tem ent defined the nam e of
the entry point in the procedure in which reach it was placed. The entry point was determ ined by the textual
position of the entry statem ent.

21 . R e g is te r n a m e s (S ee se c tio n 8 .4)

Register specification could be given in the formal param eter of the procedure and in the result spec. In the
pass by value case, it m eant th a t the actual value was contained in the specified register; in the pass by location
case, it m eant th a t the (hidden) pointer to the actual location was contained in the specified register. If the
specification was in the result spec it m eant th a t the returned value or the (hidden) pointer to the returned
location was contained in the specified register.

22 . W e a k ly v is ib le n a m e s a n d v is ib ili ty s ta te m e n ts (S e e s e c tio n 1 0 .2 .4 .3)

A nam e string NS weakly visible in reach R was said to be seizable by m odulion M directly enclosed in R if NS
was linked in R to a defining occurrence not surrounded by the reach of M. A nam e string NS weakly visible in
reach R of m odulion M was said to be grantable by M if NS was linked in R to a defining occurrence surrounded
by R.

23 . S e iz in g b y m o d u lio n n a m e (S ee se c tio n 10 .2 .4 .5)

If a prefix renam e clause in a seize sta tem ent had a seize postfix which contained a m odulion nam e string and
A L L , then the prefix rename clause was equivalent to a set of seize sta tem ents, for any nam e string th a t was
strongly visible in the reach th a t directly enclosed the modulion in which the seize sta tem ent was placed and
was seizable by this modulion, and was granted by the modulion attached to the m odulion nam e in the reach
directly enclosing the modulion in which the seize statem ent was placed. v-

24 . P re d e f in e d s im p le n a m e s tr in g s (S ee s e c tio n C .2)

A N D , N O T , OR, R E M , M OD, TH IS and X O R were predefined simple name strings.

204 F ascicle X .6 — R ec . Z200

APPENDIX F: COLLECTED SYNTAX

2 P R E L IM IN A R IE S

<sim ple nam e str in g >
< letter> { < letter> \ < digit> | _ }*

< letter> ::=
A 1 B 1 c 1 D | E | F | G \ H | I | J

1 N 1 o 1 P 1 Q | R 1 s T | U 1 v 1
1 a 1 *> 1 c I d 1 e 1 f 1 g 1 * | i | J 1*
1 n 1 o | p 1 1r 1s 1 t 1 u 1 v | w | .

<digit> ::=
0 1 1 12 1 3 14 1 5 1 6 1 7 1 8 1 9

< com m ent> ::=
< bracketed com m ent>

| <line-end com m ent>

<bracketed com m ent> ::=
/ * < character str in g > * /

<line-end com m ent> ::=
— <character string> <end-of-line>

< character s tr in g > ::= ^
{ <character> }*

<directive clause> ::=
< > <directive> { , <directive> }* < >

<directive> ::=
< im plem entation directive>

<nam e>
<nam e string >

< n a m e s tr in g > ::=
<sim ple nam e string >

| <prefixed nam e string >

<prefixed nam e strin g > ::=
<preiix> ! <sim ple nam e s tr in g > ,

<preiix> ::=
< sim ple prefix> { ! <sim ple p re fix> }*

< sim ple prefix > ::=
< sim ple nam e string >

<de£ning occurrence> ::=
<sim ple nam e strin g >

<defining occurrence list> ::=
<dehning occurrence> { , <dehning occurrence> }*

<field nam e> ::=
< sim ple nam e string>

<field nam e defining occurrence> ::=
<sim ple nam e string>

<field nam e defining occurrence list> ::=
<field nam e defining occurrence > { , <held name defining occurrence> }*

< exception nam e> ::=
<sim ple nam e string >

| <prefixed nam e string>

< tex t reference nam e> ::=
<sim ple nam e string >

| <prefixed nam e string >

F ascicle X .6 — R ec . Z 200 205

3 M O D E S A N D C L A SSE S

<m ode definition> ::=
<defining occurrence list> = <defining m ode>

<defining m ode> ::=
<m ode>

<synm ode definition sta tem ent> ::=
S Y N M O D E <m ode de£nition> { , <m ode definition> }*

<newm ode definition sta tem ent> ::=
N E W M O D E <m ode definition> { , < m ode definition> }*

<m ode>
[R E A D] <non-com posite m ode>

| [R E A D] < com posite m ode>

<non-com posite m ode>
< discrete m ode>

j <powerset m ode>
| <reference m ode>
| <procedure m ode>
| <instance m ode>
| <synchronisation m ode>
| < inpu t-ou tpu t m ode>
| < tim ing m ode>

< discrete m ode> ::=
<integer m ode>

| <boolean m ode>
| < character m ode>
| <set m ode>
| <range m ode>

<integer m ode> ::=
< integer mode name>

< boolean m ode> ::=
< boolean m ode nam e>

<character m ode>
< character m ode nam e>

<set m ode> ::=
S E T (<set list>)

| <set m ode nam e>

<set list> ::=
<num bered set list>

| < unnum bered set list>

<num bered set list> ::=
<num bered set elem ent> { , <num bered set element> }*

<num bered set elem ent> ::=
<defining occurrence> = < inteser literal expression>

<unnum bered set list> ::=
<set elem ent> { , <set elem ent> }*

<set elem ent> ::=
<defining occurrence>

<range mode>
<discrete m ode nam e> (<literal range>)

| R A N G E (<literal range>)
| B IN (< integer literal expression>)
| <ranse m ode nam e>

<literal range> ::=
<lower bound> : < upper bound>

206 F ascicle X .6 — R ec . Z200

<lowei bound>
< discrete literal expression>

< upper bound> ::=
< discrete literal expression>

<powerset m ode> ::=
P O W E R S E T < m em ber m ode>

| < powerset m ode nam e>

<m em ber m ode> ::=
< discrete m ode>

<reference m ode>
< bound reference m ode>

| <free reference m ode>
| < row m ode>

<bound reference m ode>
R E F <referenced m ode>

| < bound reference m ode nam e>

<referenced m ode> ::=
<mode>

<free reference m ode> ::=
<free reference m ode nam e>

<row m ode> ::=
R O W <strine m ode>

| R O W < array m ode>
| R O W < variant structure m ode>
| <row m ode nam e>

<procedure m ode> ::=
P R O C ([<param eter list>]) [<result spec>]
[E X C E P T IO N S (< exception list>)] [R E C U R S IV E

| < procedure m ode nam e>

<parameter list> ::=
<parameter spec> { , <param eter spec> }*

<parameter spec> ::=
<m ode> [<param eter a ttribu te>]

<parameter a ttribu te> ::=
IN | O U T | IN O U T | L O C [D Y N A M IC]

<result spec> ::=
R E T U R N S (<m ode> [<result a ttribu te>])

<result a ttribute> ::=
[N O N R E F] L O C [D Y N A M IC]

< exception list> ::=
<exception nam e> { , <exception nam e> }*

<instance m ode> ::=
<instance m ode nam e>

<synchronisation m ode> ::=
< event m ode>

| < buffer m ode>

<event m ode> ::=
E V E N T [(< event length>)]

| < event m ode name>

< event length> ::=
<inteeer literal expression>

<buffer m ode> ::=
B U F F E R [(< buffer length>)] < buffer element m ode>

I < b u fferm o d e na m e>

F ascicle X .6 — R ec . Z200 207

Cbuffer length> ::=
< integer literal expression>

Cbuffer element m ode> ::=
< m ode>

<input-output m ode> ::=
Cassociation m ode>

| < access m ode>
| < tex t m ode>

<association m ode> ::=
< association m ode nam e>

<access mode> ::=
A C C E S S [(< index m ode>)] [<record m ode> [D Y N A M IC]]

I < access mode nam e>

<record m ode> ::=
<m ode>

<index m ode> ::=
< discrete m ode>

j < lit era! range>

< tex t m ode> ::=
T E X T (< tex t length>) [< index m ode>] [D Y N A M IC]

< tex t length> ::=
< integer literal expressi on >

< timing m ode> ::=
<duration m ode>

| < absolute time m ode>

<duration m ode> ::=
< duration m ode name>

<absolute time m ode> ::=
< absolute tim e mode nam e>

<com posite m ode>
<string m ode>

| < array m ode>
| <structure m ode>

< string mode> ::=
<string type> (< string lengthy) [V A R Y IN G]

| <param eterised string m o d ey
j < string m ode n am ey

< parameterised string m o d ey
Corigin string mode n am ey (<string len g th y)

| < varamet,erised string m ode n am ey

Corigin string m ode n am ey ::=
Cstring m ode n am ey

Cstring ty p e y ::=
B O O L S

| C H A R S

Cstring len gth y ::=
Cinteger literal expressiony

Carray m o d ey
A R R A Y (Cindex m o d ey { , c in d ex m o d ey }*)
Celement m o d ey { Celement la yo u ty }*

| Cparameterised array m o d ey
j < arrav m ode n am ey

Cparameterised array m o d ey ::=
Corigin array m ode n am ey (Cupper in d e x y)

208 F ascicle X .6 - R ec . Z200

< origin array m ode name> ::=
< array m ode name>

< upper in d ex>
< discrete literal expression>

< element m ode>
<mode>

<structure m ode> ::=
S T R U C T (<£eld> { , <£eld> }*)

| <parameterised structure m ode>
| <structure mode nam e>

<field>
<fixed £eld>

| <alternative field> \

<fixed £eld> ::=
<field nam e defining occurrence list> <m ode> [<£eld layout>]

<alternative field> ::=
C A S E [<tag list>] O F
< variant alternative> { , < variant alternative> }*
[E L S E [< variant £eld> { , < variant £eld> }*]] E S A C

< variant alternative> ::=
[Cease label specification>] : [< variant £eld> { , <variant field> }*]

< tag l is t> ::=
< tag field name> { , < tag field nam e> }*

< variant field> ::=
<field nam e defining occurrence list> <m ode> [<field layout>]

<parameterised structure m ode> ::=
<origin variant structure m ode nam e> (<literal expression list>)

| < varameterised structure m ode nam e>

< origin variant structure m ode nam e> ::=
< variant structure m ode nam e>

<literal expression list> ::=
<discrete literal expression> { , <discrete literal expression> }*

< element layout> ::=
P A C K | N O P A C K | <step>

<field layout> ::=
P A C K | N O P A C K | <pos>

<step> ::=
S T E P (<pos> [, <step size>])

<pos> ::=
P O S (<word> , <start bit> , < length>)

| P O S (<word> [, < start bit> [: < end bit>]])

<word> ::=
<integer literal expression>

<step size> ::=
< integer literal expression>

<start bit> ::=
<integer literal expression>

< end bit> ::=
<integer literal expression>

<length> ::=
<integer literal expression>

| < parameterised array m ode nam e>

F ascicle X .6 — R ec . Z 200 209

< declaration sta tem ent> ::=
D C L <declaration> { , <declaration> }* ;

<declaration> ::=
<location declaration>

| < loc-identity declaration>

<location declaration> ::=
<defining occurrence lis t> <m ode> [S T A T IC] [< in itia iisa tion>]

<ini tiaJisation > ::=
<reach-bound initialisation>

| <lifetim e-bound initialisation>

<reach~bound initialisation> ::=
<assignment sym bol> <value> [< h an d le r>]

<lifetim e-bound initialisation>
I N IT <assignm ent sym bol> < constant value> 1

<loc-identity declaration> ::=
<defining occurrence list> <m ode> L O C [D Y N A M IC]
Cassignm ent sym bol> <location> [<handler>]

<location> ::=
< access nam e>

| < dereferenced bound reference >
| < dereferenced free reference >
| <dereferenced row>
| <string element>
| <string slice>
| <array element>
| < array slice >
| <structure field>
j < location procedure caII>
| <location built-in routine call>
I <location conversion>

<access name> ::=
<location nam e>

| <loc-identitv nam e>
| <location enumeration nam e>
| <location do-with name>

< dereferenced bound reference> ::=
< bound reference prim itive value> - > [<m ode nam e>]

<dereferenced free reference>
< free reference prim itive value> -> < m ode nam e>

< dereferenced row> ::=
<row prim itive value> ->

<string element> ::=
<string location> (<start element>)

<start elem ent>
<integer expression>

<string slice> ::=
< string location> (< left elem ent> : <right elem ent>)

| <string location> (< s ta rt element> U P < slice size>)

<left element> ::=
<integer expression>

<right element> ::=
Cinteger expression>

Cslice size>
Cinteger expression>

4 L O C A T IO N S A N D T H E IR A C C E S S E S

210 F ascicle X .6 — R ec. Z200

< array elem ent>
< array location> (< expression list>)

< expression list> ::=
<expression> { , <expression> }*

< array slice>
< array location> (<lower element> : <upper element>)

j < array location> (<first element> U P <slice size>)

<lower element> ::=
<expression>

\
< upper element>

<expression>

< first element> ::=
<expression>

<structure field> ::=
<structure location> . <field name>

<location procedure ca11>
<location procedure call>

<location built-in routine call> ::=
<location built-in routine call>

<location conversion> ::=
<m ode nam e> (<st,atic m ode location>)

5 V A L U E S A N D T H E IR O P E R A T IO N S

< synonym definition sta tem ent> ::=
SY N < synonym definition> { , <synonym de£nition> }* ;

< synonym definition> ::=
<defining occurrence list> [<m ode>] = < constant value>

<prim itive value> ::=
<location contents>

| < value nam e>
j <li teral >
j <tuple>
| <value string element>
| <value string slice>
| < value array elem ent>
| < value array slice>
| <value structure Held>
| < expression conversion>
| <ya lue procedure call>
| < value built-in routine call>
| <start expression>
| <zero-adic operator >
| <parenthesised expression>

<location contents> ::=
<location>

< value name> ::=
<svnonvm nam e>

| < value enumeration nam e>
| < value do-with name>
| < value receive nam e>
| < general procedure nam e>

<li teral > ::=
<integer literal>

| < boolean li teral >
| < character litera l>

F ascicle X .6 — R ec . Z200 211

| <set li teral >
| < em ptiness literal>
| < character string literal>
| < bit string literal>

<integer litera l> ::=
<decimal integer literal>

| < binary integer literal>
| < octal integer li teral >
| <hexadecimal integer literal>

<decimal integer literal>
[{ D I d } ’] { < digit> | _ }+

< binary integer litera l> ::=
{ B \ b } ’ { 0 \ 1 | _ } +

<octal integer literal> ::=
{ O | o } ’ { <octal digit> | _ }+

<hexadecim al integer litera l> ::=
{ i f | h } ’ { <hexadecimal digit > | _ }+

<hexadecim al digit> ::=
<digit> \ A \ B \ C \ D \ E \ F \ a \ b \ c \ d \ e \ f

< octal d ig it> ::=
0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7

<boolean litera l> ::=
< boolean literal nam e>

<character litera l> ::=
’ <character> | <control sequence> ’

<set litera l>
< set element nam e>

<em ptiness lite ra l> ::=
< em ptiness literal nam e>

<character string literal> ::=
” { < non-reserved character> | <quote> | <control sequence> }*

< quote> ::=
J? J?

<control sequence> ::=
{< integer literal expression> { , < integer literal expression> }*)

| “ < non-special character>
I

< bit string literal> ::=
< binary bit string literal>

| < octal bit string literal>
| <hexadecim al bit string literal>

< binary bit string literal> ::=
{ B | b } ’ { 0 | 1 | _ y ’

<octal bit string literal> ::=
{ O | o } ’ { <octal digit> | _ }* ’

<hexadecim al bit string literal> ::=
{ i f | h } ’ { <hexadecim al digit> | _ }* ’

< tu p le> ::=
[< m ode nam e>] { <powerset tuple> |
<array tuple> | <structure tuple> } :)

< powerset tup le> ::=
[{ < expression> | < range>} { , { <expression> \ <range> } }*]

< range> :;=
<expression> : < expressi on >

212 F ascicle X .6 — R ec . Z200

< array tup le> ::=
< unlabelled array tuple>

| <labelled array tuple>

<unlabelled array tuple> ;:=
<value> { , <value> }*

<labelled array tuple> ::=
<case label list> : <value> { , Cease label list> : <value> }*

<structure tuple> ::=
<unlabelled structure tuple>

| <labelled structure tuple>

< unlabelled structure tuple> ::=
<value> { , <value> }*

<labelled structure tuple>
<field nam e list> : <value> { , <field name lis t> : <value> }*

<field nam e list> ::=
<field nam e> { , . <field nam e> }*

<value string elem ent> ::=
< string p rim itive value> (<start element>)

< value string slice> ::=
< string p rim itive value> (< left element> : <right element>)

| <string prim itive value> (<start element> U P < slice size>)

<value array elem ent> ::=
< array prim itive value> (<expression list>)

< value array slice> ::=
< arrav prim itive value> (<lower element> : <upper element>)

| < arrav prim itive value> (<first element> U P < siice size>)

< value structure field> ::=
<structure p rim itive value> . <field name>

<expression conversion> ::=
<m ode nam e> (<expression>)

< value procedure call> ::=
< value procedure call>

< value built-in routine ca11 > ::=
< value built-in routine call>

< start expression> ::=
S T A R T < process nam e> ([< a d u a l parameter list>])

<zero-adic operator> ::=
T H IS

<parenthesised expression> ::=
(<expression>)

<value> ::=
<expression>

| <undefined value>

<undefined value> ::=
*

| < undefined synonym name>

<expression> ::=
<operand-0>

| < conditional expression>

<conditional expression> ::=
| I F < boolean expression> < then alternative>

<else alternative> F I
| C A S E Cease selector list> O F { Cvalue case alternative> }+

[E L S E C sub expression>] E S A C

Fascicle X .6 — R ec . Z 200 213

< then alternative > ::=
T H E N <sub expression>

<else alternative>
E L S E <sub expression>

| E L S IF < boolean expression>
< then alternative> <else alternative>

<sub expiession> ::=
< expression >

< value case alternative> ::=
<case label specification> : <sub expiession> ;

< operand-0 > ::=
< operand-l>

| <sub operand-0> { O R | O R IF | X O R } < operand-l>

<sub operand-0> ::=
<operand-0>

< operand-1 > ::=
Coperan d-2>

| <sub operand-l> { A N D | A N D IF } <operand-2>

<sub operand-1 > ::=
< operand-1 >

<operand-2> ::=
<operand-3>

| <sub operand-2> <operator-3> <operand-3>

< sub operand-2>
<operand-2>

<operator-3> ::=
< relational operator> '

| <m em bership operator>
| <powerset inclusion operator>

<relational operator> ::=
= I/= I > I >= I < I < =

< m em bership operator> ::=
IN

<powerset inclusion o p era to r>
<= I >= I < i >

<operand-3> ::=
<operand-4>

| <sub operand-3> <operator-4> < operand-4>

<sub operand-3>
< operand-3 >

<operator-4> ::=
<arithm etic additive opera to r>

| <string concatenation o p era to r>
| <powerset difference operator >

< a rithm etic additive operator> ::=
+ I "

<string concatenation operator> ::=
/ /

<powerset difference operator> ::=

<operand-4> .
<operand-5>

| <sub operand-4> < arithm etic m ultip licative o p era to r> <operand-5>

<sub operand-4> ::=

214 F ascicle X .6 — R ec . Z200

<arithm etic m ultiplicative operator> ::=
* | / | M O D | R E M

< operand-5> ::=
[<monadic o p era to r>] <operand-6>

<monadic operator> ::=
- | N O T

| <string repetition operator>

<string repetition operator> ::=
(<integer literal expression>)

<operand-6>
<referenced location> '

| <receive expression>
| <prim itive value>

<referenced location> ::=
-> <location>

<receive expression> ::=
R E C E IV E < buffer location>

< o p era n d -4 >

6 A C T IO N S

<action sta tem ent>
[< defining occurrence> :] < ac tio n > [<handler>] [<simple name string>] ;

| <m odule>
| <spec m odule>
| <context m odule>

<action> ::=
< bracketed action>

| < assignment action>
| <call action>
| < exit action>
| < re turn actio n>
| <result action>
| <goto action>
| < assert action>
| < em pty action>
| <start action>
| < stop action>
| <delay action>
| <continue action>
| <send action>
| < c a use action>

< bracketed action>
< if action>

| < ca se a ction >
| <do action>
| < begin-end block>
| <delay case action> -
| <receive case action>
| < tim ing action>

< assignment action> ::= i
<single assignm ent action>

| <m ultip le assignment action>

<single assignment action> ::=
<location> <assignment sym bol> <value>

| <location> <assigning operator> <expression>

Fascicle X .6 — R ec . Z200 215

< m ultiple assignment action> ::=
<location> { , <location> }+ < a ssignm ent sym bol> <value>

< assigning operator> ::=
< closed dyadic operator> < assignment sym b o l>

< closed dyadic operator > ::=
O R | X O R | A N D

| <powerset difference operator >
j < arithm etic additive operator>
| < a rithm etic m ultiplicative operator>
| <string concatenation operator>

Cassignm ent sym bol> ::=

< if action> ::=
I F < boolean expression> < then clause> [<else clause>] F I

< then clause> ::=
T H E N <action sta tem en t list>

<else clause>
E L S E <action sta tem en t list>

| E L S IF < boolean expression> < then clause> [<else clause>]

Cease action> ::=
C A S E Cease selector list> O F [Crange list> ;] { Cease alternative> } +
[E L S E Caction sta tem ent list>] E S A C

Cease selector list>
< discrete expression> { , C discrete expression> }*

<range list> ::=
< discrete m ode nam e> { , < discrete m ode nam e> }*

Cease alternative> ::=
Cease label speciffcation> : < action sta tem en t list>

< do action> ::=
D O [Kcontrol part> ;] <action sta tem ent list> O D

C control part> ::=
<for control> [< while control>]

| C while control>
| C with part>

<for control> ::=
F O R { <iteration> { , <iteration> }* | E V E R }

<iteration>
< value enumeration>

| <location enumeration>

< value enumeration> ::=
<step enumeration>

| <range enumeration>
| Cpowerset enumeration>

<step enumeration> ::=
<loop counter> <assignm ent sym bol>
<start value> [C step value>] [D O W N] C end value>

<loop counter> ::=
<deffning occurrence>

Cstart value>
< discrete expression>

<step value>
B Y C integer expression>

<end value> ::=
T O C discrete expression>

216 Fascicle X .6 — R ec . Z200

<range enumeration> ::=
<loop counter> [D O W N] IN < discrete m ode nam e>

<pow eiset enumeration> ::=
* <loop counter> [D O W N] IN < powerset expression>

<location enumeration> ::=
<loop countei> [D O W N] IN < com posite object>

<com posite object>
< arrav location>

| < array expression>
| <strine location>
| <string expression>

< while eontrol>
W H IL E < boolean expression>

< w ith part>
W IT H <w ith control> { , < w ith control> }*

< w ith control>
<structure location>

| <structure prim itive value>

< exit ac ti on > ::=
E X IT <label name>

<call action> ::=
<procedure call>

| < built-in routine call>

<procedure call> ::=
{ < procedure name> | < procedure prim itive value> }
([< a d u a l param eter list>])

<actual parameter list> ::=
<actual parameter> { , <actual param eter> }*

<actual param eter> ::=
<value>

| <location>

<built-in routine ca11> ::=
< built-in routine nam e> ([< built-in routine param eter list>])

< built-in routine parameter list>
<built-in routine param eter> { , <built-in routine param eter> }*

< built-in routine parameter> ::=
<value>

| <location>
I < non-reserved nam e> [(< built-in routine param eter list>)]

< re turn a ction> ::=
R E T U R N [<result>]

<result action> ::=
R E S U L T <result>

<result> ::=
< value>

| <location>

<goto action> ;:=
G O T O <label nam e>

< assert action>
A S S E R T < boolean expression>

< em p ty action>
< em pty >

%
< e m p ty > ::=

F ascicle X .6 — R ec . Z200 217

< cause action> ::=
C A U S E <exception nam e>

< sta it action> ::=
<start expression>

< stop action> ::=
S T O P

< continue a ction> ::=
C O N T IN U E < event location>

< delay action> ::=
D E L A Y < event location> [< priority>]

<p riority> ::=
P R I O R I T Y < integer literal expression>

< delay case action>
D E L A Y C A S E [S E T <instance Jocation> [< priority>] ; \ < priority> ;]
{ < delay alternative> }+
E S A C

<delay alternative> ::=
(<event list>) : <action sta tem ent list>

< event list> ::=
< event location> { , < event location> }*

<send action> ::=
<send signal action>

| <send buffer action>

<send signal action>
S E N D <signal name> [(< vaiue> { , <value> }*)]
[T O <instance prim itive value>] [<priority>]

<send buffer action>
S E N D < buffer location> (< value>) [<priority>]

< receive case action> ::=
<receive signal case action>

| creceive buffer case action>

<receive signal case action> ::=
R E C E IV E C A S E [S E T <instance location> ;]
{ <signal receive alternative> }+
[E L S E < a ction sta tem ent list>] E S A C

<signal receive alternative> ::=
(<signal name> [IN <defining occurrence list>]) : <action sta tem en t list>

<receive buffer case action> ::=
R E C E IV E C A S E [S E T C instance location> ;]
{ < buffer receive alternative> }+
[E L S E < a ction sta tem ent list>]
E S A C

< buffer receive a lternative> ::=
(< buffer location> IN <dedning occurrence>) : <action sta tem en t list>

< CHILL built-in routine call> ::=
<CH ILL simple built-in routine call>

| <CH ILL location built-in routine ca11>
| <CH ILL value built-in routine ca11>

< CHILL simple built-in routine ca11> ::=
< term inate built-in routine call>

| < io simple built-in routine ca11>
| < tim ing simple built-in routine call>

<C H ILL location built-in routine call> ::=
<io location built-in routine ca11 >

218 Fascicle X .6 — R ec. Z200

<C H ILL value built-in routine call> ::=
N U M (< discrete expression>)

| P R E D (< discrete expression>)
| SU CC (< discrete expression>)
| A B S (< integer expression>)
| C A R D (< powerset expression>)
| M A X (< powerset expression>)
| M IN (< powerset expression>)
| SIZE ({ < location> | <m ode argument> })
j UPPER (< upper lower argum ent>)
| L O W E R (< upper lower argument>)
| L E N G T H (<length argument>)
| <allocate built-in routine call>
| < io value built-in routine caU>
| < tim e value built-in routine call>

< m ode argum ent> ::=
< mode nam e>

| < arrav m ode name> (<expression>)
| < strine m ode nam e> (<integer expression>)
| < variant structure mode nam e> (<expression lis t>)

Cupper lower argument>
< arrav location>

| < arrav expression>
| < arrav m ode name>
| C string location>
| Cstring expression>
| C string m ode name>
| < discrete location>
| < discrete expression>
| C discrete mode nam e>

Clength argument> ::=
C string location>

j C string expression>

Callocate built-in routine call> ::=
G E T S T A C K (Cm ode argument> [, <value>])

| A L L O C A T E (Cm ode argum ent> [, <value> j)

Cterm inate built-in routine call> ::=
T E R M IN A T E (C reference prim itive value>)

7 I N P U T A N D O U T P U T

Cio value built-in routine call> ::=
Cassociation a ttr built-in routine call>

- | Cisassociated built-in routine call>
| Caccess a ttr built-in routine call>
| Creadrecord built-in routine call>
| C gettex t built-in routine call>

Cio simple built-in routine call> ::=
< dissociate built-in routine ca11 >

| CmodiHcation built-in routine call>
| Cconnect built-in routine call>
| Cdisconnect built-in routine call>
| Cwriterecord built-in routine ca11>
| < text built-in routine call>
| C settext built-in routine call>

Cio location built-in routine call>
< associate built-in routine call>

Cassociate built-in routine call> ::=

A SSO C IA T E (<association location> [, < associate param eter list>])

<isassociated built-in routine call> ::=
ISA SSO C IA TE D f< association location>)

< associate param eter list> ::=
< associate parameter> { , < associate param eter> }*

<associate parameter>
<location>

| <value>

<dissociate built-in routine call>
D ISSO C IA TE (<association location>)

<association a ttr built-in routine call> ::=
E X IST IN G (< association location>)

| R E A D A B L E (<association location>)
| W R IT E A B L E (< association location>)
| IN D E X A B L E (<association location>)
I SE Q U EN C IBLE (<association location>)
| V A R IA B L E (<association location>)

< m odification built-in routine call> ::=
C R E A T E (<association location>)

| D E L E T E (< association location>)
| M O D IF Y (<association location> [, < m odify parameter list>))

< m o d ify param eter list> ::=
< m odify parameter> { , < m odify param eter> }*

< m odify param eter> ::=
<value>

| <location>

<connect built-in routine call> ::=
C O N N E C T (<transfer location> , < association location> ,
< usage expression> [, < where expression> [, <index expression>]] J

< transfer location> ::=
< access location>

| < tex t location>

< usage expression>
<expression>

< where expression> ::=
<expression>

< index expression> ::=
<expression>

<disconnect built-in routine call>
D ISC O N N E C T (< transfer location>)

< access a ttr built-in routine ca 11>
G E TA SSO C IA TIO N (< transfer location>)

| G E TU SA G E (< transfer location>)
| O U TO FFILE (< transfer location>)

<readrecord built-in routine call> ::=
R E A D R E C O R D (< access location> [, <index expression>]
[, <store location>])

<writerecord built-in routine call> ::=
W R IT E R E C O R D (< access location> [, <index expression>] ,
< write expression>)

<store location> ::=
< static mode location>

< write expression>
<expression>

220 Fascicle X .6 — R ec. Z200

< tex t built-in routine ca lly
R E A D T E X T (< tex t io argum ent list>)

| W R IT E T E X T (< tex t io argument list>)

< tex t io argum ent list> ::=
< tex t argum ent> [, <index expression>] ,
<£ormat argum ent> [, <io list>]

< tex t argum ent> ::=
< text location>

j < cbaracter string location>
| < character string expression>

< form at argum ent> ::=
< character strine expression>

<io lis t> ::=
< io lis t elem ent> { , < io list elem ent> }*

<io list element> ::=
< value argum ent>

| < location argum ent>

< location argum ent>
<discrete location>

I < string location>

< value argum ent> ::=
< discrete expression>

| < string expression>

<form at control string> ::=
[<form at text>] { < form at specification> [<form at text>] }*

<form at text> ::=
{ <non-vercent character>] <percent> }

< percent> ::=
% %

<form at specihcation> ::=
% [<repetition factor>] <form at element>

<repetition fa c to ry ::=
{ < digit> }+

<form at e lem en ty ::=
< format clausey

| <parenthesised clausey

<form at clausey ::=
<control codey [% .]

< control codey
<conversion clausey

| < editing clausey
| < io clausey

<parenthesised clausey ::=
(< form at control s tr in g y %)

<conversion clausey ::=
<conversion codey { <conversion qualifiery }*
[< clause w id th y]

<conversion codey ::=
B \ O \ H \ C

<conversion qualifiery ::=
L | E | P <charactery

< clause w id th y ::=
{ < d ig ity }+ | V

< editing clausey ::=

Fascicle X .6 - R ec . Z200 221

< editing code> [< clause width>]

<editing code> ::=
X | < | > | T

<io clause> ::=
<io code>

<io code> ::=
/ I - I + I M •' I =

< gettext built-in routine call> ::=
G E T T E X T R E C O R D (< text loca tiony)

I G E T T E X T IN D E X (< tex t loca tiony)
| G E T T E X T A C C E S S (< text location>)
j E O L N (< tex t location>)

< settext built-in routine call> ::=
S E T T E X T R E C O R D (< tex t location> , < character strine location>)

| S E T T E X T IN D E X (< tex t location> , <integer expression>)
j S E T T E X T A C C E S S (< tex t location> , < access location>)

8 E X C E P T IO N H A N D L IN G

<handler>
O N { <on-alternative> }* [E L S E <action sta tem ent list>] E N D

<on-alternative> ::=
(<exception lis t>) : <action sta tem ent list>

9 T IM E S U P E R V IS IO N

< tim ing action> ::=
C relative tim ing action>

| < absolute tim ing action>
| < cyclic tim ing action>

<relative tim ing action>
A F T E R < duration prim itive value> [D E L A Y] IN
< a ction sta tem en t list> < tim ing handler> E N D

< tim ing handler> ::=
T IM E O U T < action sta tem ent list>

<absolute tim ing action> ::=
A T < absolute tim e prim itive value> IN
< a ction sta tem ent list> < tim ing handler> E N D

< cyclic tim ing action> ::=
C Y C L E < duration prim itive value> IN
< a ction sta tem ent list> E N D

< tim e value built-in routine call> ::= ,
<duration built-in routine call>

I < abso lu te tim e built-in routine call>

<duration built-in routine ca lly ::=
M ILLISE C S (< integer expression>)

| SE C S (< integer expression>)
' j M IN U T E S (< integer expression>)

| H O U R S (< integer expression>)
| D A Y S (< integer expression>)

<absolute tim e built-in routine ca lly ::=
A B S T IM E ([[[[[[<year expressiony ,] <m onth expressiony ,]
< day expressiony ,] <hour expressiony ,]
<m inu te expressiony ,] <second expressiony])

<year expressiony ::=

222 F ascicle X .6 - R ec . Z200

< m onth expressiony ::=
<integer expressiony

< day expressiony ::=
<integer expressiony

<hour expressiony ::=
<integer expressiony

<m inute expressiony ::=
<integer expressiony

<second expressiony ::=
<integer expressiony

< tim ing simple built-in routine ca lly ::=
W A IT ()

| E X P IR E D ()
| IN T T IM E (< absolute tim e prim itive va luey , [[[[<year locationy

< m onth loca tiony ,] < day loca tiony ,]
<hour lo ca tiony ,] < m inute loca tiony ,]
<second loca tiony)

<year loca tiony ::=
<integer loca tiony

< m onth loca tiony ::=
<integer loca tiony

< day locationy ::=
<integer loca tiony

<hour locationy ::=
<integer loca tiony

< m inute loca tiony ::=
<integer loca tiony

Csecond locationy ::=
<integer loca tiony

10 P R O G R A M S T R U C T U R E

< begin-end b o d y y ::=
<data sta tem ent l is ty < action sta tem ent l is ty

<proc b o d y y ::=
<data sta tem ent l is ty <action sta tem ent l is ty

<process b o d y y
< data sta tem ent l is ty <action sta tem ent l is ty

<m odule b o d y y ::=
{ < d a ta s ta tem en ty | < visibility s ta tem en ty | < reg iony j
<spec regiony }* <action sta tem en t l is ty

<region b o d y y ::=
{ < data s ta te m e n ty | < visibility s ta tem en ty }*

<spec m odule b o d y y ::=
{ < quasi data s ta te m e n ty | < visib ility s ta tem en ty |
<spec m o d u ley | <spec regiony }*

<spec region b o d y y
{ <quasi data s ta te m e n ty | < visibility s ta tem en ty }*

< context b o d y y ::=
{ <quasi data s ta te m e n ty \ < visibility s ta tem en ty |
<spec m o d u ley | <spec regiony }*

< a ction sta tem ent l i s ty ::=
{ < a ction s ta tem en ty }*

< integer expressiony

F ascicle X .6 — R ec . Z200 223

<data sta tem ent list> ::=
{ <data sta tem ent> }*

< data statem ent> ::=
<declaration sta tem ent>

| <definition sta tem ent>

<definition s ta tem en ty
<synm ode definition s ta te m e n ty

j <newmode definition s ta te m e n ty
| <synonym definition s ta te m e n ty
| <procedure definition s ta te m e n ty
| <process definition s ta tem en ty
| <signal definition s ta te m e n ty
| < e m p ty y ;

<begin-end b locky ::=
B E G IN <begin-end b o d y y E N D

<procedure definition s ta tem en ty
<defining occurrencey : <piocedure defin itiony
[< handlery] [<sim ple nam e s tr in g y] ;

<procedure defin itiony ::=
P R O C ([< form ai param eter l is ty]) [<result sp ecy]
[E X C E P T IO N S (<exception l i s ty)] <procedure a ttribu te l is ty
<proc b o d y y E N D

<form al parameter l is ty
<formal param etery { , <form al p a ram etery }*

<form al param etery ::=
< defining occurrence l is ty <param eter sp ecy

<procedure a ttribu te l is ty
[<generalityy] [R E C U R S IV E]

< genera lityy
G E N E R A L

| S IM P L E
j IN L IN E

<process definition s ta tem en ty
<defining occurrencey : <process defin itiony
[<handlery] [< simple nam e s tr in g y] ;

<process defin itiony ::=
P R O C E S S ([<formal param eter l i s ty]) <process b o d y y E N D

< m o d u ley ::=
[<context l is ty] [<defining occurrencey :]
M O D U L E [B O D Y] < m odule b o d y y E N D
[< handlery] [<sim ple nam e s tr in g y] ;

| <rem ote m odu liony

<regiony
[<context l i s ty] [<defining occurrencey :]
R E G IO N [B O D Y] <region b o d y y E N D
[<handlery] [<simple nam e s tr in g y] ;

| <remote m odu liony

< program y ::=
{ < m oduley | <spec m o d u ley | < regiony | <spec regiony }+

<rem ote m oduliony ::=
[<simple nam e s tr in g y :] R E M O T E <piece designatory ;

< rem ote specy ::=
[<simple nam e s tr in g y :] S P E C R E M O T E <piece designatory

<rem ote co n tex ty :: =
C O N T E X T R E M O T E <piece designatory

224 F ascicle X .6 - R ec . Z200

[<context body>] F O R

<context m odule> ::=
C O N T E X T M O D U L E R E M O T E <piece designatory ;

<piece designator> ::=
<character string literal>

| < text reference name>
| < em pty>

<spec m o d u lo ::=
<simple spec m odule>

| <m odule spec>
| <remote spec>

<sim ple spec m odule> ::=
[<context list>] [<sim ple nam e string> :] S P E C M O D U L E
<spec m odule body> E N D [<.simple name string>] ;

<m odule spec>
[<context list>] <simple nam e string> : M O D U L E S P E C
<spec m odule body> E N D [<simple nam e string>] ;

<spec region> ::=
<simple spec region>

| < region spec>
| <remote spec>

< simple spec region> ::=
[<context list>] [<sim ple nam e string> :] S P E C R E G IO N
<spec region body> E N D [<sim ple nam e string>] ;

<region spec> ::=
[<context list>] <sim ple nam e s tr in g y : R E G IO N S P E C
<spec region body> E N D [<sim ple nam e s tr in g y] ;

< context l is ty ::=
< co n tex ty { < co n tex ty }*

| < remote co n tex ty

< co n tex ty ::=
C O N T E X T <context b o d y y F O R

<quasi data s ta tem en ty ::=
<quasi declaration s ta tem en ty

| <quasi definition s ta tem en ty

<quasi declaration s ta tem en ty
D C L <quasi declarationy { , <quasi declarationy }* ;

<quasi declarationy ::=
<quasi location declarationy

| <quasi loc-identity declarationy

<quasi location declarationy ::=
<defining occurrence l is ty < m o d ey [S T A T IC]

<quasi loc-identity declarationy ::=
<defining occurrence l is ty < m o d ey
L O C [N O N R E F] [D Y N A M IC]

<quasi definition s ta tem en ty ::=
<synm ode definition s ta te m e n ty

| <newmode definition s ta tem en ty
| <synonym definition s ta tem en ty
| <quasi synonym definition s ta tem en ty
| <quasi procedure definition s ta tem en ty
| <quasi process definition s ta tem en ty
| <quasi signal definition s ta tem en ty
| <e m p ty y ;

<quasi synonym definition s ta tem en ty ::=

F ascicle X .6 — R ec . Z 200 225

S Y N <quasi synonym definition> { , <quasi synonym definition> }* ;

<quasi synonym definition>
<defining occurrence list> { <m ode> = [< constant ralue>] |
[<m ode>] = <literal expression> }

<quasi procedure definition s ta tem en t>
<defining occurrence> : P R O C ([<quasi formal param eter list>])
[<result spec>] [E X C E P T IO N S (<exception list>)]
<procedure a ttr ibu te list> E N D [<simple nam e string>] ;

<quasi form al param eter list> ::=
<quasi formal param eter> { , <quasi formal param eter> }*

<quasi formal param eter> ::=
<sim ple nam e string> { , <simple nam e string> }* <param eter spec>

<quasi process definition s ta te m e n ty ::=
<defining occurrencey : P R O C E S S ([<quasi form al param eter l is ty])
E N D [<sim ple nam e s tr in g y] ;

<quasi signal definition s ta te m e n ty ::=
S IG N A L <quasi signal defin itiony { ,<quasi signal de fin itiony }* ;

<quasi signal de fin itiony
<defining occurrencey [= (< m o d ey { , < m o d ey }*)] [T O]

11 C O N C U R R E N T E X E C U T IO N

<signal definition s ta te m e n ty ::=
S IG N A L <signal defin itiony { ,<signal de fin itiony }* ;

<signal de fin itiony ::=
<defining occurrencey [= (< m o d ey { , < m o d ey }*)] [T O < process n a m ey

12 G E N E R A L S E M A N T IC P R O P E R T IE S

< visibility s ta te m e n ty ::=
<grant s ta tem en ty

| <seize s ta te m e n ty

<prefix renam e clausey ::=
(<old p re fixy - > < new p re fixy) ! < p o s tfixy

<old p re fix y ::=
< p refixy

| < e m p ty y

<new p re fix y ::=
< p re fix y

| < e m p ty y

< p o s tfix y ::=
<seize p o s tfix y { , <seize p o s tfix y }*

| <grant p o s tfix y { , <grant p o s tfix y }*

<grant s ta te m e n ty ::=
G R A N T <prefix rename clausey { , <prefix rename clausey }* ;

| G R A N T <grant w in d o w y [<prefix clausey] ;

<grant w in d o w y ::=
<grant p o s tfix y { , <grant p o s tfix y }*

<grant p o s tf ix y ::=
<nam e s tr in g y

| <jnewmode nam e s tr in g y < forbid clausey
| [< p refixy !] A L L

<prefix clausey
P R E F IX E D [<p re fix y]

226 F ascicle X .6 — R ec . Z200

<forbid clausey ::=
F O R B ID { <forbid nam e list> | A LL }

< fo ib id nam e l is ty ::=
(<field nam e> { , <field n am ey }* J

<seize s ta te m e n ty ::=
S E IZ E <prefix rename clausey { , <prefix renam e clausey }* ;

| S E IZ E <seize w indow y [<prefix clausey] ;

<seize w in d o w y ::=
<seize p o s tfix y { , Cseize p o s tf ix y }*

< seize p o s tf ix y ::=
<nam e s tr in g y

| [< p refixy !] A LL

<case label specificationy ::=
<case label l is ty { , Cease label l is ty }*

Cease label l is ty ::=
(Cease la b e ly { , Cease label> }*)

| <irrelevanty

Cease la b e ly ::=
< discrete literal expressiony

| < literal ran g e y
| C discrete m ode n a m ey
| E L S E

C irrelevanty ::=
(*)

F ascicle X .6 — R ec . Z200 227

APPENDIX G: INDEX OF PRODUCTION RULES

non-term inal defined
section page

used on
page(s)

< a bsolute tim e built-in routine call> 9.4.2 124 124
< absolute tim e m ode> 3.11.3 27. 27
<absolute tim ing action> 9.3.2 123 122
< access a ttr built-in routine call> 7.4.8 107 102
< access mode> 3.10.3 25 25
< access name> 4.2.2 42 41
< ac tion> 6.1 75 75
< action s ta tem en ty 6.1 75 128
< action sta tem ent l is ty 10.2 128 77,78,79,90,93,94,120,122,123,128
< actual param etery 6.7 84 84
< actual param eter l is ty 6.7 84 65,84
<allocate built-in routine cal ly 6.20.4 98 96
< alternative fie ldy 3.12.4 31 31
< arithm etic additive operatory 5.3.6 71 71,76
< arithm etic m ultiplicative operatory 5.3.7 72 72,76
< array elem en ty 4.2.8 46 41
< array m o d ey 3.12.3 29 28
< array slicey 4.2.9 46 41
< array tu p ley ' 5.2.5 56 56
< assert ac tiony 6.10 87 75
< assigning operatory 6.2 76 75
<assignm ent ac tiony 6.2 75 75
< assignment sym b o ly 6.2 76 39,40,75,76,80
<associate built-in routine cally 7.4.2 103 102
< associate param etery 7.4.2 103 103
< associate param eter l is ty 7.4.2 103 103
<association a ttr built-in routine cally 7.4.4 104 102
< association m o d ey 3.10.2 25 25

<begin-end b locky 10.3 130 75
<begin-end b o d y y 10.2 128 130
< binary bit string litera ly 5.2.4.8 56 56
< binary integer litera ly 5.2.4.2 53 53
< bit string litera ly 5.2.4.8 56 52
<boolean litera ly 5.2.4.3 53 52
< boolean m o d ey 3.4.3 17 16
< bound reference m o d ey 3.6.2 21 20
< bracketed a ctiony 6.1 75 75
< bracketed co m m en ty 2.4 9 9
< buffer element m o d ey 3.9.3 24 24
< buffer len g th y 3.9.3 24 24
< buffer m o d ey 3.9.3 24 23
<buffer receive a lternativey 6.19.3 94 94
<built-in routine ca lly 6.7 84 48,64
< built-in routine param etery 6.7 84 84
< built-in routine param eter l is ty 6.7 84 84

<call actiony 6.7 84 75
<case actiony 6.4 78 75

228 F ascicle X .6 — R ec . Z200

non-terminal defined
section page

used on
page(s)

< case a lternativey 6.4 78 78
Cease Jabely 12.3 164 164
Cease label list> 12.3 164 56,164
Cease label specification> 12.3 164 31,67,78
< case selector list> 6.4 78 67,78
< cause actiony 6.12 88 75
<character>
< character litera ly 5.2.4.4 54

9,54,55,113,114
52

< character m o d ey 3.4.4 17 16
< character s tringy 2.4 9 9
< character string litera ly 5.2.4.7 55 52,137
<C H ILL built-in routine ca lly 6.20 95
<C H ILL location built-in routine cally 6.20.2 95 95
< CHILL simple built-in routine cally 6.20.1 95 95
< CHILL value built-in routine cally 6.20.3 96 95
< clause w id th y 7.5.5 114 114,116
< closed dyadic operatory 6.2 76 76
< com m en ty 2.4 9
<com posite m o d ey 3.12.1 28 15
<com posite o b jec ty 6.5.2 80 80
< conditional expressiony 5.3.2 67 67
<connect built-in routine cally 7.4.6 105 102
< context y 10.10.2 138 138
< context b o d yy 10.2 128 137,138
< context l is ty 10.10.2 138 134,135,138
< context m odu ley 10.10.1 137 75
<continue actiony 6.15 88 75
< control codey 7.5.4 113 113
< control p a r ty 6.5.1 79 79
<control sequencey 5.2.4.7 55 54,55
< conversion clausey 7.5.5 114 113
< conversion codey 7.5.5 114 114
< con version q uali fiery 7.5.5 114 114
<cyclic tim ing actiony 9.3.3 123 122

<data s ta tem en ty 10.2 128 128
<data sta tem ent l is ty 10.2 128 128
<day expressiony 9.4.2 124 124
<day locationy 9.4.3 125 125
< decimal integer litera ly 5.2.4.2 53 53
< declarationy 4.1.1 39 39
< declaration sta tem en ty 4.1.1 39 128
< defining m o d ey 3.2.1 13 13
< defining occurrencey 2.7 10 10,18,75,80,94,131,133,134,135,140

< defining occurrence l is ty 2.7 10
145
13,39,40,50,93,131,139,140

<definition s ta tem en ty 10.2 128 128
< delay actiony 6.16 89 75
< delay a lternativey 6.17 90 90
<delay case actiony 6.17 90 75
<dereferenced bound referencey 4.2.3 42 41
< dereferenced free referencey 4.2.4 43 41
<dereferenced row y 4.2.5 43 41

Fascicle X .6 — R ec . Z200 229

non-term inal defined
section page

used on
page(s)

<digit> 2.2 8 8,53,113,114
<directive> 2.6 10 10
<diiective clause> 2.6 10
<disconnect built-in routine call> 7.4.7 107 102
<discrete m ode> 3.4.1 16 15
<dissociate built-in routine call> 7.4.3 103 102
<do action> 6.5.1 79 75
<duration built-in routine call> 9.4.1 124 124
<duration mode> 3.11.2 27 27

< editing clause> 7.5.6 116 113
< editing code> 7.5.6 116 116
<elem ent layout> 3.12.5 34 29
< elem ent mode> 3.12.3 29 29
<else alternative> 5.3.2 67 67
<else clause> 6.3 77 77
<em ptiness literal> 5.2.4.6 54 52
< em pty> 6.11 87 87,128,137,139-,158
<em p ty action> 6.11 87 75
<end bit>
<end-of-line>

3.12.5 34 34
9

<end vaiue> 6.5.2 80 80
< event length> 3.9.2 24 24
<event list> 6.17 90 90
< event m ode> 3.9.2 24 23
< exception list> 3.7 22 22,120,131,140
< exception name> 2.7 10 22,88
< exit action> 6.6 83 75
<expression> 5.3.2 67 18,19,24,26,28,29,31.

46,55,56,63,65,66,67,
78,80,82,87,89,96,101
124,125,140,164

<expression conversion> 5.2.11 63 50
<expression list> 4.2.8 46 46,61,96

<field> 3.12.4 31 31
<field layout> 3.12.5 34 31
< field name> 2.7 10 31,47,57,63,160
<field nam e defining occurrence> 2.7 10 10
<field nam e defining occurrence list> 2.7 10 31
<field nam e list> 5.2.5 57 57
<first elemeht> 4.2.9 46 46,62
<fixed field> 3.12.4 31 31
< forbid clause> 12.2.3.4 160 160
< forbid nam e list> 12.2.3.4 160 160
<for control> 6.5.2 80 79
<form al parameter> 10.4 131 131
< form al param eter list> 10.4 131 131,133
< form at argument> 7.5.3 111 111
< form at clause> 7.5.4 113 113
< form at control string> 7.5.4 113 113
<form at element> 7.5.4 113 113
< form at specification> 7.5.4 113 113

230 F ascicle X .6 — R ec . Z200

non-term inal defined
section page

used on
page(s)

< form at text> 7.5.4 113 113
<free reference mode> 3.6.3 21 20

<generality> 10.4 131 131
< g ettex t built-in routine call> 7.5.8 118 102
<goto action> 6.9 87 75
<grant p o s tfix y 12.2.3.4 160 158,160
<grant sta tem ent> 12.2.3.4 159 158
<grant window> 12.2.3.4 160 159

<handler> 8.2 120 39,40,75,131,133,134,135
<hexadecim al bit string literal> 5.2.4.8 56 56
<hexadecim al digit> 5.2.4.2 53 53,56
<hexadecim al integer literal> 5.2.4.2 53 53
<hour expression> 9.4.2 125 124
<hour location> 9.4.3 125 125

< if action>
< im plem entation directive>

6.3 77 75
10

<index expression> 7.4.6 105 105,108,111
< index m ode> 3.10.3 25 25,26,29
<ini tialisation > 4.1.2 39 39
< inpu t-ou tpu t m o d ey 3.10.1 25 15
< instance mode> 3.8 23 15
<integer litera ly 5.2.4.2 53 52
<integer m o d ey 3.4.2 16 16
<io clausey 7.5.7 117 113
<io codey 7.5.7 117 117
<io l is ty 7.5.3 111 111
<io lis t e lem en ty 7.5.3 111 111
<io location built-in routine cally 7.4.1 102 95
<io sim ple built-in routine cally 7.4.1 102 95
<io value built-in routine ca lly 7.4.1 102 96
< irrelevanty 12.3 164 164
<isassociated built-in routine cally 7.4.2 103 102
< itera tiony 6.5.2 80 80

<labelled array tu p ley 5.2.5 56 56
<labelled structure tup ley 5.2.5 57 56
< left e lem en ty 4.2.7 45 45,60
< len g th y 3.12.5 34 34
<length argum enty 6.20.3 96 96
< le tte ry 2.2 8 8
< lifetim e-bound in itia lisa tiony 4.1.2 39 39
<line-end co m m en ty 2.4 9 9
< litera ly 5.2.4.1 52 50
<literal expression lis ty 3.12.4 31 31
<literal rangey 3.4.6 19 19,25,164
< loca tiony 4.2.1 41 40,44,45,46,47,49,51,74,75,80

83,84,86,88,89,90,92,93,94,96
103,104,105,108,111,118,125

d o c a tio n argum enty 7.5.3 111 111
<location built-in routine ca lly 4.2.12 48 41

F ascicle X .6 — R ec . Z 200 231

non-term inal defined
section page

used on
page(s)

<location contents> 5.2.2 51 50
<location conversiony 4.2.13 49 41
<location declaration> 4.1.2 39 39
<location enum erationy 6.5.2 80 80
<location procedure call> 4.2.11 48 41
< loc-identity deciaration> 4.1.3 40 39
<loop counter> 6.5.2 80 80
<lower bound> 3.4.6 19 19
<lower element> 4.2.9 46 46,62

< m em ber m ode> 3.5 20 20
<m em bership operator> 5.3.5 70 69
<m inu te expression> 9.4.2 125 124
<m inu te location> 9.4.3 125 125
<m ode> 3.3 15 13,20,21,22,24,25,29,31,39,40

50,139,140,145
<m ode argum ent> 6.20.3 96 96,98
< m ode definition> 3.2.1 13 14
< m odification built-in routine call> 7.4.5 104 102
< m odify param etery 7.4.5 104 104
C m odify param eter list> 7.4.5 104 104
<m odule> 10.6 134 75,135
< m odule body> 10.2 128 134
C m odule spec> 10.10.2 138 138
<m onadic operatory 5.3.8 73 73
< m onth expressiony 9.4.2 124 124
< m onth loca tiony 9.4.3 125 125
< m ultip le assignm ent a c tiony 6.2 75 75

< n a m ey 2.7 10 16,17,18,19,20,21,22,23,24,25
27,28,29,31,42,43,49,51,53,54
56,63,65,66,78,80,83,84,87,91
93,96,145,164

< nam e s tr in g y 2.7 10 10,160,161
<new m ode definition s ta tem en ty 3.2.3 14 128,139
<new pre fixy 12.2.3.3 158 158
< non-com posite m o d e y 3.3 15 15
< num bered set e lem en ty 3.4.5 18 18
< num bered set l is ty 3.4.5 18 18

< octal bit string litera ly 5.2.4.8 56 56
< octal d ig ity 5.2.4.2 53 53,56
< octal integer litera ly 5.2.4.2 53 53
<old p re fixy 12.2.3.3 158 158
< on-al ternati vey 8.2 120 120
< operand-0y 5.3.3 68 67,68
< o p era n d -ly 5.3.4 69 68,69
< operand-2y 5.3.5 69 69
< operand-3y 5.3.6 71 . 69,71
< operand-4y 5.3.7 72 71,72
< operand-5y 5.3.8 73 72
< operand-6y 5.3.9 74 73
< operator-3y 5.3.5 69 69

232 F ascicle X .6 — R ec . Z 200

non-term inal defined
section page

used on
page(s)

< operator-4> 5.3.6 71 71
< origin array m ode nam e> 3.12.3 29 29
< origin string m ode name> 3.12.2 28 28
< origin variant structure m ode name> 3.12.4 31 31

<param eter attribute> 3.7 22 22
<parameterised array mode> 3.12.3 29 29
< parameterised string m ode> 3.12.2 28 28
<parameterised structure mode> 3.12.4 31 31
< param eter list> 3.7 22 22
<param eter spec> 3.7 22 22,131,140
<parenthesised clause> 7.5.4 113 113
<parenthesised expression> 5.2.16 65 51
<percent> 7.5.4 113 113
<piece designator> 10.10.1 137 136,137
<pos> 3.12.5 34 34
< p o s tfix y 12.2.3.3 158 158
<powerset difference operatory 5.3.6 71 71,76
<powerset enum erationy 6.5.2 80 80
<powerset inclusion operatory 5.3.5 70 69
<powerset m o d ey 3.5 20 15
<powerset tu p ley 5.2.5 56 56
< pre fixy 2.7 10 10,158,160,161
<prefix clausey 12.2.3.4 160 159,161
<prefixed nam e s tringy 2.7 10 10
<prefix rename clausey 12.2.3.3 158 159,161
< prim itive valuey 5.2.1 50 42,43,60,61,62,63,74,83,84,91

98,122,123,125
< priorityy 6.16 89 89,90,91,92
<proc b o d yy 10.2 128 131
<procedure a ttribu te l is ty 10.4 131 131,140
<procedure cally 6.7 84 48,64,84
<procedure defin itiony 10.4 131 131
<procedure definition s ta tem en ty 10.4 131 128
<procedure m o d ey 3.7 22 15
<process b o d yy 10.2 128 133
<process defin itiony 10.5 133 133
<process definition s ta tem en ty 10.5 133 128
< program y 10.8 135

<quasi data s ta tem en ty 10.10.3 139 128
< quasi declarationy 10.10.3 139 139
< quasi declaration s ta tem en ty 10.10.3 139 139
<quasi definition s ta tem en ty 10.10.3 139 139
<quasi formal param etery 10.10.3 140* 140
< quasi formal param eter l is ty 10.10.3 140 140
< quasi location declarationy 10.10.3 139 139
<quasi loc-identity declarationy 10.10.3 139 139
<quasi procedure definition s ta tem en ty 10.10.3 140 139
< quasi process definition s ta tem en ty 10.10.3 140 139
<quasi signal defin itiony 10.10.3 140 140 .
<quasi signal definition s ta tem en ty 10.10.3 140 139
< quasi synonym defin itiony 10.10.3 140 140

F ascicle X .6 — R ec . Z 200 233

non-term inal defined
section page

used on
page(s)

<quasi synonym definition sta tem ent>
<quote>

<range>
<range enumeration>
<range list>
<range m ode>
<reach-bound initialisation>
<ieadrecord built-in routine call>
<receive buffer case action>
<receive case action>
<receive expression>
<receive signal case action>
<record m ode>
<referenced location>
<referenced m ode>
< reference m ode>
<region>
< region body>
< region spec>
<relational operator>
<relative tim ing action>
<rem ote context>
<rem ote m odulion>
<rem ote spec>
< repetition factor>
<result>
<result action>
<result a ttribute>
<result spec>
<return action>
<right element>
<row m ode>

<second expression>
<second location>
<seize postfix>
<seize sta tem ent>
<seize window>
<send action>
<send buffer action>
<send signal action>
<set element>
<set list>
<set literal>
<set m ode>
< settex t built-in routine call>
<signal definition>
<signal definition sta tem ent>
< signal receive alternative>
<sim ple nam e string>
< simple prefix>
<sim ple spec m odule>

10.10.3 140 139
5.2.4.7 55 55

5.2.5 56 56
6.5.2 80 80
6.4 78 78
3.4.6 19 16
4.1.2 39 39
7.4.9 108 102
6.19.3 94 92
6.19.1 92 75
5.3.9 74 74
6.19.2 93 92
3.10.3 25 25
5.3.9 74 74
3.6.2 21 21
3.6.1 20 15
10.7 135 128,135
10.2 128 135
10.10.2 138 138
5.3.5 70 69
9.3.1 122 122
10.10.1 137 138
10.10.1 136 134,135
10.10.1 136 138
7.5.4 113 113
6.8 86 86
6.8 86 75
3.7 22 22
3.7 22 22,131,140
6.8 86 75
4.2.7 45 45,60
3.6.4 21 20

9.4.2 125 124
9.4.3 125 125
12.2.3.5 161 158,161
12.2.3.5 161 158
12.2.3.5 161 161
6.18.1 91 75
6.18.3 92 91
6.18.2 91 91
3.4.5 18 18
3.4.5 18 18
5.2.4.5 54 52
3.4.5 18 16
7.5.8 118 102
11.5 145 145
11.5 145 128
6.19.2 93 93
2.2 8 10,75,131,133,134,135,136,138,140
2.7 10 10
10.10.2 138 138

234 F ascicle X .6 — R ec . Z200

non-term inal

<sim ple spec region>
<single assignment action>
< slice size>
<spec m od u ley
<spec m odule body>
<spec region>
<spec region body>
<start action>
<start bit>
<start element>
<start expression>
< start ralue>
<step>
< step enumeration>
< step size>
< step value>
< stop action>
<store location>
< string concatenation operator>
< string element>
< string length>
<string mode>
< string repetition operator>
< string slice>
< string type>
<structure fie ldy
<structure mode>
<structure tuple>
<sub expression>
<sub operand-0>
<sub operand-1>
<sub operand-2>
<sub operand-3>
<sub operand-4>
<synchronisation m ode>
<synm ode definition s ta tem en ty
< synonym defin itiony
< synonym definition s ta tem en ty

< tag l is ty
< term inate built-in routine cally
< tex t argum enty
< tex t built-in routine cally
< tex t io argument l is ty
< tex t len g th y
< tex t m o d ey
C tex t reference n a m ey
<then a lternativey
< then clausey
< tim e value built-in routine ca lly
< tim ing actiony
< tim ing handlery
< tim ing m o d ey

defined
section page

used on
page(s)

10.10.2 138 138
6.2 75 75
4.2.7 45 45,46,60,62
10.10.2 138 75,128,135
10.2 128 138
10.10.2 138 128,135
10.2 128 138
6.13 88 75
3.12.5 34 34
4.2.6 44 44,45,60
5.2.14 65 51,88
6.5.2 80 80
3.12.5 34 34
6.5.2 80 80
3.12.5 34 34
6.5.2 80 80
6.14 88 75
7.4.9 108 108
5.3.6 71 71,76
4.2.6 44 41
3.12.2 28 28
3.12.2 28 28
5.3.8 73 73
4.2.7 45 41
3.12.2 28 28
4.2.10 47 41
3.12.4 31 28
5.2.5 56 56
5.3.2 67 67
5.3.3 68 68
5.3.4 69 69
5.3.5 69 69
5.3.6 71 71
5.3.7 72 72
3.9.1 23 15
3.2.2 14 128,139
5.1 50 50
5.1 50 128,139

3.12.4 31 31
6.20.4 98 95
7.5.3 111 111
7.5.3 111 102
7.5.3 111 111
3.10.4 26 26
3.10.4 26 25
2.7 10 137
5.3.2 67 67
6.3 77 77
9.4 124 96
9.3 122 75
9.3.1 122 122,123
3.11.1 27 15

F ascicle X .6 — R ec . Z200 235

non-term inal defined
section page

used on
page(s)

< tim ing sim ple built-in routine call> 9.4.3 125 95
< transfer loca tiony 7.4.6 105 105,107
<tuple> 5.2.5 56 50

<undefined value> 5.3.1 66 66
<unlabelled array tuple> 5.2.5 56 56
<unlabelled structure tuple> 5.2.5 56 56
<unnum bered set list> 3.4.5 18 18
< upper bound> 3.4.6 19 19
< upper element> 4.2.9 46 46,62
< upper index> 3.12.3 29 29
< upper lower argum ent> 6.20.3 96 96
< usage expression> 7.4.6 105 105

<value> 5.3.1 66 39,50,56,57,75,84,86,91,92,98
103,104,140

<value argum ent> 7.5.3 111 111
< value array elem ent> 5.2.8 61 50
<value array slice> 5.2.9 62 50
<value built-in routine call> 5.2.13 64 51
< value case alternative> 5.3.2 67 67
< value enumeration> 6.5.2 80 80
< value name> 5.2.3 51 50
< value procedure call> 5.2.12 64 51
< value string element> 5.2.6 . 60 50
< value string slice> 5.2.7 60 50
< value structure field> 5.2.10 63 50
< variant alternative> 3.12.4 31 31
< variant fie ld y 3.12.4 31 31
< visib ility sta tem ent> 12.2.3.2 158 128

< where expression> 7.4.6 105 105
< while control> 6.5.3 82 79
< w ith control> 6.5.4 83 83
< w ith part> 6.5.4 83 79
< word> 3.12.5 34 34
< write expression> 7.4.9 108 108
<writerecord built-in routine call> 7.4.9 108 102

<year expression> 9.4.2 124 124
<year loca tiony 9.4.3 125 125

<zero-adic operatory 5.2.15 65 51

236 F ascicle X .6 - R ec . Z200

APPENDIX H: INDEX

Page numbers in boldface are references to the defining occurrences of an item ; norm al font refers to appli<
occurrences of indexed items.

A B S 72, 96, 97-98, 174
absolute tim e built-in routine call 125
absolute tim e built-in routine call 124
absolute tim e mode 2, 28, 149, 151, 166-167, 169
absolute tim e m ode 27
a b s o lu te t im e m o d e name 27
absolute time m ode nam e 27, 166
absolute tim e prim itive value 123, 125, 167
absolute tim ing action 122, 123, 127
absolute value 96
A B S T IM E 124, 125, 174
A C C E S S 25, 27, 163, 173
access 2, 5, 12, 31, 34, 39-40, 42, 83, 101, 118, 135-

136, 142
access a ttr built-in routine call 102, 107
access a ttrib u te 102
access location 100-103, 105-108
access location 101
access location 105-106, 108-109, 118-119, 167
access mode 4, 26, 102, 147, 149, 151, 153, 166-167
access m ode 25
access mode 27, 106, 110, 112, 119, 149, 151
access m ode nam e 25, 166
access name 2, 40, 42, 83, 166
access nam e 41, 42, 143
access name 162
access r e fe re n c e 107, 110, 118-119
access sub-location 26, 40, 105, 110, 118
Access values 102
action 1, 3, 5-6, 9, 75, 80, 87, 90, 112, 115, 120-122,

128-131, 133, 142, 144-145, 170
action 75, 127
action statem ent 1, 75, 87, 120, 134, 142
action sta tem ent 75, 122-123, 128
action statem ent list 77-82, 120-121, 123, 130, 164
action sta tem ent list 77-79, 90, 93-94, 120, 122-

123, 127, 128, 129
activation 86, 136, 142
active 5, 142, 143-145
a c tu a l in d e x 110-112, 114, 116-118 ^
a c tu a l le n g th 28, 44-45, 60-61, 68-69, 76, 81, 97,

114, 116-118
actual param eter 65, 84, 132, 142
actual parameter 57, 65, 84, 85-86, 170
actual param eter list 84
actual parameter list 65, 84
A F T E R 122, 173
a lik e 13, 140-141, 148, 151, 152
A L L 137, 1 6 0 -1 6 1 , 162, 173
a ll class 12, 33, 66, 140, 143, 147, 155, 165
A L L O C A T E 2, 4, 57, 98, 99, 136, 174
allocate built-in routine call 96, 98
a l lo c a te d reference value 99, 136
A LLO C A TE F A IL 99, 175

alternative fields 164
alternative Held 31, 32-33, 36, 59, 150, 152, 165
A N D 69, 76, 173
A N D IF 69, 173
applied occurrence 5, 11, 128, 155
arithm etic additive operator 71
arithm etic additive operator 71, 72, 76
arithm etic m ultiplicative operator 72
arithm etic m ultiplicative operator 72, 73, 76
A R R A Y 29, 30, 35, 163, 173
array element 34-35, 46, 164
array element 41, 46, 61, 136, 143
arrav expression 80, 82, 96-97, 167
array location 22, 30, 46-47, 81
arrav location 46-47, 61-62, 80-82, 96-97,136, 143,

167
array mode 16, 30, 34-37, 44, 58, 109, 146-147,

149-150, 152-154, 166-167
array m ode 28, 29, 30, 168
arrav m ode 21-22 ,168
arrav m ode nam e 29, 96-99, 166
array prim itive value 61-62, 144, 167
array slice 36, 47
array slice 41, 46, 47, 62, 136, 143
array tuple 57, 165
array tuple 56, 57-59
array value 30, 57, 61-62, 109
A S S E R T 87, 173
assert action 4, 87
assert action 75, 87
A SSE R TF A IL 87, 175
assigning operator 76
assigning operator 75, 76, 77
assignment action 76, 143
assignment action 75
assignment conditions 40, 59, 65, 68, 76, 85-87,

91-92, 99, 109
assignment symbol 76
assignment sym bol 39-40, 75, 76, 80
A SSO C IA T E 4, 25, 100, 103, 174
associate built-in routine call 102, 103
associate param eter 103, 170
associate param eter list 103
A SSO C IA TE F A IL 103, 170, 175
A SSO C IA T IO N 25, 103, 107, 163, 174
association 2, 4, 25, 39-40, 100-110, 170
association a ttr built-in routine call 102, 104
association a ttrib u te 101
association location 100-103, 107
association location 103-107, 167
association mode 4, 25, 101,147, 149, 151, 166-167
association m ode 25
a s s o c ia tio n m o d e nam e 25
association m ode nam e 25, 166

F ascicle X .6 — R ec . Z 200 237

association value 101, 170
A T 123, 173

Backus-Naur Form 7
b a s e index 4, 101, 106, 108
B E G IN 130, 173
begin-end block 3—4, 130
begin-end block 75, 127, 129, 130
begin-end body 128, 130
B IN 19, 20, 163, 173
binary bit string literal 56
binary integer literal 53
binding rules 8, 11, 156
bit string 28, 68-69
bit string literal 56
bit string literal 52, 56, 73
b i t string mode 29, 44, 60, 149, 152
bit string value 28, 56, 68-69, 71, 73, 116
block 1, 52, 82, 121, 127, 128, 130, 134-136, 142,

156-157
B O D Y 1 3 4 -135 , 173
B O O L 17, 44, 54, 60, 70, 72, 103-104, 107, 154,

163, 174
boolean expression 82
boolean expression 7, 67, 77, 82, 87, 167
boolean literal 54
boolean literal 52, 53, 54
b o o le a n l i te r a l names 53
boolean literal nam e 53, 166
boolean mode 17, 148, 151, 166-167
boolean m ode 16, 17
b o o le a n m o d e name 17
boolean m ode nam e 17, 166
boolean value 28, 54, 68-70, 73, 101, 115
B O O L S 28, 29, 56, 71, 73, 163, 173
b o u n d 11, 138, 141, 152-153, 157, 159, 161-162,

164, 167
bound reference 2, 20, 42
bound reference location nam e 167
bound reference mode 21, 148, 150-151, 153-155,

166-168
bound reference m ode 20, 21
bound reference m ode nam e 21, 166
bound reference prim itive value 42-43, 143, 167
bracketed action 3, 83-84, 121
bracketed action 75
bracketed com m ent 9
B U F F E R 24, 163, 173
buffer 5, 22, 39, 91-92, 130
buffer element m ode 24, 25
b u f fe r e le m e n t mode 24, 57, 74, 92, 94, 149, 151,

153
b u ffe r le n g th 24, 92, 149, 151
buffer length 24, 25
buffer location 24, 74, 92, 94
buffer location 57, 74, 92, 94-95, 167
buffer mode 2, 24, 147, 149, 151, 153, 166-167
buffer m ode 23, 24
buffer m ode nam e 24, 166
buffer receive alternative 94, 127, 129
built-in routine call 3-4, 48, 57, 84, 97, 99, 103,

107-114, 119, 125, 136, 169
built-in routine call 84, 85, 95-96, 169
b u i l t - in r o u t in e nam e 95, 169
built-in routine nam e 84-85, 167
built-in routine param eter 84, 102
built-in routine param eter lis t 84
B Y 80, 173

call action 84, 132
call action 75, 84
c a n o n ic a l name string 11, 155
C ARD 96, 97-98, 174
carriage placement 117
C A S E 31, 67, 68, 78, 90, 9 3 -9 4 , 173
case action 3, 33, 68, 78, 164-165
case action 75, 78, 127, 129, 165
case alternative 78
case alternative 78, 127, 165
case label 58, 165
case label 78, 164, 165
case label list 57, 78, 164-165
case label list 56, 58, 78, 150, 152, 164, 165
case label specification 32, 58, 78, 164, 165
case label specification 31, 33, 67, 78, 164, 165
case selection 164, 165
case selection conditions 33, 58, 68, 78
case selector list 78
case selector list 67, 78
C A U S E 88, 173
cause action 3-4, 88, 120
cause action 75, 88
change-sign 73
C H AR 17-18, 44, 54, 60, 72, 153, 163, 174
character 2, 7-11, 17, 28, 54-55, 71, 110, 113-118
character 8-9, 54, 114, 168
character literal 18, 54
character literal 52, 54
character mode 17, 18, 148, 151, 166
character m ode 16, 17
c h a ra c te r m o d e nam e 17
character mode nam e 17, 166
character set 8-10, 17, 55, 171
character string 28, 71, 111, 114, 116
character string 9
character string expression 111, 167
character string literal 9, 55
character string literal 52, 55, 73, 137
character string location 111,118-119 ,167
c h a ra c te r string mode 29, 44, 60, 149, 152, 167
character string value 28, 55, 71, 116
C H A R S 27, 28, 29, 55, 71, 73, 163, 173
CHILL 1-10, 12-13, 17, 23, 25-26, 37, 49, 55, 63,

66, 75, 85, 95, 100-102, 108-110, 113-115,
122, 135-137, 140, 142-144, 167, 169

CHILL built-in routine call 84, 95
CHILL location built-in routine call 95
CHILL simple built-in routine call 95
CHILL value built-in routine call 95, 96
class 2-3, 5, 7, 12, 13, 19-20, 26, 30, 33-34, 40, 46-

47, 50-74, 76, 78, 82-86, 91-94, 97-99, 103-
104, 106-107, 109, 112, 115-116, 119, 124-

238 Fascicle X .6 — R ec . Z200

125, 140, 143 ,147-149,152-153,155-156,165,
167-169

clause width 112, 114, 115-116, 119
closed dyadic operator 76
closed dyadic operator 76, 77
closest surrounding 83, 86, 136
comment 9, 11
com m ent 9
com patibility relations 148
c o m p a tib le 13, 20, 30, 34, 40, 46-47, 50, 58-59,

61-62, 67-70, 72-73, 76, 78, 82, 85-86, 91-92,
98-99, 106, 109, 112, 147, 149, 152, 155, 165,
167-168

complement 73
c o m p le te 58, 78, 165
c o m p o n e n t mode 14-15, 29, 45, 60, 81
composite mode 2, 28
composite m ode 15-16, 28, 168
composite object 80, 81
composite value 28, 30-31, 66
concatenation 9, 11, 28, 71
concurrent execution 5, 133, 135, 142
conditional expression 164-165
conditional expression 67, 68, 143-144, 165
conjunction 69
C O N N E C T 4, 100, 105, 106-107, 174
connect built-in routine call 102, 105
connect operation 26, 101, 102, 105, 108
connected 4, 40, 100-103, 105-110, 117
C O N N EC TFAIL 106, 170, 175
consistency 33, 36, 68
c o n s is te n t 165
c o n s ta n t 3, 50-59, 63, 66-74, 97, 115, 136, 140,

168, 170
constant classes 12
c o n s ta n t value 3, 170
constant value 13, 39-40, 50, 57, 140, 144, 168
C O N T E X T 1 3 7 -1 3 8 , 173
context 5, 85, 169
context 127, 129-130, 138, 139-141, 161-162
context body 128, 137-138
context list 127, 134-135, 137, 138
context m odule 75, 137
C O N T IN U E 88, 173
continue action 5, 24, 89, 90, 145
continue action 75, 88
control code 112, 113
control part 79, 130
control part 79
control sequence 54, 55
conversion clause 112-113, 114
conversion code 115
conversion code 112, 114, 115-116
conversion qualifier 112, 114, 115
C R E A T E 104, 174
created 2, 11, 23, 25, 27, 39-40, 65, 81, 98-101,

103, 108, 110-111, 127, 128, 130, 132, 135-
136, 142, 155

C RE A TE F A IL 104, 170, 175
c r i t ic a l 130, 132-133, 141, 142, 143-144
c r i t ic a l p r o c e d u r e nam e 142

c u r r e n t index 101, 106, 108
C Y C L E 123, 173
cyclic tim ing action 122-123
cyclic tim ing action 122, 123, 127

d a ta statem ent 1, 3, 120-121, 129
data statem ent 128
data sta tem ent list 128
d a ta transfer state 4, 100, 101
day expression 124
day location 125
D A Y S 124, 174
D C L 39, 81, 132, 139, 173
decimal integer literal 53
declaration 1, 32, 39, 128, 130, 134, 136, 143, 161
declaration 39, 127
declaration statem ent 2, 39, 120
declaration sta tem ent 39, 128
defined value 3, 142
defining m ode 12-15, 29, 105, 162, 164
defining m ode 13
d e f in in g mode 13, 14-15, 19, 163
defining occurrence 5, 83
defining occurrence 1 0 -1 1 , 13-16, 18, 39-40, 50,

75, 80-81, 84, 93-94, 127-128, 130-135, 137,
140-141, 145, 155-157, 159, 161-164, 167

defining occurrence list 10, 13, 39-40, 50, 93, 127,
131, 133, 139-140

definition statem ents 1
definition sta tem en t 128
D E L A Y 8 9 -9 0 , 122, 123, 173
delay action 24, 89, 144
delay action 75, 89
delay alternative 90, 127
delay case action 24, 90, 144
delay case action 75, 90, 127, 129
delayed 5, 24, 39, 74, 89-95, 122, 142, 143-145
D E LA YF A IL 89-90, 175
delaying 5, 92, 142
D E L E T E 104, 105, 174
D E LE TE F A IL 105, 170, 175
dereferenced bound reference 42
dereferenced bound reference 41, 42 , 43, 143
dereferenced free reference 43
dereferenced free reference 41, 43, 143
dereferenced row 43
dereferenced row 41, 43, 44, 143
dereferencing 2, 21
derived class 12, 53-56, 65, 70-71, 73, 97, 103-104,

106-107, 119, 124-125
derived syntax 7, 30-31, 57, 77, 114, 116, 137, 158
d e s t in a t io n reach 158, 159
difference 71
digits 115-116
digit 8, 53, 113-116
d ir e c t lin k ag e 156
directive 10
directive 10
directive clause 10
directive clause 10
directly enclose 129

F ascicle X .6 - R ec . Z200 239

directly enclosed 121, 129, 140-141, 157, 159, 161,
164

directly enclosing 121, 127, 129, 136, 139, 157-162
d i r e c t ly l in k e d 156, 157, 159
d i r e c t ly s t ro n g ly v is ib le 156, 157
D ISC O N N E C T 100, 107, 174
disconnect built-in routine call 102, 107
disconnect operation 101
d is c r e te 51
discrete expressions 78, 97
discrete expression 37, 78, 80, 96-98, 111, 168
discrete literal 52
discrete literal expression 19, 29, 31, 58-59, 78, 164-

165, 168
discrete locations 97
discrete location 96-97, 111, 167
discrete mode 2, 16, 26, 33, 36, 58-59, 63-64, 147,

165-168
discrete m ode 15, 16, 168
discrete m ode 20, 25, 168
discrete m ode nam e 19-20, 78, 80-82, 96-97, 164-

166
D ISSO C IA T E 25, 100, 103, 174
dissociate built-in routine call 102, 103
dissociate operation 100
division rem ainder 72
D O 79, 86, 173
do action 3, 79, 80-83, 130, 144
do action 42, 52, 75, 79, 127, 129, 143
D O W N 80, 81, 173
D U R A T IO N 27, 124, 163, 174
duration built-in routine call 124
duration built-in routine call 124
duration m ode 27, 149, 151, 166, 168-169
duration m ode 27
d u r a t io n m o d e nam e 27
duration m ode nam e 27, 166
duration prim itive value 122-123, 168
duration values 170
D Y N A M IC 22, 23, 2 5 -2 6 , 27, 40, 41, 48, 57,

85-86, 132, 139, 173
dynam ic array mode 37, 59
dynam ic class 12, 51, 68-71, 76, 81, 132
dynam ic condition 4, 6-7, 64, 76, 113, 120, 169
d y n a m ic c o n d it io n s 7
d y n a m ic e q u iv a le n t 13, 154, 155
dynam ic mode 2, 5, 7, 12, 20, 22, 37, 44, 51, 76,

99, 154-155
dynam ic mode location 3, 76
dynam ic p a r a m e te r i s e d structure mode 32, 38,

48, 59, 63, 70
dynam ic properties 102, 110
d y n a m ic p r o p e r t ie s 7
d y n a m ic r e a d -c o m p a tib le 13, 41, 85-86, 154,

155
d y n a m ic r e c o r d mode 26, 106, 109, 149, 151
dynam ic string mode 37

editing clause 1 1 2 -1 1 3 ,1 1 6 ,1 1 9
editing code 112, 116, 117, 119
element 2, 7, 28, 30, 34-36, 44, 46, 55-57, 60-61,

66, 68-69, 73, 81, 96-97, 101, 111-112, 116
element layout 36, 82, 151
e le m e n t la y o u t 30, 46-47, 149, 151-152, 169
element layout 29-30, 34
element mode 30, 81, 101
element m ode 29, 30
e le m e n t mode 16, 30, 36, 46, 57-59, 61, 82, 146-

147, 149-150, 152-154
E L S E 31, 32, 36, 57, 59, 67, 7 7 -7 8 , 9 3 -9 4 , 120,

121, 127, 129, 150, 152, 164, 165, 173
else alternative 67
else clause 77
E L S IF 67, 77, 173
em ptiness literal 55
em ptiness literal 52, 54, 55
e m p tin e s s l i t e r a l nam e 55
em ptiness literal nam e 54, 166
E M P T Y 43-44, 85, 91, 98-99, 107, 175
em pty 11, 23, 28, 39-40, 57, 81, 85, 94, 101, 104,

110, 132, 137, 158, 160-163
em pty 87, 128, 137, 139, 158
em pty action 87
em pty action 75, 87
em pty instance value 55
em pty powerset value 57, 97-98
em pty procedure value 55
em pty reference value 55
em pty string 26, 40, 45, 60, 73
E N D 120, 1 2 2 -1 2 3 , 1 3 0 -1 3 1 , 1 3 3 -1 3 5 , 137,

138, 139, 140, 173
end bit 34, 36
end value 80-81
end value 80, 82
end-of-line 9
enter 142
entered 4, 39-40, 77-83, 90, 93-94, 120, 122-123,

128-129, 130, 132, 142
E O LN 118-119, 174
equality 70, 140
equivalence relations 5, 148
e q u iv a le n t 13, 76, 109, 1 4 8 -1 4 9 , 150-155
E S A C 31, 67, 78, 90, 9 3 -9 4 , 173
E V E N T 24, 163, 173
e v e n t le n g th 24, 89-90, 149, 151
event length 24
event list 90
event location 24, 89-90
event location 88-90, 167
event mode 24, 147, 149, 151, 166-167
event m ode 23, 24
event m ode name 24, 166
E V E R 80, 173
exception 1, 3-6, 11, 41-48, 51-52, 59-66, 68-70,

72-79, 81-82, 85-93, 95, 98-99, 102-110, 112-
113, 116-117, 119, 120, 121, 123-125, 130,
132, 148-150, 154-155, 169-170

exception handling 120
exception list 121
exception list 22, 23, 120-121, 131-133, 140
exception name 4, 85, 120-121, 132, 133, 169
exception name 1 0 -1 1 , 22, 88, 120

240 F ascicle X .6 - R ec . Z200

e x c e p tio n names 23, 149, 151
E X C E P T IO N S 22, 131, 133, 140, 173
exclusive disjunction 68
E X IST IN G 104, 174
e x is t in g 4, 101, 104-106
E X IT 83, 173
exit action 3, 83, 84
exit action 75, 83, 84
E X P IR E D 125, 126, 174
explicit read-only mode 15
explicit re a d -o n ly mode 15-16
explicitly indicated 58, 66, 165
expression 23, 25, 32, 34, 38, 45-47, 51, 57, 60, 62-

63, 65-66, 73, 77-78, 81, 98, 101-102, 105,
110, 130, 144-145, 147, 164, 170

expression 7 /4 6 -4 7 , 56-59, 61-66, 67, 75, 77, 80,
96, 98-99, 105, 108, 136, 144, 167-168

expression conversion 63
expression conversion 50-51, 63, 144, 170
expression list 37-38, 46, 61, 96, 98-99
e x tr a - r e g io n a l 41, 59, 68, 99, 143, 144

FALSE 17, 53, 69-70, 87, 102-108, 115, 174, 203
feasibility 36
F I 6,7, 77, 173
field 11, 31, 32-36, 47-48, 57, 59, 63, 66, 83, 146,

160, 163
field 31, 149-150, 152
field layout 32-33, 36, 83, 150
f ie ld la y o u t 32, 48, 150, 152
field layout 31-32, 34, 35
fie ld mode 16, 32, 36, 59, 146-147, 150, 152-154
field nam e 11, 57, 83, 164
field nam e 10, 11, 47, 57, 63, 160-161, 164
f ie ld name 31, 32, 33, 36, 38, 42, 48, 52, 58-59, 63,

83, 161
field nam e 47-48, 164
field nam e defining occurrence 83
field nam e defining occurrence 1 0 -1 1 , 31, 83, 164
field name defining occurrence list 10, 31-32
field name list 57
field name list 57, 59, 161
file 4, 26, 100, 101-102, 104-110, 117, 170
file handling sta te 4, 100, 101
file positioning 106
file truncation 106
F IR S T 105-106, 174
first element 46, 47, 62, 136
fixed field 31-32
fixed field 31, 32-33, 150, 152
fix e d fie ld name 32, 33
fixed form at 114-115
f ix e d string 116
fixed'-string mode 28, 29, 45, 60, 76, 81, 147, 150
fix e d structure mode 32
F O R 80, 1 3 7 -1 3 8 , 173
for control 79, 80, 82
for control 79, 80
F O R B ID 160, 173
forbid clause 160, 161, 164
forbid name list 164

forbid nam e list 160, 161, 164
form al param eter 65, 85, 132, 142
form al param eter 42, 65, 127, 131, 132-134, 143
form al param eter list 65, 127, 131, 132-134, 141
form at argum ent 111, 112
form at clause 112, 113
form at control string 111-112, 113
form at effectors 9, 11, 113
form at element 112, 113
form at specification 112, 113
form at tex t 112, 113
free 142
free form at 114-115
free reference 2, 20, 43
free reference location nam e 167
free reference mode 21, 149, 151, 155, 166-168
free reference m ode 20, 21
f re e r e fe re n c e m o d e nam e 21
free reference m ode name 21, 166
free reference prim itive value 43, 143, 168
free sta te 3, 100

G E N E R A L 131, 132-133, 173
g e n e ra l 22, 32-33, 85, 132, 133, 143, 167
g e n e ra l procedure 84, 131
g e n e ra l p ro c e d u r e nam e 22, 52, 133
general procedure nam e 51-52, 167
generality 85, 167
g e n e ra l i ty 85, 132, 141, 169
generality 131, 132
generated 4, 131
G E T A SSO C IA T IO N 107, 174
G E T S T A C K 2, 4, 57, 98, 99, 136, 174
ge ttex t built-in routine call 102, 118
G E T T E X T A C C E S S 118-119, 174
G E T T E X T IN D E X 118-119, 174
G E T T E X T R E C O R D 118-119, 174
G E T U SA G E 107, 108, 174
G O T O 87, 173
goto action 3, 87, 130
goto action 75, 87
G R A N T 158, 159, 173
grant postfix 158-159, 160, 161, 164
grant statem ent 138, 160
grant sta tem ent 158, 159, 160-161, 164
grant window 159, 160
g r a n ta b le 159, 161
greater than 70, 72, 82, 98, 106, 109, 112, 117, 119,

154
greater than or equal 70
group 7, 127, 129-130, 139, 141, 161, 164

handler 1, 4-6, 11, 75, 120, 121, 129, 131, 142, 169
handler 39-40, 75, 84, 86-88, 120, 127, 129, 131,

133-135
handler identification 120
hereditary property 12, 13, 15, 17-24, 26-27, 29-

30, 32-33, 148
hexadecimal bit string literal 56
hexadecimal digit 53, 56
hexadecim al integer literal 53

F ascicle X .6 — R ec . Z 200 241

hour expression 124, 125
hour location 125
H O U RS 124, 174

I F 9, 67, 77, 173
if action 3, 77
i f action 75, 77, 127, 129
im aginary outerm ost process 85-86, 127, 134, 135,

136, 142, 157, 169
im plem entation built-in routine call 84
im plem entation defined built-in routine 5, 135 ,169
im plem entation defined exception nam e 4-5, 169
im plem entation defined handler 121, 169
im plem entation defined integer mode 5-6
im plem entation defined integer m o d e names 13,

169
im plem entation defined nam e 10, 85, 127, 167
im plem entation defined nam e string 157
im plem entation defined p ro c e s s names 5, 169
im plem entation directive 10
im plem entation directive 10, 169
im plicit r e a d -o n ly mode 15, 16, 30, 32, 146
im plicitly indicated 165
im p lie d 156-157, 162-163
im p lie d defining occurrence 157, 162, 163
im p lie d names 5, 157
im p lie d nam e string 158, 162, 163
IN 22, 70, 80, 85, 9 3 -9 4 , 1 2 2 -1 2 3 , 127,131-132,

173
inclusive disjunction 68
index expression 105, 106-109, 111-112, 118
index mode 26, 30, 106
index m ode 2 5 -2 6 , 27, 29-30
in d e x mode 26, 30, 46-47, 58, 61-62, 97-98, 105-

109, 112, 149, 151-153, 165
IN D E X A B L E 104, 174
in d e x a b le 4, 101, 104-106
indexing 2
in d i r e c t ly s t ro n g ly v is ib le 156, 157
inequality 70
I N I T 39, 173
initialisation 39, 128
initialisation 39, 40, 57
IN L IN E 131, 132-133, 173
in l in e 132
in l in e procedures 131
IN O U T 22, 85, 131-132, 134, 173
in pu t-ou tpu t mode 2, 25
inp u t-o u tp u t m ode 15, 25
IN S T A N C E 23, 65, 163, 174
instance location 90, 93-94, 167
instance mode 2, 23, 149, 151, 155, 166-168
instance mode 15, 23
in s ta n c e m o d e nam e 23
instance m ode nam e 23, 166
instance prim itive value 91, 168
instance value 23, 65, 88, 90, 93-94, 142, 169
IN T 13, 16, 19, 30, 53, 97-98, 110, 119, 131, 154,

163, 169, 174
integer expression 37, 44-45, 61, 80, 96, 98-99 ,118-

119, 124-125, 168

integer literal 53
integer literal 52, 53
integer literal expression 18-20, 24, 26, 28, 34-35,

55, 73, 89-92, 168
integer location 125
integer mode 17, 135, 148, 151, 166, 168-169
integer m ode 16
in te g e r m o d e nam e 16
integer m ode nam e 16, 166
integer value 4, 17-18, 53, 71-73, 96, 115
intersection 69
in t r a - r e g io n a l 3, 41, 59, 68, 85, 91-92, 99, 133,

143, 144, 161
IN T T IM E 125, 174
in v is ib le 58, 156, 164
io clause 112-113, 117
io code 112, 117
io l is t 1 1 1 ,1 1 2 ,1 1 6
io list element 111, 112, 116
io location built-in routine call 95, 102
io simple built-in routine call 95, 102
io value built-in routine call 96, 102
irrelevant 150, 152, 164, 165
ISA SSO C IA TE D 103, 174
isassociated built-in routine call 102, 103
iteration 3
iteration 80

justification 114-115

1-eq u iv a len t 13, 148, 149, 150, 153
la b e l nam e 75, 130, 134, 140
label nam e 83-84, 87, 167
labelled array tuple 57, 164
labelled array tuple 56, 58, 165
labelled structure tuple 57
labelled structure tuple 56, 57, 59, 164
L A S T 105-106, 174
layout 30, 32, 34-35, 113
left element 45, 60-61, 136
L E N G T H 28, 96, 97, 174
length 34, 36, 97, 151
length argum ent 96
less than 36, 45, 60, 65, 70, 76, 112, 116-117, 119
less than or equal 20, 29-30, 36, 70
letter 8, 52, 115
letter 8
lexical element 8, 9
lifetime 1, 4, 39-40, 43-44, 48-49, 74, 81, 86, 89-92,

95, 98-99, 108, 127, 128, 130, 132, 134-135,
136

lifetim e-bound in itialisations 128
lifetim e-bound initialisation 39
line-end com m ent 9
lin k ag e 156
lin k e d 138, 156, 157, 159
list of classes 33, 34, 98, 147, 165
list of values 5, 33, 38, 44, 48, 55-57, 59, 63, 93,

145, 154, 165
literal 8, 17, 19, 32, 52, 73
l i te r a l 3, 34, 45, 47, 50, 51, 52-54, 60, 62, 66-74,

242 F ascicle X .6 — R ec . Z 200

97, 140, 168, 170
literal 50-51, 52
literal expression 140
literal expression list 31, 33-34
literal qualification 52
literal range 19, 25-26, 78, 164-165
L O C 22, 23, 40, 42, 81, 85-87, 131-134, 139, 173
loc-identity declaration 2, 40, 81, 128-129,132,136
loc-identity declaration 39, 40, 41-42
lo c - id e n t i ty name 40, 42, 133, 140, 153, 161
loc-identitv nam e 42, 143, 166
location 1-5, 12-13, 15, 20-22, 24-26, 31, 35-36,

39-40, 41, 42-44, 46-49, 51, 55, 74, 76-77,
80-81, 83-86, 95, 97-106,108-112, 116 ,118-
119,125-128,130-132,134, 136, 142-143,153-
154, 160, 169-170

location 40, 41, 48, 51, 57, 74-77, 80, 83-86, 96-97,
103-104, 132, 136, 143-144, 161, 167

location argum ent 111, 115-116
location built-in routine call 48
location built-in routine call 41, 48, 49
lo c a t io n built-in routine call 84
location built-in routine call 48-49, 143, 168
location contents 51
location contents 50, 51, 144
location conversion 49
location conversion 41, 49, 63, 136, 143, 170
location declaration 2, 4, 39, 132, 136
location declaration 39, 40, 42, 57
lo c a t io n d o -w ith name 42, 83
location do-w ith nam e 42, 143, 166, 170
location enum eration 81
location enumeration 42, 80
lo c a t io n e n u m e r a t io n nam e 42, 82
location enumeration nam e 42, 143, 166
lo c a t io n nam e 40, 42, 133, 140, 161
location nam e 42, 136, 143, 166-167
location procedure 5
location procedure call 48, 132
location procedure call 41, 48, 143
location procedure call 48, 85, 143, 168
locked 142, 143, 145
L O N G . IN T 17
loop counter 80, 81
loop counter 42, 52, 80, 81-82, 127
L O W E R 96, 97-98, 154, 174
lower bound 30, 47
lo w e r b o u n d 17 -1 9 , 2 9 -3 0 , 37, 46-47, 61-62, 81,

97, 106, 108, 149, 151, 169
lower bound 19, 20, 30, 37
lower case 8, 9, 115
lower element 46, 47, 62, 136

m a p p e d 30, 32, 36
m apping 34, 35-36
m a tc h 140-141
M A X 96, 97-98, 174
mem ber mode 20
m em ber m ode 20
m e m b e r mode 20, 58-59, 70, 82, 97, 148, 151, 153
m em bership operator 70

membership operator 69, 70
m etalanguage 2, 7
M ILLISEC S 124, 174
M IN 96, 97-98, 174
m inute expression 124, 125
m inute location 125
M IN U TE S 124, 174
M O D 72, 73, 173
mode 2-3, 5, 12-14, 15, 16, 22-23, 26-27, 29-37,

39-49, 51-52, 57-65, 67-70, 72, 74, 76, 78, 81-
87, 89-94, 97-99, 103-106, 108-110, 112, 115-
116, 119, 126, 132-134, 140-141, 143, 145-
151,153-155, 160-165

m ode 12-13, 15, 16, 21-25, 29, 31-33, 39-41, 50,
57, 81, 132, 139-140, 145, 162, 168

m ode argument 57, 96, 97-99
mode checking 5, 13, 49, 63
mode definition 2, 13, 14-15, 50
m ode definition 13, 14-16, 127
m o d e nam e 6, 12, 13, 14-16, 97, 162
mode nam e 16, 42-43, 49, 56-58, 63-64, 67, 96-99,

163, 166
mode rules 5, 146
modification built-in routine call 102, 104
M O D IF Y 104, 105, 174
m odify parameter 104, 170
m odify param eter lis t 104, 105
M O D IFYFAIL 105, 170, 175
M O D U L E 134, 1 3 7 -1 3 8 , 173
module 3-5, 83-84, 120-121, 128-130, 134, 135-

136
m odule 75, 127, 129, 134, 135, 137-139, 141, 160-

162
m o d u le b o d y 134, 138-139, 141
module body 128, 134, 157
m o d u le name 134
module spec 130, 138, 139-141, 164
modulion 127, 128-129, 134-136, 138, 141, 158-

162, 164
modulo 72, 73
monadic operator 73
monadic operator 73
m onth expression 124
m onth location 125
multi-dimensional array 30
m ultiple assignment action 75

name 2-6, 10, 11, 13-14, 16-18, 21-23, 25, 27, 31-
32, 39-40, 42, 48, 50, 52-55, 63, 80-82, 84, 86,
88, 91, 93, 127-128, 130-135, 138, 140, 155,
160, 166-167, 169

nam e 10, 11, 15, 71, 81, 127, 155, 157, 166-167
name binding 5, 10, 128, 155, 156, 157
name string 11, 75, 81, 83-84, 133-135, 137, 139,

148, 157, 160-161
name string 10, 11, 138, 141, 152-153, 155-164,

167
named values 18
new prefix 158, 159-160, 162
N E W M O D E 13, 14, 173
newmode definition statem ent 6, 13, 15

Fascicle X .6 — R ec. Z200 243

new m ode definition sta tem ent 14, 15-16, 128, 139
n e w m o d e nam e 15, 19, 29, 140, 160, 164, 167, 169
newm ode nam e 166
new m ode nam e string 160-161, 164, 167

• n il 16, 143-144, 151
non-com posite m ode 15, 16, 168
non-hereditary property 12, 16, 19, 29
non-percent character 113
n o n - r e c u r s iv e 23, 85, 132
non-reserved character 55, 168
non-reserved nam e 84, 167
non-special character 55, 168
n o n -v a lu e p r o p e r ty 12, 23, 25-26, 33, 39-40, 51,

64, 76, 85, 133-134, 145, 147
N O N R E F 22, 48, 86, 132, 139, 140, 173
N O P A C K 30, 32, 34, 35-36, 46-48, 82-83, 150-

151, 173
N O T 73, 173
N O T A SSO C IA T E D 103-104, 106, 175
N O T C O N N E C T E D 107-110, 175
n o v e lty 12-13, 14, 15, 16, 148-149, 151-153, 164
n o v e lty b o u n d 13, 15, 141, 148, 152, 153, 164
n o v e lty p a i r e d 153
N U LL 21-23, 43-44, 55, 85, 91, 99, 107-108, 174^
n u l l class 12, 55, 143, 155
N U M 19, 30, 35, 37, 44-45, 47, 60-64, 96, 97-98,

106, 108, 154, 174
n u m b e r o f e le m e n ts 30, 35, 37, 58, 149, 152,154
n u m b e r o f v a lu e s 1 7 -1 9 , 36, 148
n u m b e r e d range m ode 19, 26
num bered set elem ent 18
num bered set list 18
n u m b e r e d set mode 18, 19, 26, 82, 148

octal bit string literal 56
octal dig it 53, 56
octal integer literal 53
O D 79, 86, 173
O F 31, 67, 78, 173
old prefix 158, 159-162
O N 120, 173
on-alternative 130
on-alternative 120, 127, 129
operand-0 67, 68
operand-1 68, 69
operand-2 69, 70
operand-3 69-70, 71, 72
operand-4 71, 72, 73
operand-5 72, 73, 74
operand-6 73, 74, 143
operator-3 69, 70
operator-4 71, 72
O R 68, 76, 173
O R IF 68, 173
o r ig in array mode 16, 30
origin array m ode nam e 29, 30, 37
o r ig in array m ode nam e 15
o r ig in reach 158, 159
o r ig in string m ode 16, 29
origin string m ode nam e <28, 29, 37
o r ig in string mode nam e 15

o r ig in v a r ia n t structure mode 16, 33, 38, 149-
150, 152, 154

origin variant structure m ode nam e 31, 33-34, 37
o r ig in v a r ia n t structure mode nam e 15
O U T 22, 85, 131-132, 134, 173
O U TO FFILE 107, 108, 174
o u to ffile 102, 106-109
outside world object 4, 25, 100, 103-104
O V E R F L O W 64, 72-74, 81, 98, 175
overflow 114-115

P A C K 30, 32, 34, 35, 150-151, 173
packing 34, 35
padding 114-116
param eter a ttrib u te 23, 132-134, 149, 151
parameter a ttr ib u te 22
param eter list 125
param eter list 22, 23
param eter passing 6, 65, 85, 131-132, 169
param eter spec 85-86
p a r a m e te r sp e c s 23, 85, 132, 133, 149, 151, 153,

163
param eter spec 22, 23, 57, 127, 131-134, 140
p a r a m e te r is a b le 12, 22-23, 26, 34, 41, 98, 146,

154
p a r a m e te r is a b le v a r ia n t structure mode 33 ,146 ,

149, 152, 154
param eterised array mode 37
param eterised array m ode 29, 30
p a r a m e te r is e d array mode 15-16, 30, 47, 62, 166
parameterised arrav m ode nam e 29, 166
param eterised string mode 37
parameterised string m ode 28, 29
p a r a m e te r i s e d string mode 15-16, 29, 45, 60, 166
param eterised string m ode nam e 28, 166
parameterised structure m ode 31, 32-33
p a r a m e te r is e d structure mode 15-16, 32, 33, 38,

58-59, 146, 149-150, 152, 154, 166
parameterised structure m ode nam e 31, 166
p a r e n t mode 14-17, 19, 147-148
parenthesised clause 112, 113
parenthesised expression 46, 65
parenthesised expression 51, 65, 66
pass by location 131, 132
pass by value 131, 132
p ath 14, 148
percent 113
percent 113
piece 5, 9, 11, 136-137
piece designator 136, 137
piecewise program m ing 136, 138, 140
P O S 34, 35, 150, 173
pos 151
pos 31-33, 3 4 -3 5 , 36, 150-151
postfix 159
postfix 1 5 8 -1 5 9 , 160, 162
P O W E R S E T 20, 163, 173
powerset difference operator 71
powerset difference operator 71, 72, 76
powerset enum eration 80-81
powerset enumeration 80

244 F ascicle X .6 - R ec . Z200

p o w e rs e t expression 81
poweiset expression 80, 82, 96-97, 168
powerset inclusion operator 70
powerset inclusion operator 69, 70
powerset mode 2, 20, 58, 147-148, 151, 153, 166,

168
powerset m ode 15, 20
vowerset m ode nam e 20, 166
powerset tuple 57-58
powerset tuple 56, 58-59
powerset value 20, 57, 68-71, 73, 80-81, 96
P R E D 81, 96, 97-98, 174
predefined nam e string 159
prefix 158
prefix 10, 11, 158, 160-162
prefix clause 159, 160, 161-162
prefix renam e clauses 158
prefix rename clause 158 ,1 5 9 -1 6 2
P R E F I X E D 160, 173
prefixed nam e string 155, 158
prefixed nam e string 10, 11
prefixing operator 11
prim itive value 51, 83, 147
prim itive value 50, 51, 74, 83, 96, 144, 167-168
P R I O R I T Y 89, 173
priority 89, 90-94
priority 89, 90-92
P R O C 22, 131, 133, 140, 163, 173
proc body 128, 131
procedure 2-6, 22, 48, 55, 64-65, 84-87, 120, 128-

132, 136, 142-144, 163
procedure a ttribu te list 131, 140
procedure call 3, 5, 84, 86, 130-132, 143
procedure call 57, 84, 85, 143-144
procedure definition 86, 121, 131, 133, 136
procedure definition 52, 127, 129, 131, 132-133
procedure definition statem ents 22
procedure definition sta tem ent 128, 131, 132
procedure mode 2, 22, 23, 133, 141, 149, 151, 153,

155, 166, 168
procedure m ode 14-15, 22
procedure m ode nam e 22, 166
p r o c e d u r e name 52, 57, 86-87, 1 3 2 -1 3 3 , 141-

142, 153, 163
procedure nam e 84-85, 143-144, 167
procedure prim itive value 84-86, 168
procedure values 22, 131
P R O C E S S 133, 140, 173
process 2, 4-6, 23-24, 27, 39, 55, 65, 74, 84, 86-95,

122-123, 125-126, 129-130, 135, 142, 143-
145, 169

process body 142
process body 128, 133
process creation 142
process definition 5, 65, 84, 86-87, 121, 133, 136,

141-142, 169
process definition 127, 129, 133, 134
process definition sta tem ent 128, 133, 134
process delaying 144
p ro c e s s nam e 6, 91, 133, 141-142, 145, 153, 163,

169

process nam e 65, 145, 167
process re-activation 145
process term ination 142
product 72
program 1-5, 8-12, 26, 37, 66, 75, 84, 100-101,

108-110, 120, 122, 128-129, 131, 133, 135,
136-137, 142, 152, 156

program 135
program structure 1, 5, 127
P T R 21, 163, 174

quasi data sta tem ent 128, 139
quasi declaration 130, 139
quasi declaration sta tem ent 139
q u a s i defining occurrence 11, 15, 130, 138, 140-

141,152-153, 156-157
quasi definition sta tem ent 139, 140
quasi formal parameter 140
quasi formal param eter list 140, 141
quasi loc-identity declaration 139, 140
quasi location declaration 139
q u a s i n o v e lty 15, 141, 153, 164
quasi procedure definition sta tem ent 130, 139, 140
quasi process definition sta tem ent 130, 139, 140
q u a s i reach 130
quasi signal definition 140
quasi signal definition sta tem ent 139, 140
quasi statem ents 140
quasi synonym definition 140, 170
quasi synonym definition sta tem ent 139, 140
quote 55, 168
quote 55
quotient 72

R A N G E 19, 26, 30, 163, 173
range 1-2, 17, 19-20, 30, 55, 57, 66, 78, 116, 124,

169
range 56
range enum eration 80-81
range enumeration 80
range list 165
range list 78
range mode 14-16, 19, 30, 76, 107, 109, 116, 147-

149, 151, 166
range m ode 16, 19
range m ode name 19, 166
R A N G E F A IL 41, 44-47, 51, 59-62, 68-70, 76, 78,

82, 98, 107, 109-110, 124-125, 148-150, 154,
175

re-activation 5, 142
reach 39-40, 79, 85, 89-90, 92-94, 121-123, 127,

128-130,135-136, 138, 141, 153, 156-164, 169
reach-bound initialisation 128-129, 142-143
reach-bound initialisation 39, 40
R E A D 15, 16, 30, 32, 153-154, 163, 173
read operation 101, 102, 105, 107, 108, 109
re a d -c o m p a tib le 13, 41, 43, 85-86, 119, 153, 154-

155
re a d -o n ly 2, 16, 32, 148, 153-154
re a d -o n ly mode 2, 15, 16, 30, 32, 146, 150-151,

153

Fascicle X .6 — R ec . Z200 245

re a d -o n ly p r o p e r ty 2, 12, 16, 40, 76, 85, 90, 93-
94, 99, 109, 116, 126, 146

R E A D A B L E 104, 174
re a d a b le 4, 101, 104, 106
RE A D FAIL 109, 175
R E A D O N L Y 105-107, 110, 174
R E A D R E C O R D 4, 108, 109, 113, 118, 174
readrecord built-in routine call 102, 108
R E A D T E X T 111, 112, 114-118, 174
R E A D W R IT E 105-107, 174
re a l defining occurrence 130, 141, 156-157
r e a l n o v e lty 15, 141, 153
r e a l reach 130, 138-139, 141
R E C E IV E 74, 9 3 -9 4 , 173
receive buffer case action 94, 144-145
receive buffer case action 92, 94, 129
receive case action 3, 5, 24, 92, 145
receive case action 52, 75, 92, 127
receive expression 24, 74, 144-145
receive expression 74, 144
receive signal case action 93, 144
receive signal case action 92, 93, 129
record mode 26, 101, 109, 170
record m ode 2 5 -2 6
re c o rd mode 26, 108-109, 118, 149, 151, 153
R E C U R S IV E 22, 23, 131, 132-133, 173
re c u rs iv e 23, 131, 132, 143
recursive definitions 13, 14, 50
recursive m ode 14, 148
recursive m ode definitions 14
re c u r s iv i ty 23, 85, 132, 149, 151, 169
R E F 14, 21, 110, 153-154, 163, 173
referability 2, 36, 41
re fe ra b le 2, 20, 34, 36, 40, 41 , 42-49, 74, 82-83,

85-86, 97-98, 102, 109, 112, 126, 132-133,
140, 170

reference class 12, 107, 143
reference mode 2, 20, 146, 153, 155
reference m ode 14-15, 20
reference prim itive value 98-99, 168
reference value 2-3, 21, 22, 98-99, 107-108, 110
referenced location 43-44, 74, 99, 108
referenced location 74, 144
referenced mode 21
referenced m ode 21
re fe re n c e d mode 21, 43, 148, 150-151, 153-155
re fe re n c e d o r ig in m ode 22, 44, 149-151,153-155
re fe re n c in g p r o p e r ty 12, 143, 146, 154-155
R E G IO N 135, 138, 173
region 3-5, 99, 120-121, 128-130, 132, 134, 135,

136, 142-145
region 127-129, 135, 137-139, 141, 143-144, 160-

162
re g io n b o d y 135, 138-139, 141
region body 128, 135, 157
re g io n nam e 135
region spec 130, 138, 139-141, 164
re g io n a li ty 65, 85-86,103, 106-107,109,119, 140-

141, 143, 144, 169-170
re g io n a lly sa fe 40, 76, 85-86, 99, 144
relational operators 27, 70

relational operator 69, 70
relative tim ing action 122, 127
released 121, 142, 143-144
R E M 72, 73, 173
R E M O T E 1 3 6 -1 3 7 , 173
remote context 137, 138
remote m odulion 134-135, 1 3 6 -1 3 7 , 138-139, 141
remote piece 136, 137
remote spec 1 3 6 -1 3 7 , 138-139
repetition factor 112, 113
reserved names 167
reserved simple nam e string 9
re s e rv e d simple nam e string 9, 84
r e s t r ic ta b le 13, 154, 155
R E S U L T 86, 173
result 2-5, 11, 32, 51, 64, 66-70, 73, 76, 86, 92,

103, 108, 131, 142, 148-150, 154
result 86
result action 3, 86, 132, 143
result action 57, 75, 86, 87, 132
result a ttr ib u te 23, 132
result a ttribu te 22
result spec 131-132
r e s u l t sp e c 23, 48-49, 57, 64, 85-87, 132, 149,

151, 153, 163
result spec 22, 23, 127, 131-133, 140
result transm ission 6
re s u l t in g c lass 12, 19, 58, 68-69, 71-73, 82, 97,

147, 165
re s u l t in g l is t o f c la sses 33, 78, 165
r e s u l t in g l is ts o f c lasses 33
r e s u l t in g mode 147
R E T U R N 86, 173
return action 86, 131
return action 57, 75, 86
R E T U R N S 22, 173
right element 45 , 60-61, 136
ro o t mode 12, 19, 26, 60, 68-74, 82, 97-98, 116,

140, 147, 153, 165, 169
R O W 9, 21, 163, 173
row 2, 20, 22, 43
row mode 22, 149-151, 153-155, 166, 168
row m ode 14, 20, 21
row m ode nam e 21, 166
row prim itive value 43-44, 143, 168

safe 14
SA M E 105-106, 174
scope 4-5, 127, 128
second expression 57
second expression 124, 125
second location 125
SEC S 124, 174
se izab le 159, 162
S E IZ E 137, 161, 173
seize postfix 158-159, 161, 162
seize statem ent 161
seize sta tem ent 158-159, 161, 162
seize window 1 6 1 -1 6 2
selection 2-3, 78, 164
selector 33, 78, 165

246 F ascicle X .6 — R ec . Z 200

selector value 164, 165
semantics 7-10, 32, 40, 42, 47, 49, 52, 63, 76, 81,

91-92, 102-104, 112, 118-119, 131, 136-137
s e m a n tic s 7
sem antic category 7, 166
sem antic description 7-8
S E N D 9 1 -9 2 , 173
send action 5, 24, 91, 92, 143
send action■ 57, 75, 91
send buffer action 92, 94, 144-145
send buffer action 91, 92
send signal action 91, 93, 145
send signal action 91
SEN D FAIL 91, 175
SEQ U EN C IBLE 104, 174
se q u e n c ib le 4, 101, 104-106
S E T 18, 90, 9 3 -9 4 , 105, 163, 173
set element 156
set element 18
se t e le m e n t name 18, 130, 140, 148, 153
set element nam e 11, 54, 167
set list 18, 19
set literal 54, 116
set literal 52, 54
set mode 18, 54, 116, 148, 151, 156, 166
set m ode 16, 18, 127
se t mode 18, 54, 140, 153
set m ode nam e 18, 166
se ttex t built-in routine call 102, 118
SE T T E X T A C C E S S 119, 174
S E T T E X T IN D E X 119, 174
S E T T E X T R E C O R D 118-119, 174
S H O R T . IN T 17
S IG N A L 140, 145, 173
signal 5, 91-93, 130, 145, 163
signal definition 57, 145
signal definition 127, 145
signal definition statem ents 5
signal definition sta tem ent 128, 145
s ig n a l name 91, 93, 141, 145, 153, 163
signal nam e 57, 91, 93, 167
signal receive alternative 130
signal receive alternative 93, 127, 129
s im ila r 13, 147, 148, 149, 151, 155-156, 169
S IM P L E 131, 132, 173
s im p le 131, 132
simple name string 8, 116
sim ple name string 8, 9-10, 11, 75, 115, 131, 133-

141, 155, 161-163
sim ple prefix 1 0 ,1 6 0
s im p le procedures 131
sim ple spec m odule 130, 138, 140
sim ple spec region 130, 138, 140
single assignment action 57, 75
SIZE 16, 49, 96, 97-98, 174
size 16, 26, 32, 101
slice size 45, 46-47, 60-62, 136
slicing 2
space 9
SPACEFAIL 65, 77-79, 85, 90, 93, 95, 99, 120,

130, 175

S P E C 136, 138, 139, 160, 173
spec module 5
spec m odule 75, 127-130, 135, 137, 138, 139-141,

157,160-162
spec m odule body 128, 138
spec region 5
spec region 127-130, 135, 137, 138, 139-141, 143-

144, 157, 160-162
spec region body 128, 138
special character com bination 8-9
sp e c ia l simple nam e strings 8, 9, 115

' special symbol 8, 172
stack 98
S T A R T 65, 173
s ta rt action 88
start action 75, 88
start bit 34, 36, 151
start element 44, 45, 60-61, 136
s ta rt expression 3, 5, 65, 88, 130, 142
start expression 51, 57, 65, 88, 170
s ta rt value 80-81
start value 80, 82
S T A T IC 39, 40, 136, 139, 142,. 173
s ta t ic 41, 74, 136, 140
static class 97
static condition 7, 64-65, 140, 144, 148
s ta t ic c o n d itio n s 7
static mode 2, 12, 20-21, 155, 167
static m ode location 49, 63, 108, 136, 143, 167
static properties 5, 11, 38, 84, 138, 140, 169
s ta t ic p r o p e r t ie s 7
s ta t ic r e c o rd mode 26, 107, 109, 149, 151
S T E P 34, 35-36, 150, 173
step 30, 3 4 -3 5 , 150-151
step enum eration 80-81
step enumeration 80
step size 34, 35-36, 151
step value 80-81
step value 80, 81-82
S T O P 88, 173
stop action 5, 88, 142
stop action 75, 88
storage 32, 65, 77-79, 85, 90, 93, 95, 98-99, 120-

121, 130, 148
storage allocation 136
store location 108, 109
strict syntax 7, 46, 149-150, 152
string concatenation operator 71
string concatenation operator 71, 72, 76
string element 28, 44, 114
string element 41, 44, 60, 136, 143
string expressions 97
string expression 80-82, 96-97, 111, 168
s t r in g le n g th 22, 28, 29, 37, 44, 5 5 -5 6 , 71, 73,

76, 98, 109, 111, 114, 116, 118, 150, 152, 154
string length 28, 29
string location 22, 44-45, 81
strine location 41, 44-45, 60, 80-82, 96-97, 111-

112, 136, 143, 167
string mode 28-29, 37, 44, 70, 82, 109, 146-147,

149, 152, 154, 166-168

/
F ascicle X .6 — R ec . Z200 247

string m ode 28, 168
string m ode 21-22, 168
strine m ode nam e 28-29, 96-99, 166
strine prim itive value 60-61, 168
string repetition operator 73
string repetition operator 73
string slice 45, 60, 112, 116
string slice 41, 45, 60, 136, 143
string type 28, 29
string value 28, 60, 73, 109, 112, 118
s t r o n g 3, 12, 43-44, 60, 71, 78, 82-83, 97-98, 164
s t ro n g ly v is ib le 156, 157, 159, 161-163
S T R U C T 14, 31, 35, 154, 163, 173
structure field 34-36, 47, 79
structure field 41, 47, 48, 63, 136, 143, 164
structure location 22, 31-32, 42, 44, 47, 83
structu re location 47-48, 63, 83, 136, 143, 164, 167
structure mode 2, 11, 16, 26, 31, 32-36, 57-58,

83, 141, 146-147, 149-150, 152-154, 160-161,
166-168

structure m ode 28, 31, 32
structure m ode nam e 31, 166
structu re prim itive value 63, 83, 144, 164, 168
structure tuple 56, 57-59, 164
structure value 31-32, 52, 57, 63, 83, 109, 170
sub expression 67, 68, 144
sub operand-0 68
sub operand-1 69
sub operand-2 69, 70
sub operand-3 71
sub operand-4 72, 73
SU C C 81, 96, 97-98, 174
sum 71
surrounded 5, 52, 86, 99, 127, 129, 130, 134-136,

141-142
S Y N 50, 140, 173
synchronisation mode 2, 23
synchronisation m ode 15, 23
S Y N M O D E 14, 173
synmode definition statem ent 14
synm ode definition sta tem ent 14, 128, 139
s y n m o d e nam e 14, 16, 19, 29-30, 44-45, 47, 60,

62, 71, 81-82, 105, 140
svnm ode nam e 166
synonym definition 13, 50
synonym definition 13, 50, 57, 127
synonym definition statem ent 3, 50
synonym definition sta tem ent 50, 52, 128, 139-140
s y n o n y m nam e 13-14, 50, 52, 140, 153, 161
svnonvm nam e 51-52, 144, 166
s y n o n y m o u s 13, 14, 15-16, 29-30, 44-45, 47, 60,

62, 71, 81-82
syntax 7, 8, 57, 78, 136
syntax description 7, 9, 166

tag 109
ta g field 16, 32, 33, 39, 48, 58-59, 63, 76, 146, 165
ta g fie ld nam e 32, 33, 150, 152
tag field nam e 31, 167
tag list 3 1 ,3 2 -3 3 ,1 5 0 ,1 5 2
ta g - le s s alternative fields 33

ta g - le s s alternative fields 32, 33
tag-less param eterised structure mode 33
ta g - le s s p a r a m e te r is e d structure mode 58-59
ta g - le s s v a r ia n t 170
ta g - le s s v a r ia n t structure 170
ta g - le s s v a r ia n t structure mode 33, 47, 58-59,

63, 165
TAG FAIL 41-42, 48, 51-52, 59, 63, 70, 76, 109,

148-149, 175
ta g g e d p a r a m e te r is e d p r o p e r ty 12, 33, 39, 146,

147
ta g g e d p a r a m e te r is e d structure mode 33, 58-

59, 146-147
ta g g e d v a r ia n t structure m ode 33, 48, 58-59, 63,

165
T E R M IN A T E 98, 99, 136, 170, 174
term inate built-in routine call 95, 98
term inated 9-10, 79-82, 103, 113, 120, 129, 131,

142
T E X T 26, 163, 173
tex t argum ent 111, 112
tex t built-in routine call 102, 111
te x t io argument list 111
t e x t le n g th 26-27, 110-112, 117-119, 149, 151
te x t length 26, 27
tex t location 110
te x t location 110
tex t location 102, 105-107, 111-112, 117-119, 167
tex t mode 2, 26-27, 110, 147, 149, 151, 153, 167
tex t m ode 25, 26
t e x t r e c o rd 26, 110-114, 116-119
te x t r e c o rd mode 27, 110, 119, 149, 151
te x t r e c o rd re fe re n c e 110, 118
te x t r e c o rd sub-location 40
tex t reference name 1 0 -1 1 , 137, 169
tex t value 110
T E X T F A IL 112, 116-117, 119, 175
T H E N 9, 67, 77, 173
then alternative 67
then clause 77, 127
T H IS 65, 142, 173
T IM E 27, 125, 163, 174
tim e value built-in routine call 96, 124
T IM E O U T 122, 173
tim e o u ta b le 4, 89-90, 92-94, 122-123, 125-126,

170
TIM E R F A IL 123-124, 170, 175
tim ing action 122
tim ing action 75, 122, 129
tim ing handler 122, 123, 127, 129
tim ing mode 2, 27
tim ing m ode 15 , 27
tim ing simple built-in routine call 95, 125
T O 80, 91, 140, 141, 145, 173
t r a n s f e r index 101-102, 107, 108, 109
transfer location 105, 106-107
T R U E 17, 53, 67-68, 70, 72, 77, 82, 103-105, 107-

109, 115, 118, 174
truncation 114-115
tuple 57, 58, 67
tuple 50-51, 56, 57-59, 144

248 F ascicle X .6 — R ec . Z200

u n d e f in e d location 40, 42, 48-49, 86, 132
undefined svnonvm nam e 66, 167
undefined value 3
undefined value 66
u n d e f in e d value 3, 39-40, 50, 58-59, 64, 66, 76,

86, 98, 108, 132
underline character 8, 53, 56
union 32-33, 68, 163
unlabelled array tuple 57
unlabelled array tuple 56, 58
unlabelled structure tuple 57
unlabelled structure tuple 56, 57-58
unnam ed values 18
unnumbered set lis t 18
u n n u m b e re d set mode 18, 97, 148
U P 28, 4 5 -4 6 , 60, 62, 173
U PPER 96, 97-98, 174
u p p e r b o u n d 1 7 -1 9 , 22, 2 9 -3 0 , 37, 44, 46-47,

61-62, 81, 97, 109, 149, 151, 154, 169
upper bound 19, 20, 30
upper case 8, 9
upper element 46 , 47, 62, 136
upper index 29, 30, 47, 62
upper lower argum ent 96, 97
USAGE 105-107, 174
u sa g e 102 ,106 -110
usage expression 105, 106-107

v -e q u iv a le n t 13, 1 4 8 -1 4 9 , 155
value 1-5, 12-13, 15-32, 34-37, 39-43, 45, 47-48,

50-65, 66, 67-68, 70-74, 76-78, 80-82, 84-86,
89-117, 119, 123-125, 130-132, 140, 142, 145,
148-152, 154, 160, 164-165, 169-170

value 39-40, 56-59, 66, 75-76, 84-87, 91-92, 98-
99, 103-104, 132, 143-144, 161, 165, 168

value argument 111, 115-116
value array element 61
value array elem ent 50, 61, 144
value array slice 62
value array slice 50, 62, 144
value built-in routine call 64
value built-in routine call 51, 64
v a lu e built-in routine call 84
value built-in rou tine call 64, 144, 168
value case alternative 67
value class 12, 33, 60, 71
v a lu e d o -w ith nam e 52, 83
value do-with nam e 51-52, 144, 166, 170
value enumeration 52, 80, 82
v a lu e e n u m e ra t io n nam e 52, 81
value enumeration nam e 51-52, 166
value name 52, 83, 166
value name 50, 51, 52, 144
value procedure 5
value procedure call 64, 132
value procedure call 51, 64, 144
value procedure call 64, 85, 168
v a lu e rece iv e name 52, 9 3 -9 4
value receive nam e 51-52, 144, 166
value string element 60
value string elem ent 50, 60

value string slice 60
value string slice 50, 60, 61
value structure field 63
value structure field 50, 63, 144, 164
V A R IA B L E 104, 174
v a r ia b le 4, 101, 104, 106-107, 112, 115-116
v a r ia b le clause w idth 111-112, 116
variant alternative 32, 59
variant alternative 31, 32-33, 36, 59, 150, 152, 165
variant field 32, 42, 52, 76, 164
variant field 31, 32-33, 150, 152
v a r ia n t field 33, 42-44, 52, 170
variant field access conditions 42-44, 48, 52, 63
v a r ia n t fie ld name 32, 33, 36, 47, 63
v a r ia n t structure mode 3 2 -3 3 , 44, 58-59,154, 166
variant structure m ode 21-22
variant structure m ode nam e 31, 96, 98-99, 166
V A R Y IN G 27, 28, 29, 173
v a ry in g string 109, 116
v a ry in g string mode 14-15, 26, 28, 29, 41, 44-45,

68-69, 76, 112, 147, 150, 152
visibility 1, 4-5, 83, 128, 130, 134-135, 138, 155,

156 ,157-158 , 160-162
visibility of field names 164
visibility statem ents 4-5, 139, 156, 158
visibility sta tem ent 128, 158, 159
v is ib le 4, 128, 138, 156, 157, 163-164
v is ib le field names 141

W AIT 125, 126, 174
w eak c la sh 156-157
w eak ly v is ib le 156-157, 162
W H ERE 105-106, 174
where expression 105, 106
W H IL E 82, 173
while control 79
while control 79, 82, 127
w id th 112, 114-117
W IT H 83, 173
with control 83
with part 42, 52, 79, 83, 127
word 7, 35-36, 170
word 34, 35-36, 151
write expression 108, 109
write operation 100, 101, 105—107, 109
W R IT E A B L E 104, 174
w r i te a b le 4, 101, 104, 106
W R IT E F A IL 110, 175
W R IT E O N L Y 105-107, 109, 174
W R IT E R E C O R D 4, 108, 109-110, 113, 118, 174
writerecord built-in routine call 102, 108
W R IT E T E X T 111, 112, 114-119, 174

X O R 68, 76, 173

year expression 124
year location 125

zero-adic operator 65
zero-adic operator 51, 65

F ascicle X .6 - R ec . Z200 249

ISBN 92-61-03801-8

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)
	Contents
	1. Introduction
	2. Preliminaries
	3. Modes and classes
	4. Locations and their accesses
	5. Values and their operations
	6. Actions
	7. Input and output
	8. Exception handling
	9. Time supervision
	10. Program structure
	11. Concurrent execution
	12. General semantic properties
	13. Implementation options
	Appendix A: Character set for CHILL
	Appendix B: Special symbols and character combinations
	Appendix C: Special simple name strings
	Appendix D: Program examples
	Appendix E: Decommitted features
	Appendix F: Collected syntax
	Appendix G: Index of production rules
	Appendix H: Index

