

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK
o

VOLUME X - FASCICLE X.4

ANNEX F.2 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY a s s e m b l y
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 198,9

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VO LU M E X - FASCICLE X .4

ANNEX F.2 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY A S SE M B L Y
MELBOURNE. 14-25 NOVEMBER 1988

Geneva 1 989

ISBN 9 2 -61 -0 3 78 1 -X

, © ITU

Printed in Switzerland

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

Volume I

FASCICLE 1.1

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume II

FASCICLE II.l

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

FASCICLE II.5

FASCICLE II.6

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

BLUE BOOK

— Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

— Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

— Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

— Index of Blue Book.

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study Group II).

— Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study Group II).

— Telegraph and mobile services — Operations and quality of service. Recommenda­
tions F.1-F.140 (Study Group I).

— Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study G roup I).

— Message handling and directory services — Operations and definition of service. Recom­
mendations F.400-F.422, F.500 (Study Group I).

— General characteristics of international telephone connections and circuits. Recommenda­
tions G.101-G.181 (Study Groups X II and XV).

— International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).

— Transmission media — Characteristics. Recommendations G.601-G.654 (Study Group XV).

— General aspects of digital transmission systems; terminal equipments. Recommenda­
tions G.700-G.772 (Study Groups XV and XVIII).

— Digital networks, digital sections and digital line systems. Recommendations G.801-G.956
(Study Groups XV and XVIII).

I ll

FASCICLE III.6

FASCICLE III.7

FASCICLE III.8

FASCICLE III.9

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VI.4

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI.10

IV

Line transmission of non-telephone signals. Transmission of sound-programme and televi­
sion signals. Series H and J Recommendations (Study Group XV).

Integrated Services Digital Network (ISDN) — General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Overall network aspects and functions,
ISDN user-network interfaces. Recommendations 1.310-1.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Internetwork interfaces and maintenance
principles. Recommendations I.500-I.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

Maintenance of international telegraph, phototelegraph and leased circuits. Maintenance of
the international public telephone network. M aintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

Maintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and inform a­
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study
Group XI).

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

FASCICLE VI. 11

FASCICLE VI. 12

FASCICLE VI. 13

FASCICLE VI.14

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

FASCICLE VII.3

FASCICLE VII.4

FASCICLE VII.5

FASCICLE VII.6

FASCICLE VII.7

Volume VIII

FASCICLE VIII. 1

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VIII.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

FASCICLE VIII.8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage­
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda­
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda­
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.l 100-Q.l 152 (Study
Group XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip­
ment. Series S Recommendations (Study Group IX).

TelegraphW itching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study G roup VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda­
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Model and nota­
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica­
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).

Data communication networks: directory. Recommendations X.500-X.521 (Study
G roup VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements o f outside plant. Series L Recom­
mendations (Study Group VI).

V

Volume X

FASCICLE X.l

FASCICLE X.2

FASCICLE X.3

FASCICLE X.4

FASCICLE X.5

FASCICLE X.6

FASCICLE X.7

— Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z. 110 (Study Group X).

— Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

— Annex F.l to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

— Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X).

— Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
Group X).

— CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

— M an-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

VI

CO N TEN TS O F FA SC IC L E X.4 O F T H E B LU E BO O K

Annex F .2 to Recom m endation Z.100

SD L Formal Definition. Static Semantics

REM ARK

Due to the specialized nature of the SD L semantics, this Fascicle is published in English only.

R EM A RQ U E

Etant donne la nature tres speciale de la semantique du LDS, ce fascicule est publie uniquement en anglais.

OBSERVACION

Debido a la naturaleza especializada de la semantica del LED, este fasciculo solo se publica en ingles.

PRELIM INARY N O TES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in Contri­
bution No. 1 to that Study Group.

2 In this Fascicle, the expression “ Administration” is used for shortness to indicate both a telecommunication
Administration and a recognized private operating agency.

Fascicle X .4 — Table of Contents VII

P A G E INTENTIONALLY LEFT BLANK

P A G E L A ISSEE EN BLANC INTENTIONNELLEMENT

Contents

1 A b stra ct S y n ta x R ep resen tin g C o n crete S y n ta x 2

1.1 Basic S D L ... 2

1.2 S tructural Concepts ... 10s

1.3 A dditional C o n c e p ts .. 11

1.4 D a t a ... 12

2 In tern a l D o m a in s 20

2.1 Description of D e s c r ip to r d ic t .. 21

2.2 Description of Quotdict .. 28

2.3 O ther D o m a in s ... 30

3 T ran sform ation o f ASo in to A S i 32

3.1 Main F u n c tio n s ... 32

3.2 Replacing Definition R eferences.. 35

3.3 Removal of Select D e f in i t io n s .. 42

3.4 Transform ation of D e fin itio n s .. 51

3.4.1 Block D efin itio n s .. 54

3.4.2 Channel Definitions ... 57

3.4.3 Process D efin itio n s.. 61

3.4.4 Signal D efin itions.. 65

3.4.5 Procedure D e f in i t io n s .. 66

3.4.6 Sort G en e ra to rs ... 70

3.4.7 Sort D efin itions... 71

3.4.8 Tim er Definitions ...116

3.4.9 Variable Definitions ..116

3.4.10 View D e f in it io n s .. 119

3.4.11 Im port D e f in it io n s ... 121

3.4.12 Signalroute D efin itions.. 122

3.4.13 Signallist D e fin itio n s ..123

3.4.14 Connect S ta te m e n ts ..125

3.5 Transform ation of Expressions ... 134

3.5.1 Id e n tif ie rs .. 137

3.5.2 Character S tr in g s ...142

3.5.3 O p e ra to r s .. 142

3.5.4 Conditional E x p re ss io n s ... 154

3.5.5 Infix and Prefix o p e r a to r s ... 155

3.6 Visibility H a n d l in g ... 155

3.7 Transform ation of Procedure- and Process G r a p h ... 161

3.7.1 Insertion of Term inators in A n s w e r s ... 165

Fascicle X .4 — C o n ten ts IX

3.7.2 Building of L ab e ld ic t... 169

3.7.3 Building of S ta te d ic t .. 172

3.7.4 Expansion of Asterisk Input, Asterisk Save and Implicit Transitions . 174

3.7.5 Expansion of Continuous Signals and Enabling C o n d i t io n 180

3.7.6 Transform ation of States and Input N o d e s 188

3.7.7 Transform ation of Transition S t r in g s ... 195

3.7.8 Transform ation of Action S ta tem en ts ... 198

3.8 General ASi C reating Functions ..223

3.9 Expansion of Services .. 233

3.10 C reation of Im plicit Channels and Signal R o u t e s ... 241

3.10.1 C reation of Im plicit C h a n n e ls 244

3.10.2 C reation of Im plicit S ig n a lro u te s .. 249

3.10.3 C reation of Im plicit Connect S ta te m e n ts ...253

3.11 U tility F u n c t io n s ...256

3.12 G eneration of Auxiliary Inform ation . ' 258

3.13 Global C onstant M appings .. 260

3.13.1 Relation between AS0 names and ASi n a m e s ...260

3.13.2 Relation between im port/export names and im plicit signal names . . . 260

3.14 Inform al F u n c t io n s ... 261

4 D e v ia t io n s From Z .100 262

X F ascicle X .4 — C o n ten ts

FASCICLE X.4

Annex F.2 to Recommendation Z.100

SDL FORMAL DEFINITION
STATIC SEMANTICS

Introduction

This part of The Formal Definition defines the static properties of SDL. For a description of
the over-all structure of the Formal Definition and for an explanation of the no tation used,
refer to Annex F .l: Introduction to the Formal Definition.

Annex F.2 defines the following:

• The well-formedness conditions which apply.
However, the well-formedness conditions which involve elaboration of equations are,
for convenience, deferred to the construction of Entity-dict in Annex F.3: Dynamic
Semantics (see the introduction to section 5 of Annex F.3). Even though the conditions
are placed in the Dynamic Semantics, the conditions are static properties and they are
therefore applied before any interpretation of SDL processes takes place.

Those well-formedness conditions are the following:

1. The check th a t the answers in a decision do not overlap.

2. The check th a t an enclosed scopeunit does not invalidate the properties of a sort
defined in the enclosing scopeunit.

3. The check th a t no literal equals the error term.

4. The check th a t the Boolean literals TRUE and FALSE denote different values.

• The relation between the concrete syntax and the abstract syntax as defined in Z.100
(referred to as A Si). ASi is not repeated in the Formal Definition. A sum m ary can
be found in Annex B of Z.100.

In order to distinguish the ASi objects from other objects in the M eta-IV functions,
every ASi nam e is suffixed by a ’V ’.

For example the definition of identifier as defined in §2.2.2 of Z.100 is

Identifier :: Qualifier Name

whereas the corresponding definition in the Formal Definition is taken as

Identifieri :: Q ualifier Nam ex

Fascicle X .4 - R ec . Z .100 - A n n e x F .2 1

1 A bstract Syntax Representing Concrete Syntax

In the following, the dom ain ASo which reflects the concrete syntax is defined. A lthough
ASo presents the concrete syntax on an abstract form, ASo does in some respect define the
language syntax on a “lower level” than the syntax rules found in Z.100. This is due to the
fact th a t the context sensitive inform ation found in the syntax rules is not reflected in ASo
(for an explanation see section 3 of Annex F .l)

As opposed to in A Si, abbreviations for the dom ain names are used in ASo in order to
reduce problem s of the lim ited physical line w idth. The annotations attached to the domain
definitions, define the full names, by using italics letter style for the letters which also occur
in the abbreviations.

In order to distinguish the ASo objects from other objects in the M eta-IV functions, every
ASo dom ain is suffixed by a “0” .

Due to the fact th a t ASo is an A bstract Syntax derived from the textual gram m ar, the
following item s are not covered by the Formal Definition:

• Lexical rules (including macros)
Most of these rules are defined formally in §2.2.1 of Z.100

• Syntax rules (ASo does not define where to place keywords and separators, it only
defines the objects a system definition consist of).
The syntax rules are defined formally in Z.100 in the subsections textual grammar

• The relation between the textual gram m ar and the graphical gram m ar
In m ost cases this relation is straig th forward, i.e. < d iagram > corresponds to <defi-
n itio n > , “is fo llo w ed b y ” in the graphical gram m ar is literally “is followed by” in
the tex tual gram m ar etc.

The dom ains are specified in the same order as the corresponding syntax rules are defined
in Z.100, e.g. the first dom ain definition in ASo is Ido and the first BNF production in Z.100
is < identifier>

1.1 B asic SDL
1 /do ::
2 Qualifiero =
3 Qualifierelemo =
4 Scopeunito =

5 Nameo ::

Qualifiero Nameo
Qualifierelemo*
Scopeunito Nameo
SYSTEM | BLOCK | PROCESS | SERVICE |
PROCEDURE | SUBSTRUCTURE | TYPE | SIGNAL
Char+ [EXCLAMATION MARK]

• An identifier consists of a Qualifier and a Name

• A Qualifier is a possible em pty list of Qualifier elements.

• A Qualifier element is a scope unit type and a Name.

• A scope unit type is either the system, a block, a process, a service, a procedure, a
block/channel sub-structure, a partia l d a ta type definition or a signal refinement.

• A Nam e consists of a non-em pty list of characters followed by an optional exclama-
tionm ark.
For convenience, The Names in ASo covers a slightly different class of names than
defined by the BNF syntax rules in Z.100.
The following presum ptions on AS0 apply:

- The optional exclam ation m ark following the spelling (Char+) can be present
only where it is allowed syntactically according to the BNF rules.

2 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

- The spelling is an uppercase sequence of characters which conforms to the lexical
rules defined in Z.100.

6 Stringo :: Char*

• A character String consists of a possible em pty list of characters.

7 Text® :: Stringo

• Inform al Text contains a character String. In expression context, informal Text cannot
be distinguished from String , Therefore, in ASo Text only occurs in Task as alternative
to assignm ent statem ents.

8 Sys0 :: Sysdef0 Remotedefo

• A System consists of a System definition and the Remote definitions.

9 Remotedefo = Refdeclo*
10 Refdeclo = Blockdefo \ Prdefo | Servicedefo | Procdefo \ Chansubdefo

• The Remote de/initions is a list of Referenced declarations.

• A Referenced declaration is either a Block defin ition , a Process defin ition , a Service
d e finition, a Procedure de/inition, or a Channel su&structure definition.

Also block sub-structures may be remote. However, as it is not possible to distinguish
syntactically between a remote block sub-structure and a remote channel sub-structure, the
channel sub-structure m ust be converted to a block sub-structure (see remove-references) if
the context shows th a t the remote definition actually is a block sub-structure.

11 Sysdefo :: Sysnameo Sysdeclo* [Tailnameo]
12 Sysname o = Nameo
13 Sysdeclo — Blockdefo | Blockrefo \ Chandefo | Sigdefo

Signallistdefo \ Datadefo | Selecto

• A System de/in ition consists of a System name, a list of System declarations and an
optional tailing name ending the System de/inition.

• A System name is a Name.

• A System declaration is either a Block definition, a Block reference, a Channel de fin i­
tion, a Siynal definition, a Signal list de/inition, a Data de/in ition or a Select definition.

14 Blockrefo :: Blocknameo
15 Blockdefo :: Blockido Blockdeclo* [Blocksub0\ [Tailido]
16 Blockido = /do
17 Tailido = /do
18 Blockdeclo = Sigdefo | Prdefo | Prrefo \ Datadefo | Connect®

Sigroutedefo \ Signallistdefo \ Select®
19 Blocknameo = Nameo

• A Block reference contains a Block name.

Fascicle X .4 - R ec . Z .100 - A n n ex F .2 3

• A Block de/in ition contains a Block identifier, a list of Block declarations, an op­
tional Block substructure definition and an optional Tailing identifier ending the Block
defin ition .
Note th a t it is not possible to distinguish syntactically between Name and identifier
in the concrete syntax. Consequently, ASo contains identifiers a t those places where
b o th Nam es and identifiers are allowed.

• A Block identifier is an identifier.

• A Tailing identifier is an identifier.

• A Block declaration is either a Signal de/inition, a Process de/inition, a Process refe­
rence, a Data de/inition, a channel to signal route connection , a Signal route de/inition,
a Signal list defin ition or a Select.

• A Block name is a Name.

20 Prrefo :: Prnameo [Instanceso]
21 Prnam e 0 = Name0
22 Prdefo :: Prido [inslanceso] Parmo*

[Inputseto] Prdeclo* Processbodyo [Tailido]
23 Prido — ido
24 Prdeclo = Vardefo \ Viewdefo \ Datadefo \ Sigdefo \

Signallistdefo | Importdefo \ Procdefo \
Procrefo \ Timerdefo \ Selecto

25 Procrefo :: Procnameo
26 Inputseto :: [5i^nallis<o]
27 Processbodyo = Bodyo \ Decomposition^
28 Parmo :: Varnameo+ Sortido
29 Instanceso ” [Initial^] [Maximumo]
30 Initialo = Expro
31 M axim um ^ = Expro

• A Process reference contains a Process name and an optional number of Instances
specification.

• A Process Name is a Name.

• A Process de/in ition consists of a Process identifier, an optional number of Instances
specification, a list of process formal Param eters, an optional valid Input signal set, a
list o f Process declarations, the process Body and an optional tailing identifier ending
the Process de/inition.

• A Process identifier is an identifier.

• A Process declaration is either a variable de/inition, a View definition, a Data defini­
tion, a 5i<7nal de/inition, a Signal list de/inition, an Import de/inition, a Procedure
definition, a Procedure reference, a Tim er definition or a Select.

• A Procedure reference consists of a Procedure name.

• A valid Input signal set contains a possibly empty (if n il) Signal list.

• A Process body is either a graph Body or a service Decomposition.

• A process formal P a ram eter consists of a list of Variable names and a Sort Identifier.

• The num ber of Instances specification consists of an optional In itia l number and an
optional M axim um number.

• The In itia l num ber is a simple Expression.

• The M axim um num ber is a simple Expression.

4 F ascicle X .4 — R ec. Z .100 — A n n e x F .2

32 Procdefo :: Procido Procparmo* Procdeclo* Body0 [Tailido]
33 Procido = /do
34 Procdeclo = Vardefo \ Datadefo \ Procdefo \ Procrefo \ Selecto
35 Procname o = Nameo
36 Procparmo = Inoutparmo | Inparmo
37 Inoutparmo :: Varname o+ Sortido
38 Inparmo :: Varnameo+ Sortido

• A Procedure de/in ition consists of a Procedure identifier, a list of Procedure formal
param eters , a list of Procedure declarations, a procedure Body and an optional Tailing
identifier ending the Procedure de/inition.

• A Procedure identifier is an identifier.

• A Procedure declaration is either a variable de/inition, Data de/inition, a Procedure
definition, a Procedure re/erence or a Select.

• A Procedure name is a Name.

• A Procedure form al param eter is either a variable In/ Out param eter or a variable In
param eter.

• An In / Out param eter consist of a list of Variable Names and a Sort identifier.

• An In param eter consist of a list of Variable Names and a Sort identifier.

39 Chandefo :: Channameo Chanpatho [Chanpatho] [Chansubo] [Tailnameo]
40 Chanpatho :: Origo Desto Signallisto
41 Channame o = Nameo
42 Orig0 = Blockido | ENV
43 Desto = Blockido | ENV
44 Tailname o = Nameo

• A Channel defin ition consists of a Channel name, one or two Channel com m unication
paths, an optional Channel su&structure de/inition and an optional tailing name end­
ing the Channel de/inition. A Channel com m unication path consists of an O riginating
endpoint, a D estination endpoint and a Signal list.

• An O riginating endpoint is either a Block identifier or the ENVIRONMENT.

• A D estination endpoint is either a Block identifier or the ENVIRONMENT.

• A Nam e which ends a definition is a Tailing name.

45 Sigroutedefo :: Sigroutenameo Sigroutepatho [Sigroutepatho]
46 Sigroutepatho :: Origino Destinationo Signallisto
47 Origino = /do | ENV
48 Destinationo = /do j ENV
49 Sigroutename o = Nameo

• A Signal route defin ition contains a Signal route name and one or two Sipnal route
com m unication paths.

• A 5ipnal route com m unication paths contains an Originating process or service, a
D estination process or service and a Signal list.

• An Originating process or service is either a identifier or the ENVIRONMENT.

• A .Destination process is either a Process identifier or the ENVIRONMENT.

• A Signal route name is a Name.

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 5

50 Connecto :: Connectpointo Ido+
51 Connectpointo — (Ido | ENV)

A connection contains a connection point and a list of identifiers to which it is con­
nected. Note th a t Connecto both denotes channel endpoint connection, channel to
route connection, signal route connection and channel connection since these four kind
of connections are not distinguished syntactically if they occur in a select definition.

A connection point is an Identifier or, in the case of a channel endpoint connection,
ENV.

52 Sigdefo :: Sigelemo+
53 Sigelemo ” Signameo Sortido* [Refinemento]
54 Signameo = Nameo
55 Sortido = Ido

• A 5tflrnal definition consists of a list of Signal elements.

• A Signal element consists of a Signal name, a list of Sort identifiers and an optional
Refinem ent part.

• A Signal name is a Name.

• A Sort identifier is an Identifier.

56 Signallistdefo :: Signallistnameo Signallisto
57 Signallistname o = Nameo
58 Signallisto — (Signallistido \ Sigido)+
59 Signallistido :: Ido
60 Sigido = Ido

• A Signal list de/in ition consists of a signal list name and a Signal list.

• A Signal list name is a Name.

• A Signal list is a non-em pty list of Signal list identifiers and Signal identifiers.

• A Signal list identifier contains an Identifier.

• A Signal identifier is an Identifier.

Note th a t, as a Signal list identifier is a tree, it is always possible to distinguish between
signal list identifiers and signal identifiers (as is also the case in the concrete syntax).

61 Vardefo :: [REVEALED] [EXPORTED] Vardefelemo+
62 Vardefelemo :: Varnameo+ Sortido [Valueo]
63 Varnameo = Nameo

• A Variable de/in ition consists of an optional REVEALED a ttribu te , an optional EX­
PORTED a ttrib u te and a list of Variable de/inition elements.

• A Variable de/in ition element consists of a list of Variable nam es , a Sort identifier
and an optional in itial Value.

• A Variable name is a Name.

64 Viewdefo :: Viewdefelemo+
65 Viewdefelemo :: Varido+ Sortido
66 Varido = Ido

6 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

A View de/in ition consists of a list of View def inition elements.

A View defin ition element consists of a list of view Variable identifiers and a Sort
identifier.

A Variable identifier is an identifier.

67 Bodyo :: T ransition Statebodyo*
68 Statebodyo :: (Statenamelisto \ Starredlisto) Statespeco* [Tailnameo]
69 Statenamelisto :: Statenameo+
70 Statenam e o = Nameo
71 Starredlisto :: [Statenamelisto]

• A Body consists of the sta rt Transition and a list of State bodys.

• A State body contains a State name list or a Starred name list and followed by a list of
State stim ulus specifications and an optional tailing name ending the State body.

• A State name list consists of a list of State names.

• A State name is a Name.

• A Starred nam e list contains a possible empty (if nil) State name list.

72 Statespeco = Savespec0 \ Inputspec0 \ Contspec0 | Priinputo

• A State stim ulus specification is either a Save specification, an Input specification, a
Continuous signal specification or a Priority input specification.

73 Savespeco :: Signallisto I Starred<>
74 Inputspeco :: (Starredo | Inputvarso+) Enablingo T ransition
75 Starredo :: ()
76 Inputvarso :: Sigido [Vdrido]*

• A Save specification contains either a Signal list or an asterisk.

• An Input specification contains either an asterisk (i.e. a tree Starred denoting the
asterisk) or a none-empty list of Input signal variables and followed by an enabling
condition and followed by a Transition.

• Input signal variables contains a Sipnal identifier and a list of optional Variable identi­
fiers.

77 T ransitio n :: Actstmio* [Termstmto]
78 Actstm to :: [Labelo] Acto
79 Labelo — Nameo

• A Transition contains a list of Action sta tem ents and an optional Term inator sta te ­
ment.
If Term stm t is om itted, then the list of A ctstm t is non-empty and if the list of A ctstm t
is em pty then Term stm t is present (it need not to be checked as it is a context free
concrete syntax rule).

• An Action sta tem ent contains an optional Label and an Action.

• A Label is a Name.

Fascicle X .4 - R ec. Z .100 — A n n ex F .2 7

80 Acio = Tasko \ Outputo | Createo | Decision® \ Export® |
Option® | Call® \ Prioutput® | Set® \ Reset®

• An A ction is either a Task, an Output, a Create request, a Decision, an Export, a
transition O ption, a procedure Call, a P rio rity output, a tim er Set or a tim er Reset.

• A Term inator s ta tem en t contains an optional Label and a Terminator

• A Term inator is either a N extstate , a /o in , a Stop or a Return.

• A Nextstate contains an optional State name (n il if it is a dash nextstate).

• A Join contains a Label

• A Stop contains no additional inform ation.

• A R eturn contains no additional inform ation.

87 Task® :: Assignstmt®^ | Texto+

• A Task contains either a list of Assignment sta tem ents or a list of informal Texts.

88 Createo :: Prid® Actparmlist®
89 Actparmlist® — [Expr0]*

• A Create request contains a Process identifier and an Actual param eter list.

• An A ctual param eter list is a list of optional .Expressions.

90 Call® :: Procido Actparmlist®

• A procedure Call contains a Procedure identifier and an Actual param eter list.

91 Outputo :: Outputsigo+ [Piexpro] Viao
92 Outputsigo :: Sigid® Actparmlist®
93 Piexpro — Expr0 | ScopeexprQ

81 Termstmt®
82 Terminatoro
83 Nextstate o
84 Join®
85 Stopo
86 Return®

94 Via®
95 Scopeexpr0
96 Scope o

• An Output contains a list of Output signals, an optional P /d expression and a Via.

• An Output signal consists of a Signal identifier and an Actual param eter list.

• A P /d expression is either an Expression or a scope expression.

• A Via is a possible em pty list of /dentifiers.

8 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

• scopeexpression has no corresponding construct in the concrete syntax. It is a u tility
construct which is introduced in ASo in order to ease the transform ation of services.

W hen services are transform ed, they are merged into one ASo process graph. Except
for the transition containing ou tpu t and decisions implied from enabling condition
and continuous signals, every transition in the resulting ASo process graph m ust be
transform ed in the context of a certain service. The Scope in Scopeexpression is a
Qualifier which points out the service which “owns” the Expression occurring in the
decisions in enabling condition.

Scopeexpros are generated during the expansion of enabling condition and continuous
signal.

97 Decisiono :: Questiono Answero+ [Elseparto]
98 Questiono — Expro | Scopeexpro
99 Elseparto :: [Transition^

100 Answero :: Conditionlisto [Transitiono]

• A Decision contains a Question , a none-empty list of Answers and an optional Else
part

• A Question is either an Expression or a scopeexpr (explained above).

• An Else part contains an optional Transition.

• An Answ er contains a Condition list and an optional Transition

101 Timerdefo :: Timerelemo+
102 Timerelemo :: Tim ernam eo Sortido*
103 Tim ernam e o = Nameo

• A Tim er de/in ition consists of a list of Tim er elements.

• A Tim er element contains a Tim er name and a list of Sort identifiers.

• A Tim er name is a Name.

104 Reseto :: Resetelemo+
105 Resetelemo :: Timerido Expro*
106 Timerido = Ido

• A tim er Reset contains a list of tim er Reset elements.

• A tim er Reset element contains a Tim er identifier and a possible em pty list of Expres­
sions.

• A Tim er identifier is an identifier.

107 Seto :: Setelemo+
108 Setelemo :: Expro Timerido Expro*

• A tim er Set contains a list of tim er Set elements.

• A tim er Set element contains a time expiration Expression, a Tim er identifier and a
possible em pty list of Expressions.

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 9

.2 S tru ctu ra l C on cep ts

1 Blocksubo = Blocksubdefo \ Blocksubrefo
2 Blocksubdefo :: [Blocksubido] Blocksubdeclo+ [Tailido]
3 Blocksubido = Ido
4 Blocksubdeclo = Signallistdefo \ Connecto \ Blockdefo \ Blockrefo |

Chandefo \ Sigdefo \ Datadefo \ Selecto
5 Blocksubrefo :: Blocksubnameo
6 Blocksubnameo = Name0

• A Block substructure is either a Block substructure de/in ition or a Block substructure
reference.

• A Block substructure de/in ition consists of a Block substructure identifier, a list of
Block substructure decZarations and an optional tailing identifier ending the Block
substructure de/inition.

• A Block substructure identifier is an Identifier.

• A Block substructure decZaration is either a Signal list definition, a Block sub-structure
Connection, a Block de/inition., a Block reference, a Channel de/inition, a Signal
de/in ition , a Data def inition or a Select.

• A Block substructure reference contains a Block substructure name.

• A Block substructure name is a Name.

7 Chansubo = Chansubdefo \ Chansubrefo
8 Chansubdefo :: Chansubido Chansubdeclo+ [Tailido]
9 Chansubido = m

10 Chansubdeclo — Chandefo \ Blockdefo | Sigdefo | Blockrefo
Signallistdefo | Datadefo | Connecto \ Selecto

11 Chansubrefo :: Chansubnameo
12 Chansubname0 — Nam eQ

• A Channel substructure is either a Channel substructure de/inition or a Channel
substructure re/erence.

• A Channel substructure definition consists of a Channel substructure identifier, a list
of Channel substructure decZarations and an optional Tailing identifier ending the
Channel substructure de/inition.

• A Channel substructure identifier is an optional Identifier.

• A Channel substructure decZaration is either a Channel def in ition , a Block de/inition,
a Signal de/in ition , a Block reference, a Signal list de/inition, a Data definition, a
channel endpoint connection or a Select.

• A Channel substructure reference contains a Channel substructure name.

• A Channel substructure name is a Name.

13 Refinemento :: Subsignalo+
14 Subsignalo :: [REVERSE] Sigdefo

• A Refinem ent pa rt contains a list of Subsignal definitions.

• A Subsignal definition contains a flag indicating whether the subsignal is leading in
the opposite direction and a Signal definition.

10 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

1.3 A d d itio n a l C oncepts

1 Selecto :: Expro Declo+
2 Declo = Blockdefo | Blockrefo | Chandefo | Sigdefo I Prdefo |

Prrefo | Procdefo I Procrefo I Servicedefo \
Servicerefo | Datadefo \ Sigroutedefo \ Signallistdefo
Vardefo | Importdefo \ Viewdefo \ Timerdefo \
Connecto I Selecto

• A Select definition consists of an impression and a list of Declarations.

• A Declaration is either a Block de/inition, a Block reference, a Channel de/in ition , a
Signal de/inition a Process de/inition, a Process re/e rence, a Procedure de/inition,
a Procedure re /e rence, a Service de/inition, a Service refe rence, a Data de/inition,
a Stpnal route de/inition, a Signal list de/inition, a Variable de/inition, an Import
de/inition, a View de/in ition ,a Tim er de/inition, a connection or a Select definition.

3 Optiono :: Questiono Answero+ [Elseparto]

• A transition Option contains a Question, a list of Answers and an optional Else p a rt

4 Decompositiono :: Decompositiondeclo+
5 Decompositiondeclo = Sigroutedefo | Connecto \

Servicedefo \ Servicerefo | Selecto

• A Decomposition contains a list of Decomposition declarations.

• A Decomposition declaration is either a Signal route de/inition, a signal route con­
nection , a Service de/inition a Service refe rence or a Select definition.

6 Servicedefo
7 Servicedeclo

8 Serviceido
9 Servicerefo

10 Servicename o

Serviceido [Inputseto] Servicedeclo* Bodyo [Tailido]
Vardefo | Procdefo | Procrefo | Viewdefo \ Importdefo
Timerdefo I Datadefo \ Selecto
Ido
Servicenameo
Nameo

• A Service de/in ition consists of a Service Identifier, an optional valid service input
signal set, a list of Service declarations, a service Body and an optional Tailing identifier
ending the Service de/inition.

• A Service declaration is either a Variable de/inition, a procedure de/inition, a Proce­
dure re /e rence, a View definition, an Import de/inition, a Tim er de/inition, a Data
de/in ition or a Select definition.

• A Service identifier is an Identifier.

• A Service refe rence contains a Service name.

• A Service name is a Name.

11 Priinputo :: Inputvarso+ T ransition
12 Prioutputo :: Outputsigo+

• A P rio rity input consists of a list of signal input variables and a Transition.

• A P rio rity output contains a list of Output signals.

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 11

13 Contspeco :: Expro Priorityo Transitiono
14 Priorityo = [Name o]
15 Enablingo = [Expro]

• A Continuous signal specification contains an Expression, a P riority and a Transition

• Priority is an optional integer Name

• Enabling is an optional Expression.

16 Exporto :: Varido+

• An Export contains a list of exported Variable identifiers.

17 Importdefo
18 Importelemo
19 Importexpro

+Importelemo
Varname o+ Sortido
Varido [Expro]

An Im port de fin ition contains a list of Im port elements.

An Im port element is a list of im ported Variable names and a Sort identifier.

An Im port expression contains an im ported Variable identifier and an optional PId
Expression.

1.4 D a ta
1 Partialtypedefo :: Sortnameo [Extproperties0] Propertieso

[Conditionlisto] [Tailnameo]
2 Sortnam e o = Nameo

• A Partial type de/in ition consists of a Sort name, some optional Extended properties,
some Properties, an optional range condition value list and an optional sort name
ending the definition.
Note th a t, as opposed to the syntax rule in Z.100, this definition also covers syntypes
where the partia l type definition is implied (i.e. in the case where Conditionlisto is
different from n il).

• A Sort name is a Name.

3 Propertieso :: Literalo* Opo* Axiomo* Mapping axiom®* [Initialvalue o]

• Properties consists of a list of Literal signatures, a list of Operator signatures, a list of
Axioms, a list of literal Mapping axioms and an optional Initial (default) value.

4 Literal® = Nameo I Stringo I Nmclasso

• A Literal signature is either a Name, a character String or a Nnm eclass.

5 Opo = Orderingo \ Opspeco
6 Opspeco :: Operatornameo Sortido+ Sortido
7 Operatornameo = Nameo I Quotedopo

12 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

• An Operator signature is either Ordering or an Operator specification.

• An Operator specification consists of an Operator name, a list of argum ent Sort identi­
fiers arid a result Sort identifier.

• An Operator name is a Name or a Quoted operator.

8 Axiom® = Unquant equation® \ Condequation® \ Quantequation®
9 Unquantequation® — Equation® | Term®

• An A xiom is either an Unquantified Equation or a Conditional equation or a Quantified
equation or a Term.

• An Unquantified Equation is either an Equation or a Term.

10 Equation® :: Term® Term®

• An Equation consists of a left-hand Term and a right-hand Term.

11 Quantequation® :: Valuenameo+ Sortido Axiom®+
12 Valuename o = Nameo

• A Quantified equation consists of a list of Value nam es, a Sort identifier and a list of
Axioms.

• A Value name is a Name.

13 Term® = Id® | Operatorterm® | Condterm® | Stringterm®
Monadterm® | Infixterm® \ Errorterm® | Spellingterm®

• A Term is either an identifier, an Operator term , a Conditional term, a character
String term, a Monadic term, an Infix term, an Error term or a Spelling term.
Note th a t, in ASo, no distinction can be made between the various kinds of operators
in term s and expressions which only differs semantically. For example, (extended
composite term) and (extended ground term) as defined in §5.4 of Z.100, cannot be
distinguished syntactically (i.e. w ithout binding names to definitions), which means
th a t they are covered by the same dom ain definition in ASo.

14 Operatorterm® :: (Id® | Qualopo) Term®+

• An Operator term consists of an identifier or a Qua/ified operator and followed by a
list of argum ent Terms.

15 Condterm® :: Term® Term® Term®

• A Conditional term consists of a condition Term, a consequence Term and an a lter­
native Term.

16 Stringterm® :: Qualifiero Stringo

• A character String term consists of a Qualifier and a character string.

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 13

17 M onadtermo :: (NOT | MINUS) Termo

• A M onadic term consists of one of the operators “NOT” or followed by an argum ent
Term

18 Infixtermo :: Termo Infixopo Termo
19 Infixopo = IMPLY | OR | XOR | AND | IN |

MOD | REM | PLUS | MINUS | CONC |
MULT | DIV | Relopo

20 Relopo = NE | EQ | GT | LT | LE | GE

• An Infix term consists of two argum ent Terms and an Infix operator.

• An Infix operator is either “=)” ,“OR” ,“XOR” ,“AND” ,“IN” , “MOD” ,“REM” ,“+ ” ,“-
or one of the .Relational operators.

• A .Relational operator is either or “> = ” .

Note th a t the grouping of any sub-trees reflects the precedence rules as defined in §5.4.2.2
of Z.100.

21 Errortermo :: ()

• An Error term contains no additional inform ation.

22 Condequationo :: Unquantequationo+ Unquantequationo

• A Conditional equation consists of a list of restriction Unquantified Equations and a
restricted Unquantified Equation.

23 Extpropertieso = Struco \ Inheritedo | Geninstlisto

• Extended properties is either S tructure properties, Inherited properties or Generator
instance list properties.

24 Syntypedefo :: Syntypenameo Parentido [Initialvalueo]
[Conditionlisto] [Tailnameo]

25 Syntypename o = Nameo

• A Syntype de/in ition consists of a Syntype name, a Parent identifier, an optional Initial
value an optional range Condition list and a syntype name ending the definition.

• A Syntype name is a Name.

26 Conditionlisto = Conditiono+
27 Conditiono [Falueo | Relopo] Valueo
28 Value0 = Expr0

• A range Condition list is a list of range Conditions

• A range Condition consists of an optional Value or .Relational operator and followed
by a Value.

• A Value is an Expression.

14 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

29 Struco :: Fieldspeco+
30 Fieldspeco :: Fieldnameo+ Sortido
31 Fieldname o = Nameo

• Structure properties consists of a list of Field specifications.

• A Field specification consists of a list of Field names and a Sort identifier.

• A Field name is a Name

32 Inheritedo :: Parentido Literalrenamingo (ALL | Operatorrenamingo)
33 Parentido — Ido
34 Literalrenamingo = Literalpairo*
35 Literalpairo :: Newliteralo Oldliteralo
36 Newliteralo — Nameo | Stringo
37 Oldliteralo = Nameo I Stringo
38 Operatorrenamingo = Operatorpairo*
39 Operatorpairo :: Newoperatoro Oldoperatoro
40 Newoperatoro = [Operatorname o]
41 Oldoperatoro = Operatorname o

• Inherited properties consists of a Parent identifier, Literal renaming and inherited
operators which are either ALL operators or Operator renaming.

• A Parent identifier is an identifier.

• Literal renaming is a list of Literal pairs.

• A Literal pair consists of the New literal name and the Old (parent) Literal name.

• The New literal nam e is either a Name or a character String.

• The Old literal name is either a Name or a character String.

• Operator renaming is a list of Operator pairs.

• An Operator pair consists of the New operator name and the Old operator name.

• The New operator name is an Operator name if specified.

• The Old (parent) operator name is an Operator name.

42 Sortgeneratoro :: Generatornameo Genparmo+
[Geninstlisto] Propertieso [Tailnameo]

43 Generatornameo = Nameo
44 GenparmQ = Sortparmo | Termparmo | Litparmo | Opparmo
45 Sortparm^ :: Nameo+
46 Termparmo :: Nameo+
47 Litparmo :: Nam eo+
48 Opparmo :: Nameo+

• A Sort generator consists of a Generator nam e , a list of Generator formal param eters,
a possible em pty Generator instance list, some Properties and a Sort generator Name
ending the definition.

• A Generator name is a Name.

• A Generator form al param eter is either a Sort param eter, a Term param eter, a L iteral
param eter or an Operator param eter.

• A Sort param eter consists of a list of Names.

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 15

• A Term param eter consists of a list of Names.

• A l i t e r a l param eter consists of a list of Names.

• An Operator param eter consists of a list of Names.

49 Geninstlisto :: Geninsto+
50 Geninsto :: Generatorido Genactparmo+
51 Generatorido = Ido
52 Genactparmo = Termo | Quotedop0 | Nmclasso

• A G enerator instance list consists of a list of Generator instances.

• A G enerator instance consists of a Generator identifier and a list of Generator actual
param eters.

• A Generator identifier is an Identifier.

• A Generator actual param eter is a Term or an Quoted operator or a N a m e class.
I.e. Sort identifiers and Operator names are Terms syntactically, like other kinds of
actual param eters. Quoted operators and N a m e class, on the other hand, cannot form
a Term on its own and are therefore specified explicit as alternatives in Genactparmo.

53 Synonymdefo :: Synonym nam eo [Sortido] [Initialvalueo]
54 Synonym nam e o = Nameo

• A Synonym de/in ition consists of a Synonym name an optional Sort identifier and an
optional Initial (default) value.

• A Synonym name is a Name.

55 Nmclasso
56 Regularexpo
57 Orregexpo
58 Andregexpo
59 Partregexpo
60 Rngregexpo
61 Singregexpo
62 Parenregexpo
63 Regexpexpo

Regularexpo
Partregexpo \ Orregexpo \ Andregexpo
Regularexpo Partregexpo
Regularexpo Partregexpo
Rngregexpo \ Singregexpo \ Parenregexpo
Stringo Stringo [Regexpexpo]
Stringo [Regexpexpo]
Regularexpo [Regexpexpo]
MULT I PLUS I Name0

• A N am eclass consists of a Regular expression.

• A Regular expression is either a P a rtia l regular expression or an infix Or regular
expression or an infix A nd regular expression.

• An infix Or regular expression consists of a Regular expression and a P a rtia l regular
expression.

• An infix A nd regular expression consists of a Regular expression and a P a rtia l regular
expression.

• A P a rtia l Regular expression is either a Range regular expression or a single regular
expression or a Parenthesis regular expression.

• A Range regular expression consists of two character Strings and an optional repetition
regular expression Expression.

• A Single regular expression consists of a character string and an optional repetition
regular expression Expression.

16 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

• A Parenthesis regular expression consists of a regular expression and an optional rep­
etition regular expression Expression.

• A repetition regular expression Expression is either a or a “+ ” or Name.

64 Orderingo :: ()

• Ordering contains no additional inform ation.

65 Mappingaxiomo :: Valuenameo+ Sortido Literalaxiomo+
66 Literalaxiomo = Axiomo | Mappingaxiomo
67 Spellingtermo :: Ido

• A Mapping axiom consists of a list of Value nam es, a Sort identifier and a list of Literal
axioms.

• A Literal axiom is either an Axiom or a Mapping axiom.

• A Spelling term contains an Identifier.

68 Expro = Ido | Stringtermo | Condexpro |
Operatorappo \ Monadexpro \ Infixexpro |
Impoperatoro | Selectexpro \ Tupleexpro

• An Expression is either an Identifier or a character String term or a Conditional
expression or an Operator application or a Monadic expression or an Infix expression
or an Im perative operator or a field Select expression or a structure tuple expression.

69 Monadexpro :: (NOT | MINUS) Expro

• A Monadic Expression consists of one of the operators “NOT” , “-” and followed by an
argum ent Expression.

70 Infixexpro :: Expro Infixopo Expro

• An Infix expression consists of two argum ent Expressions and an Infix operator.

71 Selectexpro :: Expro Nameo

• A field Select expression consists of an Expression and a field Name.

72 Tupleexpro :: Qualifier0 Expr0+

• A Tuple expression contains a Qualifier and a list of Expressions.

73 Condexpro Expro Expr0 Expr0

• A Conditional expression consists of a condition Expression, a consequence Expression
and an alternative Expression.

74 Datadefo — Partialtypedefo \ Syntypedefo | Sortgeneratoro | Synonymdefo

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 17

• A Data definition is either a Partial type de/inition, a Syntype de/inition, a Sort
generator or a Synonym definition.

75 Exprlisto = Expro*

• An Expression list is a list of Expressions.

76 Operatorappo
77 Qualopo
78 Quotedopo

{Expro | Qualopo) Exprlisto
Qualifiero Quotedopo
Infixopo | NOT

• An Operator application contains an Expression or a Qualified operator and followed
by an Expression list. Expression in Operatorapp can be either an Identifier (denoting
an operator Identifier) or represent a (prim ary) as defined in §5.4.2.4 and §5.4.2.5 in
Z.100.

• A Qualified operator contains a Qualifier and a Quoted operator.

• A Quoted operator is an Infix operator or “NOT” .

79 Assignstmto :: Variable0 Expro
80 Variableo — Varido | Indexedvaro \ Fieldvaro
81 Indexedvaro :: Variableo Exprlisto
82 Fieldvaro :: Variableo Nameo

• An A ssignm ent s ta tem en t contains a Variable and an Expression.

• A Variable is either a Variable identifier or an Indexed variable or a Field variable.

• An Indexed variable consists of a Variable and an Expression list. Note th a t an Indexed
variable may denote a Field variable, e.g.

v (a) := . . .

may (depending of the context) be another way of writing

v !a := . . .

• A Field variable consists of a Variable and a field Name.

83 Viewexpro :: Varido Expro

• A View expression consists of a view variable identifier and an Expression.

84 Initialvalue o = Expro

• An In itia l (default) Value is an Expression.

Importexpro | Viewexpr0 \ Nowexpr0 | Activeexpro j
Parentexpr0 | Offspringexpro \ Senderexpr0 | Selfexpr0

85 Impoperator0

86 Nowexpro
87 Selfexpro
88 Parentexpro
89 Offspringexpro
90 Senderexpr0
91 Activeexpro Timerido Exprlisto

18 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

An im perative operator is either an Import expression, a View expression, a Now
expression, a tim er Active expression, a Parent expression, an Offspring expression, a
Sender expression or a Self expression.

The Now expression contains no additional inform ation

The Self expression contains no additional inform ation

The Parent expression contains no additional inform ation

The Offspring expression contains no additional inform ation

The Sender expression contains no additional inform ation

The tim er Active expression contains a tim er identifier and an Expression list

F ascicle X .4 — R ec. Z .100 - A n n ex F .2 19

2 Internal Dom ains

T he sem antic domains define the dom ain of the composite object which holds some derived
(context) inform ation (attribu tes) required during the transform ation. There is a distinction
between the inform ation attached to given entities, such as inform ation about endpoints for
channels, sort for variables, sort list for signals etc., and “common” d a ta such as inform ation
abou t which scopeunit surrounds a definition list, collection of names for im plicit variables
etc. T he two kinds of inform ation [Descriptordiet and Quotdict) are assembled into one
object D id such th a t only one ex tra formal param eter or one extra result is required for the
functions using it or generating it respectively.

1 D id — D escriptordid U Quotdict

The D id object when given as formal param eter is conventionally nam ed d id and appearing
in the second argum ent list in the function headings.

In the following the two dom ains are described in detail.

20 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

2.1 D escrip tio n o f Descriptordict

Descriptordict is a m apping of identifiers into their descriptors.

1 Descriptordict = Qual is*Descr
2 Qual = (Qualelem | Operatorqualelem | Importqualelem | Viewqualelem)+

Qual denotes the internal representation of ASo identifiers. In SDL, only ASo identifiers
w ithin the same entity class are unique, so in order to incorporate all identifiers in the same
m ap, the entity class m ust be part of the m ap entries. Hence, Qual consist of a list of qualifier
elements, the final qualifier element in the list being the entity class and the entity name.
Operatorqualelem, Importqualelem and Viewqualelem are treated in a special way because
additional inform ation are required in order to guarantee uniqueness for those entities.

example:

A block BL in a system SYS has a Qual in Descriptordict which is

((SYSTEM, xnk-Nameo("SYS” , nil)), (BLOCK, mk-iVameo("BL", nil)))

A signal SIG in block BL has a Qual which is

((SYSTEM, xnk-Nameo(“SYS", nil)), (BLOCK, mk-iVomeo(“BL", nil)), (SIGNAL, xtik-Nameo("SIG", nil)))

3 Qualelem
4 K ind
5 E ntity

6 Operatorqualelem
7 Importqualelem
8 Viewqualelem

K ind (Nameo | Stringo)
Scopeunito | E ntity
SIGNALROUTE | CHANNEL | SIGNALLIST |
GENERATOR | VALUE | LITERAL
OPERATOR ((iVameo | Quotedopo) Sortqual+ Sortqual)
IMPORT (Nameo Sortqual)
VIEW Qual

A Qualelem is a pair of type of Scopeunit and name. W hen it appears as the final Qualelem
in the list (in Qual) it denotes the entity class and entity name. A K ind which is an E ntity
always denotes an entity class, i.e. it always appears as the final Qualelem in a Qual.
This is always the case with the special Qualelems Operatorqualelem, Importqualelem and
Viewqualelem. The entity class VALUE denotes variables, synonyms and value identifiers.

The inform ation (i.e. Operatorqualelem) which makes an operator unique (within the “par­
tial d a ta type” scopeunit) is the name (Nameo) or quoted operator (Quotedopo), the argu­
m ent sorts (Sortquaft) and the result sort (Sortqual).

The inform ation (i.e. Importqualelem) which makes an im ported entity unique w ithin a
scopeunit is the name (Nameo) of the im ported entity together with its sort (Sortqual).

The inform ation (i.e. Viewqualelem) which makes a viewed variable unique in a process
definition is the identifier (Qual) of the viewed variable.

9 Descr = SystemD \ BlockD \ ChannelD | SignalD |
TimerD \ SignalrouteD \ SignallistD | ProcedureD \
ProcessD | SortD \ SyntypeD \
GeneratorD \ SynD | VarD | ImportD \
ViewD | LiteralD | OperatorD | ValueidD |

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 21

ServiceD \ BlocksubD \ ChannelsubD \ ErrorD

A D escr in the Descriptordict is a descriptor of either a system (or the outerm ost level), a
block, a channel, a signal, a tim er, a signal route, a signal list, a procedure, a process, a
sort, a syntype, a generator, a synonym, a variable, an im port variable, a view variable, a
literal, an operator, an axiom variable (a value identifier), a service, a block substructure, a
channel substructure or a recursive descriptor.

The following M eta-IV assertion on the relation between Quals and their associated Descr
in Diet always applies:

is-consistent-D iet [diet) —

1 (Vqual E dom diet)
2 ((le t (k ind ,) = <jftm/[len qual] in
3 cases kind:
4 (SYSTEM
5 -* is-System D (dict(qual)),
6 BLOCK
7 -♦ is-jBlockD(dict(qual)),
8 CHANNEL
9 -► is -ChannelD(diet (qual)),

10 SIGNAL
11 -+ is-SignalD (dict(qual)) V is - Tim er D (diet (qual)),
12 SIGNALROUTE
13 -♦ is-SignalrouteD (dict(qual)),
14 SIGNALLIST
15 -♦ is -SignallistD (diet(qual)) V is-ErrorD (dict(qual)),
16 PROCEDURE
17 -♦ is -ProcedureD (diet (qual)),
18 PROCESS
19 -♦ is-ProcessD(dict(qual)),
20 TYPE
21 -+ is -SortD (dict(qual)) V is-SyntypeD (dict(qual)),
22 VALUE
23 -► is -VarD (dict(qual)) V is -SynD (diet(qual)) V
24 is-ValueidD (diet(qual)) V is -ErrorD (diet(qual)),
25 GENERATOR
26 -* is - Generator D (dict(qual)) V is-iErrorD (dict(qual)),
27 SUBSTRUCTURE
28 -+ is -BlocksubD (diet (qual)) V is -ChannelsubD (diet (quai
29 LITERAL
30 -► is -LiteralD (diet (qual)),
31 SERVICE
32 -* is -ServiceD (diet(qual)),
33 OPERATOR
34 -* is -OperatorD (did(qual)),
35 IMPORT
36 -* is -Im portD (diet(qual)),
37 VIEW
38 -♦ is -ViewD (diet (qual)))))

ty p e : D iet —► Bool

The above function is specified for explanatory reasons only.

(2.1.1)

22 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

10 System D
11 BlocksubD

0
0

System D is a descriptor of the system level.
BlocksubD is a descriptor of a block substructure. These descriptors are only present because
the system level and block sub-structures are scopeunits defining entities, and therefore these
nam es are used in the qualifiers in identifiers. (All fully specified qualifiers can be found in
the dom ain of Diet as scopeunits.)

12 ChannelsubD :: Blockqual

ChannelsubD is a descriptor of a channel substructure.

Blockqual In A S i, a channel substructure is represented as the block substructure
of a synthetic block definition. Blockqual represents the identifier of this
block substructure. Each time an ASo identifier referencing a channel
substructure in its qualifying part is used, the qualifier is modified in
accordance w ith Blockqual.

13 ServiceD
14 Priinputset

:: Transitiono Statedict Labeldict Validinputset Priinputset
= Signalqual-set

ServiceD Is a descriptor of an SDL service.

Transition^ Is the initial transition taken from Body of the Service de/inition.

Statedict, Labeldict Is Statedict and Labeldict for the service. (See the description of Quot­
dict).

Validinputset The complete valid input signal set for the service (including tim ers).

Priinputset The set of priority input signals for the service.

15 BlockD
16 Exportchannels =
17 Importchannels
18 ExpimpchanD =
19 Otherend =
20 Explicitroutes =
21 BlockconnectionD =
22 Channelqual =

Exportchannels Importchannels Explicitroutes BlockconnectionD
ExpimpchanD
ExpimpchanD
NameclosureD ™*(Otherend Channameo)*
Blockqual | ENV
Bool
Channelqual s? Qual-set
Qual

BlockD is a descriptor of a block.

Exportchannels Contains inform ation about the im plicit channels leading to and from
the block because of export variables in the processes contained in the
block.

Importchannels Contains inform ation of the im plicit channels leading to and from the
block because of im port variables in the processes contained in the
block. For the im plicit channels contained in importchannels the in­
form ation is deduced from Exportchannels occurring in other block de­
scriptors.

ExpimpchanD Is a m ap of the im port - export closures (see the dom ain definition of
NameclosureD) into the other endpoint of the channel (Otherend) and
the bidirectional channel which is attached to the closure. The first

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 23

signal list in the channel contains the signal xtQUERY and the second
signal list in the channel contains the signal xtREPLY .

Explicitroutes

BlockconnectionD

True if explicit signal routes are specified for the block. Explicitroutes
is used for deriving the complete valid input signal set for the contained
processes.

Is the relation between the channels and the signal routes connected to
the channel. BlockconnectionD is used for replacing channel identifiers
by signal route identifiers in VIA constructs of the enclosed processes
and for replacing channel identifiers having a sub-structure by the ap­
propriate new channel identifiers in connections.

Channelqual Is the Qual of a channel.

23 ChannelD
24 Endpoint
25 Signalqual
26 Blockqual
27 Newchannels

:: Endpoint Endpoint Signalqual-set Signalqual-set [Newchannels]
= Blockqual | ENV
= Qual
= Qual
= Endpoint Channameo Endpoint Channameo

ChannelD is a descriptor of a channel.

Endpoint Is an endpoint which is either a block identifier or the environment.

Signalqual-set Is the complete set of signal identifiers conveyed from Origin to Desti­
nation. In the case of a bidirectional channel, another set of signals is
present, denoting the signals conveyed from the second Endpoint block
to the first Endpoint block.

Newchannels If the channel contains a channel substructure, the channel is repre­
sented by two channels in ASi. Newchannels contains the names and
originating endpoints of those two channels and the inform ation is used
when an old channel identifier is to be replaced by a new channel iden­
tifier in a VIA set.

28 SignalD
29 Sortqual

:: Sortqual* Signalqual-set Signalqual-set
= Qual

SignalD is a descriptor of a signal.

Sortqual* is the sorts of values conveyed by the signal.

Signalqual-se t The two sets of sub-signals, the first one being the signals leading in
the same direction as the parent signal, and the second one being the
signals leading in the opposite direction.

30 Tim erD :: Sortqual* Newqual

Tim erD is a descriptor of a timer.

Sortqual*

Newqual

is the sorts of the values conveyed by the timer.

Denotes the identifier to be used for ASi. Its name in Newqual has
changed if the tim er is defined in a service.

24 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

31 SignalrouteD

32 Originprocess
33 Destinationprocess

:: Originprocess Destinationprocess
Signalqual-set Signalqual-set

= Processqual | ENV
= Processqual | ENV

SignalrouteD is a descriptor of a signal route.

Originprocess Is the originating endpoint which is either a process identifier or the
environment.

Destinationprocess Is the term inating endpoint which is either a process identifier or the
environment.

Signalqual-s e t Is the set of signal identifiers conveyed from Origin to D estination. In
the case of a bidirectional signal route, another set of signals is present,
denoting the signals conveyed from D estination process to Origin pro­
cess.

34 SignallistD :: Signallisto

A SignallistD is a descriptor of a signallist. It contains the list of ASo signal identifiers (and
signal list identifiers) attached to the signal list.

35 ProcedureD :: FormparmD* Newqual
36 FormparmD = InDescr | InoutDescr
37 InDescr :: Sortqual
38 InoutD escr :: Sortqual
39 Newqual = Qual

ProcedureD is a descriptor of a procedure.

FormparmD*

InDescr
InoutD escr

Newqual

A list of special descriptors used when the procedure is invoked, to
check for sort com pability of the actual param eters, i.e. the descriptors
contain the properties of the corresponding formal param eters.

An IN variable param eter.

An IN/OUT variable param eter.

Denotes the identifier to be used in ASi. Its nam e in Newqual has
changed if the procedure is defined in a service.

40 ProcessD
41 Validinputset
42 Outputset
43 ParameterD
44 ProcessconnectionD

ParameterD* Validinputset Outputset ProcessconnectionD
Signalqual-set
Signalqual-set
Sortqual
Qual ^ Qual-set

ProcessD is a descriptor of a process.

ParameterD* A list of descriptors used when the process is created, to check for sort
com pability of the actual param eters, i.e. the descriptors contain the
sorts of the corresponding formal param eters.

Signalqual-set The sets of valid inpu t signals and valid ou tput signals respectively (the
valid ou tpu t signals are deduced from the process graph).

Fascicle X .4 — R ec . Z .100 — A n n e x F .2 25

ProcessconnectionD Is the relation between signal routes and service signal routes for the
process. If no service signal routes are specified then the m ap is empty.
It is used for checking of VIA in services.

45 SortD
46 Parentqual

:: Equations\ [Parentqual] [Expressionx] Newqual
= Sortqual

SortD is a descriptor of a partia l type definition, (newtype).

Equationsi The ASi Equationsi defined for the sort. These equations are used
when another sort inherits from this sort.

Parentqual The parent sort of the sort. If Parentqual is n il, the sort has no parent.
Parentqual is used for checking the recursiveness of sort definitions.

Expressionx Is the optional ASx expression corresponding to the optional in itial
variable value which can be specified in the partia l sort definition.

Newqual Denotes the identifier to be used in A Si. Its name in Newqual has
changed if the partia l d a ta type is defined in a service.

47 SyntypeD :: Parentqual Newqual [Expressionx] Range-conditionx

SyntypeD is a descriptor of a syntype.

Parentqual

Newqual

Expressionx

Range-conditionx

Is the parent sort, i.e. if the parent specified in ASo is a syntype, it is
the parent of th a t syntype.

Denotes the identifier to be used in ASi. Its name in Newqual has
changed if the syntype is defined in a service.

Is the optional ASi expression corresponding to the optional initial
variable value which can be specified in the syntype definition

Is the ASi range condition which is used for generating default assign­
m ent for syntype variables.

48 GeneratorD Genparmo+ Propertieso

GeneratorD is a descriptor of a d a ta sort generator.

Genparmo+ The A5o list of formal param eters taken from the generator heading.

Propertieso The A50 body of the generator.

49 SynD Sortqual Expro

SynD is a descriptor of a synonym.

Sortqual The sort of the synonym. If the sort in A5o is absent, Sortqual is derived
from the sort of the expression contained in the synonym definition.

Expro The ASo synonym expression.

50 VarD :: Sortqual [REVEALED] [EXPORTED]
[Expressionx] Newqual

VarD is a descriptor of a variable

26 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Sortqual The sort of the variable

REVEALED The optional REVEALED a ttribu te as in AS0

EXPORTED The optional EXPORTED a ttribu te as in AS0

[E xpression] The ASi version of the optional initial expression specified when the
variable is defined

Newqual The Qual to be used in ASi. Its name in Newqual is different from the
original name if the variable is defined in a service.

51 ImportD :: Sortqual

Im portD is a descriptor of an im port variable, containing the sort of the im port variable.

52 ViewD :: Qual

ViewD is a descriptor of an view variable, containing the Qual of the corresponding revealed
variable.

53 LiteralD
54 Result

:: Result
= Sortqual

LiteralD is a descriptor of an literal containing the sort of the literal.

55 OperatorD
56 Explicit

:: Sortqual+ Result Newqual Explicit
— Bool

OperatorD is a descriptor of an operator.

Sortqual+

Result

Newqual

Explicit

the list of sort identifiers corresponding to the operator argum ents

the sort identifier corresponding to the result.

The unique operator identifier used in ASi

This flag is false if the operator is im plicitly inherited from another sort.

57 ValueidD
58 Mapvalue

:: Mapvalue Sortqual-set Explicit
= [Qual]

ValueidD is a descriptor of an axiom variable (a value identifier).

Mapvalue If the identifier is introduced by literal quantification, the descriptor
contains the current literal value. In the quantified axioms, the value
identifier is replaced by this literal value.

Sortqual-set The set of sort Quals which a t any specific tim e are legal for the value
identifier. If the value identifier is introduced by explicit quantification
then the set contains only one sort.

Explicit A flag indicating whether the value identifier is introduced by explicit
quantification.

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 27

59 ErrorD 0

ErrorD is used for detecting recursive definitions of synonyms, signal lists and generators.
D uring evaluation of the definitions of these constructs, their descriptors are replaced by a
ErrorD such th a t any use inside their own definitions can be detected. It is also used for
m asking out synonyms which cannot be used in simple expressions of select definitions.

2.2 D escr ip tio n o f Quotdict

The following entries contain some auxiliary inform ation which only for practical reasons (in
order to reduce the num ber of param eters and results of the M eta IV functions) are included
in the Diet domain.

1 Quotdict — SCOPEUNIT s+Qual U
GLOBALNAMES Globalnames U
LABELDICT m*Labeldict U
STATEDICT i&Statedict U
OUTSIGNALS ^S ig na lqua l-set U
DATATYPE DEF tz* Data -type -definitioni U
SERVICES s^(Statetuplem ap Servicetuple) U
IMPLIED m* NameclosureD -set U
IMPORTLIST iz*(Nameo Qual [Expro})*

2 Globalnames = Emptyqid Formuniquenm Formuniquenm
3 Labeldict = Labelo ^ Transitiono
4 Statedict = Statename0 n^{StateD | Contenable stateD)
5 StateD :: Speclist [Importstateinf]
6 Im portsta tein f = [Statenameo] [Graph-node\ | Decision-node
7 Contenable stateD :: Transitiono
8 Statetuplemap — Statename o+ ts* Statename o
9 Servicetuple = Servicequal*

10 Speclist = Spec*
11 Spec = Qual Statespeco
12 Servicequal — Qual
13 Em ptyqid = Qual
14 Formuniquenm = Nameo

SCOPEUNIT Contains the Qual denoting the current level, i.e. Qual denotes the
identifier of the enclosing scopeunit.

GLOBALNAMES Contains a descriptor Globalnames containing names of objects which
are required for the transform ation of enabling condition and continuous
signal.

The signal which is send by processes to themselves in continuous
signals and enabling conditions. Declared in A S\ a t the system
level.
The names of the two variables used in continuous signals. The
first one is updated at each entry to a continuous signal sta te and
its new value is send with the emptyqid signal thus forming a new
unique value each time. The second one holds the value received
by the emptyqid signal. Declared in A Si in every process.

LABELDICT Labeldict holds inform ation of any labels (connector names) used in a
process, procedure or service body. It is constructed before the actual
transform ation of the body takes place and it contains the Transition's
which follows given labels (in connectors).

emptyqid

form uniquenm

28 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

STATEDICT

Speclist

Qual

Statespeco

Im portsta tein f

OUTSIGNALS

DATATYPEDEF

SERVICES

IMPLIED

IMPORTLIST

Statedict contains the states of a body. The transform ation of the states
is based on Statedict. If the sta te descriptor is a Contenable stateD
then it denotes a s ta te which contains continuous signal or enabling
condition. Such states have no explicit representation in ASx (they are
represented by a num ber of synthetic states). The nex tsta te node is
replaced by the transition string leading to the synthetic states.

If the state descriptor is a StateD it denotes a sta te which has an ASi
representation. It contains:

A list of input descriptors for the state. Each inpu t descriptor
(Spec) contains:

A Qualifier denoting the context in which the subsequent tra n ­
sition should be evaluated. As services are merged into a sin­
gle Statedict before the state bodies are transform ed into ASi,
the Qual differs for the various Specs if the Statedict originated
from a service decomposition. In other cases Qual denotes the
identifier of the enclosing process or procedure.
The ASo input node.

If the state is an im plicit state originating from an im port ex­
pression then Im portstateinf is present. It contains the name of
the previous s ta te (Statenam eo) such th a t nex tstate nodes w ith a
dash following the im port expression can be properly substitu ted .
If it is n il then the im port expression originates from an initial
transition. It also contains the ASi node wherein the expression
containing the im port expression occurred. If the expression con­
tained more than one im port expression only one of the im port
sta te descriptors contains such a node (the others are n il).
As opposed to norm al states, Statedict descriptors for im port states
are constructed while the states is transformed.

Contains a set of signal. It is used for deducing the o u tpu t signals from
the process body.

Contains the ASX Data-type-definitioni associated to every scope unit.
W hen a partial type definition is encounted, Data-type-definition^ is
updated with the new sort, operators and equations.

This inform ation is used during the transform ation of a Statedict formed
from a service decomposition. All services are ordered in a tuple Ser­
vicetuple which in conjunction with Statetuplemap is used for associat­
ing unique ASi sta te names with the old state names occurring in the
various services.

A set of pairs of variable sort and im plicit variable name, collected
during the transform ation of a process definition. I.e. during transfor­
m ation of axioms, the im plicit quantification names are collected and
during the transform ation of actions, the im plicit im port variable names
are collected. Note th a t the NameclosureD is not related conceptually
to the NameclosureD occurring in Exportmap although they are the
same domain.

During transform ation of an expression, inform ation is collected about
the im port expressions occurring in the expression. In the resulting
ASi expression, the im port expression is replaced by a new im plicit
name. After the transform ation, a number of states (one for each im ­
port expression) are generated (and added to Statedict). The transition
following a new state are generated from the action in which the expres­
sion was used, the im plicit name (Nameo), the identifier of the im port
variable (Qual) and the optional Pid expression used in the im port ex­
pression (Expro). The length of the tuple denoted by IMPORTLIST
equals the number of im port expressions occurring in the construct.

F ascicle X .4 - R ec. Z .100 — A n n ex F .2 29

2 .3 O th er D om ain s
1 Decli = Block-definitioni \ Channel-definitioni \

Signal-definiiioni \ Signal-route-definitioni |
Procedure-definitioni | Process-definitioni |
Signal-route-definitioni | Syn-type-definitioni \
D ata-type-definitioni | Variable-definitioni \
View-definitioni \ T im er-definitioni

2 Context = CONSTANT | AXIOMS | MAPPING | EXPRESSION

These dom ains (synonyms) are introduced in order to avoid cumbersome repetitions in the
function type specifications:

Decli A shorthand for denoting an ASi definition which many “definition
transform ing” functions delivers as result.

Context A shorthand for denoting the possible contexts in which expressions are
transform ed. The context can either be constant (as for instance in the
transform ation of answers), axioms, the m apping section of the axioms
or any other case.

3 Processqual = Qual
4 Operatorqual = Qual

These dom ain names are used in some places for indicating th a t in the given context the
Qual (identifier) is of a specific type (i.e. process or operator).

5 E xternal-In form ation = ...

External-Inform ation contains the additional inform ation required to give semantics to SDL.
This inform ation is brought in from the outside and it is therefore given as param eter to
definition-of-SDL (together w ith the system definition and the predefined sorts). As SDL
does not define how the inform ation is structured (say actual generic param eters), the Meta-
IV functions which uses External-Inform ation are informally defined.

External-Inform ation contains the following.

• Inform ation abou t actual generic param eters (the corresponding formal param eters
are the external synonyms and the informal texts in the option node).

• Inform ation abou t actual subset param eters to indicate which consistent subset should
be selected, i.e. the set of B lock-identifiers is deduced from External-Inform ation (see
definition-of-SDL and select-consistent-subset).

• Inform ation about the indeterm inistic delay in channels (i.e. a “random ” function).

• Inform ation about the s ta rt tim e and the tim e unit (used in modelling absolute tim e).

6 Auxiliary-Inform ation
7 Tim e-inform ation
8 Term -Inform ation

9
10

Is-expiredF
DelayF

Tim e-inform ation Term -Inform ation Is-expiredF DelayF
(Ground-term i —> G round-term i) Ground-term x
S o rt-iden tifier L iteral-operator-identifier
Literal-operator-identifier Literal-operator-identifier
Ground-term i Ground-termi —> Bool
() => Bool

Auxiliary-Inform ation contains some inform ation which, apart from a System-definitioni
and a consistent subset, is required for in terpretation. Auxiliary-Inform ation is constructed

30 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

in the S tatic Semantics and given as param eter to the system processor when it is s tarted
(see the function definition-of-SDL). Auxiliary-Inform ation consist of

Tim e-inform ation

Term -Inform ation

Is-expiredF

DelayF

The function in Tim e-inform ation is used in the Dynamic Semantics
for updating the current time. Given an ASi literal of the TIM E sort it
returns another literal of the time sort. In addition, Tim e-inform ation
contains the Ground-termi denoting the initial tim e which is defined
outside the SDL system (i.e. it is derived from External-Inform ation).

ASi contains no inform ation about spelling of identifiers. However,
four ASi identifiers m ust be known (i.e. distinguished) in the Dynamic
Semantics. These identifiers are PID, NULL, TRU E and FALSE. Term-
inform ation denotes these identifiers and they are constructed in the
Static Semantics.

This function is constructed in the Static Semantics and used in the
Dynamic Semantics for testing on whether a given tim er has expired.
Given two ASi literals of the tim e sort, t r u e is returned if the value of
the first param eter is greater than or equal to the second param eter.

This function is used for modelling the indeterm inistic delay in channels
(see the path processor in Annex F.3). The function is derived from
External-Inform ation and it has an im perative nature im plying th a t it
may depend on some external physical param eters.

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 31

3 Transformation of ASo into A S i

3.1 M ain F unctions

T his section contains the two functions:

definition-of-SDL

transform -system

W hich is the outerm ost function invoked from the outside. W hen given
an SDL system (in ASo form) as param eters it defines the semantics
(static and dynamic) of the system. It also forms the link between the
static- and dynam ic semantics.

W hich is the entry function for the static semantics. W hen given an
SDL system (in ASo form) as param eter, it returns a specification on
the SDL abstract syntax form (ASi form) if the ASo form is statically
correct (well-formed).

defin ition-of-SD L(extparm s, system def, predefsorts) —

1 (let (asj, auxin f) = transform -system (system def, predefsorts, extparms) in
2 i f asi = nil th e n
3 undefined
4 else
5 (let subsetcut — select-consistent-sub set [as\, extparms) in
6 s ta r t 8ystem (asi, subsetcut, auxinf)))

ty p e : E xternal-Inform ation Syso Datadefo+ =>•

O b je c tiv e

P a ra m eters

extparms
system def
predefsorts

A lg o r ith m

Line 1
Line 2

Line 4
Line 5
Line 6

Define the properties of SDL

Some External-Inform ation (see section 2.3).
The AS0-tree representing the SDL system
The predefined d a ta in AS0 form.

Transform the system into the abstract syntax form (ASi form).
If static errors are found (i.e. if no ASi representation could be
derived) then the behavior is not defined
If no static errors are found then
Select the set of Block-identifier\s denoting the consistent subset
C reate a system instance, i.e. create a M eta-IV process which
behaves like the underlying system.

(3.1.1)

32 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

transform -system (generic8ystem , predefdatasorts, extparms) =

1 (let m krSyso(sysdef, refdeflist) = apply-generic-parameters(genericsy stem , extparm s) in
2 le t m k -Sysdef0(snm , decllist, inm) = sysdef in
3 le t (as0 global, globalentities) = asQ-global-entitle s() in
4 le t asidatadef = m k-D ata-tt/pe-de/im tioni(nam e-to-nam ei(create-um <jue-nam e()), {}, {}, {}, {})
5 (tra p ex it w ith (nil, nil) in
6 (let d = [((SYSTEM, snm)) •- m k-System D (),
7 SCOPEUNIT ((SYSTEM, snm)),
8 GLOBALNAMES ■- globalentities,
9 DATATYPEDEF asidatadef] in

10 le t decllist' = replace-references(decllist, refdeflist)(((SYSTEM , snm))) in
11 le t predefdict b e s .t . (, predefdict) — transform-decllist(predefdatasorts)(predefdict + d) in
12 le t decllist" = remove-select(decllist1, {})(predefdict) in
13 i f (3 fulldict G D id)
14 ((tra p exit w ith false in
15 (let (d id) = transform-decllist(decllist" /"> (asoglobal) '"x predefdatasorts)(fulldict + d) in
16 fulldict = d id))) th en
17 (le t (as\dcl, diet) b e s .t . (as^dcl, diet) =
18 transform -decllist(decllist" ''** (as0global) predefdatasorts)(did + d) in
19 le t as\ — mafce-a5i<ree(SYSTEM, snm, as\dcl, nil, nil, nil)(cftc<) in
20 le t auxinf = generate-auxiliary-inform ation(extparm s)(did) in
21 (<nm ^ {anm, nil}
22 -» e x i t (‘‘§2.2.2: Ending name in system definition is different from defining name"),
23 -<(36 G elem s decllist')(is-Blockdefo(b))
24 -♦ e x i t ("§2.4.2: System definition must contain at least one block”),
25 T -v (asi, aux in f)))
26 else
27 (nil, nil))))

ty p e : Syso Datadef0+ External-Inform ation —> [System-definitioni] [Auxiliary-Information]

O b je c tiv e Transform an SDL system in AS0 form into the corresponding ASi
form.

P a r a m e te r s

genericsystem A generic system definition
predefdatasort A list of predefined d a ta also in ASo form
extparameters The external inform ation (see section 2.3)

R e s u l t The ASi system definition and some inform ation to be used in Annex
F.3. If the system definition is not well-formed, n il is returned for bo th
results

A lg o r i th m

Line 1 Transform the generic system definition into a concrete system
definition by supplying an expression to every external synonym
defined in the system and by transform ing every inform al text in
the option answers into an ASo Conditionlisto. SDL does not define
how to make these transform ations.

Line 2 Let snm denote the system name, decllist denote the definition list
and tnm denote the tailing name

Line 3 Construct the ASo definition and the Globalnames descriptor (see
Quotdict) corresponding to the global em ptyq signal.

Line 4 Construct the initial Data-type-definitioni for the system scopeu­
nit. W hen through the definition list (line 17) it contains inform a­
tion about all partial d a ta types defined at the system level.

Line 5 If transform-decllist or any of the other functions are trapped, the
specification is not well-formed.

(3.1.2)

in

Fascicle X .4 - R ec. Z .100 - A n n ex F .2 33

Line 6-9

Line 10

Line 11

Line 12

Line 13-16

Line 17

Line 19

Line 20

Line 21

Line 23

Line 25

C onstruct an in itial Diet consisting of the system descriptor, the
SCOPEUIMIT entry indicating the system level , the global names
and the current D ata-type-definitioni.
Insert all the rem ote definitions (refdeflist) in the definition list of
the system. The new definition list (decllist') contains no references

Transform the predefined da ta in order to construct the Diet con­
sisting of the predefined d a ta sorts only. The result is only used
during the removal of SELECT statem ents (line 12), i.e. the pre­
defined sorts are elsewhere treated as ordinary definitions as shown
in line 17. It reads : Let predefdict) be such th a t one of the results
(the other result is the ASi definitions, which are not used here)
of transform ing the predefined sorts in the scope of predefdict (i.e.
w ith semantic inform ation of all predefined sorts) is predefdict i t ­
self. Such a Diet do always exist as the predefined sorts are assumed
well-formed.

Remove all the SELECT statem ents from the system. Since option
nodes does not contain any definitions they can be removed “on
the fly” when appropriate.
If there exist a Diet (fulldict) such th a t transform ation of decllist"
in the scope of fulldict can be made w ithout causing any errors
(i.e. no application of e x it in transform-decllist) and such th a t the
result is fulldict itself, then decllist!' is well-formed.

If so, then transform decllist" in the scope of such a Diet. The other
result (asidcl) is the set of ASi definitions. This way of using Diet
is essential in the modelling and the following should therefore be
noted:

• It is used in order to overcome the problem th a t names in SDL
may be referred before they are defined textually.

• The M eta-IV functions which transform definitions have the
full Diet available (all descriptors). For instance, transform-
blockdef returns a Block-definitioni and a Diet descriptor for
the block, even though the block descriptor already is con­
tained in the Diet given as param eter to the function. The
D id given as param eter is used for accessing properties of en­
tities used by the block, bu t the block descriptor itself in the
D id param eter cannot be used (otherwise it cannot be guaran­
teed th a t a D id solution exists for well-formed specifications,
which means th a t the M eta-IV specification m ight be invalid).

• During the transform ation of the definitions the returned de­
scriptors are joined and eventually (when all definitions have
been transform ed) the result of transform-decllist is the same
as the param eter.

• d id in line 17 is a Descriptordict only. There are no contribu­
tions from Quotdict in the resulting Diet.

• Line 11 and line 17 in transform-system are the only places
in the complete Formal Definition where the b e su c h t h a t
construct have been used in such a far-reaching way.

Construct the System-definitioni

Generate the Auxiliary-Inform ation to be used during in terpreta­
tion

If the tailing name is specified then it m ust be equal to the system
name.
There m ust be a t least one block definition in the system.

R eturn the ASi representation of the system and the auxiliary
inform ation

34 F ascicle X .4 - R ec . Z .100 - A n n ex F .2

as0-global-entities () = (3.1.3)

1 (let emptyqnm = create-unique-name (),
2 form uniquel = create-unique- name (),
3 form unique2 = create-unique-name() in
4 le t emptyqid = m k-Jdo((), em ptyqnm) in
5 le t globalnames = (emptyqid, form uniquel, formunique2) in
6 le t intgid = m k-/do((),m k-iV am eo(“INTEGER” ,n il)) in
7 le t asodef = mk-5iyde/o((mk-Siye/emo(emptygnm, (intgid), nil))) in
8 (as0d e f, globalnames))

ty p e : () —* Sigdefo Globalnames

O b je c t iv e Construct a global ASo definition to be placed on the system level and
construct the Globalnames closure (see the definition of Quotdict) which
is of general use during the transform ation. The ASo definition defines
the em ptyq signal used in enabling condition and continuous signal

A lg o r ith m

Line 1 Create a unique name for the em ptyq signal.
Line 2-3 Create unique names for the two variables used in connection w ith

continuous signal. In every process, these two variables are defined.
Line 4 Construct an ASo identifier for the em ptyq signal.
Line 5 Construct the Globalnames closure.
Line 6 Construct an ASo identifier for the integer sort.
Line 7 Construct the ASo definition for the em ptyq signal.
Line 8 R eturn the ASq definition and the Globalnames closure

3.2 R ep lacin g D efin ition R eferences

In this section, references are replaced by remote definitions. The entry function replace-
references takes as argum ent the definitions from the system level and a list of remote
definitions. The result is a definition list containing no references.

replace-references(deflist, remotelist)(scopeunit) =

1 i f (V*l, i2 £ in d remotelist)
2 (* 1 ^ * 2 A
3 cases (rem otelist[il], remotelist\i2]):
4 ((m k- B lo ck de fo (m k - I d o (q l , n m l) , , ,) , m k-B lockdefo(m k-fdo(g2 , n m 2) , , ,)) ,
5 (m k-P rdef0(m k-Ido(q l, n m l) , , , , , ,) , m k-Prdef0(m k-Ido(q2, n m 2) ,, , , , ,)) ,
6 (m k-P rocdefo(m k-Ido(ql, n m l) , , , ,) , xnk-Procdefo(mk-Ido(q2, n m 2) , , , ,)) ,
7 (m k-Servicedefo(m k-Ido(ql, n m l) , , , ,) , m.k-Servicedef0(m k-Ido(q2, n m 2) , , , ,)) ,
8 (m.k-Chansubdefo(m.k-Ido(ql, n m l) , ,), mk-Chansubdef0(m.k-Ido(q2, n m 2) , ,))
9 -» n m l = nm2 D (q l ^ q2 A q l ^ () A q2 ^ ()),

10 T -► tru e)) th e n
11 (let (deflist1, remoteset) = remove -references (deflist, elem s remotelist, false) (scopeunit) in
12 if remoteset = {} th en
13 deflist'
14 else
15 e x i t ("§2.4.1: Remote definition is not referenced in the system definition”))
16 else
17 e x i t ("§2.4.1: Remote definitions are not unique”)

ty p e : Declo+ Declo* —> Qual —> Declo+

O b je c tiv e Replace all references in the system by remote definitions

(3.2.1)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 35

P a ra m eters

deflist
remotelist

R e su lt

A lg o r ith m

Line 1-10

Line 11-15

The list of definitions for the system level.
The list of remote definitions.

The definition list of the system level containing no references.

For every two different remote block definitions, process definitions,
procedure definitions, service definitions or substructure definitions
it m ust hold th a t if they have the same name in their identifier then
their qualifiers must be distinct and non-empty.
Replace the references by their definitions. The resulting list is
deflist1. No remote definitions may be left when all references have
been replaced.

36 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

rem ove-references(dlist, remoteset, chansub)(unit) = (3.2.2)

1 If dlist = () th e n
2 ((), remoteset)
3 else
4 (let m atch-id(nm , id) = a-Nameo(id) = nm A a-Qualifiero(id) £ {(), tmt<}'in
5 cases h d dlist:
6 (mk-Blockrefo(name)
7 -+ if (3blkdef £ remoteset)(ia-Blockdefo(blkdef) A m atch-id(nam e, s-Blockido(blkdef))) th e n
8 (let blkdef £ remoteset be s.t. is-Blockdefo(blkdef) A m atch-id(nam e, a-Blockido(blkdef)) in
9 le t m k-Blockdefo(bid, decli, sub, tid) = blkdef in

10 if tid {nil, bid} th en
11 e x i t ("§2.4.1: Ending and starting identifier in the definition are different")
12 else
13 (let blkdef1 =
14 ink.-Blockdefo(uik-Ido{(), name), decll, sub, mk-Jdo({), nam e)) in
15 rem ove-references((blkdef) t l dlist, remoteset \ {blkdef}, chansub)(unit)))
16 else
17 e x i t ("§2.4.1: No remote definition matches reference”),
18 m k-P rref0(name, inst)
19 — if (3prdef £ rem oteset)(is-Prdefo(prdef) A m atch-id(nam e, s-Prido(prdef))) th e n
20 (let prdef £ remoteset b e s .t . is-Prdefo(prdef) A m atch-id(nam e, s-Prido(prdef)) in
21 le t m k-Prdefo(pid, inst', b, d, e , f , tid) = prdef in
22 le t inst" = select-rem ote-num ber-of -instances(inst, inst') in
23 if tid £ {nil, pid} th en
24 e x i t ("§2.4.1: Ending and starting identifier in the definition are different”)
25 else
26 (let prdef' =
27 m k-P rdefo(m k-Ido((), name), inst", b, d, e ,f ,m k -Id o (() , nam e)) in
28 remove-references((prdef') '"M l dlist, remoteset \ {prdef}, chansub)(unit)))
29 else
30 e x i t (“§2.4.1: No remote definition matches reference”),
31 m k -Procrefo(name)
32 -» if (3procdef £ remoteset)(h-Procdefo(procdef) A m atch-id(nam e,s-Procido(procdef))) th e n
33 (let procdef £ remoteset b e s .t . is-Procdefo(procdef) A m atch-id(nam e, a-Procido(procdef)) in
34 le t mk-Procdefo(pid, parm, decll, body, tid) = procdef in
35 if tid (fc {nil, p id} th en
36 e x i t ("§2.4.1: Ending and starting identifier in the definition are different”)
37 else
38 (let procdef' —
39 Tn.k-Procdefo(m.k-Ido((), name), parm, decll, body, m k-/do((), nam e)) in
40 rem ove-references((procdef) t l dlist, remoteset \ {procdef}, chansub)(unit)))
41 else
42 exit("§2.4.1: No remote definition matches reference”),
43 mk-Sert)tcere/o(name)
44 -» i f (Bservicedef £ remoteset)(is-Servicedefo(servicedef) A
45 m atch-id(nam e,s-Serviceido(servicedef))) th e n
46 (let servicedef £ remoteset b e s .t . i&-Servicedefo(servicedef) A
47 m atch-id(nam e,s-Serviceido(servicedef)) in
48 le t xnk-Servicedefa(sid, a, b, d, tid) = servicedef in
49 if tid £ {nil, sid} th en
50 e x i t ("§2.4.1: Ending and starting identifier in the definition are different”)
51 else
52 (let servicedef' =
53 m k-Servicedefo(m k-Ido((), name), a, b, d, m k-Ido((), name)) in
54 rem ove-references((servicedef) t l dlist, remoteset \ {servicedef}, chansub)(unit)))
55 else
56 exit("§2.4.1: No remote definition matches reference”),

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 37

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

38

m k- Chansubrefo (nam e)
-► if {3chansubdef E remoteset){is-Chansubdefo{chansubdef) A

s -Chansubido{chansubdef) ^ n il A
m atch-id(nam e,s-Chansubido(chansubdef))) th e n

(let chansubdef E remoteset be s .t. is-Chansubdefo(chansubdef) A
m atch-id(nam e, s-Chansubido(chansubdef)) in

le t rnk-Chansubdefo(cid , decll, tid) = chansubdef in
i f tid ^ {nil, cid} th en

e x i t (“§2.4.1: Ending and starting identifier in the definition are different’’)
else
(let chansubdef' =

m k-C hansubdefo(m k-Ido((), name), decll, mk-Ido{{), name)) in
rem ove-references((chansubdef) '"'Ml dlist, remoteset \ {chansubdef}, tru e) (u n it)))

else
ex it("§2.4.1: No remote definition matches reference’’),

nik-Blocksubrefo(name)
-+ if (3 chansubdef E remoteset){is-Chansubdefo{chansubdef) A

s-Chansubido(chansubdef) ^ nil A
m atch-id(nam e, s-Chansubido(chansubdef))) th e n

(le t chansubdef E remoteset be s.t. is-Chansubdefo(chansubdef) A
m atch-id(nam e, s-Chansubido(chansubdef)) in

le t in k -Chansubdefo{bid, decll, tid) = chansubdef in
if tid ^ {nil, bid} th e n

e x i t (“§2.4.1: Ending and starting identifier in the definition are different”)
else
(let blksubdef =

nik-Blocksubdefo(ixik-Ido((), name), decll, m k-Ido((), name)) in
remove-references((blksubdef) tl dlist, remoteset \ {chansubdef}, chansub)(unit)))

else
e x i t (“§2.4.1: No remote definition matches reference”),

xnk-Decompositiono{list)
— (let {list', rrest) = remove-references{list, remoteset, false){unit) in

{mk.-Decompositiono{list'), rrest)),
m k -Blockdefo{mk-Ido{q, nm), decll, sub, tid)

-» (let {decll', rrest) = remove-references{decll, remoteset, fa lse){unit /"x ((BLOCK, nm))) in
le t {sub1, rrest') =

if sub = n il
th e n (nil, rrest)
else remove-references {{sub), rrest, false) {unit ^ ((BLOCK, nm))) in

le t {drest1, rrest") = remove-references{tl dlist, rrest', chansub){unit) in
((mk-Blockdefo{ink-Ido{q, nm), decll', sub', tid)) /"> drest', rrest")),

xnk-Blocksubdefo{id, decll, tid)
-> (let (, scnm) = unit [len unit] in

le t m k-Ido{q, nm) = if id = nil th e n m k-M)((), scnm) else id in
le t unit' = unit ((SUBSTRUCTURE, nm)) in
le t {decll', rrest) = remove-references{decll, rem oteset, false){unit') in
{xnk-Blocksubdefo{nik-Ido{q, nm), decll', tid), rrest)),

m k -Chandefo{nm, a ,b , sub, tnm)
-* (let {sub', rrest) =

if sub — nil
th e n (nil, remoteset)
else remove-references{{sub), remoteset, chansub){unit) in

le t {drest', rrest') = remove-references{t\ dlist, rrest, chansub){unit) in
((m k -Chandefo{nm, a, b, sub', tnm)) /"> drest', rrest')),

Fascicle X .4 — R ec . Z .100 — A n n e x F .2

111 m k - Chansubdefo (id, decll, tid)
112 -» (let (, scnm) = unit[len unit] in
113 le t mk-Jdo(<7, nm) = if id = n il th e n m k-Ido((), scnm) else id in
114 le t un it1 = unit ((SUBSTRUCTURE, nm)) in
115 le t (decll', rrest) = remove-references(decll, rem oteset, true)(um 't/) in
116 (m k-Chansubdefo(m k-Ido(q, nm), decll', tid), rrest)),
117 nik-Prdefo(m k-Ido(q, nm), a, b, d, decll, body, tid)
118 -► (let (decll', rrest) =
119 remove-references(decll, remoteset, false)(ttm< ((PROCESS, nm))) in
120 le t (body', rrest') =
121 i f is-Bodyo (body) th e n
122 (body, rrest)
123 else
124 remove-references((body), rrest, false)(unit ^ ((PROCESS, nm))) in
125 le t (drest', rrest") = remove-references(tl dlist, rrest', chansub)(unit) in
126 ({mk-Prdefo(xxik-Ido(q, nm), a, b, d, decll', body1, tid)) drest', rrest")),
127 mk-Procdefo(m k-Ido(q, nm), p, decll, body, tid)
128 -+ (let (decll' , rrest) =
129 remove-references (decll, remote set, false) (unit ^ ((PROCEDURE, nm))) in
130 le t (drest', rrest') = remove-references(t\ dlist, rrest, chansub)(unit) in
131 ((m k-Procdefo(m k-Ido(q, nm), p, decll', body, tid)) ^ drest', rrest')),
132 xtik-Servicedefo(mk-Ido(q, nm), a, decll, body, tid)
133 -► (let (decll' , rrest) =
134 remove-references(decll, remoteset, fa lse)(unit ((SERVICE, nm))) in
135 le t (drest' , rrest') — remove-references(tl dlist, rrest, chansub)(unit) in
136 ((m k-Servicedefo(m k-Ido(q, nm), a, decll', body, tid)) ^ drest', rrest')),
137 m k -Selecto(expr, decll)
138 -► if is-w f-entities(decll, chansub)(unit) th en
139 (let (decll', rrest) — remove-references(decll, remoteset, chansub)(unit) in
140 le t (drest', rrest') = remove-references(tl dlist, rrest, chansub)(unit) in
141 ((m k-5 electo(expr, decll')) '"x drest', rrest'))
142 else
143 e x i t ("§4.3.3: The definitions in select are not allowed in that scopeunit”),
144 T -► (let (drest, rrest) = remove-references(tl dlist, remoteset, chansub)(unit) in
145 ((hd dlist) drest, rrest))))

ty p e : (Declo* | Blocksubdefo \ Chansubdefo | Decompositiono) Refdeclo* Bool —> Qual —*
(Declo* | Blocksubdefo | Chansubdefo | Decompositiono) Refdeclo*

O b je c tiv e Replace every reference in a definition list by a remote definition.

P a ra m eters

A lg o r i th m

ture. This param eter is used for checking of correct Connectos (see
is-wf-entities).
The context (represented by a qualifier) in which the definition list
occurs.

The ASo definition list containing no references, and the set of remote
definitions for which no reference has been found, removed.

the modified set of remote definitions, (remove-references recur­
sively returns the complete definition list)
Define a u tility function which returns t r u e if a nm (N am e0) in a
reference matches an id (from a definition), i.e. if the name in id

Fascicle X .4 - R ec. Z .100 — A n n ex F .2 39

Line 5
Line 6

Line 8
Line 10-11

Line 13

Line 15

Line 18-30

Line 31-42
Line 43-56
Line 57-71

Line 72-86

Line 87-89

Line 90
Line 91
Line 92
Line 96

Line 97

Line 98-103
Line 104-110
Line 111-116
Line 117-126

Line 127-131
Line 132-136
Line 137-141

Line 144

equals the Nameo in the reference and the qualifier either is em pty
or equal to the scopeunit where the reference is placed.
Consider the first definition in the definition list.
If the definition is a block reference then there m ust exist a remote
block definition which have the same nam e in its identifier as the
block reference (checked by match-id, see line 4) and for which the
qualifier in its identifier either is em pty or equal to the scopeunit
where the reference is placed.
Let blkdef denote th a t block definition.
The ending identifier in the remote block definition m ust either be
om itted or equal to the starting identifier.
Reconstruct the block definition with em pty qualifiers in the s ta rt­
ing and ending identifiers
Add it to the list of definitions such th a t enclosed definitions in
the block are dealt w ith in the next recursion level and remove the
block definition from the set of remote definitions.
Same scheme as for referencing block definitions as shown above
except for line 22 where the Instanceso for the reference is compared
with Instanceso for the remote definition
Same scheme as for referencing block definitions as shown above.
Same scheme as for referencing block definitions as shown above.
Same scheme as for referencing block definitions as shown above.
In line 59, it is checked th a t a channel substructure identifier is
present if the channel substructure definition is remote.
Same scheme as for referencing block definitions as shown above,
except th a t block sub-structure definitions syntactically appears
as the more general channel sub-structure definitions so the block
sub-structure is converted.
If the definition is a decomposition then replace references in the
definition list contained in the decomposition.
If the definition is a block definition then
Remove references in the definition list contained in the block.
Remove references in the block sub-structure.
Remove references in the rest of the definition list which contained
the block definition and
R eturn the modified block definition concatenated w ith the other
modified definitions and return the modified remote definition list.
Remove references in a block sub-structure definition.
Remove references in a channel definition.
Remove references in a channel sub-structure definition.
Remove references in a process definition. If the process contains
a decomposition (tested on line 120) then also references in the
decomposition m ust be replaced.
Remove references in a procedure definition
Remove references in a service definition.
Remove references contained in a select definition and check th a t
every definition in the select is allowed in the enclosing scopeunit.
In other cases, the definition is returned unchanged.

F ascicle X .4 — R ec . Z .100 — A n n e x F .2

select-rem ote-num ber-of -instances (inst, rem inst) = (3.2.3)

1 (inst = n il A rem inst ̂ nil
2 -► rem inst,
3 rem inst = inst V reminst = nil
4 -► in s t ,
5 T -* ex it("§2.4.4: Remote number of instances specification does not match process reference”))

ty p e : [Instanceso] [Instanceso] —► [Instanceso]

O b jec tiv e

P a ra m eters

inst
rem inst

A lg o r ith m

Line 1

Line 3

Line 5

Select the Instanceso for a process in the case where the process is
referenced.

The Instanceso specified for the process reference.
The Instanceso specified for the remote definition.

If Instanceso is specified for the remote definition only then return
th a t Instanceso specification
If Instanceso for the process reference equals Instanceso for the
remote definition or Instanceso is specified for the reference only
then return th a t Instanceso specification.
Otherwise the Instanceso specification for the process is inconsis­
tent.

is -w f -entities(decllist, ischannelsub)(level) = (3.2.4)

1 i f decllist = () th e n
2 tru e
3 else
4 (let (q ,) = /eve/[len level] in
5 is - tvf -entitle s (tl decllist, ischannelsub)(level) A
6 cases h d decllist'.
7 (ink-B lockdefo(,, ,) ,
8 xrik-Chandefo (, , , ,)
9 {SYSTEM,SUBSTRUCTURE},

10 m k-C onnecto(id ,)
11 _ q € {SUBSTRUCTURE, BLOCK} A (id = ENV D (q = SUBSTRUCTURE A ischannelsub)),
12 mV.-Sigroutedefo(, ,) ,
13 m k-P rde/0(, , , , , ,)
14 - q = BLOCK,
15 m k-Signallistdefo(,)}
16 mk-Sigdefo()
17 - q i {SERVICE, PROCEDURE},
18 mk-Procdefo(, , , ,) ,
19 mk- Vardefo(, ,)
20 -* q e {SERVICE, PROCESS, PROCEDURE},
21 m k -Importdefo (),
22 m k- ViewdefoQ,
23 nik-Tim erdefoQ
24 - q G {SERVICE, PROCESS},
25 T -* tru e))

ty p e : Declo* Bool —► Qual —► Bool

O b je c tiv e Check th a t a definition list originating from a select definition is syn­
tactically allowed in a given context. However, decomposition is not
treated here.

Fascicle X .4 — R ec . Z .100 — A n n e x F .2 41

P a r a m e te r s

decllist The definition list to be checked.
ischannelsub A flag which is t r u e if decllist belongs to a channel sub-structure.

True if allowedR e s u l t

A lg o r i th m

Line 1
Line 4

W hen through then return t r u e .
Extract the scopeunit type (q) from the Qual denoting the current
scopeunit.

Line 5-25 The definition list is well-formed if the first definition is well-formed
(line 7-25) and the rest of the definition list is well-formed (line 5).

Line 7-8 If the first definition is a block definition or a channel definition
then the scopeunit of the context m ust be the system or a block
sub-structure or a channel sub-structure.

Line 10 If it is a connection then the scopeunit m ust either be a block
sub-structure a channel substructure or a block.

Line 12-13 If it is a signal route definition of a process definition then the
scopeunit m ust be a block.

Line 15-16 If it is a signal list definition or a signal definition then the scope­
unit m ust not be a service or a procedure.

Line 18-19 If it is a procedure definition or a variable definition then the scope­
unit m ust be either a service or a process or a procedure.

Line 21-23 If it is an im port definition or a view definition or a tim er definition
then the scopeunit m ust be a service or a process

3.3 R em oval o f S elect D efin ition s

In this section, select definitions are evaluated. The entry function is remove-select applied
in transform -system . For each definition list the following steps are taken:

1. Collect the names of the sorts which are defined in the definition list, including the
sorts defined in a contained select definition. Add the sorts to the sorts collected in
the surrounding scopeunit. This is necessary in order to trap the mess if predefined
sorts are redefined.

2. Collect all synonyms defined in the definition list or in definition lists of contained
select definitions. P u t an ErrorD descriptor in Diet for these synonyms indicating
th a t they cannot be used yet. Those of these synonyms which are defined by using
any of the collected (visible) sorts or which have more than one definition (they are
also m ultiple defined if they are defined in different select definitions) are identified.
They cannot be used in select definitions a t all since using them could result in different
results depending of the order of selection. Note th a t it is only during removal of select
definitions th a t these synonyms cannot be used. Afterward, they are not necessarily
m ultiple defined.

3. Remove the select definitions. Each tim e a select definition has been replaced by its
contained definition list, the descriptors for the synonyms in the definition list are
changed from an ErrorD to a SynD, except for those which are not allowed to be used.

4. W hen all select definitions have been removed, SynD descriptors are m ade for all
synonyms in the resulting definition list (also for the synonyms which previously could
not be used) and the sorts defined in the resulting definition list are collected.

5. Select definitions in enclosed scopeunits are removed using the updated diet and using
the collected sorts.

42 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

As transition options do not contain any definitions, they can be evaluated while the state-
body is transform ed into A S i.

rem ove-select(decllist, sursorts)(dict) =

1
2
3
4
5
6
7

ty p e :

(let sorts = sursorts U collect-sorts (decllist) in
le t (allsyn, illsyn) = collect-illegal-synonyms(decllist, sorts) in
le t diet' — [diet(SCOPEUNIT) ((VALUE, nm)) n ik-E rrorD () | nm £ allsyn] in
le t decllist' = rem ove-select-in-decllist(decllist, illsyn)(diet1) in
le t diet" = repeat-collecting-synonyms(decllist', {})(d ic t) in
le t sorts' = sursorts U collect-sorts(decllist') in
(remove-select-in-enclosed-scopeunit(decllist\i], sorts')(d ict") | 1 < i < len decllist))

(Declo
(Declo

O b je c t iv e

P a r a m e te r s

decllist

sursorts

diet

R e s u l t

A lg o r i th m

Line 1

Line 2

Line 3

Line 4
Line 5

Line 6
Line 7

Blocksubdefo \ Decomposition)* Nameo-set
Blocksubdefo | D ecomposition)*

Diet

Expand the select definitions for a scopeunit and for all select definitions
in scopeunits contained in the definition list.

The definition list containing select definitions. Block sub-structure
and service decomposition are for convenience also considered as
definitions in this context.
The set of sorts (excluding the predefined) which potentially are
visible in the definition list (i.e. possibly depending on whether
they are selected by a contained select definition). This inform ation
is required in order to achieve correct treatm ent in the case where
the predefined d a ta are redefined.
The Diet, which only contains descriptors for the predefined sorts
and for the visible, but non-local, synonyms of the predefined sorts.

The definition list where all select definitions have been expanded.

Collect the sorts which are defined in the definition list or are
defined in a select definition.
Let allsyn denote the synonyms which are defined in the definition
list or are defined in a contained select definition. Let illsyn (which
is a subset of allsyn) denote the synonyms which cannot be used
in removing of select definitions for this definition list.
P u t an ErrorD descriptor in Diet to indicate th a t the locally defined
synonyms cannot be used yet.
Remove the select definitions.
P u t a SynD descriptor in Diet for the synonyms in the resulting
definition list.
Collect the sorts again, this time using the resulting definition list.
Remove select definitions in contained scopeunits.

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 43

(3.3.1)

remove-select-in-decllist{decllist, illsyn){dict) = (3.3.2)

1 (let diet' = repeat-collecting-synonyms {decllist, illsyn)(dict) in
2 i f {3d £ elem s decllist){is-Selecto{d)) th en
3 (if (3 d £ elem s decllist){is-Selecto{d) A is-w f-sim ple-expr{s-Expr0{d)){dict')) th e n
4 (let d £ elem s decllist b e s .t . is-Selecto{d) A is-w f-sim ple-expr{s-Expro{d)){dict') in
5 le t nik-Selecto{expr, decllist') = d in
6 le t selected = eval-simple-expr{expr, "BOOLEAN”)(diet') in
7 le t decllist" = (d1 £ elem s decllist \ d' ^ d) in
8 if selected th e n
9 remove-select-in-decllist{decllist' decllist", illsyn){dict)

10 else
11 rem ove-select-in-decllist{decllist", illsyn){dict))
12 else
13 e x i t ("§4.3.2: Simple expression is not of a predefined sort or contains undefined identifiers”))
14 else
15 decllist)

ty p e : {Declo \ Blocksubdefo \ Decompositiono)* JVameo-set —> Diet —►
Blocksubdefo I Decompositiono)*

Remove the select definitions for a definition list.

The definition list containing select definitions
The synonyms which cannot be used in simple expressions of select
definitions.
The Diet, which only contains descriptors for the predefined sorts
and for the visible synonyms {SynD or ErrorD).

The definition list where all select definitions have been removed.

Update diet with descriptors for the synonyms (of the predefined
sorts) which are defined in the definition list (but not contained in
a select definition)
If there (still) exist a select definition in the definition list then
If the expression in the select definition is well-formed then
Let d denote th a t select definition
Evaluate the simple expression in d.
Construct a definition list where d has been removed.
If the definitions in the select definition is selected then
Continue removing select definitions where the definition list is
extended to include the definitions from the select definition.
If the select definition is not selected, then continue with the defi­
nition list where the select definition has been removed
If all select definitions in the definition list have been removed then
return the definition list.

eval - sim ple-expr{expr, sort){dict) =

1 (let predefqual — get-predef -sort{sort){dict) in
2 le t {as\tree , ,) = transform -expr{expr, CONSTANT, {predefqual}){dict) in
3 eval-expr{as\tree, sort){dict))

ty p e : Expro Char+ —» Diet —» {Intg | Bool)

O b je c t iv e Evaluate a simple expression

{Declo |

O b je c tiv e

P a ra m eters

decllist
illsyn

diet

R e su lt

A lg o r ith m

Line 1

Line 2
Line 3
Line 4
Line 6
Line 7
Line 8
Line 9

Line 11

Line 15

(3.3.3)

44 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

P a ra m eters

expr
sort

R esu lt

A lg o r ith m

Line 1
Line 2

Line 3

The ASo simple expression
The spelling of the sort of the expression.
“Boolean” or “Integer” .

The sort is either

The Meta-IV types Intg if the SDL sort is “Integer” and the M eta-IV
dom ain Bool if the SDL sort is “Boolean” .

Construct the Qual of the sort
Transform the expression into ASi notifying th a t the expression is
(must be) a constant (ground) expression and th a t the expression
is (must be) of the specified sort.
Evaluate the ASi expression (this function is not formally defined)

repeat-collecting-synonyms(decllist, illsyn)(d ict) =

1 (let diet' = collect-synonyms(decllist, illsyn)(dict) in
2 if diet' = diet th e n diet' else repeat-collecting-synonyms(decllist, illsyn)(dict'))

ty p e : Declo* Name0-set —► Diet —* Diet

O b jec tiv e

P a ra m eters

decllist
illsyn

R esu lt

A lg o r ith m

Line 1

Line 2
Line 2

Collect descriptors for all the well-formed synonyms (i.e. for the syn­
onyms which a t this stage do not depend on a synonym defined in a
select definition).

The definition list to be inspected
The synonyms from decllist which cannot be used, i.e. their ErrorD
descriptor should not be changed into a SynD descriptor.

The Diet updated with descriptors for the well-formed synonyms

Collect descriptors for the well-formed synonyms in the definition
list decllist by going through the list.
If no more synonym can be changed in diet1 then return diet else
Go through the list one more time. As synonyms may be m utually
dependent more synonym definitions may now be well-formed (in
the context of diet1).

(3.3.4)

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 45

collect-synonyms (decllist, illsyn)(dict) = (3.3.5)

1 i f decllist — () th en
2 diet
3 else
4 (if is-Synonymdefo(h.d decllist) th en
5 (let m k -Synonymdefo(nm, sort, expr) = h d decllist in
6 le t qualset — {qual £ d o m diet | is-SortD(did(qual))} in
7 le t sortset =
8 i f sort = n il th e n
9 qualset

1 0 else
11 (tra p exit w ith {} in
1 2 {get-parent(get-vis ib le-qual(sort,TYPE)(did))(d id)}) in
13 le t synqual = dicf(SCOPEUI\IIT) ((VALUE, nm)) in
14 le t (as\tree, qset,) =
15 if sortset = {} th e n
16 (nil, {},)
17 else
18 (tra p ex it w ith (nil, {} ,) in
19 transform-expr(expr, CONSTANT, sortset)(dict + [synqual t—» m k-Frror.D ()])) in
20 if asi tree = n il V card qset ^ 1 V nm £ illsyn th en
2 1 collect-synonyms (tl decllist, illsyn)(dict)
2 2 else
23 (let sortqual £ qset in
24 le t d = [synqual i—» m k -SynD (sortqual, expr)] in
25 collect-synonyms(tl decllist, illsyn)(dict + d)))
26 else
27 collect -synonyms (tl decllist, illsyn) (d id))

ty p e : Declo* Nameo-set —► D id —► D id

P a r a m e te r s

formed synonyms

P a r a m e te r s

decllist The definition list containing synonym definitions
illsyn The synonyms from decllist which cannot be used, i.e. thei

descriptor should not be changed into a SynD descriptor.
d id The D id which contains descriptors for the predefined s

for the visible synonyms.

R e s u l t A D id which is updated with SynD descriptors for the wel
synonyms.

A lg o r i th m

synonyms.

sorts for the expression contains only th a t sort (if the specified sort
is not well-formed then the set is em pty), otherwise the set of legal
sorts include all the predefined sorts.

Line 13 Let synqual denote the Qual of the synonym.
Line 14-19 Try to transform the expression into ASi. If it fails it is either a

sta tic error (will be caught later) or the expression contains syn­
onyms which have not been considered yet (they might be defined
in a select definition or defined in t l decllist).

46 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

If it fails i.e. if the ASi expression asi tree is not present or the sort
of the expression is indeterm inable (the cardinality of the returned
set of sorts is different from 1) or if the synonym is one of those
which cannot be used then continue with the rest of the definition
list else
Let the sort of the expression be denoted by sortqual.
U pdate diet w ith the synonym descriptor and go through the rest
of the definition list.
If the first definition in the definition list is not a synonym definition
then continue with the rest of the list.

is-w f- simple-expr (expr)(dict) =

1 (let boolqual = get-predef-sort (“BOOLEAN") (diet) in
2 t r a p exit w ith false in
3 (let (, ,) = transform-expr(expr, CONSTANT, {boolqual})(diet) in
4 tru e))

ty p e : Expro —> Diet —► Bool

Check whether a simple boolean expression is well-formed. If it is not
well-formed, it may be because it is defined in terms of synonyms which
have not been incorporated in diet yet.

expr The ASo expression to be checked

R e s u l t True if well-formed

A lg o r i th m

Line 1 E xtract the Qual (identifier) of the boolean sort. The set of legal
sorts for the expression only includes th a t sort.

Line 2-3 If the transform ation function is trapped, then false is returned
otherwise

Line 4 True is returned

O b je c t iv e

P a r a m e te r s

Line 20

Line 23
Line 24-25

Line 27

(3.3.6)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 47

remove-seled-in-enclosed-scopeunit(decl, sor ts)(d id) = (3.3.7)

1 (le t level = dict(SCOPEUNIT) in
2 cases decl:
3 (nik-Blockdefo(xak-Ido(q, nm), decll, blksub, tid)
4 - (let diet1 = dict + [SCOPEUNIT level ̂ ((BLOCK, nm))] in
5 (let (decll', blksub') =
6 i f blksub = nil th e n
7 (remove-select(decll, so r ts) (d id 1), nil)
8 else
9 (let dlist = remove-select(decll (blksub), sorJts)(did') in

10 le t i b e s .t . is-Blocksubdefo(dlist[i]) in
11 ((dlist[n] | 1 < n < len dlist A n ^ i), d/zst[i])) in
1 2 vnk-Blockdefo(xnk-Ido(q, nm), decll', blksub', tid))),
13 xnk-Servicedef0(irik-Ido(q, nm), sigl, decll, body, tid)
14 - (let diet' = diet + [SCOPEUNIT level ̂ ((SERVICE, nm))] in
15 le t decll' = remove-select(decll, sorts)(dict') in
16 nik-Servicedefo(mk-Ido(q, nm), sigl, decll', body, tid)),
17 mk-Chandefo(nm, p i , p2, chansub, tnm)
18 -» i f chansub = n il th en
19 decl
2 0 else
2 1 (let xnk-Chansubdefo(id, decll, tid) = chansub in
22 le t nm' = i f id = n il th en nm else s-Nameo(id) in
23 le t diet' = diet + [SCOPEUNIT level ^ ((SUBSTRUCTURE, nm 7))] in
24 le t decll' = remove-select(decll, sorts)(dict') in
25 nik-Chandefo(nm, p i , p2,xnk-Chansubdefo(id, decll', tid), tnm)),
26 nxk-Prdefo(xnk-Ido(q, nm), inst, parm, inpset, decll, body, tid)
27 - (let diet' = d id + [SCOPEUNIT ^ level ((PROCESS, nm))] in
28 le t (decll', body') =
29 if is -Body0(body) th en
30 (remove-select(decll, sorts)(d id ') , body)
31 else
32 (let dlist = remove-select(decll '"x (body), sorts)(dict') in
33 le t i be s.t. is-Decompositiono(dlist[i\) in
34 ((dlist[n] \ 1 < n < len dlist A n ^ i) , dlist[i])) in
35 itik-Prdef0(mk-Ido(q, nm), inst, parm, inpset, decll', body', tid)),
36 m k -Blocksubdefo(id, decll, tid)
37 (let (, nm) = level[len level] in
38 le t nm' = i f id =■ n il th e n nm else s-Nameo(id) in
39 le t d id ' = d id + [SCOPEUNIT level ^ ((SUBSTRUCTURE, nm'))] in
40 le t decll' = remove - select(decll, sorts)(d id ') in
41 mk-Blocksubdefo(id, decll', tid)),
42 mk-Decompositiono(decll)
43 — (let decll' = remove-seled(decll, sorts)(d id) in
44 if { id € elem s decll')(is-Sigroutedefo(d) V
45 (is-Connedo(d) A is-Ido(s-Connedpointo(d))) V
46 is-Servicedefo(d)) th en
47 jxik-Decompositiono(decll')
48 else
49 e x i t (“§4.3.3: The selected definition is not allowed in that scopeunit”)),
50 T — decl))

ty p e : (Declo \ Blocksubdefo \ Decompositiono) Nameo-set —> D id —► (Declo | Blocksubdefo \ Decomposition)

O b je c tiv e Remove select definitions in an enclosed scopeunit.

P a ra m eters

decl A definition which may be a scopeunit.

48 F ascicle X .4 - R ec. Z .100 - A n n e x F .2

sorts The sorts visible (excluding the predefined).

R e s u l t A definition wherein select definitions have been removed.

A lg o r i th m

Line 1 Denote the context (in which the definition occurs) by level.
Line 3-12 If the definition is a block definition then remove the select def­

initions in the definition list of the block (line 7). If the block
contains a sub-structure then it is also considered as a definition.
The select definitions are removed in the context of the block, i.e.
SCOPEUNIT is Diet is updated to denote the block.

Line 13-41 Do the same for the other alternative scopeunits as done in the
case where the definition is a block definition.

Line 4%-49 If definition is a decomposition (which may contain select defi­
nitions although it is not a scopeunit) then check th a t the resulting
definition list (after removal of select definitions), only contains ser­
vice signal route definitions, service signal route connections and
service definition. The connectpointo in a service signal route con­
nection m ust not be ENV (this case is not checked syntactically if
the connection is contained in a select definition).

collect-illegal-synonyms(decllist, sorts) =

1 (if decllist = () th e n
2 ({},{})
3 else
4 (let (restsyn, restillsyn) = collect-illegal-synonyms(tl decllist, sorts) in
5 le t (synset, illsynset) =
6 cases h d decllist:
7 (vcik-Synonymdefo(nm, sort,)
8 -> if (sort ^ nil A s-iVaraeo(sort) £ sorts A s-Qualifier0(sort) ((SYSTEM ,))) th e n
9 ({nm }, {nm})

1 0 else
11 ({*"»}. {})>
1 2 mk-5e/ec<o(, dlist)
13 -» collect-illegal-synonyms(dlist, sorts),
14 T - ({ } ,{ })) in
15 (restsyn U synset, restillsyn U illsynset U (restsyn D synset))))

ty p e : Declo * Nameo-set Nameo-set Nameo-set

O b je c t iv e

P a r a m e te r s

decllist
sorts

R e s u l t

A lg o r i th m

Line 1

Line 4
Line 5

Collect the synonyms which (potentially) are defined in a definition
list and identify those of these synonyms which cannot be used in any
simple expressions of select definitions.

The definition list
The sorts which (potentially) are defined in the definition list.

The set of potentially defined synonyms and the synonyms which cannot
be used.

W hen through the definition list, return em pty sets.
Collect the synonym sets for the rest of the definition list.
Let synset denote the synonyms defined in this definition and let
illsynset denote those of these which cannot be used.

(3.3.8)

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 49

Line 7-11 If the definition is a synonym definition then the synonym name
is synset and the name cannot be used if the sort name is one
of the visible sorts and the qualifier does not denote the system
level. Note th a t the Diet do only contain the descriptors for the
predefined sorts. This check is therefore only of im portance if a
predefined sort has been redefined.

Line 12 If the definition is a select definition then collect the synonym sets
for the contained definitions.

Line 15 The resulting set of defined synonym names is the names for the
rest of definitions joined with the names for this definition. The
resulting set of non-usable synonyms is the non-usable synonyms
for the rest of definitions joined with the names for this definition
joined with the names both defined in the rest of definition and in
this definition.

collect-s orts (decllist) =

1 (if decllist — () th e n
2 {}
3 else
4 (collect-sorts (tl decllist) U
5 cases h d decllist:
6 (mk-Syntypedefq(n m , , , ,) ,
7 xnk-Partialtypedefo(nm , , , ,)
8 -* {nm},
9 mk-Select0(, dlist)

1 0 -> collect-sorts(dlist),
11 T ^ {})))

ty p e : Declo* Name0-set

O b je c t iv e Collect the sort names for the sorts which potentially are defined in a
definition list

P a r a m e te r s

decllist The definition list

R e s u l t The set of potentially defined sort names (whether they actually are
defined depends on select definitions).

A lg o r i th m

Line 1 W hen through the definition list, return the empty set.
Line 6-7 If the definition is a partia l type definition or a syntype definition

then extract the sort name.
Line 9 If the definition is a select definition then collect the potentially

defined sort names in the contained definition list.

(3.3.9)

50 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

3.4 T ransform ation o f D efin ition s

transform,-decllist (decllist) (diet) = (3.4.1)

1 (if decllist = () th e n
2 ({},□)
3 else
4 (let (as\dcl, d) = transform-decl(hd decllist)(did) in
5 le t (asidcll, d‘) = transform-decllist(t\ decllist)(dict) in
6 i f dom d fl dom d' ^ {} th en
7 e x i t (‘‘§2.2.2: Two definitions in the same scopeunit and same entity class define the same name")
8 else
9 (as\ del U asi dell, d + d')))

ty p e : Declo*

O b je c tiv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Line 4
Line 5
Line 6

Line 9

Diet —*• Decli-set Diet

Transform a list of ASo definitions into a set of ASi definitions.

An ASo definition list.

The ASi definitions and the Diet contributions from the ASo definition
list. Note th a t it is not the entire diet which is returned, as opposed to
the expression and graph transform ing functions. This means th a t no
returned descriptor (except for ValueidD which is used strictly local in
axioms and generator param eters and ErrorD which is used locally to
trap recursive definitions) influence the content of diet. The equivalence
between the returned descriptors and diet is fulfilled by the b e su c h
th a t construct in the function transform-system as mentioned earlier.

Transform the first definition in the definition list.
Transform the rest of the definitions.
The pair of name and entity class (reflected in the Qual) of the first
definition must be disjoint from the pairs representing the rest of
the definitions
R eturn the Diet contributions and the ASi definitions.

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 51

transform-decl(decl)(did) = (3.4.2)

1 (cases decl:
2 (mk-Blockdef0(, , ,)
3 — transform-blockdef (dec l)(d id) ,
4 nik-Chandefo(, , , ,)
5 -♦ transform-channeldef (decl)(dict),
6 m k-Prdef0(, , , , , ,)
7 transform-processdef(decl)(dict),
8 mk-St<7<fe/0()
9 — transform-signaldef(decl)(dict),

1 0 mk-Procdef0(, , , ,)
11 -► transform-proceduredef(decl)(dict),
1 2 m k -Partialtypedefo(, , , ,)
13 -♦ transform-partial-typedef(decl)(did),
14 mk-5tyn<ypede/o(,, , ,)
15 -♦ transform-syntype(decl)(did),
16 m.k-Sortgeneratoro(, , , ,)
17 -* transform-sortgenerator(decl)(did),
18 m k-Synonym defo{ ,,)
19 -» transform-synonymdef(decl)(dict),
20 m k- Vardefo(, ,)
2 1 -♦ transform-vardef(decl)(dict),
2 2 m k- Viewdefo()
23 transform-viewdef(decl)(dict),
24 xnk-Importdefo()
25 -* transform-importdef(decl)(did) ,
26 mk-5tyroM<edIe/o(,,)
27 - ifls-5/ocJfci?(d*c<(dic<(LEVEL)))
28 th e n transform-signalroutedef (decl)(dict)
29 else transform-servicesigroutedef(decl)(dict),
30 m k -Signallistdefo(,)
31 -» transform-signallistdef(decl)(dict),
32 m k- TimerdefoQ
33 ^ transform-timerdef (decl)(diet),
34 mk-5ermcerfe/0(, , , ,)
35 -* build-service-descriptor(decl)(diet),
36 T - ({ } ,(])))

ty p e : Declo —> Diet —* Decl\ -set D id

O b je c tiv e

R e su lt

A lg o r ith m

Transform an ASo definition into an ASi definition.

See transform-decllist

Transform either

Line 2
Line 4
Line 6
Line 8
Line 10
Line 12
Line 14
Line 16
Line 18
Line 20
Line 22
Line 24

A block definition or
A channel definition or
A process definition or
A signal definition or
A procedure definition or
A partia l d a ta type definition or
A syn type definition or
A sort generator or
A synonym definition or
A variable definition or
A view definition or
An im port definition or

52 Fascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 26-29

Line 30
Line 32
Line 29
Line 34
Line 19

A signal route definition or a service signal route depending on the
enclosing scopeunit or
A signal list definition or
A tim er definition or
A service signal route definition or
A service definition
Nothing, as the other kind of definitions (i.e. connects) are handled
elsewhere.

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 53

transform-blockdef(mk-Blockdef0(bid, decllist, subdef, tid))(dict) = (3.4.1.1)

1 (let mk-Ido(q, bnm) = bid in
2 le t bqual — dtc<(SCOPEUNIT) ((BLOCK, bnm)) in
3 le t d ie t1 = d ie t + [SCO RE UNIT i—► bqual] +
4 [DATATYPEDEF i—► initialdatadef (diet)] in
5 le t explicit = (3d £ elem s decllist)(is-Sigroutedefo(d)) in
6 le t (chandefl, routedefl, connects, exp, imp) =
7 implicit-channels-and-signal-routes(decllist)(dict') in
8 le t (outerchannels, cdi) = transform-decllist(chandefl)(dict) in
9 le t (as\dcl, di) = transform-decllist(decllist routedefl)(diet') in

10 le t (as \C onnec t, connec tm ap) — t r a n s fo r m -b lo c k -c o n n e c t(d e c l l i s t , { } , [])(<iic</) in
11 if ((3 i £ elem s decllist)(is-Prdefo(i)) V subdef ^ nil) A q = () A tid £ {bid, nil} th en
12 i f subdef = n il th e n
13 (let descr — [bqual t—► m k -BlockD (exp, imp, explicit, connectmap)] in
14 le t asiblock = make-asi free(BLOCK, bnm, as\dcl as\ connect, nil, nil, n il)(diet) in
15 (outerchannels U {as\block}, descr + di + cdi))
16 else
17 (let rnk-Blocksubdefo(subid, subdecll, tailid) = subdef in
18 le t nik-Ido(q ', bnm') = if subid = nil th e n m k-/do((), bnm) else subid in
19 le t chansubqual = cfoct(SCOPEUNIT) ((SUBSTRUCTURE, bnm')) in
2 0 le t subqual = i f chansubqual £ dom diet th en
21 chansubqual
2 2 else
23 bqual ((SUBSTRUCTURE, bnm')) in
24 le t diet" = [SCOPEUNIT subqual,
25 DATATYPEDEF h-. initialdatadef (diet1)] in
26 le t (as\subdcl, subdi) = transform-decllist(subdecll)(dict") in
27 le t asi connect' — transform-substructure-connect(subdecll /'x connects, {}, [])(dict") in
28 le t as\tree = make-as\ tree (SUBSTRUCTURE, bnm ',
29 as\subdcl U as\ connect', nil, nil, nil)(subdi) in
30 le t asiblock' = make-asitree(BLOCK, bnm, as^dcl, asi tree, nil, nil) (diet) in
31 le t descr = [bqual i—♦ m k-BlockD (exp, imp, explicit, connectmap)] +
32 (if chansubqual £ dom diet th en [] else [subqual i—► ncik-BlocksubD()]) in
33 (g' # <>_
34 -+ e x i t (“§2.4.1: Defining names may only be qualified in remote definitions”),
35 tailid (£ {nil, subid}
36 -» e x i t ("§2.2.2: Ending name in block sub-structure definition is different from defining name”),
37 -i(3 d £ elem s subdecll)(is-Blockdefo(d))
38 e x i t ("§3.2.2: Block sub-structure does not contain a block definition”),
39 T -» (outerchannels U {as\block'}, descr + di + subdi + cdi)))
40 else
41 (-> (3f£ elem s decllist) (is-Prdef0(i) V subdef ^ nil)
42 e x i t ("§2.4.3: Block must contain either one or more processes or a sub-structure definition"),
43 q ± ()
44 e x i t ("§2.4.1: Defining names may only be qualified in remote definitions”),
45 T -* e x i t (“§2.2.2: Ending name in block definition is different from defining name")))

ty p e : Blockdefo ~^ Diet —► Decl\ -set Diet

O b jec tiv e Transform an ASo block definition into an ASi block definition.

P a ra m eters The ASo block definition containing

bid The unqualified block identifier
decllist Its definition list
subdef Its optional sub-structure
tid Its optional ending identifier

3 .4 .1 B lock D efin itio n s

54 Fascicle X .4 — R ec. Z.100 — A n n ex F .2

R e s u l t

A lg o r i th m

Line 2-3

Line 5

Line 6

Line 8
Line 9

Line 10

Line 11

Line 12-15

Line 17

line 18

Line 19-20

Line 24
Line 26
Line 27
Line 28
Line 30
Line 31-32

Line 33

Line 35

Line 37
Line 39

Line 41

Line 33

Line 45

See transform-decllist.

C onstruct the Qual denoting the block identifier (bqual) and update
the Diet entry SCOPEUNIT to denote the context of the block.
C onstruct the in itial Data-type-definitioni for the block.
Let explicit be t r u e if explicit signal routes are specified for the
block.

Create the im plicit ASo channel definitions implied by export and
im port from and to the block, and also the ExpimpchanD m aps (see
the dom ain definition of ExpimpchanD) which is used to interface
the channel definitions to the sub-structure and to the surround­
ings.

Transform the im plicit channel definitions into ASi.
Transform the contained definition list, w ith the diet entry SCOPE­
UNIT updated to denote the block.

Transform the channel to signal route connections in the block.
Also return the BlockconnectionD for the block.
If the sub-structure is om itted then there m ust exist a t least one
process definition in the block. The block identifier m ust not be
qualified and if the ending identifier is specified then it m ust be
equal to the block identifier.
If the block does not contain a block sub-structure then return the
ASi definition of the im plicit channels (outerchannels) and of the
block (asiblock) and Diet contributions for the im plicit channels
(cdi), the block (descr), and the contained definitions, (di)
Decompose the block sub-structure.
If the block sub-structure name is om itted then it is the same as
the block name. Let bnm' denote the block sub-structure name

Let subqual denote the Qual of the sub-structure. If the block
sub-structure is derived from a channel sub-structure then subqual
denotes the Qual of the channel sub-structure.
Update SCOPEUNIT and DATATYPEDEF as in line 3.
Transform the definition list of the sub-structure.
Create the ASi definition of the block (asiblock),
Create the ASi connections from the ASo connections in subdecll.
The ASi definition of the block sub-structure (as\tree),
The Diet entry for the block (bqual) and unless the sub-structure
denotes a channel sub-structure then also the Diet entry for the
block sub-structure (subqual).
The block sub-structure name (identifier) m ust not be qualified (as
it is not a remote definition).
If the tailing id is specified, it m ust be the same as the sub-structure
identifier (subid).
The sub-structure m ust contain a t least one block definition.
R eturn the ASi definitions as in line 15 and Diet contributions
for the im plicit channels (cdi), for the block and the sub-structure
(descr), and the contained definitions in the block (di) and the
definitions contained in the sub-structure (subdi).
There m ust exist a t least one process definition in the block unless
a sub-structure is specified and
The block identifier m ust not be qualified and
If the ending name is specified then it must be equal to the block
name

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 55

initialdatadef (diet) = (3.4.1.2)

1 (le t mk-Data-type-definitioni (u n m , , , ,) = dict(DATATYPEDEF),
2 qual = dict(SCOPEUNIT) ^ ((TYPE, unm)) in
3 le t typeid = make-asi-identifier(qual)(diet) in
4 mk-Data-type-definitioni(create-unique-name(), {typeid}, {}, {}, {}))

ty p e : Diet —► Data-type-definitioni

O b je c tiv e

A lg o r ith m

Line 1
Line 2

Line 3
Line 4

C onstruct the ASi da ta type definition for a scopeunit where the identi­
fier, representing the da ta type definition of the surrounding scopeunit,
is included in the type union. Literals, operators and equations are
added to the d a ta type definition during the transform ation of the par­
tial d a ta type definitions in the scopeunit

E xtract the ASi da ta type definition of the surrounding scopeunit.
Construct the Qual of the type identifier of the surrounding scope­
unit.
Construct the ASi identifier of the type.
Return a new da ta type definition which has a unique name and
where the type identifier of the surrounding scopeunit is included
in the type union and which contains no literals, operators or equa­
tions

56 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .4 .2 C h an n el D efin itio n s

transform-channeldef(nik-Chandefo(cnm, chanpath, ochanpath, csub, tnm))(dict) = (3.4.2.1)

1 (let nik-Chanpatho(ori, dest, siglist) = chanpath in
2 le t orid = get-visible-qual(ori, BLOCK)((hcf),
3 destid — get-visible-qual{dest, BLOCK) (diet),
4 sigidset = transform-signallist{siglist){dict),
5 sigidset' —
6 i f ochanpath = nil th en
7 {}
8 else
9 (let xtik-Chanpatho(orig\ dest', osiglist) = ochanpath in

10 le t orid' = get-visible-qual(orig', BLOCK)(d*ct),
11 destid' = get-visible-qual(dest', BLOCK)(dtcf) in
12 if orid = destid' A destid = orid' th en
13 transform-signallist (osiglist) (diet)
14 else
15 exit("§2.5: Second path in channel definition must denote reverse direction of first path”)) in
16 i f orid = destid th en
17 exit("§2.5: Endpoints of channel must be different")
18 else
19 (let as\orid = i f ori — EIMV th e n ENVIRONMENT else make-asi-identifier{orid){dict),
20 as\destid = if dest = ENV th en
21 ENVIRONMENT
2 2 else
23 make - as\ -identifier (destid)(diet),
24 asisigs = make-as\idset{sigidset){dict),
25 as\sigs' = make-asiidset(sigidset')(dict),
26 equal = dict{SCOPEUNIT) ^ ((CHANNEL, cnm)) in
27 (-iis-local(orid)(dict) V ->is-local(destid)(dict)
28 — e x i t (“§2.5: Endpoint of channel is defined in another scopeunit than the channel”),
29 tnm £ {cnm, nil}
30 -► e x i t (‘‘§2.2.2: Ending name in channel definition is different from defining name”),
31 csub ^ nil
32 -+ transform-channel-sub{csub, cnm, sigidset, sigidset', orid, destid){dict),
33 T -» (let descr = [equal i—► m k -ChannelD {orid, destid, sigidset, sigidset', nil)] in
34 le t pathl = m k -Channel-path\{as\orid, as\destid, as\sigs),
35 path2 = if a$i sigs' = {} th en
36 nil
37 else
38 m k -Channel-path\{as\ destid, asiorid, asisigs') in
39 {{mk-Channel-definitioni {name-to-name\{cnm), path 1, path2)}, descr)))))

ty p e : Chandefo —> Diet —> Decl\ -set Diet

O b je c tiv e Transform a channel definition into ASi

R e su lt The ASi channel definition and a diet contribution containing the chan­
nel descriptor and a channel sub-structure descriptor (if present)

P a ra m eters The ASo channel definition containing

A lg o r ith m

Line 1 Decompose the first path

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 57

line 2-15 Make the Qual of the origination block (orid), the destination block
(destid), the signals (sigidset) and the signals in the reverse direc­
tion (sigidset').

line 9-15 If the channel is bidirectional then the originating endpoint of one
of the directions m ust be the same as the term inating endpoint of
the other direction.

line 16 The originating block m ust not be the same as the destination
block.

line 19-25 Make the Identifieris of the origination block (asiorid), the desti­
nation block (asidestid), the signals (as\ sigidset) and the signals
in the reverse direction (as\ sigidset').

line 26 U pdate SCOPEUNIT to denote the channel identifier.
line 27-28 The originating block and the destination block m ust be defined

a t the same level as where the channel is defined and
line 29 The nam e ending the channel definition must be equal to the chan­

nel name if specified
line 31 If a channel sub-structure is present then transform the channel

sub-structure else
Line 33 C onstruct the Diet contribution for the channel.
Line 34-35 Construct the two ASi paths.
Line 39 R eturn the ASi channel definition and its Diet contribution.

transform-channel-sub(csub, nm, sigset, osigset, endpoint1, endpoint2)(diet) = (3.4.2.

1 (let nik-Chansubdefo(subid, decllist, tailid) = csub in
2 le t xrik-Ido(q, nm') = i f subid — n il th e n m k-/do((), nm) else subid in
3 le t mk-Ido(qtail, nmtail) = if tailid = nil th e n mk-Ido(q, nm') else tailid in
4 i f q 7̂ () V qtail ^ () th e n
5 e x i t (“§2.4.1: Defining names may only be qualified in remote definitions”)
6 else
7 i f nmtail ^ nm' then
8 ex it("§2.2.2: Ending name in channel sub-structure definition is different from defining name”)
9 else

10 (let level = drct(SCOPEUNIT) in
11 let newbnm = create-unique-name() in
12 let newbqual = level ((BLOCK, newbnm)) in
13 let newel = create-unique-name(),
14 newc2 = create-unique-name() in
15 let pathl = mk-Chanpatho(asQ-id(endpointl), aso-id(newbqual), (aso-id(q) \ q £ sigset)),
16 opath 1 =
17 i f osigset = {}
18 then nil
19 else nik-Chanpatho(aso-id(newbqual), aso-id(endpointl), (asQ-id(q) | q £ osigset)),
2 0 path2 = xiik-Chanpatho(aso-id(newbqual), aso-id(endpoint2), (aso-id(q) \ q £ sigset)),
21 opath2 =
22 i f osigset = {}
23 then nil
24 else m k -Chanpatho(as0-id(endpoint2), aso-id(newbqual), (aso-id(q) \ q £ osigset)) in
25 let chandef 1 = mk.-Chandef0(newcl, pathl, opathl, nil, newel),
26 chandef 2 = mk-Chandefo(newc2, path2, opath2, nil, newc2) in
27 let substructurequal = level ^ ((SUBSTRUCTURE, n m 1)) in
28 let diet1 = diet + [SCOPEUNIT i—> substructurequal] in
29 let decllist' = replace-connects(decllist, newel, endpoint 1, newc2, endpoint2)(dict') in
30 let newchannels = (endpoint1, newc 1, endpoint2, newc2) in
31 let blockdef =
32 irik-Blockdef0(m k-Ido(() , newbnm), (), mk-Blocksubdef0(m k-Ido((), nm'), decllist', nil), nil) in
33 let channelqual = level ((CHANNEL, nm)) in
3 4 let di = [channelqual xnk-ChannelD(endpointl, endpoint2, sigset, osigset, newchannels),

58 Fascicle X .4 - R ec . Z .100 - A n n e x F .2

35 substructurequal i— m k -ChannelsubD(newbqual)] in
36 le t (asideclset, diet1) = transform-decllist((chandef 1, chandef 2, blockdef))(dict) in
37 (asideclset, diet' + dt)))

ty p e : Chansubdefo Nameo Signalqual-set Signalqual-set Endpoint Endpoint —*
Diet —> Decli-set Diet

O b je c tiv e

P a r a m e te r s

csub
nm
siglist
osiglist
endpointl
endpointS

R e s u lt

A lg o r i th m

Line 1

Line S

Line 3

Line 4

Line 7
Line 10
Line 11
Line IS
Line 13-14

Line 15-16
Line S0-S1

Line S5-S6
Line S9

Line 31

Line 34

Line 36

Line 37

Transform a channel sub-structure definition into two channel defini­
tions and a block definition

The ASo channel sub-structure definition
The name of the enclosing channel definition
The signals conveyed by the enclosing channel.

The optional signals leading in the opposite direction.

The block from which siglist is sent.
The block to which siglist is sent. The osiglist signals are sent from
endpointS to endpointl.

See transform-decllist

Let subid denote the channel sub-structure identifier, decllist the
definition list enclosed in the sub-structure and tailid the identifier
ending the sub-structure definition

If no identifier (name) is specified for the sub-structure, the name
of the surrounding channel is inherited.
Let qtail denote the qualifier in the tailing identifier (subid) and let
nmtail denote the name in the tailing identifier

The name of the sub-structure must not be qualified (as it is not a
remote definition) and the identifier ending the definition m ust be
equal to the identifier starting the definition if specified
The tailing name must be equal to the channel substructure name
Let level denote the Qual of the block where the channel is defined
Create a distinct new name for the block to be constructed

Construct the Diet entry for the block to be constructed
Create distinct new names for the two channels to be constructed
Construct the paths for the first of the two new channels
Construct the paths for the second of the two new channels

Construct the two new ASo channels

Replace the channel endpoint connections (Connects) by bloOk
sub-structure connections (Connectos) in the definition list of the
channel sub-structure
Construct the new block. It has an empty definition list and a
block sub-structure containing the modified definition list

Let di denote the Diet consisting of the descriptor for the enclosing
channel and the descriptor for the channel sub-structure.

Transform the two constructed channel definitions and the block
definition into ASX

Return the three ASi definitions and the Diet which includes the
descriptors for the three definitions, descriptors for the contained
definitions, descriptor for the enclosing channel and descriptor for
the channel sub-structure.

Fascicle X .4 - R ec. Z .100 - A n n ex F .2 59

replace-connects(decllist, new e l , endpointl , newc2, endpoint2)(diet) =

1 (le t conset = {d £ elem s decllist \ is-Connecto(d)} in
2 i f c a rd conset = 2 th e n
3 (let {m k -Connect^(blkidl, clist 1), nik-Connect0(blkid2) clist2)} = conset in
4 le t bquall = get-visible-qual(blkidl, BLOCK)(dict),
5 bqual2 = get-visible-qual(blkid2, BLOCK)(dtcf) in
6 i f {bqual 1 , bqual2} = {endpoint 1 , endpoint2} th en
7 (let (c l, c2) = if bquall = endpointl th e n (new el, newc2) else (newc2, newel) in
8 le t decllist' = (decllist[i] | i £ ind decllist A -u s-Connecto(decllist[i])) in
9 decllist'

1 0 (xnk-Connecto(nik-Ido(() , c l) , clist 1),
11 m k-Connecto(m k-/do((), c2), clist2)))
12 else
13 e x i t (“§3.2.3: The block identifiers in the connects do not denote channel endpoints"))
14 else
15 e x i t (“§3.2.3: There must be exactly two channel endpoint connects”))

ty p e : Declo* Channameo Endpoint Channameo Endpoint —► Diet —♦ Declo+

O b je c t iv e Change a channel sub-structure definition list to a block sub-structure
definition list such th a t the list contains channel connections instead of
channel endpoint connections.

P a r a m e te r s

decllist The definition list to be changed
newel,newc2 The names of the two synthetic channels which replaces the channel

containing a channel sub-structure.
endpointl,
endpointS The endpoints of the channel containing a channel sub-structure.

newel is connected to endpointl and newcS is connected to newcS.

R e s u l t The new definition list to be enclosed by a synthetic block sub-structure.

A lg o r i th m

Line 1 E xtract the channel endpoint connections from the definition list.
Line S and 13 There must be exactly two such channel endpoint connections.
Line 3 Decompose the set containing the two channel endpoint connec­

tions
Line 4-5 Construct the Quals of the block identifiers mentioned in the two

channel endpoint connections
Line 6 These two block identifiers m ust be the same block identifiers as

mentioned in the channel definition.
Line 7 Let c l denote the name of the channel to which clistl correspond

and let cS denote the nam e of the channel to which clistS corre­
spond

Line 8 Construct the definition list where the two channel endpoint con­
nections have been removed and

Line 9-11 R eturn this list concatenated with two synthetic channel connec­
tions

(3.4.2.3)

60 Fascicle X .4 — R ec. Z .100 - A n n e x F .2

1 (let nik-Ido(q, name) = pid in
2 let mk-Instanceso(ini, maxi) — i f ins = nil then xak-Instanceso(nil, nil) else ins in
3 let ini' = i f ini = nil then 1 else eval-simple-expr[ini, "INTEGER”)(chct),
4 max' — i f maxi = nil then infinite else eval-simple-expr[maxi, "INTEGER”)(dicf) in
5 (9 ^ 0
6 -> e x i t (“§2.4.1: Defining names may only be qualified in remote definitions”),
7 tid {pid, nil}
8 — e x i t (“§2.2.2: Ending name in process definition is different from defining name”),
9 ini' > max'

10 -> ex it(“§2.2.3: Initial number is greater than maximum number of instances"),
11 ini' < 0

12 -» e x i t (“§2.2.3: Initial number of instances is less than zero”),
13 max' = 0
14 -> e x i t (“§2.2.3: Maximum number of instances equals zero”),
15 T — (let d = [IMPLIED ~ {} ,
16 OUTSIGNALS _ {} ,
17 SCOPEUNIT h- dtct(SCOPEUNIT) '”*• ((PROCESS, name)),
18 DATATYPEDEF initialdatadef (diet)] in
19 let (as\l is t ,pd , diet') = transform-processparm(pl)(dict + d),
2 0 sigset = transform-validinputset(sigl)(dict + d),
21 (as\declset, ddict) = transform-decllist(decll)(dict + d) in
2 2 i f dom diet' D dom ddict ^ {} th en
23 e x i t ("§2.2.2: Names of formal parameters must be distinct from variable names”)
24 else
25 (let (servicedeclseti, as\body, bdict, connectmap) —
26 transform-process-body(body)(dict + d),
27 outsigs = 6dict(OUTSIGNALS),
28 number = n ik-Number-of -instances\(ini', max') in
29 i f (Bgl, q2 G outsigs U sigset)(len <jrl > len q2 A (gl[t] | 1 < t < len q2) — q2) th en
30 exit("§3.3: Process uses signals on different refinement levels of the same signal”)
31 else
32 (let (asideclset1, vdict) = make-implicit-vardecl(bdict),
33 asitotset = as\declset U as\declset' U servicedeclset\,
34 as\tree =
35 mafce-asifree(PROCESS, name, as\totset, number, as\list, as\body)(ddict) in
36 let delem = [d(SCOPEUNIT) nik-ProcessD(pd, sigset, outsigs, connectmap)] +
37 diet' + ddict + vdict in
38 ({asitree}, delem))))))

ty p e : Prdefo Diet —* Process-definitioni -set D id

O b je c t iv e Transform a process definition into ASi

P a r a m e te r s The AS0 process definition containing

pid The process identifier
ins The ” number of instances” construct
pi The formal param eter list
sigl The valid input signal set
decll The contained definition list
body The process state body
tid The tailing identifier

R e s u l t See transform-decllist

A lg o r i th m

Line 1 Let name denote the process name

3 .4 .3 P ro cess D efin itio n s

transform-processdef(mk-Prdefo(pid, ins, pi, sigl, decll, body, tid))(dict) = (3.4.3.1)

Fascicle X .4 - R ec. Z .100 - A n n e x F .2 61

Line 2

Line 3-4

Line 5

Line 7

Line 9

Line 11
Line 13
Line 15-16

Line 17-18

Line 19
Line 20
Line 21
Line 22

Line 25

Line 29-30

Line 32
Line 33-38

If the ” number of instances” construct is om itted it is the same as
om itting the initial number of instances and om itting the m axim um
number of instances
If the initial number of instances is unspecified, it is equal to 1.
If the m aximum number of instances is unspecified, an infinite
number of instances is allowed. The predefined constant infinite
denotes an “unlim ited” number (see also annex F .l section 5.8). If
one of the expressions are specified, it is evaluated and it m ust be
of the predefined d a ta sort IN TEG ER, i.e. the integer Qual (iqual)
is given as param eter to eval-simple-expr as the only valid sort in
the set of sorts.
The name (identifier) of the process m ust not be qualified (as it
is not a remote definition)
The identifier ending the process definition {tid), must be equal to
the process name (identifier) if specified
The maxim um number of instances m ust be greater than or equal
to the initial number of instances
The in itial number of instances m ust not be less than zero
The m aximum number of instances must not be zero
In itia te the IMPLIED entry to contain no implicit variables and
in itia te OUTSIGNALS to contain no output signals. The two sets
are filled during the transform ation of the process body.
Update SCOPEUNIT to indicate the process level and construct
the initial Data-type-definitioni for the process.
Transform the process formal param eters.
E xtract the complete valid input signal set.
Transform the contained definitions
The names of the formal param eters m ust be different from the
variable and synonym names defined in the process (i.e. they must
have distinct Quals)
Transform the process body and return the list of ASi definitions
from the contained services (if any), the ASi process graph, a
Diet wherein only the IMPLIED entry and the OUTSIGNALS entry
is used and the relation between signal routes and service signal
routes (connectmap is empty if no services are present in the pro­
cess).
There m ust not exist two ou tpu t signals where the first one is
defined in the second one. The same m ust hold for input signals
C onstruct the im plicit A Si variable definitions.
Return the ASi process definition (asitree), and the Diet contribu­
tion consisting of the process descriptor {delem), the formal param ­
eter descriptors {diet'), and the descriptors of the entities defined
inside the process {ddict).

62 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

transform-validinputset (sigset) (diet) —

1 (let qual — diet (SCOPE UN IT) in
2 le t m k -BlockD(, , explicit ,) = dict(get-sur(process-level(qual))) in
3 le t routesigset =
4 if -i explicit th e n
5 {}
6 else
7 {squal | (3mk-SignalrouteD (p i , p2, s i , s2) £ rng diet)
8 ((p i = qual A squal £ s2) V (p2 = qual A squal £ s i))} in
9 le t squalset =

10 i f sigset = nil th en
11 0
12 else
13 (let mk-Inputseto(sigl) = sigset in
14 if sigl = n il th e n {} else transform-signallist(sigl)(diet)) in
15 le t implicit =
16 if is-ServiceD (diet (qual)) th en
17 {}
18 else
19 (let (expimpinput ,) = import-export-signals(diet) in
2 0 expimpinput) in
21 le t timers — {tqual £ dom diet \ is -TimerD (diet (tqual)) A is - local (tqual)(diet)} in
22 le t locals = {tqual £ dom diet \ is-SignalD (diet (tqual)) A is-local(tqual)(dict)} in
23 if squalset D timers = {} A locals C squalset th en
24 routesigset U squalset U implicit U timers
25 else
26 e x i t (“§2.5.2: Valid input signal must contain all local signals and no timers”))

ty p e : [Signallisto] —y Diet —> Signalqual-set

O b je c t iv e Extract the complete valid input signal set for a process or for a service

P a r a m e te r s

A lg o r ith m

rounding block.
Let routeset denote the signals contained in a signal route (im plicit
or explicit) leading to the process or service. The set is em pty if
no explicit signal routes are specified for the surrounding block.
Let squalset denote the signals contained in the valid input signal
set construct for the process or service
Unless the scopeunit is a service extract the Quals of the im plicit
signals leading to the scopeunit.

signal routes, the signals in the valid input signal set construct,
the implicit signals and the timers.

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 63

transform -processparm (pi) (diet) = (3.4.3.3)

1 (if pi = () th e n
2 (0 , 0 , 0)
3 else
4 (let m k -P a r mo (nml, tid) = h d pi in
5 let (asil is t , tp', d') — transform-processparm(tlpl)(dict) in
6 le t asQvardef — m k- Vardefelemo(nml, tid, nil) in
7 let (,d) = transform -vardef (m k- Vardefo(nil, nil, (asovardef)))(dict) in
8 le t tq = get-visible-qual(tid,TYPE)(dict) in
9 le t tq' = get-parent (tq)(dict) in

1 0 le t tql = (tq1 | 1 < i < len nm l) in
11 le t asyid = make-asy-identifier(tq')(dict) in
1 2 le t asynml = (nam e-to-nam e\(nm l[i]) | 1 < i < len nml) in
13 if ca rd elem s asi nml ^ len asx nml th en
14 e x i t ("§2.2.2: Two definitions in the same scopeunit use the same name")
15 else
16 (let asytree = m k -Process-formal-parametery(asynml, asyid) in
17 ((asytree) asylist, tql tp', d + d'))))

ty p e : Parmo* —> Diet —► Process-formal-parametery* Sortqual* Diet

O b je c t iv e

P a r a m e te r s

pi

R e s u l t

A lg o r i th m

Line 1
Line 4

Line 5
Line 6

Line 7
Line 8
Line 9
Line 10

Line 11

Line 12
Line 13
Line 16

Line 17

Transform a list of formal process param eters into AS]

The list of formal AS0 process param eters.

The ASX formal param eters, the corresponding sort list which is used
for checking of actual param eters in the create request node, and the
Diet contribution containing the descriptors of the formal param eters.

The function traverse recursively through the list of formal param eters.

W hen through, return empty lists and the empty map
Let nml denote the name list of the first element in the list and let
tid denote their sort
Transform the rest of the formal param eters
Construct an ASo variable definition for the param eters in hand
and
Transform this variable definition.
Construct the Qual of the variable sort
E xtract the parent in the case of a syntype
Construct the list (tql) of sort Quals corresponding to the variable
list.
Construct the ASi identifier (asyid) of the parent partial type (tq')
for the sort of the variable list (nml)
transform the name list to an ASi name list
The names in the list must be distinct
C onstruct the ASi formal param eter definition for the param eters
in hand (nml).
R eturn the ASi formal param eter definition together with the rest
of the formal param eters, return the associated sort list and return
their Diet contributions

64 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

3 .4 .4 S ign al D efin itio n s

transform-signaldef {mk-Sigdefo (elemlist)){dict) =

10
11
12
13
14
15
16
17
18
19
20
21

(let m k-Sigelem o(nm , tid l , refinement) = lid elemlist in
le t dlev = diet + [SCOPEUNIT dtct(SCOPEUNIT) ^ ((SIGNAL, nm))] in
le t (asi refinement, subsigl, subsig2, d) —

if refinement = n il th en
(au , {}, {}, Q)

else
(let mk-Refinemento{subsiglist) — refinement in
le t {as^set, s i , s2, d') = transform-refinement{subsiglist){dlev) in
{mk-Signal-refinementi{as\set) , s i , s 2 , d')) in

let quail = {get-visible-qual{tidl[i],TYPE){dict) | 1 < i < len tidl) in
le t d1 = [dict(SCOPEUNIT) /"x ((SIGNAL, nm)) i—► m k -SignalD {quail, subsigl, subsig2)] in
let {as\se t ' , d") =

i f t l elemlist = ()
th e n ({}, 0)
else transform-signaldef (m k-5i^de/o(tl elemlist)){dict) in

if dom d' fl dom d" {} th en
e x i t (“§2.2.2: Two definitions in the same scopeunit use the same name”)

else
(let as\idlist — {make-as\-identifier{quall[i]){dict) \ i 6 in d quail) in
le t as\tree — m k -Signal- definitioni {name -to -nom ei(nm), as\idlist, asi refinement) in
({asxtree} U as\se t ' , d + d' + d")))

t y p e : Sigdefo

O b je c tiv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Line 1

Line 2
Line 3-9

Line 10
Line 11
Line 12-15

Line 16
Line 19
Line 20-21

Diet —* Signal -definitioni -set Diet

Transform a signal definition into ASi

The composite ASo signal definition introducing a list {elemlist) of ele­
m entary signal definitions.

See transform-decllist

Decompose the first signal definition in the composite ASo signal
definition
Update level to indicate the signal structure.
Transform the refinement part of the signal definition and return
the contained ASi definitions (asi refinement) , the sub-signals lead­
ing in the same direction as the signal being defined {subsigl), the
sub-signals leading in the opposite direction of the signal being de­
fined {subsig2) and the Diet contribution from the new definitions
(<*)■
C onstruct the sort Quals from the specified ASo sort identifier list
C onstruct the Diet contribution of the signal.
Transform the rest of the signal definitions in the composite signal
definition.
No two signals in the composite definition may have the same name
Construct the ASi sort identifier list.
R eturn the set of ASi signal definitions and the Diet contributions
from the signals.

(3.4.4.1)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 65

transform-refinement (decllist) (diet) — (3.4.4.2)

1 (if decllist = () th e n
2 ({},{}, 0 , 0)
3 else
4 (let (asideclrest, s ig lres t , sig2rest, drest) = transform-refinement(tl decllist)(dict) in
5 le t mk-Subsignalo(reverse, sigdef) = h d decllist in
6 le t (as\decl, d) = transform-signaldef (sigdef)(dict) in
7 if dom d H dom drest ^ {} th en
8 e x i t (‘‘§2.2.2: Two definitions in the same scopeunit and same entity class define the same name”)
9 else

10 (let asitot = asideclrest U {nik-Subsignal-definitioni(reverse, decl) | decl £ as\decl} in
11 if reverse = n il th e n
12 (as\tot, siglrest U dom d, sig2rest, d + drest)
13 else
14 (as \ to t , siglrest, sig2rest + d o m d, d + drest))))

ty p e : Subsignalo* —+ Diet —► Subsignal-definitioni -set Signalqual-set Signalqual-set Diet

O b jec tiv e

P a ra m eters

decllist

R esu lt

A lg o r ith m

Line 1
Line 4
Line 5
Line 6
Line 7
Line 10

Line 11-14

Transform the sub-signals in a signal refinement into ASi subsignal
definitions.

The list of ASo subsignal definitions

A set of ASi subsignal definitions, the set of signal Quals containing
the signals leading in the same direction as the parent signal, the set of
signal Quals containing the signals leading in the opposite direction as
the parent signal (these two sets are in the function transform-signaldef
pu t into the descriptor for the parent signal) and the Diet contribution
for the sub-signals.

W hen through then return no contributions.
Transform the rest of the sub-signals.
Decompose the first subsignal in the list.
Transform the subsignal as if it was an ordinary signal.
Check th a t the subsignal definitions are unique.
Construct the set of ASi subsignal definitions from the ASi signal
definitions and
Return this set and if REVERSE was specified then add the signal
Quals (taken from the dom ain of d) to the first Signalqual set,
otherwise add them to the second Signalqual set. Also return the
diet contributions for the sub-signals (d) and the contribution for
the rest of the sub-signals (drest).

3 .4 .5 P ro ced u re D efin itio n s

transform-proceduredef (mV.-Procdefo(pid, pi, decll, body, tid))(dict) = (3.4.5.1)

1 (let mk-Ido(q, name) = pid in
2 i f q = () A tid £ {pid, nil} th e n
3 (let name1 = if is-SerwceZ>(dtct(dtct(SCOPEUNIT))) th e n
4 create-unique-name()
5 else
6 name in
7 le t nqual = dict(SCOPEUIMIT) ^ ((PROCEDURE, name')) in
8 le t d = [SCOPEUIMIT ~ dict(SCOPEUNIT) ^ ((PROCEDURE, name)),

66 Fascicle X .4 — R ec. Z .100 — A n n e x F .2

9 DATATYPEDEF initialdatadef [diet)] in
1 0 le t (asilist, pd, diet1) = transform-procedureparml(pi)(diet -f d),
11 (asideclset, ddict) = transform-decllist(decll)(dict -f- d),
12 (mk-Procedure-graphi(sta , stateset), bdict) = transform-body(body)(dict + d) in
13 i f dom diet' H dom ddict ^ {} then
14 e x i t (“§2.2.2: Names of formal parameters must be distinct from variable names”)
15 else
16 i f (3squal £ dom dict)(is-ServiceD(dict(squal)) A
17 get-sur(squal) = process-or-service-level(dict(SCOPEUNIT))) A
18 stateset ^ {}
19 th en e x i t (“§4.10.2: Procedure in decomposition or service has states or import expressions”
20 else (let as\tree =
21 ma&e-asi<ree(PROCEDURE, name', as\declset,
22 asxlist,mk-Procedure-graphi(sta, stateset), n il)(ddict) in
23 le t delem = [d(SCOPEUNIT) i—► m k-ProcedureD(pd, nqual)] 4 - d id ' + ddict in
24 ({as\tree}, delem + bdict)))
25 else
26 (q ± ()
27 -* e x i t ("§2.4.1: Defining names may only be qualified in remote definitions”),
28 T -♦ e x i t (“§2.2.2: Ending name in procedure definition is different from defining name”)))

t y p e : Procdefo

O b je c tiv e

P a r a m e te r s

pid
pi
decll
body
tid

R e s u l t

A lg o r i th m

Line 1
Line 2

Line 3

Line 7
Line 8-9

Line 10

Line 11
Line 12

Line 13

Line 16-19

Diet —► Procedure-definitioni-set Diet

Transform a procedure definition into ASi

The procedure definition containing

The procedure identifier (must contain a name only)
The list of formal param eters
The list of definitions
The sta te body
The identifier (name) ending the definition

An ASi definition set consisting of one definition only and the diet
contributions for the procedure and for the contained definitions

Let name denote the procedure name
The procedure name (identifier) m ust not be qualified (as it is not
a remote definition) and the name (identifier) ending the procedure
definition m ust be equal to the procedure name if specified.
C onstruct a unique name for the procedure definition if it occurs
in a service.
Construct the variable Qual to be used in ASx
U pdate SCOPEUNIT to denote the procedure scopeunit and con­
struct the initial Data-type-definitioni for the procedure.
Transform the formal procedure param eters in order to obtain the
ASx param eters (asilist), their sort descriptors (to be used when
the procedure is invoked), and their Diet contributions.
Transform the contained definitions
Transform the procedure body and return the ASi procedure graph
and a Diet wherein only the IMPLIED entry and the OUTSIGNALS
entry are used.
No formal param eter may have the same name as a variable or
synonym defined in the procedure
If a procedure containing states or im ports is defined in a process
or in a procedure in a process then the process m ust not contain
services.

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 67

Line 20-24 R eturn the ASi procedure definition (as^tree) and a Diet contri­
bution consisting of the procedure descriptor the formal param eter
descriptors, and the descriptors of the entities defined in the pro­
cedure (bdict).

transform-procedureparml (pi) (diet) =

1 (if pi = () th e n
2 (0 , 0 , 0)
3 else
4 (let (as\elems, tpelems, delems) =
5 cases h d p l:
6 (xnk-Inoutparmo(varlist,tid)
7 -* transform-varparm(trne, varlist, tid)(dict)1
8 mk-Inparmo(varlist, tid)
9 - t transform-varparm(false, varlist,tid)(dict)) in

1 0 le t (asilist, tplist, d) — transform-procedureparml(t lpi)(diet) in
11 if do m delems D dom d ^ {} th e n
12 e x i t ("§2.2.2: Two definitions in the same scopeunit use the same name”)
13 else
14 (as\elems asilist, tpelems ^ tplist, delems + d)))

ty p e : Procparmo* —* Diet —* Procedure-formal-parameter^ FormparmD * Diet

O b je c t iv e Transform a list of formal procedure param eters into ASi

P a r a m e te r s

pi The list of formal AS0 param eters.

R e s u l t The ASi Formal param eters, the descriptors (FormparmD*) which are
put into the ProcedureD descriptor and used for type checking of the
actual param eters and finally the Diet contributions for the param eters.

A lg o r i th m

Line 1 W hen through, return empty lists and the empty Diet
Line 4-9 Transform the first param eter which is either an INOUT variable

param eter (line 6) or an IN variable param eter (line 8).
Line 10 Transform the rest of the formal param eter list
Line 11 The names introduced in pi must be distinct
Line 14 R eturn the objects composed of the first formal param eter and the

rest.

(3 .4 .5.2)

68 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

transform-varparm(isout, varlist , tid)(dict) ^ (3.4.5.3)

1 i f c a rd elem s varlist ^ len varlist th en
2 e x i t (‘‘§2.2.2: Two definitions in the same scopeunit use the same name”)
3 else
4 (let tqual = get-visible-qual(tid, TYPE)(diet) in
5 le t tqual' — get-parent (tqual) (diet) in
6 le t as\varlist = (name-to-name\(varlist[i\) | 1 < i < leu varlist) in
7 le t asi tree = if isout th en
8 rtik-Inout -parameteri (asi varlist, make -asi-identifier (tqual) (diet))
9 else

1 0 m k - ih -parameteri (a$i varlist, make-as\-identifier(tqual)(d iet)),
11 parmdescrlist = if isout th en
12 (m k-InoutDescr (tqual) | 1 < i < len varlist)
13 else
14 (irik-InDescr(tqual') | 1 < i < len varlist) in
15 le t nmlist =
16 (if is-ServiceD (diet (diet (SCOPEUNIT)))
17 th e n create-unique-name()
18 else varlist[i] | 1 < * < len varlist),
19 newquallist — (dzct(SCOPEUNIT) /"> ((VALUE, nmlist[i])) | 1 < i < len varlist) in
2 0 le t vquall — (dfcf(SCOPEUNIT) ^ ((VALUE, varlist[i])) | 1 < i < len varlist),
21 delem — i—► m k- VarD(tqual, nil, nil, nil, newquallist[i]) | 1 < i < len varlist] in
2 2 ((asitree), parmdescrlist, delem))

ty p e : Bool Nameo* Ido —+ Diet —> Procedure-formal-parameter^ FormparmD+ Diet

O b je c tiv e Transform a formal param eter into ASi

P a r a m e te r s

isout True if the formal param eter is an IN OUT param eter.
varlist The names of the formal param eters
tid Their sort.

R e s u l t See transform-procedureparml

A lg o r i th m

Line 1 The names in the formal param eters m ust be distinct
Line 4 Extract the Qual of the param eter sort.
Line 5 E xtract the parent partial type of the sort.
Line 6 Transform the name list into ASx names
Line 7-10 C onstruct the ASi formal param eter.
Line 11-14 C onstruct the actual param eter sort descriptor.
Line 21 C onstruct the diet contribution for the formal param eter. The

contained descriptors are VarD descriptors, (like for ordinary vari­
able) since formal variable param eters acts as ordinary variables
w ith respect to the static properties.

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 69

transform-sortgenerator(ixik-Sortgeneratoro(nm, parml, geninstl, prop, tnm))(dict) =

3 .4 .6 S ort G en erators

(3.4.6.1)

1 (if tnm 6 {nm, nil} A gen-formparm-unique(parml, {nm }, {}, {}) th en
2 (let gqual = dict{SCOPEUNIT) ^ ((GENERATOR, nm)) in
3 le t prop1 = transform-geninst(nm, geninstl, prop)(dict + [pgua/ i—> mk-j&rrorX>()]) in
4 le t descr = m k -GeneratorD (parml, prop') in
5 ({}, [gqual i—► descr]))
6 else
7 e x i t (“§5.4.1.12: Ending name in generator definition is different from defining name’’))

ty p e : Sortgeneratoro —► Diet —► Decl\ -set Diet

O b je c t iv e C onstruct the Diet contribution corresponding to a d a ta sort generator.
No ASj objects are returned.

P a r a m e te r s An ASo d a ta sort generator containing

nm The generator name
parml The formal param eters
geninstl A list of contained generator instantiations
prop The norm al properties
tnm The name ending the definition

R e s u l t For convenience the function returns a set of ASi definitions though
the list is always em pty (see transform-decllist). Also returned is the
Diet contribution of the d a ta sort generator.

A lg o r i th m

Line 1 The name ending the definition m ust be equal to the generator
name if specified and the formal param eters w ithin the various
param eter classes m ust be unique.

Line 2 C onstruct the Qual for the generator.
Line 3 Transform the generator instantiations contained in the generator

definition. The generator qual (gqual) is denoted by a ErrorD such
th a t recursion can be detected.

Line ^-7 R eturn the Diet contribution containing the generator formal pa­
ram eters (parml), and the generator body (prop). Well-formedness
is applied to the body after it is replaced by the generator instance
construct (not a t this place.)

gen-formparm-unique(parml, sset, Iset, oset) =

1 i f parml — () th e n
2 tr u e
3 e lse
4 ca se s h d parml:
5 (nik-Sortparmo(nmlist)
6 -♦ ca rd e lem s nmlist = le n nmlist A e le m s nmlist D sset = {} A
7 gen-formparm-unique (t\parml, sset U e lem s nmlist, Iset, oset),
8 m k - Termparmo(nmlist),
9 rnk-Litparmo(nmlist)

10 -» ca rd e le m s nmlist = le n nmlist A e le m s nmlist D Iset = {} A
11 gen-formparm-unique(tlparml, sset, Iset U e lem s nmlist, oset),
12 m k -Opparmo (nmlist)
13 -+ card e le m s nmlist — le n nmlist A e lem s nmlist D oset — {} A
14 gen-formparm-unique(t\parml, sset, Iset, oset U e lem s nm lis t))

ty p e : Genparmo Nameo-set Nameo -set Nameo-set* —► Bool

(3.4.6.2)

70 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

O b jec tiv e

P a ra m eters

Check th a t the formal param eters for a generator are unique.

parml The formal param eters
sset,Iset,oset The set of sort param eters, literal or term param eters and op­

erator param eters respectively considered so far (the function is
recursive).

R e s u l t t r u e if success

A lg o r i th m

Line 5-7 For a sort param eter, the contained names m ust be unique and
none of the names may occur in another sort param eter and the
rest of formal generator param eters m ust also be unique.

Line 8-11 For a term param eter or a literal param eter, the contained names
m ust be unique and none of the names may occur in another term
or literal param eter and the rest of formal generator param eters
m ust also be unique.

Line 12-14 For an operator param eter, the contained names m ust be unique
and none of the names may occur in another operator param eter
and the rest of formal generator param eters m ust also be unique.

3 .4 .7 S o r t D e fin itio n s

transform-partial-typedef(mk-Partialtypedefo(nm, extprop, prop, vlist, tnm))(dict) =

1 (if tnm £ {nm, nil} th en
2 (le t tqual = dict{SCOPEUNIT) ^ ((TYPE, nm)) in
3 le t (implicitdecl, delem) = make-implicit-sigdecls(tqual)(dict) in
4 i f (3opqual € d om dict)((is>-OperatorD (dict(opqual)) V is - LiteralD (diet (opqual))) A
5 s -Result(dict(opqual)) = tqual A
6 get-sur(get-sur(opqual)) = dtc<(SCOPEUNIT)) th e n
7 i f vlist = n il th e n
8 (le t diet1 = ca ses extprop:
9 (nil

1 0 — transform-sortdef(nm, prop, nil)(diet),
11 mk-Struco()
1 2 -» transform-struc(nm, extprop, prop)(dict),
13 nik-Inheritedo(,,)
14 — transform-inherited(nm, extprop, prop)(dict),
15 itik-Geninstlisto(instl)
16 — (le t prop1 = transform-geninst(nm, instl, prop)(diet) in
17 transform-sortdef(nm, prop', n il) (diet))) in
18 (implicitdecl, diet'))
19 e lse
20 (le t unm = create-unique-name() in
21 le t (,dnew) =
22 transform-partial-typedef(mk-Partialtypedefo(unm, extprop, prop, n il, unm))(dict),
23 id = mk-/do(dict(SCOPEUI\IIT), unm) in
24 le t (as\syn, dsyn) =
25 transform-syntype(m'k.-Syntypedefo(nm, id, vlist, nil, tnm))(dict) in
26 (implicitdecl U as\syn, delem + dnew + dsyn))
27 else
28 e x i t ("§5.2.1: There exist no operators which returns a value of that sort”))
29 e lse
30 e x i t ("§5.2.1: Ending name in partial type definition is different from defining name”))

ty p e : Partialtypedefo —* Diet —> Decl\ -set Diet

(3.4.7.1)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 71

nm
extprop
prop
vlist
tnm

R e s u l t

A lg o r i th m

O b je c tiv e

P a ra m eters

Line 1

Line 2
Line 3

Line 4
Line 5
Line 6
Line 7

Line 8

Line 9
Line 11
Line 13
Line 15

Line 20-26

Line 20
Line 21

Line 24

Transform a partia l d a ta type definition into ASi

The d a ta sort definition containing

The sort name
The extended properties
The properties (literals, operators, equations etc.)
A value list in the case of a syntype
The name ending the definition

See transform-decllist

The name ending the d a ta sort definition m ust be equal to the d a ta
sort name if specified.
C onstruct the Qual representing the sort identifier.
C onstruct the ASi definitions which defines the im plicit signals
attached to all the IM PO RT - EXPORT variables of the sort being
defined.
There m ust exist an operator or literal which
has this sort as result sort and which
is defined in the surrounding scopeunit
If the CONSTANTS construct is om itted then it is a real sort
definition
C onstruct the Diet contribution containing the sort descriptor,
the operator and literal descriptors and the updated Data-type-
definitioni. The ASo sort definition is either
A (simple) sort definition (with no extended properties).
A struct definition or
A sort which is based on inheritance or
A (sequence of) generator instance(s). In this case, the instances
are expanded (line 15) before they are transform ed in the ordinary
way (line 17)
If CONSTANTS is specified then it is a syntype definition which
means th a t
A unique im plicit sort name is generated and
The Partialtypedefo w ithout any CONSTANTS and with th a t new
name is transform ed and
The Syntypedefa w ith CONSTANTS (vallist) and the im plicit sort
as parent is transform ed

make-implicit -sigdecls (tqual) (d ie t) =

1 (let qset = { (t q ,) G dom diet | tq — tqual} in
2 transform-decllist ({make-implicit -decl(tqual, dict(t)) \ t G qset})(dict))

ty p e : Sortqual —► Diet —► Decli _set Diet

O b je c t iv e

A lg o r i th m

Line 1

Line 2

C onstruct the ASi signal definitions attached to all the NameclosureDs
which contains the sort tqual (see the definition of Exportmap).

C onstruct the set of those NameclosureDs of which the Sortqual
equals tqual and
C onstruct the list of ASo definitions constructed by joining the lists
of definitions attached to every element in the set and transform
this list into ASi.

(3.4.7.2)

72 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

make-implicit-decl(tqual, m k -SignalnamesD(, xqnm, x rnm)) =

1 (let asotid = aso-id(tqual) in
2 mk-Sigdefo((m]s.-Sigelemo(xqnm, (),n il),
3 mk-Sigelemo(xrnm, (asotid), nil))))

ty p e : Sortqual SignalnamesD —♦ Sigdefo

O b je c tiv e Construct the ASo signal definitions attached to EX PO RT - IM PO RT
of a certain name and a certain sort, (tqual).

A lg o r ith m

line 1 C onstruct the ASo identifier of the sort carried by the xtR EPLY
signal

Line 2-3 C onstruct the signal definition containing
Line 2 The xtQUERY signal and
Line 3 The xtREPLY signal.

transform-inherited(nm, m k-Inheritedo(pid, Irenam, ops), prop)(dict) =

1 (let pqual = get-inherited-parent(get-visible-qual(pid,TYPE)(dict))(dict) in
2 i f is-recursive-sort(pqual, {})(dict) th en
3 e x i t ("§5.4.1.11: Sort is based on itself")
4 else
5 (let pqual' = s -Newqual(dict(pqual)) in
6 le t sortdict = transform-sortdef(nm, prop, pqual)(dict) in
7 le t typedef = sortdict(DATATYPEDEF) in
8 le t m k -Data-type - definitioni (typename, union, sorts, sigs, eqs) = typedef in
9 le t iqual b e s .t . iqual € dom sortdict A is -SortD(sortdict(iqual)) in

1 0 le t m k -SortD(eqs' ,pq, expi, nqual) = sortdict (iqual) in
11 le t (litmap, litd) = transform-literal-renaming(Irenam, iqual, pqual)(dict) in
1 2 le t concaxiomsi = make-as\ -concaxioms(Aom litd)(dict) ii\
13 le t (opmap, opd, opset) = transform-operator-renaming(ops, iqual, pqual)(dict) in
14 if dom sortdict D dom litd fl dom opd {} th en
15 e x i t (“§5.2.2: Operator or literal both defined explicit and by inheritance”)
16 else
17 (let inhax = extract-inherited-axioms(litmap, opmap, nqual, pqual')(diet) in
18 le t iid\ — make-as\-identifier(nqual)(dict) in
19 le t litsig — {m k-Literal-signature\(nmi, iidi) | m k-Id e n t i f ie r (, nm i) € rn g litmap} in
2 0 le t datatypedef =
2 1 m k -Data-type - definitioni (typename, union, sorts,
22 sigs U litsig U opset, eqs U inhax U concaxiomsi) in
23 le t sortdescr = m k -SortD(eqs' U inhax U concaxiomsi, pq, expi, nqual) in
24 (sortdict -f litd + opd + [iqual h-» sortdescr,
25 DATATYPEDEF h- datatypedef']))))

ty p e : Nameo Inheritedo Propertieso —► Diet —> Diet

O b je c tiv e Transform a partial type definition which is based on inheriting.

P a ra m eters

nm The name of the sort being defined
Inherited The ASo inherit construct
prop The ASo properties defined in the ADDING construct.

R esu lt The Diet where the DATATYPEDEF entry has been updated to include
the sort being defined and where descriptors for the sort and operators
has been added.

(3 .4 .7.3)

(3 .4 .7.4)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 73

A lg o r i th m

Line 1 E xtract the Qual denoting the sort identifier of the parent.
Line 2-3 The sort m ust not inherit from itself
Line 5 E xtract the unique Qual of the parent
Line 6 U pdate the DATATYPEDEF entry w ith the sort being defined and

w ith its ADDING properties.
Line 8 Decompose the updated Data-type-definitioni •
Line 9-10 E xtract the (just added) Qual of the sort being defined and decom­

pose it.
Line 11 Transform the literal renaming part into a m ap litmap and con­

struct descriptors for the literal names introduced in the literal
renaming.

Line 12 Construct the axioms implied from any character string literals
introduced in the literal renaming.

Line 13 Transform the operator renam ing p a rt into a m ap opmap and con­
struct descriptors for the new operator names (opd) and construct
the ASi signatures for the operators (opset). This function also
deals with the operators which are im plicitly inherited (the invisi­
ble operators)

Line 14-15 all operators and literals defined in the adding part sortdict and the
operators (opd) and literals (litd) defined in the inheritance part
m ust have different signatures.

Line 17 E xtract all the axioms using the operators which are implicitly
inherited.

Line 18 Construct the ASi identifier of the sort being defined.
Line 19 Construct the ASi signatures of the renamed literals.
Line 20-23 Include the properties from the inheritance part in the Data-type-

definition and in the descriptor for the sort.
Line 24 R eturn the Diet contribution from the adding part (sortdict), for

the renamed literals (litd), for the renamed operators (opd), for the
sort descriptor and the updated Data-type-definitioni

is-recursive-sort(qual, qset)(dict) =

1 (if qual € qset th en
2 tru e
3 else
4 cases dict(qual):
5 (m k-SortD (, p a , ,)
6 — if pa = n il th e n false else is-recursive-sort(pa, qset U {qual})(dict),
7 m k -SyntypeD (pa , , ,)
8 -* is-recursive-sort(pa, qset U {qual})(diet)))

ty p e : Sortqual Sortqual-set —> Diet —► Bool

O b je c t iv e Check th a t a syntype or an inheriting sort is not based on itself. The
function traverse recursively through the diet until a partial type de­
scriptor is found which is not based in inheritance. (I.e. until the false
condition applies).

P a r a m e te r s

qual Denotes the sort in hand
qset Denotes the set of sorts which already have been referred. W hen

the function initially is applied, this set is empty.

R e s u l t True if the sort is recursively defined.

(3.4.7.5)

74 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

A lg o r i th m

Line 1 If the sort in hand (qual) already has been referred then t r u e else
Line 5-6 if the sort in hand is a partial type having no parent then the sort

is not recursively defined, otherwise add the partia l type to the
sortset and proceed with its parent.

Line 7 Add the syntype in hand to the sortset and proceed w ith its parent.

transform-literal-renaming(Irenam, qual, pqual)(diet) =

1

2
3
4
5

ty p e

(let plitset = {lq £ dom diet | is -LiteralD(diet(lq)) A s -Sortqual(dict(lq)) — pqual} in
le t defaultmap = [qual (—► qual \ qual £ plitset] in
le t litmap — defaultmap + build-literal-renaming(Irenam, qual, pqual, plitset) in
([make-as\-identifier(lq)(dict) i—* make-asi-identifier(litmap(lq))(dict) \ Iq £ do m litmap],
[/<? i—► m k -LiteralD (qual) | Iq £ rng litmap]))

Literalrenamingo Sortqual Sortqual —* Diet —>
(Literal-operator-identifieri is* Literal-operator-identifieri) Diet

O b je c tiv e

P a r a m e te r s

Irenam
qual
pqual

R e s u lt

A lg o r i th m

Line 1
Line 2

Line 3

Line 4

Line 5

C onstruct a m ap from parent literals into new literals to be used when
the inherited axioms are to be extracted (in extract-inherited-axioms)
and construct Diet descriptors for the new literals

The ASo literal renaming
The Qual of the sort being defined
The Qual of the sort on which the inheritance is based.

The constructed map and the Diet contribution containing the literal
descriptors

Extract from Diet, the set of literals defined for the parent sort.
C onstruct the default map, i.e. the corelation which applies for the
literals which are not mentioned in the renaming part.
Construct literal renaming m ap (where the contained literals are
Quals) by overwriting the default map.
R eturn the literal renaming m ap after having converted the Quals
to ASi identifiers and return
The literal descriptors (LiteralDs) which all contain the Qual of
their sort

(3.4.7.6) ,

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 75

build-literal-renaming(Irenam, qual, pqual, plitset) = (3.4.7.7)

1 i f Irenam = {) th en
2 Q
3 else
4 (let nik-Literalpairo(nlit, olit) = hd Irenam in
5 let nqual = qual ((LITERAL, nlit)),
6 oqual = pqual ((LITERAL, o/t<)) in
7 i f oqual £ plitset then
8 (let restmap = build-literal-renaming(tl Irenam, qual, pqual, plitset) in
9 i f nqual £ rng restmap then

10 e x i t (‘‘§5.4.1.11: Literal defined twice in renaming”)
11 else
12 i f oqual £ d om restmap then
13 e x i t ("§5.4.1.11: Literal renamed twice”)
14 else
15 restmap -f [oqual i—► nqual])
16 else
17 ex it(“§5.4.1.11: Literal in literal renaming is not defined in the parent sort”))

ty p e : Literalrenamingo Sortqual Sortqual Qual-set —*■ (Qual s^Qual)

C onstruct from the ASi renaming part a map from parent Quals into
Quals of the new literal names.

The ASo literal renaming
The Qual of the sort being defined
The Qual of the sort on which the inheritance is based
The set of Quals containing all the literals defined for the parent
sort

The constructed literal map

W hen through then return nothing (the function is recursive).
Decompose the next pair of literal names in the literal renaming.
C onstruct the Quals of the new literal name (nqual) and of the
parent (old) literal name (oqual).
The right-hand literal in Literalpairo must be a literal of the parent
sort.
C onstruct the m ap for the rest of the literal renaming.
If the lefthand literal (line 9) or the right-hand literal (line 12) is
in the m ap for the rest of the literal renaming then it is mentioned
twice in the literal renaming
Else return the literal m ap for the rest of the literal renam ing where
this contribution has been added

76 F ascicle X .4 — R ec. Z .100 — A n n e x F .2

O b je c tiv e

P a ra m eters

Irenam
qual
pqual
plitset

R e su lt

A lg o r ith m

Line 1
Line 4
Line 5-6

Line 1

Line 8
Line 9-12

Line 15

transform-operator-renaming(oprenam, iqual, pqual)(diet) = (3.4.7

1 (let
2

3
4 let
5 let
6 le t
7 let
8 le t
9 let

10 le t
11

1 2 let
13 (id

ty p e : 0

(let opset = {qual £ dom diet | is -OperatorD(dict(qual)) A
(let m k -OperatorD (argl, res, ,) = diet (qual) in
pqual £ elem s argl V pqual — res)} in

licitset = {qual £ opset | s - Explicit (dict(qual))} in
lameset = {name | (3g £ explicitset)((, (n a m e , ,)) = q[len g])} in
enam' = if oprenam = ALL th e n (mk-Operatorpairo(nil, nm) \ nm £ allnameset) else oprenam

'diet) = (opmap + opmap', opd + opd1) in
[make-as\-identifier(qual)(dict) make-as\-identifier(qmap(qual))(dict)
qual £ dom qmap] in
= {make-asi-typing(op)(diet) \ op £ dom opdict} in

| Operatorrenamingo) Sortqual Sortqual —► Diet —>
(Operator-identifieri m*Operator-identifieri) Diet Operator-signaturei-se t

O b jec tiv e

P a ra m eters

oprenam
iqual
pqual

R esu lt

A lg o r ith m

Line 1

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10
Line 12

Line 13

C onstruct from the ASi operator renaming part a map from parent
operator identifiers into operator identifiers of the sort being defined.
The m ap includes the identifiers of the operators which are im plicitly
inherited (an operator is implicitly inherited if it includes the parent
sort in its signature)

The ASo operator renaming
The Qual of the sort being defined
The Qual of the parent

The constructed operator map

C onstruct the set of operator Quals from Diet for which it holds
th a t the parent Qual (pqual) occur in the argum ent sort list (argl)
or is the result of the operator.
Construct the subset of opset which contains those operators which
are explicitly defined (or inherited).
Construct the set of operator names for the explicit defined oper­
ators.
If ALL is specified then let oprenam' denote the Operatorrenamingo
which includes all explicit operators else let oprenam' be oprenam.
C onstruct the operator Qual m ap and the Diet descriptors for the
explicit operators.
Construct the operator Qual m ap and the Diet descriptors for the
im plicit operators.
The complete operator Qual m ap is qmap and the complete Diet
contribution is opdict.
Convert the operator Qual map to an operator identifier map.
For each operator in the Diet contribution, construct the ASi op­
erator signature.
Return the operator identifier map, the Diet contributions and the
ASi signatures of the operators

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 77

make-asi-typing (qual) (diet) = (3.4.7.9)

1 (let m k - OperatorD (si, res, qual' ,) = dict(qual) in
2 le t (, (n m , ,)) = qual[len qual'] in
3 let sl\ — (make-asi-identifier(sl[i])(dict) | 1 < i < len si),
4 res\ — make-as\-identifier(res)(dict) in
5 m k - Operator-signature\(name-to-name\(nm), sl\, resi))

ty p e : OperatorD —* Diet —* Operator-signaturei

O b je c tiv e From an operator Qual construct the ASi signature of the operator

P a ra m eters

qual The operator Qual

R e su lt The constructed operator signature

A lg o r ith m

Line 1 Decompose the operator descriptor, qual' denotes the Newqual
containing the' name to be used in ASi

Line 2 E xtract the operator name by decomposing the last element in
the Qual. For an operator, the last element always is an Opera­
torqualelem (see the dom ain).

Line 3 C onstruct the ASx identifiers list denoting the argum ent sorts.
Line 4 C onstruct the ASi identifier denoting the result sort.
Line 5 R eturn the composed operator signature

build-operator-renaming(renlist, qual, pqual, opset)(dict) =

1 (i f renlist = () then
2 (D.D)
3 else
4 (let m k - Operatorpairo(nop, oop) = hd renlist in
5 let oset = {oqual £ opset | (let (, (n m , ,)) = oqual[len oqual] in
6 get-sur (oqual) = pqual A
7 nm = oop)} in
8 i f oset — {} V (is-Nameo(oop) A (let mk-Nameo(, exc) = oop in
9 exc nil)) then

10 i f oset — {} then
11 e x i t (‘‘§5.4.1.11: Operator in operator renaming is not defined in the parent sort”)
12 else
13 e x i t ("§5.4.1.11: Operator with an exclamation is mentioned in an operator renaming”)
14 else
15 (let (maprest, drest) =
16 build-operator-renaming(tl renlist, qual, pqual, opset \ oset)(dict) in
17 let (map, d) = rename-operator(qual, pqual, oset, nop)(dict) in
18 i f d o m d D d o m drest = {} then
19 (map + maprest, d + drest)
20 else
21 e x i t (‘‘§5.4.1.11: Operator renamed twice”))))

ty p e : Operatorrenamingo Sortqual Sortqual Qual-set —* Diet —► (Qual s?Qual) Diet

O b je c tiv e From an operator renaming, construct a map from parent operator
Quals into operator Quals of the sort being defined. Also construct the
Diet contributions for the new operators

P a ra m eters

renlist The ASo operator renam ing list

(3.4.7.10)

78 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

qual The Qual of the sort being defined
pqual The Qual of the parent sort
opset The set containing all Quals of the explicitly defined operators

R e s u l t The constructed operator Qual m ap and the Diet contributions

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Decompose the next rename pair in the rename list.
Line 5 E xtract the set of operator Quals for which the surrounding scope­

unit of the place where it is defined is the parent Qual and the
name part is equal to the parent operator name mentioned in the
renaming.

Line 8-11 There must exist a t least one Qual in the set.
Line 8-13 The parent operator name must not contain an exclam ation mark.
Line 15 Construct the operator m ap and the Diet contributions for the rest

of the renaming list.
Line 17 Rename the operator in hand, map denotes the contributions to

the operator m ap and d denotes the contribution to the Diet.
Line 18-19 If the Quals of the operator name in hand (there may be several

Quals for the operator name because the parent operator name
m entioned in the operator renaming may denote several (over­
loaded) operators) are not in the Diet contributions for the rest
of the renaming list then return the operator m ap contributions
for the operator name in hand (map) and for the rest of the list
and return the corresponding Diet contributions

rename-operator(iqual, pqual, oset, nop)(dict) ^ (3.4.7.11)

1 i f oset — {} th e n
2 (0 , 0)
3 else
4 (let qual 6 oset in
5 le t (, (n m , ,)) = qual [len qual] in
6 le t m k -OperatorD(arglist, result, ,) = dict(qual) in
7 le t arglist1 = (if get-parent(arglist[i])(dict) = pqual th en iqual else arglist[i] | 1 < i < le n arglist) in
8 le t parglist — (get-parent(arglist'[i])(dict) | 1 < i < len arglist1) in
9 le t result' = if get-parent (re suit) (diet) = pqual th e n iqual else result in

1 0 le t presuit = get-parent(result')(dict) in
11 le t (maprest, drest) = rename-operator(iqual, pqual, oset \ {qual}, nop)(dict) in
12 if result = result' A arglist = arglist' th en
13 (maprest, drest)
14 else
15 (let nm' = if nop = nil th e n nm else nop in
16 le t newnm = create-unique-name() in
17 le t opqual = iqual ^ ((OPERATOR, (n m ' , parglist, presuit))) in
18 let newqual = iqual /"> ((OPERATOR, (newnm, parglist, presuit))) in
19 (maprest + [iqual i—> newqual], drest + [opqual t—> m k- OperatorD (arglist', result', newqual, tru e)])))

ty p e : Sortqual Sortqual Qual-set Newoperatoro —> D id —> (Qual s^Qual) D id

O b je c tiv e

P a r a m e te r s

Construct a map from parent operator Quals into operator Quals for
a given operator name. Also construct the D id contributions for the
operators denoted to the name

iqual
pqual

The Qual of the inheriting sort
The Qual of the parent sort

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 79

oset The set of operator Quals defined in the parent sort and having
the nam e mentioned in the operator renaming

nop The new operator name

R e s u l t The constructed m ap and the corresponding Diet contributions

A lg o r i th m

Line 1 W hen through then return nothing (the function is recursive).
Line 4-5 Take the next operator Qual in the set and ex tract the operator

name.
Line 6 Decompose the operator descriptor for the parent operator in hand
Line 7 Replace every occurrence of the parent sort in the argum ent sort

list for the operator in hand by the inheriting sort. Note th a t
the function get-parent has nothing to do with the parent of the
inheriting sort, get-parent replaces any syntypes by its (parent)
sort.

Line 8 Remove any syntypes from the argum ent list. This nominal list is
used in the Qual for the operator.

Line 9-10 Do the same for the result sort.
Line 11 Go through the rest of the set of parent operator Quals.
Line 12-13 If the parent Qual is not used in the argum ent list or in the result

of the operator then return the map and the Diet contributions for
the rest of the list else

Line 15 If a new operator name is not specified in the Operatorpairo then
the inherited operator has the same name as the parent operator.

Line 16 C onstruct a unique name to be used in the Newqual for the operator
(see the definition of OperatorD).

Line 17 C onstruct the Qual to be used as the Diet entry for the operator.
Line 18 C onstruct the Newqual for the operator.
Line 19 R eturn the operator Qual m ap for the rest of the operators and for

the operator in hand and return the Diet for the contributions

build-implicit-operators(iqual, pqual, opset)(dict) =

1 i f opset = { } th e n

2 (0 , 0)
3 e lse
4 (le t qual 6 opset in
5 le t (, (,arglist, result)) = qual[len qual] in
6 le t arglist1 = (i f get-parent(arglist[i])(dict) = pqual th e n iqual e lse arglist[i\ \ 1 < i < le n arglist) in
7 le t result' = i f get-parent(result)(dict) = pqual th e n iqual e lse result in
8 le t (restmap, drest) = build-implicit-operators(iqual, pqual, opset \ {qual})(dict) in
9 i f arglist = arglist' A result = result' th e n

1 0 (restmap, drest)
11 e lse
12 (le t newnm — create-unique-name() in
13 le t opqual = iqual ((OPERATOR, (newnm, arglist', result'))) in
14 (restmap + [qual i—> opqual], drest + [opqual i—► m k -OperatorD (arglist', result', opqual, fa lse)])))

ty p e : Sortqual Sortqual Qual-se t —► Diet —> (Qual s^Qual) Diet

O b je c tiv e C onstruct a m ap from parent operator Quals into operator Quals for
the im plicit operators. Also construct the Diet contributions for the
operators.

P a ra m eters

iqual The Qual of the inheriting sort

(3.4.7.12)

80 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

pqual The Qual of the parent sort
oset The set of operator Quals using the parent sort

R e s u l t The constructed m ap and the corresponding Diet contributions

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Take an operator Qual in the set and extract the argum ent sort

list and the result sort.
Line 6-7 Construct the argum ent sort list where every occurrence of the

parent sort is replaced by the inheriting sort (iqual) and do the
same for the result sort.

Line 8 Construct the Qual map and the Diet contributions for the rest of
the operators in opset.

Line 9-10 If pqual is not used in the signature then return the constructed
objects.

Line 12-13 Create a new unique name for the im plicit operator and construct
the Qual containing this name.

Line 14 R eturn the Qual map and the Diet contributions for the rest of the
operators in opset and return the map contribution for the operator
and its Diet contribution

extract-inherited-axioms(litmap, opmap, qual, pqual)(dict) =

1 (let qualset = all-visible-sorts(diet) \ {qual} in
2 le t idi = make-asi-identifier (qual)(dict) in
3 le t pid\ — make-asx-identifier(pqual)(dict) in
4 le t axset — \u\\oxi{s-Equations\(dict(qual)) \ qual G qualset} in
5 le t axset' = { convert-axiom(axiom, litmap , opmap, id\,pid\) | axiom G axset} in
6 axset' \ axset)

ty p e : (Literal-operator-identifieri ^Literal-operator-identifieri)
(Operator-identifieri ^Operator-identifieri) Sortqual Sortqual —►
Diet —► Equationsi

O b je c t iv e

P a r a m e te r s

litmap

opmap

qual
pqual

R e s u l t

A lg o r i th m

Line 1

Line 2-3

Line 4

E xtract all the inherited axioms, th a t is, all the axioms which uses
any of the operators or literals which includes the parent sort in the
signature

A m ap from parent literal identifiers into literal identifiers defined
for an inheriting sort
A m ap from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort
The Qual of the inheriting sort
The Qual of the parent sort

The set of equations using any of the parent operators/literals, where
the parent operators/literals identifiers have been replaced by the op­
era to r/lite ral identifier of the inheriting sort

Construct the set of sort Quals which are visible in the enclosing
scopeunit. Exclude the inheriting sort from the set.
Construct the ASi identifiers of the inheriting sort and the parent
sort respectively.
Construct the set which is the union of the set of equations defined
in the various (visible) sorts.

(3.4.7.13)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 81

Line 5

Line 6

C onstruct the set consisting of all the equations defined in a visible
sort and such th a t each equation is converted to include the new
operators/literals instead of the parent operators/literals.
R eturn this set, but exclude those equations which has not changed

convert-axiom(axiom, Imap, omap, id, pid) = (3.4.7.14)

1 cases axiom :
2 (m k-Unquantified-equationi(tl , t2)
3 -» m k - Unquantified-equationi (convert-term (tl , Imap, omap), convert-term(t2, Imap, omap)),
4 m k - Quantified-equationsi (nms, sort, eqs)
5 -* mk-Quantified-equationsi (nms, i f sort = pid then id else sort,
6 {convert-axiom(eq, Imap, omap, id, pid) \ eq £ egs}),
7 m k -Conditional - equationi (eqs, eq)
8 -* mk-Conditional-equationi({convert-axiom(a, Imap, omap, id, pid) | a £ eqs},
9 convert-axiom(eq, Imap, omap, id, pid)),

10 T -* axiom)

type : Equationi (Literal-operator-identifieri m*Literal-operator-identifieri)
(Operator-identifieri s?Operator-identifieri) Sort-identifieri Sort-identifieri —* Equationi

O b je c tiv e

P a ra m eters

axiom
Imap

omap

id
pid

R esu lt

A lg o r ith m

Line 2

Line 4-6

Line 7-9

Line 10

Modify an inherited axioms to include the operators and literals defined
by an inheriting sort

The axiom to be modified
A m ap from parent literal identifiers into literal identifiers defined
for an inheriting sort
A m ap from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort
The ASi identifier of the inheriting sort
The ASi identifier of the parent sort

The modified axiom (equation)

If the equation is a simple unquantified equation then convert the
lefthand side term (t l) and the right-hand side term (t2).
If the equation is a quantified equation then replace the sort in
the quantification if it is the parent sort and convert the equations
contained in the quantified equation.
If the equation is a conditional equation then convert the restriction
(line 8) and convert the restricted equations (line 9).
Informal text is left unchanged

82 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

convert-term(term, Imap, omap) = (3.4.7.15)

1 i f is - Error-termi(term) th en
2 term
3 else
4 (let t -- cases te rm :
5 (m k -Ground-termi(te) -* te,
6 m k -Composite-termi(te) -* te) in
7 le t t' ■■= cases t:
8 (m.k-Identifieri(,)
9 -> if is-Ground-termi(term) A t £ dom Imap th e n lmap(t) else ;

10 irik-Conditional-termi(t 1, t2, f3)
11 -» m k-C onditional-term i(convert-term (tl, Imap, omap),
12 convert-term(t2, Imap, omap),
13 convert-term(t3, Imap, omap)),
14 T -» (let (opid, arglist) = t in
15 le t arglist' = (convert-term(arglist[i], Imap, omap) | 1 < i <
16 i f opid 6 dom omap th en
17 (omap (opid), arglist1)
18 else
19 (opid, arglist'))) in
20 i f is -Ground-termi(term) th en
21 m k -Ground-termi(t')
22 else
23 m k- Composite-termi (t '))

ty p e : Termi (Literal-operator-identifieri m*Literal-operator-identifieri)
(Operator-identifieri is?Operator-identifieri) —► Termi

Modify an term to include the operators and literals defined by an
inheriting sort

The term to be modified
A m ap from parent literal identifiers into literal identifiers defined
for an inheriting sort
A m ap from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort

The modified Term

If it is the error term then do nothing
Decompose the term . The replacement takes place regardless of
whether it is a ground or a composite term.
If the term contains an identifier and the term is a ground term
then the identifier denotes a literal and it is replaced if it is in the
literal map.
If the term contains a conditional term then convert the boolean
term , the ’’then” term and the ’’else” term.
If the term is an operator application then
Decompose the operator application.
Convert the argum ent terms.
If the operator identifier is in the operator m ap then fetch the
new inherited operator identifier from the m ap (omap) else do not
change the operator identifier. Compose the operator application
again.
Compose the term again (reverse of line 4-6)

O b jec tiv e

P a ra m eters

term
Imap

omap

R esu lt

A lg o r ith m

Line 1
Line 4-6

Line 7

Line 10-13

Line 14-19
Line 14
Line 15
Line 16-19

Line 20-23

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 83

transform-geninst(nm, instlist, adding)(diet) = (3.4.7.16)

1 (if instlist = () th en
2 adding
3 else
4 (let ink-Geninsto(id, parm) = h d instlist in
5 le t nik-Propertieso(lit, op, ax, m a , init) = transform-geninst(nm, t l instlist, adding)(diet) in
6 le t tgua/ = get-visible-qual(id, GENERATOR)(diet) in
7 le t m k-/do(, genname) = id in
8 le t m k -GeneratorD(fparm, prop) = dict(tqual) in
9 if len fparm ^ len parm th en

10 e x i t ("§5.4.1.12.2: Lengths of actual and formal parameter lists in generator must be the same”)
11 else
1 2 (let (t m , l i tm , opm , constm) = collect - g enpar ms (fparm, parm) in
13 le t tm ' = tm -f [genname i—> mk-/do((), nm)] in
14 le t nik-Propertieso(lit ' , op', aa;', m a', tm t') = prop in
15 le t lit" = (insert-genparms(lit'[i])(tm ' , /rtm, opm, constm) | 1 < i < len /it'),
16 op" = (mser<-^enparms(op'[t])(<m ', Zifm, opm, constm) \ 1 < i < len op'),
17 ax" = (insert-genparms(ax'[i])(tm', litm, opm, constm) | 1 < * < len ax'),
18 ma" = {mser<-<7enparm s(m a'[i])(tm ', litm, opm, constm) | 1 < i < len m a') in
19 if init ^ nil A init' ^ nil th en
20 e x i t (“§5.5.3.3: More than one default assignment”)
2 1 else
2 2 (let init" = if init = nil th e n init' else init in
23 nik-Propertieso(lit /' x lit", op ^ op", ax ^ a®", ma ^ m a", im t")))))

ty p e : Nameo Geninsto Propertieso —> Diet —* Propertieso

O b jec tiv e

P a ra m eters

instlist
adding

R esu lt

A lg o r ith m

Line 1

Line 4
Line 5

Line 6-7

Line 8
Line 9-10

Line 12

Line 13

Transform a series of generator instances into ASo Propertieso.

The name of the ASo sort definition containing the generator in­
stance.
The ASo generator instance list.
The additional properties specified in the ADDING construct.

ASo Propertieso to be transform ed into ASi in the function transform-
partial-typedef

W hen the generator instance list is empty then return the ADDING
properties (the function is recursive).
Decompose the next generator instance in the list.
Transform the rest of the generator instances and return the prop­
erties where the properties of the generators in the rest of the list
have been added.
C onstruct the Qual of the generator identifier and decompose the
generator identifier.
Decompose the generator descriptor.
The length of the generator actual param eter list m ust be equal to
the length of the generator formal param eter list.
C onstruct four maps which contains the correlation between the
formal and actual param eters, tm contains the correlation between
formal and actual sort param eters, litm between formal and actual
literal param eters, opm between formal and actual operator param ­
eters and constm between formal and actual constant param eters.
Regard the generator name as a formal param eter and include it
in the sort map.

84 Fascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 15-18 Replace every formal param eter in the generator body by the cor­
responding actual param eter i.e. replace the formal param eters in
the literal signature (line 15), operator signature (line 16) equa­
tions (line 17) and m apping part of the equations (line 18).

Line 19 If this generator instance contains a default assignment then the
other generator instances or the ADDING properties m ust not con­
tain a default assignment.

Line 23 Compose the properties from the properties from this generator
instance joined with the properties from the other instances.

insert-genparms(node)(tmap, Imap, omap, constmap) = (3.4.7.17)

1 cases node'.
2 (m k -Opspeco (nm, sortl, sort)
3 -* mk-Opspeco(insert-parm(nm, omap), (insert-parm(sortl[i], tmap) | 1 < i < len sortl),
4 insert-parm(sort, tmap)),
5 m k-Equationo(tl , t2)
6 -* mk-Equationo(insert-genparms(tl)(tmap, Imap, omap, constmap),
7 insert-genparms(t2)(tmap, Imap, omap, constmap)),
8 m k -Condequationo(eql, eq)
9 -* mk-Condequationo((insert-genparms(eql[i])(tmap, Imap, omap, constmap) | 1 < * < len eql),

10 insert-genparms(eq)(tmap, Imap, omap, constmap)),
11 mk-Mappingaxiomo(vl, sid, al)
1 2 -* m k -Mappingaxiomo(vl, insert-parm(sid, tmap),
13 (insert-genparms(al[i])(tmap, Imap, omap, constmap) | 1 < i < len al)),
14 mk-Quantequationo(vl, sid, al)
15 -*■ m k -Quantequationo(vl, insert-parm(sid, tmap),
16 (insert-genparms(al[i])(tmap, Imap, omap, constmap) | 1 < i < len al)),
17 m k-N am eo (,)
18 -» insert-parm[node, Imap),
19 m k -/d o (,)
2 0 insert-parm(node, Imap -1- constmap),
2 1 m k -Operatortermo(x, tli)
2 2 -♦ m k -Operatortermo(insert-parm(x, omap),
23 (insert-genparms(tli[i])(tmap, Imap, omap, constmap) \ 1 < i < len tli)),
24 m k-C ondterm o(el, e2, e3)
25 -♦ m k-Condtermo(insert-genparms(el)(tmap, Imap, omap, constmap),
26 insert-genparms(e2)(tmap, Imap, omap, constmap),
27 insert-genparms(eZ)(tmap, Imap, omap, constmap)),
28 m k -Monadtermo(op, e)
29 -* mk-Monadtermo(op, insert-genparms(e)(tmap, Imap, omap, constmap)),
30 mk-Infix term o(el, op, e2)
31 -> mk-Infixtermo(insert-genparms(el)(tmap, Imap, omap, constmap),
32 op, insert-genparms(e2)(tmap, Imap, omap, constmap)),
33 m k -Spellingtermo(x)
34 — mk-Spellingtermo(insert-parm(x, Imap)),
35 T -► node)

ty p e : (Literalo | Opo | Axioms \ Mappingaxiomo) —► (Name0 ix*Ido) (Nameo stLiteralo)
(Nameo ts>{Nameo | Quotedopo)) (Nameo ^ T e r m o) —► (Literal^ | Opo | Axiomo | Mappingaxiomo)

O b jec tiv e Replace formal generator param eters by actual generator param eters
in the body of a generator

P a ra m eters

node An object occurring in the body of the generator. The function
recursively traverses through the sub-trees of node

tmap The m ap from formal sort param eters into actual type param eters

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 85

Imap

omap

constmap

R e s u l t

A lg o r i th m

Line 2-4

Line 5-7
Line 8-10

Line 11-13

Line 14-16

Line 17
Line 19

Line 21-23

Line 24-27

Line 28-32
Line 33
Line 35

The m ap from formal literal param eters into actual literal param ­
eters
The m ap from formal operator param eters into actual operator
param eters
The m ap from formal constant param eters into actual constant
param eters

The node where the formal param eters have been replaced

In an operator signature, consider the operator name (nm), the
argum ent sort list (sortl) and the result sort (sort).
In an equation, consider the two terms t l and t2.
In a conditional equation, consider the restriction (t l) and the
restricted equations (t2).
In a m apping equation, consider the sort identifier (sid) and the
contained equations (al).
In a quantified equation, consider the sort identifier (sid) and the
contained equations (al).
If the node is a Literalo Nameo, consider it using the literal map.
If the node is an identifier (occurring in an equation) then con­
sider it using the literal m ap and the constant m ap (literal formal
param eters may also be used in equations).
In an operator application, consider the operator identifier (x) and
the argum ent term s (tli).
In a conditional term , consider the boolean term (el) the ’’then”
term (e2) and the ’’else” term (e3)
in a monadic term or a dyadic term, consider the contained term (s).
In a spelling term , consider the contained identifier.
O ther kinds of nodes cannot or m ust not contain any formal pa­
ram eters

86 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

in s e r t - p a rm (x , ma p) = (3.4.7.18)

1 cases x :
2 (mk-Ido(q, nm)
3 - i f nm £ dom map th e n
4 if q = () th en
5 cases map(nm):
6 (mk-iVameo(,)
7 -♦ m k-/do((), map(nm)),
8 m k -QuotedopoQ
9 mk-Qualopo((), majp(nra)),

10 mk--/VmcZasso()
11 -+ e x i t ("§5.4.1.12: Name class cannot be used in equations”),
12 m k-S /rm 0o()
13 -► mk-Stringtermo((), map(nm)),
14 T -> map(nm))
15 else
16 e x i t ("§5.4.1.12: Generator formal name is qualified”)
17 else
18 x,
19 m k -Name0())
20 -» if x £ dom map th en
21 cases map(x):
22 (m k-N am eo (,) ,
23 mk-Nmclasso(),
24 m k -String0()
25 -♦ map(x),
26 m k -QuotedopoQ
27 -► m ap(x),
28 T — e x i t (“§5.4.1.12: Generator constant parameter used in literal signature”))
29 else
30 x,
31 T — x)

ty p e : (Ido \ Nameo \ Quotedopo) (Nameo ^ {T e rm o \ Literalo | Quotedopo)) —>
(Termo \ Literalo | Quotedopo)

O b je c t iv e Test whether an identifier or a name is a formal generator param eter
and if so, replace it by the corresponding actual param eter

P a r a m e te r s

x The identifier or name to be tested upon. In order to simplify the
applying function insert-genparms, x may also be an Quotedopo in
which case x is returned unchanged.

map A m ap containing the association between formal param eters and
actual param eters for a certain param eter class depending on the
context in which insert-parm is applied. The class is either type
formal param eters, operator formal param eters or the com position
of literal and constant formal param eters.

R e s u l t The corresponding actual param eter if x is a formal param eter, o ther­
wise x

A lg o r i th m

Line 2 If the object in hand is an identifier and the name part it is in the
m ap (map) then the identifier denotes a formal param eter in which
case it m ust not be qualified (line 4 and line 16).

Line 6 If the actual param eter is a name (i.e. a literal or operator name)
then return it enclosed in an identifier (because it is used in apply­
ing context).

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 87

Line 8

Line 10
Line 12

Line 14

Line 18

Line 19

Line 22-24

Line 26

Line 28

Line 30

If the actual param eter is a quoted operator then return it enclosed
in an operator identifier (Qualopo)
A nameclass cannot be used in applying context.
If the actual param eter is a character string then return it enclosed
in a string literal identifier (Stringtermo).
Otherwise the actual param eter is a term in which case the term
is return.
If the identifier is not a formal param eter then return the identifier
unchanged.
If the object in hand is a name and it is in the m ap then it is a
formal param eter used in defining context.
If the actual param eter is a name or a name class or a character
string then it is returned.
If the actual param eter is a quoted infix operator then the con­
tained infix operator is returned.
In other cases, the actual param eter denotes a term which is not
an allowed param eter in defining context.
If the name is not a formal param eter then return the name un­
changed

88 F ascicle X .4 — R ec . Z .100 - A n n e x F .2

collect-genparms(fparm, parm) = (3.4.7.19)

1 (i f fparm = () th e n

2 (D . D . D . D)
3 e lse
4 (le t (trest , litrest, opresi, constrest) = collect-genparms(tl fparm, t l parm) in
5 le t exclamation =
6 i f i s -Ido(hd parm) th e n
7 (le t mk-Nameo(, exc) = &-Nameo(hd parm) in
8 exc ^ n il)
9 e lse

10 fa lse in
11 c a se s h d fparm:
12 (nik-Sortparmo(nm)
13 -► i f is - /d o (h d parm) A ->exclamation th e n
14 (trest -f- [nm h-* h d parm], litrest, oprest, constrest)
15 e lse n,
16 ex it(“§5.4.1.12.2: TYPE actual generator parameter must be a identifier"),
17 m k -Opparmo(nm)
18 -► i f (i s -Ido(h d parm) A s-Qualifier0(h.dparm) = ()) th e n
19 (trest, litrest, oprest + [nm t—► s-iV am eo(hdparm)], constrest)
20 e lse
21 i f i&-Quotedopo(hdparm) th e n
22 (trest, litrest, oprest + [nm h d parm], constrest)
23 e lse
24 e x i t (“§5.4.1.12.2: OPERATOR actual generator parameter must be an operator signature”),
25 m k -Litparmo(nm)
26 -* c a se s h d parm:
27 (nik-Stringo(str)
28 -► (trest, litrest + [nm t—► sir], oprest, constrest),
29 mk-/do(9) nam)
30 -► i f q = () A exclamation th e n
31 (trest, litrest + [nm >—► nam], oprest, constrest)
32 e lse
33 e x i t (“§5.4.1.12.2: LITERAL actual generator parameter must be a literal signature”),
34 mk-Nmclasso()
35 -► (trest, litrest + [nm t—* h d parm], oprest, constrest),
36 T -* e x i t (“§5.4.1.12.2: LITERAL actual generator parameter must be a literal signature")),
37 m k - Termparmo(n m)
38 -* i f is-Nmclasso(hd parm) V i s - Quotedopo(hdparm) V exclamation th e n
39 e x i t (“§5.4.1.12.2: CONSTANT actual generator parameter must be a term”)
40 e lse
41 (trest, litrest, oprest, constrest + [nm h d parm]))))

ty p e : Genparmo* Genactparmo —> (Nameo n^Ido) (Nameo ^Literalo)
(Nameo ^ (N a m e o | Quotedopo)) (Nameo ^ T e rm o)

P a r a m e te r s

fparm
parm

A lg o r i th m

have the same length

(the function is recursive).

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 89

Line 4 C onstruct the maps for the rest (all but the first) of the formal
param eters.

Line 5-10 Let exclamation be t r u e if the actual param eter is an Ido where
the Nameo has an exclam ationm ark.

Line 12-16 If the formal param eter is a sort param eter then the actual pa­
ram eter m ust be an identifier w ithout any exclam ationm ark. The
association between the formal name and the identifier is added to
the sort map.

Line 17-24 If the formal param eter is an operator param eter then the actual
param eter m ust be an unqualified identifier (i.e. a name) or a
quoted infix operator

Line 19 and Line 22 The association between the formal name and the actual name
respectively actual infix operator is added to the operator map.

Line 25 If the formal param eter is a literal param eter then the actual pa­
ram eter m ust be an unqualified identifier or an unqualified string
or a name class.

Line 27 and Line 34 The association between the formal name and the actual name or
string or nameclass is added to the literal map.

Line 37-41 If the formal param eter is a constant param eter then the actual
param eter m ust be a term (i.e. not a name class or a quoted infix
operator) and if the term is an Ido then it m ust not contain an
exclam ationm ark.

Line 41 The association between the formal nam e and the term is added
to the constant map

transform-syntype(nik-Syntypedefo(nm, pid, initial, vallist, tn m)) (d id) ^ (3.4.7.20)

1 (let tq = get-visible-qual(pid, TYPE)(diet) in
2 i f is-recursive-sort (tq, {})(dict) th e n
3 e x i t ("§5.4.1.9: Syntype is based on itself”)
4 else
5 if tnm £ {nm , nil} th en
6 exit("§5.4.1.9: Ending name in syntype definition is different from defining name”)
7 else
8 (let tqual = get-parent (tq)(dict) in
9 le t initialx = cases did(tq):

1 0 (m k - S o r t D i n i t ,)
11 — init,
12 m k - SyntypeD (, , in it ,)
13 -> in i t) in
14 le t exprx = if initial — n il th en
15 initialx
16 else
17 (let (a s i tree, ,) =
18 transform-expr(initial, CONSTANT, { tqual})(d id) in
19 asx tree) in
20 le t (,asxvalset) = transform-valueset({tqual},vallist)(dict) in
21 le t asxid — make-asx-identifier(tqual)(diet) in
22 le t nm ' = i f is-5ermceH(dfct(dic<(SCOPEUNIT))) th e n
23 create-unique-name ()
24 else
25 nm in
26 le t asxdcl = nik-Syn-type-definitionx(name-to-namex(nm'), asxid, asxvalset) in
27 le t synqual = dict(SCOPEUNIT) ((TYPE, nm')) in
28 le t d = [dfct(SCOPEUNIT) ((TYPE, nm)) m k -SyntypeD (tq, synqual, exprx, asxvalset)] in
29 ({asxdcl}, d))) ^

ty p e : Syntypedefo —» D id —> Syn-type-definitionx -set D id

90 F ascicle X .4 - R ec. Z .100 - A n n ex F .2

P a r a m e te r s

O b jec tiv e Transform a syntype definition into ASi

A syntype definition containing:

nm

pid
initial

vallist
tnm

R e s u l t

The name of the syntype.

The parent sort identifier.
The initial value for variables of the syntype.

The allowed value set for variables of the sort.

The name ending the definition

See transform-decllist

A lg o r i th m
u

Line 1 Extract the Qual for the specified parent sort.

Line 2 The parent sort m ust not be based on this syntype

Line 5 The tailing name m ust be equal to the syntype name is specified
Line 8 Extract the partial type of the specified parent sort.

Line 9 Let initiali denote the initial expression of pid.
Line 14-19 Construct the ASi version of the initial expression. If it is om itted

then the initial expression of pid is used.
Line 20 Transform the value set

Line 22 If the syntype definition occurs in a service then create a new name
for the syntype

Line 27 Construct the Qual to be used when deriving the ASj identifier of
the syntype (at the places where the syntype is used).

Line 28-29 R eturn the ASX syntype definition (asidcl) and the Diet contribu­
tion containing the syntype descriptor (d).

transform-valueset(tqualset, valset)(dict) = (3.4.7.21)

1 (if valset = () th en
2 (let boolq = get-predef -sort("BOOLEAN")(dict) in
3 le t orq = boolq ((OPERATOR, (OR, (boolq, boolq), boolq))) in
4 (tqualset, m k-Range-condition1 (m ake-asi-identi/ier(orq)(dict), {})))
5 else
6 (let m k-C onditiono(cr, expr) = h d valset in
7 le t (tset, asirange) = transform-valuerange(tqualset, cr, expr)(dict) in
8 le t (trest, m k-Range - condition (orid, condset)) = transform-valueset(tset, tl valset)(dict) in

(trest, xnk-Range-conditioni (orid, {as\range} U condset))))9

ty p e

O b je c tiv e

P a r a m e te r s

tqualset
valset

Sortqual-set Conditionq* —► Diet —» Sortqual-set Range-conditioni

Transform a value set into ASi.

R e s u l t

A set of possible (legal) sorts.

The list of value ranges. W hen the value set occurs in a syntype def­
inition the tqualset contains the parent of the syntype only. W hen
the value set occurs in a decision answer the tqualset contains some
subset (also depending of other answers) of the possible sorts for
the question expression.

The set of possible (legal) sorts after having dealt with the value set,
i.e. the resulting set is a subset of tqualset. Also the AS* value set is
returned (Range-Expressioni*).

Fascicle X .4 - R ec . Z .100 - A n n ex F .2 91

A lg o r i th m

Line 1-4 W hen through all the elements in the value set then return the
set of possible sorts and an empty Range-condition^ containing the
ASx identifier of the boolean OR operator.

Line 6 Take the first element in the set (list) which consists of an optional
operator or an optional expression (cr) followed by an expression
(expr).

Line 7-9 Transform a value range and use the resulting (possibly restricted)
sort set (tset) during the transform ation of the rest of the value
set.

transform-valuerange(tqualset, cr, expr)(dict) = (3 .4 .7 .2 2)

1 (let bq = get-predef-sort ("BOOLEAN”)(dict) in
2 le t cr' — if cr = nil th e n EQ else cr in
3 le t isrel = cr' £ {NE, EQ, GT, LT, LE, GE} in
4 le t cr" — i f isrel th e n cr' e lse LE in
5 le t tqualset' =
6 i f isrel th e n
7 tqualset
8 else
9 (let (,tqset ,) = transform - expr (c r , CONSTANT, {bq})(dict) in

1 0 tqset fl tqualset) in
11 le t opqset =
1 2 {opqual £ all-visible-operators((), cr", dict(SCOPEUNIT))(dict) |
13 is -OperatorD (diet (opqual)) A
14 (le t (, (,argl, res)) = opqual[le n opqual] in
15 le n argl = 2 A
16 res — bq A argl[1] = argl[2] A e lem s argl C tqualset')} in
17 if opqset = {} th e n
18 e x i t ("§5.4.1.9.1: Ordering operator is not defined for the sort of the range condition”)
19 e lse
20 (le t tset = tqualset' fl {sq £ d o m diet | i s -SortD(dict(sq)) A
21 (3q £ 0p<jrset)((OPERATOR, (cr", (sq, sq), bq)) = 5 [len g])} in
2 2 i f ca rd tset > 1 th e n
23 (tset, nil)
24 e lse
25 (let (a s i f r e e , ,) = transform-expr(expr, CONSTANT, tset)(dict) in
26 le t sort £ tset in
27 le t opqual = sort '"x ((OPERATOR, (cr", (sort, sort), bq))) in
28 i f isrel th e n
29 (tset,mk-Open-rangei(make-asi-identifier(opqual)(dict), a sitree))
30 e lse
31 (le t (a s i f r e e ' , ,) = transform-expr (c r , CONSTANT, tset)(d ict) in
32 le t r l = m k-O pen-rangei(m ake-asi-identifier(opqual)(dict), asitree '),
33 r 2 = Tnk-Open-range\(make-as\-identifier(opqual)(dict), asitree) in
34 le t andq = bq ^ ((OPERATOR, (AND, (sort, sort), {&?}))) in
35 (tset,mk-Closed-rangei(make-asi-identifier(andq)(dict), r l , r 2))))))

ty p e : Sortqual-set [Expro \ Relopo] Expro Diet —> Sortqual-set [Condition-item\]

O b je c t iv e Transform an ASo Conditiono into an ASi Condition-itemi

P a r a m e te r s

tqualset The set of legal sorts prior to transform ation of the value range
cr The relational operator or first expression occurring in the value

range
expr The (second) expression of the value range

92 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

R e su lt The set of legal sorts after the transform ation of the value range and the
constructed ASi Condition\. The sort set is used in the transform ation
of decision actions where this function is applied twice. F irst tim e in
order to derive the sort and the second time in order to transform the
value range

C onstruct the Qual of the boolean sort.
If neither a relational operator nor an expression is specified in the
value range then the equality operator applies.
If cr is an expression then the less-equal operator (LE) is used as
relational operator.
If cr is an expression then the set of legal sorts (tqualset) is re­
stricted by the legal sorts for th a t expression.
C onstruct the Qual set of legal relational operators such th a t the
length of the argum ent list is equal to 2 and the result sort is
boolean and the two argum ents are of the same sort and th a t sort
is one of the legal sorts in the context where the value range is used
(if there is more than one element in the set then the operator nam e
(cr) is overloaded).
If no such operators exits then it is an error.
C onstruct a new set of legal sorts by restricting the old set of legal
sorts {tqualset') to contain only those sorts which can be used on
the operators in opqset.
If there is more than one element in the restricted set of sorts then
the value range is (still) ambiguous and no value range is returned
(n il is returned).
Evaluate the expression again. This time, tset contains exactly one
sort and therefore an ASi expression is returned (if it is otherwise
well-formed).
Denote the sort in tset by sort.
C onstruct the Qual of the operator used.
If cr denotes a relational operator then return the set containing
the sort and the Condition-iterrii which is an Open-rangei.
If cr is an expression then transform the expression (again).
C onstruct the two Open-range\s which together with the AND
operator constitutes the Closed-rangei.
C onstruct the qual of the AND operator and
R eturn the resulting set of sorts (containing one element) and the
Closed-range\ containing the ASi identifier of the AND operator
and the two Closed-range is.

transform-synonymdef (mk-Synonymdefo(nm, iid, expr))[dict) =

1 (let squal = diet (SCOPEUNIT) ̂ ((VALUE, nm)) in
2 le t sortset — i f tid = nil th en
3 all-visible-sorts(dict)
4 else
5 {get-parent{get-visible-qual(tid, TYPE){dict)){dict)} in
6 le t (, tpset ,) = transform-expr{expr , CONSTANT, sortset){dict + [squal i—► m k -ErrorD ()]) in
7 if c a rd tpset = 1 th e n
8 (let tp £ Qual b e s .t. tp £ tpset in
9 {[squal h—► m k-SynD {tp , expr)]))

1 0 else
11 e x i t (‘‘§5.4.1.13: Sort of synonym cannot be uniquely determined”))

ty p e : Synonymdefo —► Diet —► Diet

A lg o r ith m

Line 1
Line 2

Line 4

Line 5-10

Line 11-16

Line 17-18
Line 20-21

Line 22-23

Line 25

Line 26
Line 27
Line 28-29

Line 31
Line 32-33

Line 34
Line 35

(3 .4 .7 .2 3)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 93

nm The synonym name
tid The optional sort identifier
expr The ground expression

R e s u l t See transform-decllist

A lg o r i th m

Line 1 C onstruct the Qual denoting the synonym.
Line 2-5 The sort of the synonym m ust be found in the set of sorts which

are visible to the synonym definition if the sort identifier (tid) is
absent ,otherwise the sort of the synonym is tid.

Line 6 Transform the expression contained in the synonym definition and
return the subset of sorts (tpset) which matches both the synonym
sort. The resulting ASx expression is not used. As the synonym
identifier m ust not be used in expr squal denotes a ErrorD during
evaluation of the expression.

Line 7 Only one sort is allowed to m atch the sort of the synonym and the
sort of the expression.

Line 8-9 C onstruct the Diet contribution containing the synonym descrip­
tor.

O b je c tiv e Transform a synonym definition into ASi

P a ra m eters An ASo synonym definition containing

3 .4 .7 .1 P a r t i a l ty p e D e fin itio n s

transform-sortdef(nm, prop, parent)(diet) ^ (3.4.7.1.1)

1 (let nm ' — if is-Sennce.D(chc<(dtc<(SCOPEUI\IIT))) th e n create-unique-name() else nm in
2 le t newqual = drct(SCOPEUNIT) ((TYPE, nm')) in
3 le t descr = dict(SCOPEUNIT) ^ ((TYPE, nm)) in
4 le t diet1 = diet + [SCOPEUIMIT i—► descr] in
5 le t prop1 = transform-nameclass(prop) in
6 le t prop" = add -ordering (prop1, descr)(dict) in
7 le t nik-Propertieso(lit, oplist, axioms, mapping, term) = prop" in
8 le t (eqop, eqax) = add-equality(descr)(dict) in
9 le t (e x p r i , ,) = transform-expr(term , CONSTANT, {descr})(dict) in

1 0 i f ca rd elem s lit ^ len lit th en
11 e x i t ("§5.2.2: Literal defined twice in a partial type definition”)
1 2 else
13 (let litd = [descr ((LITERAL, nm)) i—> m k -LiteralD(descr) \ nm £ elem s lit],
14 (asiop , opd) = transform-typing(oplist ^ eqop)(diet1),
15 asiax = transform-axioms(axioms ^ eqax, AX\OMS)(dict'),
16 asimapping = transform - axioms (mapping, MAPPING)(drct') in
17 le t sortid = make-as\-identifier(newqual)(dict) in
18 le t as\litset = {m k-Literal-signaturei(nm, sortid) | nm 6 card lit} in
19 le t concaxiomsi = make-as\-concaxioms(dom litd)(dict) in
2 0 le t typedef = dict(DATATYPEDEF) in
21 le t m k -Data-type-definition\(typename, union, sorts, sigs, eqs U concaxiomsi) = typedef in
22 le t datatypedef' = m k -Data-type-definitioni (typename, union, sorts U {nam e-to-nam ei (nm 7)},
23 sigs U asiop U asilitset,
24 eqs U asi ax U asi mapping U concaxiomsi) in
25 le t sortdescr = mk-5or£D(asiaa: U asi mapping, parent, expri, newqual) in
26 (litd + opd + [descr h-* sortdescr,
27 DATATYPEDEF datatypedef1])))

ty p e : Nameo Propertieso [Sortqual] —► Diet —> Diet

94 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

P a r a m e te r s

nm
prop
parent

R e s u l t

A lg o r i th m

Line 1-2

Line 3-4

Line 5

Line 6

Line 7
Line 8

Line 9
Line 10

Line 13
Line 14

Line 15

Line 17

Line 18
Line 19

Line 21
Line 22-23

Line 25
Line 26

O b jec tiv e Transform the Propertieso of a sort definition and add the resulting ASi
properties to the Data-type-definitioni contained in the D A T A T Y P E ­
DEF entry in the Diet and also add the descriptors for the literals, for
the operators and for the sort to Diet

The ASo name of the sort being defined
The ASo properties to be transform ed
The Qual of the parent sort in the case where the properties orig­
inated from the inheriting sort i.e. parent denotes the identifier of
the sort from which this sort inherits. It is put in the descriptor
for the sort descriptor SortD (see the definition of SortD).

The Diet updated with the ASi properties and updated with the various
descriptors

C onstruct a Qual to be used when constructing the ASi name. If
the sort is defined in a service a new unique name is used in the
Qual
U pdate SCOPEUNIT indicating th a t the properties are evaluated in
the context of the sort nm and update Diet to include inform ation
of the new scopeunit.
Modify the properties such th a t all the nam e classes in the literal
definition are expanded to a sequence of literals.
Modify the properties such th a t any ORDERING in the operator
signatures are replaced by the operator signatures and equations
reflecting the ordering properties.
Decompose the Propertieso.
C onstruct the ASo operators and equations reflecting the equality
properties.
Transform the DEFAULT expression in the sort definition into ASi
Number of distinct literal names in the literal signature m ust be
equal to the length of the literal signature list.
C onstruct the descriptors for all the literals in the literal signature.
C onstruct the ASi Operator-signature is (asiop) and operator de­
scriptors for the operators in the operator signatures and for the
equality operators.
C onstruct the ASi equations from the ASo equations (axioms)
which are the equations specified in the properties joined with the
equality equations.
C onstruct the equations corresponding to the MAP part of the ASo
properties.
Construct the ASx literal signatures.
C onstruct the ASi equations implied from any defined character
string literal (the im plicit concatenation equations).
Extract and decompose the current Data-type-definitioni.
C onstruct a new Data-type-definition which is the old one updated
to include the constructed ASi properties.
C onstruct the descriptor for the sort.
R eturn the Diet containing the descriptors for the literals, the de­
scriptors for the operators, the descriptor for the sort and the m od­
ified D ata-type-definitioni

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 95

transform-nameclass(xak-Propertieso(litlist, o, a, m, t)) = (3.4.7.1.2)

1 i f (3 lit G e le m s litlist)(is-Nmclasso(lit)) th e n
2 (le t i G in d litlist b e s . t . is-Nmclasso(litlist[i]) in
3 le t mk-Nmclasso(regexpr) = litlist[i] in
4 le t stringset = {s tr G Char+ \ is-in-regular-expr(str, reyexpr)} in
5 le t nameset = form-names-and-strings(stringset) in
6 le t namelist b e s .t . ca rd elem s namelist = card nameset A
7 le n namelist = ca rd nameset A
8 (V*l) *2 G in d namelist)
9 (nameZts<[tl] < nam e/is<[t2] D i l < t2) in

10 le t litlist' = (ZtZ/«<[n] | 1 < n < i) namelist ^ (ZttZwt[n] | i < n < le n litlist) in
11 transform-nameclass(mk-Propertieso(litlist', o, a, m, t)))
1 2 else
13 mk-Properties0(litlist, o, a, m, t)

ty p e : Propertieso —> Propertieso

O b je c t iv e Modify some AS0 properties such th a t any contained name classes are
expanded into a sequence of literal names

P a r a m e te r s The ASo properties containing

litlist The literal signature list
o The operator signature list
a The equations
m The m apping equations
t The term denoting the DEFAULT value

R e s u l t The modified AS0 properties

A lg o r i th m

Line 1 If there (still) exist a name class in the literal signatures then
Line 2-3 Let i denote the index to the element in the literal signatures list

which is a name class and decompose the name class (line 3).
Line 4 Construct the set of (M eta-IV) character strings which satisfy the

regular expression denoted by regexpr.
Line 5 From this set of character strings, construct a nameset consisting

of ASo names and character strings.
Line 6-9 Transform the set into an alphabetic ordered list.
Line 10 Replace the name class in the literal signatures by the constructed

list and
Line 11 Replace any further nam e classes.
Line 13 If no name classes are left then return the properties

form -nam es- and-strings (stringset) ^

1 i f stringset = {} th e n
2 {}
3 else
4 (let string G stringset in
5 if len string > 2 A string[1] = A string [len string] = th en
6 {mk-Stringo((string[i] \ 2 < i < len string — 1))} U
7 form-names-and-strings(stringset \ {string})
8 else
9 (let string' = check-name-syntax (string) in

10 {ink-Nameo(string ', nil)} U
11 form-names-and-strings(stringset \ {string})))

ty p e : Char* -set —♦ (Stringo \ Nameo)-set

(3.4.7.1.3)

96 Fascicle X .4 — R ec . Z .100 — A n n ex F .2

O b je c t iv e From a set of M eta-IV character strings form a set of ASo names and
character strings

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Take an element of the set and denote it by string.
Line 5 string denotes a ASo character string if the first character and the

last character are single quotes.
Line 6-7 R eturn the ASo character string together with the rest of the names

and string.
Line 9-11 If it is not a character string it denotes an ASo name.
Line 9 Rem ove/replace space characters in accordance with the semantics

of the underline character, convert the name to uppercase and
check the spelling against the lexical rules defined in Z.100.

Line 10-11 R eturn the ASo name together with the rest of the names and
strings

is-in-regular-expr(string, regexpr) =

1 (ca se s regexpr'.
2 (mk-Orregexpo(reg, partreg)
3 -* is-in-regular-expr(string, reg) A
4 is-in-regular-expr (string, partreg),
5 mk-Andregexpo(reg, partreg)
6 -» (3 (s f r l , s fr2))(s frl str2 = string A
7 is-in-regular-expr(str\, reg) A
8 is-in-regular-expr(str 2 , partreg)),
9 rnk.-Rngregexpo(strl, str2, exptp)

1 0 -► is-in-regular-range(string, str 1 , str2, exptp),
11 m'k-Singregexpo(strl, exptp)
1 2 -» is-in-regular-single(string, s tr l , exptp),
13 xiik-Parenregexpo(regexp, exptp)
14 -► is-in-regular-par(string, regexp, exptp)))

ty p e : Char* Regularexpo —► Bool

"O bjective

P a ra m eters

string
regexpr

R esu lt

A lg o r ith m

Line 2-4

Line 5-8

Line 9
Line 11
Line 13

Test whether a Meta-IV character string is included in a regular ex­
pression

The Meta-IV character string
The regular expression

True if success

If the regular expression consist of two O R ’d regular expressions
then the result is true if the string is defined in one of them.
If the regular expression consist of two concatenated regular ex­
pressions then the result is true if there exist two strings such th a t
they form string when they are concatenated and such th a t the
first sub-string is defined in the first regular expression and the
second sub-string is defined in the second sub-string.
See is-in-regular-range.
See is-in-regular-single.
See is-in-regular-par

(3.4.7.1.4)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 97

is-in-regular-range(string, m k-S tringo(strl) , mk-Stringo(str2), exptp) = (3.4.7.1.5)

1 (i f le n str 1 ^ 1 V le n str2 1 th e n
2 e x i t (“§5.4.1.14: Length of character strings in regular interval is not equal to one”)
3 e ls e
4 (i f le n string — 0 A exptp = MULT th e n
5 tr u e
6 e lse
7 (le n string < 1 A
8 (Vc/i G e le m s string)
9 ((h d s tr l < ch A

10 ch < h d str2 A
11 (c a se s exptp:
12 (nik-N am eo(num str ,)
13 -♦ i f e le m s numstr C { “0", “1” , “2” , "3” , “4 ” , “5", "6” , "7” , “8", “9"} th e n
14 (le t i = form-integer(numstr) in
15 le n string = i)
16 e lse
17 ex it(“§5.4.1.14: Repetition name in name class must denote a natural number”),
18 T — tru e)))))))

ty p e : Char* Stringo Stringo [Regexpexpo] —► Bool

O b je c tiv e

P a ra m eters

Test whether a string is defined in a regular expression which is a char­
acter range possibly repeated a number of times

string
str l ,s tr2
exptp

R esu lt

A lg o r ith m

Line 1-2
Line 4

Line 7-10

Line 11-17

The string to be tested upon
The character sequences denoting the lower and upper bounds
The optional repetition factor

True if success

The length of the lower and upper bounds m ust be equal to one.
The em pty string can only be in the range if the repetition factor
is specified and it allows for empty strings.
Otherwise the length m ust be greater or equal to one and for all
characters (ch) in the string it must hold th a t their representation
values are greater or equal to the lower bound (line 8) and th a t the
representation values are less than or equal to the upper bound.
If the repetition factor is a name then it m ust also hold th a t it
denotes a natural literal name (it must consist of digits) and th a t
the value it denotes is equal to the length of the string

form-integer (str) = (3.4.7.1.6)

1 (let ch = sfr[len str] in
2 le t n = cases ch:
3 (“0” - 0 ,
4 "1” - 1,
5 “2” - 2,
6 "3" - 3,
7 "4” - 4,
8 “5” -* 5,
9 “6 ” - 6 ,

10 “7" - 7,
11 “8” - 8 ,

98 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

12 "9" - 9) in
13 i f t l str = () th e n n else form-integer ((str[i\ | 1 < i < len str)) * 10 + n)

ty p e : Char+ —* Intg

O b jec tiv e

A lg o r ith m

Line 1
Line 2-12
Line 13

Convert a sequence of characters (a spelling) to a M eta-IV Intg value

E xtract the last character in the character list.
I

Convert the character to a Meta-IV Intg value.
If it is the only character in the list then return the value else
m ultiply the value obtained from the rest of the list by 1 0 and add
the value obtained from the character to the result

is-in-regular-single(string,m.k.-Stringo(str), exptp) =

1 (cases exptp:
2 (MULT
3 -► (3n)(conc (str | 0 < i < n) = string),
4 PLUS
5 -» (3n)(conc (str | 1 < i < n) = string),
6 m k-N am eo(num str ,)
7 -♦ if elem s numstr C { "0” , “I ” , “2", "3” , “4” , "5” , "6", “7” , “8 ", “9"} th e n
8 (let n = form-integer (numstr) in
9 cone (str | 1 < i < len n) = string)

10 else
11 e x i t (“§5.4.1.14: Repetition name in name class must denote a natural number”),
1 2 nil
13 -* str = string))

ty p e : Char* Stringo [Regexpexpo] Bool

O b jec tiv e

P a ra m eters

string
str
exptp

R esu lt

A lg o r ith m

Line 2

Line 4

Line 6

Line 12

Test whether a certain string can be formed by repeating another string
a number of times

The string to be formed
The string to be repeated
The repetition factor

True if success

If the repetition factor is an asterisk then there m ust exist a value
n such th a t repetition (concatenation) of str n times forms string.
If the repetition factor is a plus then there m ust exist a non-zero
value n such th a t repetition (concatenation) of str n tim es forms
string.
If the repetition factor is a name it m ust denote a natu ra l num ber
and the result is true if string can be formed by repeating str th a t
number of times.
If the repetition factor is om itted, the strings m ust be equal

(3.4.7.1.7)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 99

is-in-regular -par(string, regexp, exptp) = (3.4.7.1.8)

1 cases exptp:
2 (MULT
3 -» (3(str, n))(conc (s t r | 0 < i < n) =■ s t r ing A
4 i s - in- r egu lar - expr (s t r , regexp)),
5 PLUS
6 — (3(str, n))(conc (s t r | 1 < i < n) = s t r ing A
7 i s - in - regu lar -expr (s t r , regexp)),
8 Tnk-Name0(n u m s t r ,)
9 -► if elem s n u m s t r C { “0", "1", “2", "3", "4", "5", "6", "7", "8”, "9"} then

10 (let n = f o r m - i n t e g e r (n u m s t r) in
11 (3str)(conc (s t r | 1 < i < n) = s t r ing A
12 i s - in- r egu lar - expr (s t r , regexp)))
13 else
14 e x i t (“§5.4.1.14: Repetition name in name class must denote a natural number”),
15 nil
16 — i s - in - regu lar - expr (s t r ing , regexp))

ty p e : Char* Regularexpo [Regexpexpo] —> Bool

O b je c t iv e

P a r a m e te r s

string
regexp
exptp

R e s u l t

A lg o r i th m

Line 2-4

Line 5-7

Line 8-14

Line 15

Test whether a certain string can be formed by repeating a sub-string
denoted by a regular expression a number of times

The string to be tested upon
The regular expression which is to be repeated
The optional repetition factor

True if success

If the repetition factor is an asterisk then there m ust exist a sub­
string str which is defined by the regular expression regexp and a
num ber n such th a t repetition of the sub-string n times forms the
string
If the repetition factor is a plus then there m ust exist a sub-string
str which is defined by the regular expression regexp and a non-zero
num ber n such th a t repetition of the sub-string n times forms the
string.
If the repetition factor is a name it m ust denote a natu ral number
and the result is true if there exist a sub-string str defined by the
regular expression regexp such th a t repetition of the sub-string the
specified number of times forms string.
If the repetition factor is om itted, the result is true if the string is
defined by the regular expression

transform-axioms(axioms, context)(diet) =

1 (i f axioms = () th e n {} else (transform-axiom(hd axioms, context)(dict) U
2 transform-axioms(tl axioms, context)(dict)))

ty p e : Axiomo* Context —► Diet —> Equationsi

O b je c t iv e Transform a list of AS0 equations (axioms) into a set of ASi equations

P a r a m e te r s

axioms The axioms to be transform ed

(3 .4 .7 .1 .9)

100 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

context

R esu lt

A lg o r ith m

Line 1
Line 1-2

The context is which the axioms are transform ed. The context ei­
ther denotes the norm al axioms (AXIOMS) or the m apping axioms
(MAPPING)

The generated ASi equations

W hen through, return the empty set.
R eturn the set of equations consisting of the set corresponding to
the first equation (line 1) unified with the rest of the equations
(line 2)

transform-axiom(axiom, context)(diet) =

1 (c a se s axiom:
2 (m k -Equation^ (,)
3 -♦ {transform-equation(axiomy context) (diet)},
4 m k -Condequationo(eql} eq)
5 -♦ (le t eql' = (inse r t - equa ls - true (eq l [i]) (d i c t) | i < i < le n eg/),
6 eq' = insert-equals-true(eq)(dict) in
7 {transform-condequation(vak-CondequationQ(eql ' , eg'), context)(dict)})y
8 xtik-Quantequationo(, ,)
9 {transform-quantequation(axiomy context)(dict)}y

10 mk-M appingaxiomo(,,)
11 -♦ transform-mapping (axiom) (diet),
12 T — i f is-5 /rm gterm o(<m ora) A s-Qualifiero(axiom) = () th e n
13 { m k -Informal-text\ (axiom)}
14 e lse
15 (le t axiom' = insert-equals-true(axiom)(dict) in
16 {transform-equation(axiom ' , context)(dict)})))

ty p e : Axiomo Context —► Diet —* Equationsi

O b jec tiv e

P a ra m eters

axiom
context

R esu lt

A lg o r ith m

Line 2
Line 4-7

Line 8-10

Line 12-13

Line 15-16

Transform an ASo axiom into a set of ASi equations. Except for in the
case of a m apping axiom, the set consist of only one element

The axiom to be transform ed
The context is which the transform ation takes place (see transform-
axioms)

The generated ASi equations

If the axiom is a simple equation then transform the equation.
If the axiom is a conditional equation then replace boolean term s in
the restriction (eql) and in the restricted equation (eg) by a simple
equation and transform the resulting conditional equation.
If the axiom is a quantified equations (line 8) or a m apping equation
(line 1 0) then transform it.
Otherwise the axiom is a term which denotes inform al tex t it the
term is an unqualified character string.
If the axiom does not denote informal text then it is a boolean
axiom and ” equals true” is inserted before it is transform ed

(3.4.7.1.10)

F ascicle X .4 - R ec . Z .100 — A n n e x F .2 101

insert-equals-true (axiom)(diet) = (3.4.7.1.11)

1 i f is-Equationo(axiom) th en
2 axiom
3 else
4 (let truenm — mk-iVameo(“TRUE” , nil) in
5 le t trueid — m k-/do((hd dtct(SCOPEUNIT)), truenm) in
6 vaV.-Equationo{axiom, trueid))

ty p e : Unquantequationo —* Diet —► Equation^

O b jec tiv e

P a ra m eters

axiom

R e su lt

A lg o r ith m

Line 1
Line 4
Line 5

Line 6

If an axiom is a boolean term , then construct an ASo equation, th a t is
define the term to equals true

The axiom to be tested upon

The possibly modified axiom

If the axiom is an equation then it is all right else
It is a term then construct the name for the boolean sort.
C onstruct the identifier for the boolean sort. The qualifier is the
first element in the Qual SCOPEUNIT which denotes the current
scopeunit. The first element denotes the system level.
C onstruct an equation from the boolean term and the true literal
identifier

transform-equation(mk-Equationo(terml , term2), context)(dict) =

1 (let (a s i te rm l, as\term 2 , diet') = transform-lhs-rhs{terml, term2, context)(diet) in
2 build-quant-equation(mk-Unquantified-equationi(asiterml , asiterm2))(dict'))

ty p e : Equation^ Context —* Diet —» Equationsi

O b je c tiv e Transform a simple unquantified ASo equation into an ASi equation

P a ra m eters

term i, te rm 2 The two term s in the equation to be transform ed
context See transform-axioms

R e su lt The constructed ASi equation

A lg o r ith m

Line 1 Transform the two terms. New ValueidD descriptors in diet1 (see
the definition of Diet) contains inform ation of all the value identi­
fiers used in the two terms.

Line 2 C onstruct an unquantified equation from the two ASi term s and
enclose the equation by some quantification (if there are any Val­
ueidD descriptors in diet')

(3.4.7.1.12)

102 F ascicle X .4 — R ec . Z .100 — A n n ex F.2

1 (le t totset — all-visible-sorts(diet) in
2 le t (, t s e t l ,) =
3 i f is-Errortermo(terml)
4 th e n (. . . , to tse t , ...)
5 e lse transform -term (term l, context, totset)(dict),
6 (, tse t2 ,) =
7 i f is-Errortermo(term2)
8 th e n (. . . , to tse t , ...)
9 e lse transform-term(term2, context, totset)(dict) in

10 le t tqual = i f card (t s e t l H tset2) = 1 th e n
11 (le t tq 6 (tse t l D tset2) in
1 2 tq)
13 e lse
14 e x i t (“§4.2.3: The two terms in equation must be o f the sam e sort") in
15 le t (as\ t e r m i , , d) =
16 i f is-Errortermo(term i)
17 th e n (m k-E rror- te rm i() , diet)
18 e lse transform-term(terml, context, {tqual})(diet) in
19 le t (a s \ te rm 2 , , d') =
2 0 i fis-Errortermo(term2)
21 th e n (m k-Error-term i() , ..., d)
22 e lse transform-term(term2, context, {tqual})(d) in
23 (a s i te r m i, as\term2, d'))

t y p e : Term® Termo Context —► Diet —► Termi Termi Diet

transform-lhs-rhs(terml, term 2, context)(diet) =

O b je c t iv e

P a r a m e te r s

Transform two ASo term s from an equations into two ASi term s

t e r m i , termS
context

R e s u l t

A lg o r i th m

Line 1
Line 2-9

Line 10-14

Line 15-23

The two term s to be transform ed
See transform-axioms

The two constructed ASt terms and a Diet including ValueidD descrip­
tors of the value identifiers occurring in the two term s

E xtract the Qual set containing all the visible sorts
Transform the two term s in order to determ ine the set of legal
sorts for the terms, tse tl denotes the legal sorts for te rm i and
tset2 denotes the legal sorts for term2. If one of the term s is the
error term then all visible sorts are legal for th a t term.
Determine the sort of the equation. There m ust exist exactly one
such sort i.e. the two sets must have one sort in common.
If one of the term s is the error term then return the ASi error
term for th a t term else transform it (line 18 and line 2 2), given the
legal sort as argum ent (tqual). The Diet returned from transform-
term for the first term (line 18) is used when the second term is
transform ed (line 22) such th a t the ValueidD descriptors are not
created twice.

(3.4.7.1.13)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 103

build- quant - equation (equationi)(dict) = (3.4.7.1

1 if (3g £ do m dict)(is- ValueidD (d id (q)) A -is -Explicit (d id (q))) th e n
2 (let q £ dom diet b e s .t . i&-ValueidD (d id (q)) A s-Mapvalue(dict(q)) = n il A -is-Explicit (diet (g)) in
3 le t m k- ValueidD(, tq s ,) == dict(q) in
4 le t tq £ tqs in
5 le t (,nm) = g[len<jf] in
6 le t equation' = build-quant-equation(equationi)(dict \ {g}) in
7 le t as\tid — make-asi-identifier (tq) (d id) in
8 m k -Quantified-equationsi({name-to-namei(nm)}, as\tid, {equation1}))
9 else

1 0 equationi

ty p e : Equationi —► Diet —> Equationi

O b je c t iv e

P a r a m e te r s

equationi

A lg o r i th m

Line 1

Line 2
Line 3

Line 4
Line 5
Line 6

Line 7
Line 8

Enclose an ASi equation by a quantification for every value nam e found
in diet

The ASi equation to be quantified. As the function is recursive,
equationi may be an equation which already is quantified

If there exist an ValueidD descriptor (value identifier descriptor)
in the Diet and it is not introduced by explicit quantification then
Denote the Qual of the value identifier by q.
Decompose the value identifier descriptor. The set of sorts tqs
contains a t this stage only one sort.
Denote the sort of the value identifier by tq.
E xtract the name of the value identifier.
C onstruct a new equation by enclosing the old equation by quan­
tification corresponding to the rest of the value identifiers.
C onstruct the ASi identifier from the value identifier Qual.
R eturn an equation quantified w ith an ASi name and which con­
tains the new equation

transform-quantequation(nik-QuantequationQ(vl, tid, axl), context)(diet) ^

1 (let tqual = get-visible-qual(tid, TYPE)(chc<) in
2 le t qualset = {ch'ct(SCOPEUNIT) ((VALUE, u/[i])) | 1 < i < len vl} in
3 le t diet' = diet + [<J ► m k- ValueidD (nil, {tqual}, tru e) |
4 q £ qualset] in
5 le t asiaa: = transform-axioms(axl, contexi)(dict') in
6 le t asitid = make-asi-identifier(tqual)(diet) in
7 le t asivl = {name-to-namei(vl[i]) \ 1 < i < len vl} in
8 m k -Quantified - equationsi (asivl, asitid, asiax))

ty p e : Quantequatiorto Context —► Diet —> Quantified-equationsi

O b je c t iv e Transform a quantified equation into ASi

P a r a m e te r s

vl,tid,axl The value name list, their sort and the axiom list contained in the
quantified equation

context See transform-axioms

R e s u l t The ASi quantified equation

(3.4.7.1

104 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

A lg o r ith m

Line 1 C onstruct the Qual of the sort (tid)
Line 2 C onstruct the Quals of the value identifiers corresponding to the

value names (vl).
Line 3-4 U pdate Diet to include the value identifier descriptors, n il in­

dicates th a t its not a literal value identifiers (m appings), { tqual}
indicates th a t the only allowed sort for the value identifiers is tqual
(in im plicit quantification), the set may contain several elements
and true indicates th a t the value identifiers are introduced by ex­
plicit quantification.

Line 5 Transform the axioms in the quantified equation into ASj.
Line 6 C onstruct an ASi identifier for the sort Qual.
Line 7 C onstruct an ASi name set containing the value names.
Line 8 R eturn a constructed ASx quantified equation

transform-condequation(nik-Condequationo(eql, eq), context)(dict) =

1 (let (eql\, diet') = transform-restrictions(eql, context)(diet) in
2 le t nik-Equationo(term l, term2) = insert-equals-true(eq)(dict) in
3 le t (a s ite rm i, as\term2, diet") = transform-lhs-rhs(terml, term2, context)(dict') in
4 le t eqi = m k- Unquantified - equationi(asiterml, as\term2) in
5 build-quant-equation(mk-Conditional - equationi (eql\, eq\)) (diet"))

ty p e : Condequationo Context —* Diet —► Equationi

O b jec tiv e

P a ra m eters

eql, eq

R esu lt

A lg o r ith m

Line 1
Line 2
Line 3

Line 4
Line 5

Transform a conditional equation into ASi

The restriction and the restricted equations in the conditional
equation

The constructed ASi conditional equation

Transform the restrictions.
Decompose the ASo equation.
Transform the two term s in the ASo restricted equation. Note th a t
diet1 is used in the transform ation of the restricted equations such
th a t the im plicit value identifiers in the two parts are the same.
C onstruct an ASi equation.
Enclose the constructed equation by quantification (if diet1' con­
tains any ValueidD descriptors).

transform-restrictions(eql, context)(dict) =

1 (if eql = () th e n
2 ({}, diet)
3 else
4 (let nik-Equationo(terml, term2) = insert-equals-true(hd eql)(dict) in
5 i f is-Errortermo(te rm i) V is-Errortermo(term2) th e n
6 exit("§5.4.1.7: Error term is part of restriction")
7 else
8 (let (a s \ te rm l, as\term 2 , diet') — transform-lhs-rhs(terml, term2, context)(dict) in
9 le t (eqlrest, dictrest) = transform-restrictions(t\ eql, context)(diet1) in

10 (eqlrest U { m k -Unquantified-equationi(asitermi, asiterm2)}, dictrest))))

ty p e : Unquantequationo * Context Diet —> Equationi -set Diet

(3.4.7.1.16)

(3.4.7.1.17)

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 105

O b je c t iv e Transform a list of restrictions into a set of ASi restrictions by travers­
ing recursively through the list and by collecting inform ation in Diet of
the value identifiers. The function is similar to transform-equation, but
applied on a list of equations instead.

transform-mapping (mk-Mapping axiomo(vl, tid, axl))(dict) =

1 (let tqual = get-visible-qual(tid, TYPE)(dtc<) in
2 le t qualset = {dtc<(SCOPEUI\IIT) /'> ((VALUE, v/[i])) | 1 < * < len vl} in
3 le t litset = {qual £ do m diet | is -LiteralD (diet (qual)) A s -Sortqual(dict(qual)) = tqual} in
4 transform-mappingaxioms(qualset, tqual, litset, axl)(dict))

ty p e : Mappingaxiomo —► Diet —► Equationsi

(3.4.7.1.18)

O b je c t iv e

P a r a m e te r s

vl
tid
axl

R e s u l t

A lg o r i th m

Line 1
Line 2
Line 3
Line 4

Transform a m apping axiom into a set of ASi equations

The value name list in the m apping axiom
The sort of the value names
The axioms contained in the m apping axiom

The transform ed ASi equation

E xtract the Qual of the sort.
C onstruct the set of Quals for the value names.
E xtract the set of literal Quals defined for the sort tqual.
Do the transform ation

transform-mappingaxioms(qualset, tqual, litset, axl)(dict) = (3.4.7.1.19)

1 i f qualset — {} th e n
2 {}
3 else
4 (let qual £ qualset in
5 vmlon {transform-axioms (axl, MAPPING)(dic< + [qual t—► m k - ValueidD (litqual, {tqual}, true)])
6 litqual £ litset} U
7 transform-mappingaxioms(qualset \ {gua/}, tqual, litset, axl)(dict))

ty p e : Qual-se t Sortqual Qual-set Axiomo* —+ Diet —> Equationsi

O b je c t iv e

P a r a m e te r s

qualset
tqual
litset
axl

R e s u l t

A lg o r i th m

Line 1
Line 4

W ith a given set of value identifiers, their sort and the literals defined for
th a t sort, expand a set of equations by replacing all the value identifiers
in the axioms by a literal

A set of Quals representing the value identifiers
A Qual representing the identifier of their sort
A set of Quals representing the literals defined for tqual
The axioms to be expanded

A set of ASi Equations where the value identifiers corresponding to
qualset have been replaced

W hen through, return the em pty set of equations.
Take the next value identifier in the set.

106 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 5-6

Line 7

C onstruct the set of equations which is the union of all those set
of equations where the value identifier is replaced by a particular
literal in litset.
R eturn this constructed set of equations, unified w ith the equations
constructed by replacing the rest of the value identifiers

add-equality (tqual) (diet) =

1 (let bqual = get-predef-sort("BOO\.EAN”)(dict) in
2 le t bid = aso-id(bqual) in
3 le t tid = aso-id(tqual) in
4 le t opl = (mk-Opspeco (EQ, (tid, tid), bid), m k- Opspeco (ME, (tid, tid), bid)) in
5 le t anm = create-unique-name(),
6 bnm — create-unique-name (),
7 cnm = create-unique-name (),
8 trueid = vcik-Ido(bqual, mk-Nameo(“TRUE’’, nil)) in
9 le t aid = m k-Ido((), anm),

1 0 bid — m k-/do((), bnm),
11 cid = mk-Jdo(()) cnm) in
12 le t eql — mk-Equationo(mk-Infixtermo(aid, EQ, aid), trueid),
13 eq2 = mk-Equationo(mk-Infixtermo(aid, EQ, bid), xnk-Infixtermo(bid, EQ, aid)),
14 eqZ = xn.k-Equationo(m.k-Infixtermo(m.k-Infixtermo(nik-Infixtermo(aid, EQ, bid), AND,
15 m k-Infixtermo(bid, EQ, cid)),
16 IMPLY, m k -Infixterm0(aid, EQ, cid)), trueid),
17 eg4 = m.k-Equationo(mk-Infixtermo(aid, NE, bid),
18 mk-MonadtermoCNOT, m k-Infixtermo(aid, EQ, bid))),
19 eqb = mk-Condequationo((mk-Equationo(xn.k-Infixtermo(aid, EQ, bid), trueid)),
20 mk-Equationo(aid, bid)) in
21 (opl, (m k -Quantequationo((anm, bnm, cnm), tid, (eql, eq2, eqZ, eq4, eg5)))))

t y p e : Sortqual

O b je c tiv e

P a r a m e te r s

tqual

R e s u lt

A lg o r i th m

Line 1-3

Line 4

Line 5-7
Line 8
Line 9-11
Line 12-20

Diet —► Opspeco+ Axiomo*

For a given sort, construct the ASo equality properties as defined in
§5.4.1.4 of Z.100

The Qual of the sort

An ASo list of operator definitions and an ASo list of axioms

C onstruct the ASo (qualified) identifiers of the boolean sort and of
tqual.
C onstruct the definitions:

"=" : tqual, tqual -> boolean
"/=" : tqual, tqual -> boolean

Create some distinct names to be used in the quantification.
C onstruct the qualified ASo identifier of the boolean literal TRUE.
C onstruct ASo identifiers for the value names.
C onstruct the five axioms (eql - eq5):

aid = aid == true;
aid = bid == bid = aid;
(aid = bid) and (bid = cid) =>

aid = cid == true;
aid /= bid == not(aid = bid);
aid = bid == true ==> aid == bid;

(3.4.7.1.20)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 107

Line 21 R eturn the constructed operator definitions and axioms

add-ordering (mk-Propertieso(lit, oplist, axioms, map, init), tqual)(dict) =

1 (if (3 op € elem s oplist)(is-Orderingo(op)) th en
2 (let oplist' — (oplist[i] | 1 < i < len oplist A is -Opspeco(oplist[i\)) in
3 i f len oplist — len oplist' — 1 th e n
4 (let ordaxioms = aso-ordering-axioms(tqual)(dict),
5 order = i f len lit < 1 th e n () else aso-order(hd lit, t l lit, tqual),
6 ordtyping — aso-ordering-typing(tqual){dict) in
7 mk-Propertieso(lit, ordtyping ''** oplist', ordaxioms ^ axioms ^ order, map, init))
8 else
9 e x i t (‘‘§2 .2 .2 : Ordering operators are multiple defined"))

1 0 else
11 m k -PropertieSo(lit, oplist, axioms, map, init))

ty p e : Properties0 Sortqual —> Diet —► Propertieso

O b je c t iv e Expand the ordering directive in some properties into operator defini­
tions and axioms as defined in §5.4.1.8 of Z.100

P a r a m e te r s The properties consist of

lit Literal definitions
oplist O perator definitions
axioms Axioms
map M apping axioms
init The default value
tqual Denotes the sort defining the properties

R e s u l t The modified properties

A lg o r i th m

Line 1 If there exist an ordering directive in the operator definitions then
Line 2 C onstruct an operator definition list where the ordering directives

have been removed.
Line 3 There m ust exist only one such directive in the operator list.
Line 4 C onstruct the AS0 properties of the ordering operators.
Line 5 If there are any literals defined for the sort then construct the

axioms reflecting the ordering of the literals.
Line 6 C onstruct the definitions for the ordering operators.
Line 7 R eturn the modified properties

(3.4.7.1.21)

108 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

asg-ordering-axioms (squal) (d i d) = (3.4.7.1.22)

1 (let bqual = get-predef-sort ("BOOLEAN") (diet) in
2 le t falseid = mk-Id®(bqual, n ik-Nam e0(“FALSE” , nil)) in
3 le t sid = aso-id(squal) in
4 le t anm = create-unique-name(),
5 bnm = create-unique-nameQ,
6 cnm = create-unique-name{) in
7 le t aid — m k-/do((), anm),
8 bid = m k-/do((), bnm),
9 cid = mk-Ido({), cnm) in

1 0 le t axioml =
11 (Tnk.-Equationo{rxik-Infixtermo(aid, LT, aid), falseid),
12 mk-Equationo(mk-Infixtermo(aid, LT, bid), m k-Infixtermo(bid, GT, aid)),
13 mk-Equation®(mk-Infixtermo(aid, LE, bid), m.k-Infixtermo(mk-Infixtermo(aid, LT, bid),
14 OR,
15 mk-Infixtermo{aid,EQ,bid))) ,
16 mk-Equationo(xnk-Infixtermo(aid, GE, bid), mk-Infixtermo(xnk-Infixtermo(aid, LE, bid),
17 OR,
18 mk-Infixtermo(aid, EQ, bid))),
19 mk-Infixtermo(mk-Infixtermo(aid, LT, bid),
20 IMPLY,
21 mk-Monarfea:pro(IMOT, mk-Infixtermo(aid, LT, bid))),
22 xnk-Infixtermo(mk-Infixtermo(mk-Infixtermo(aid, LT, bid),
23 AND, mk-Infixtermo(bid, LT, cid)),
24 IMPLY,
25 mk-Infixtermo(aid, LT, cid))) in
26 (m k -Quantequationo((anm, bnm, cnm), sid, axioml)))

ty p e : Sortqual —* D id —+ Axiom®

O b je c t iv e Construct the ASo axiom reflecting the properties of the ordering op­
erators i.e. :

FOR ALL aid,bid,cid IN sid
(aid < aid == False;
aid < bid == bid > aid;
aid <= bid == (aid < bid) OR (aid = bid);
aid >= bid == (aid > bid) OR (aid = bid);
aid < bid => not(bid < aid);
aid < bid and bid < cid => aid < cid);

A lg o r ith m

Line 11 Construct the l ’th equation.
Line 12 Construct the 2’th equation.
Line 13 Construct the 3’th equation.
Line 16 Construct the 4’th equation (i.e. a boolean axiom).
Line 19 Construct the 5’th equation (i.e. a boolean axiom).
Line 22 Construct and return the quantified equation which contains the

five equations.

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 109

aso-ordering-typing(tqual)(did) ~ (3.4.7.1.23)

1 (let tid = aso-id(tqual),
2 bid — a$Q-id(get-predef-sort(‘‘BOOLEAN")(dict)) in
3 (mk-Opspeco(LT, (tid, tid), bid),
4 xnk-Opspeco(GT, (tid, tid), bid),
5 xtik-Opspeco(LE, (t id ,t id) ,b id) ,
6 mk-Opspeco(GE, (tid, tid), bid)))

ty p e : Nameo —* D i d —* Opspeco+

O b jec tiv e C onstruct the ASo definitions of the ordering operators i.e.

"<" : tid, tid -> bid;
">" : tid, tid -> bid;
"<=" : tid, tid -> bid;
">=" : tid, tid -> bid;

aso- order (lit, litlist, squal) =

1 (if litlist = () th e n

2 o
3 else
4 (if is -Nmdasso(lit) th e n
5 a$o- order (hd litlist, t l litlist, squal)
6 else
7 i f is-Nmdasso(h.d litlist) th en
8 aso-order (lit, t l litlist, squal)
9 else

1 0 (let id 1 = if is-Nameo(lit) th e n
11 nik-Ido(squal, lit)
1 2 else
13 xnk-Stringtermo(squal, lit),
14 id2 = if is-iVameo(hd litlist) th e n
15 m k-/do(squal, h d litlist)
16 else
17 nik-Stringtermo(squal, h d litlist) in
18 (nik-Infixtermo(idl, LT, id2)) '"x
19 aso-order(h.dlitlist,tllitlist, squal))))

ty p e : Literalo Literalo* Sortqual —► Axiomo*

O b jec tiv e

P a ra m eters

lit
litlist
squal

R esu lt

A lg o r ith m

Line 1
Line 4-5
Line 7-8
Line 10-14

C onstruct the axioms reflecting the ordering of the literals for a sort

The first literal in the literal list
The rest of the literal list (the function is recursive)
The Qual of the sort defining the literals

A list of axioms on the form :

idl < id2

W hen through, return nothing.
If the literal in hand is a name class then skip it over.
If the next literal in the literal list is a name class then skip it over.
C onstruct the ASo identifier of the literal in hand and of the next
literal in the list. Note th a t the full qualifier is present in order to
avoid ambiguity.

(3.4.7.1.24)

/'

110 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 18-19 R eturn the boolean axiom for this literal concatenated with the
boolean axioms for the rest of the literals

transform-typing (oplist) (diet) =

1 (if oplist = () th e n
2 (0 , 0)
3 else
4 (let nik-Opspeco(nm, opsortl, ressort) = h d oplist in
5 le t (oprest, drest) — transform-typing(tl oplist)(dict) in
6 le t tqual = get-visible-qual(ressort,TVPE)(dict) in
7 le t pqual = get -parent (tqual)(dict) in
8 le t asiid = make-as\-identifier(tqual)(dict) in
9 le t arglist = (get-visible-qual(opsortl[i\, TYPE)(dtct) | 1 < i < len opsortl) in

1 0 le t parglist = (get-parent(arglist[i])(diet) | 1 < i < len arglist) in
11 le t opparml = (make-asi-identifier(arglist[i])(dict) | 1 < i < len arglist) in
12 le t opqual = ehct(SCOPEUNIT) ((OPERATOR, (nm, parglist, pqual))) in
13 le t newnm = create-unique-name() in
14 le t newqual = d tc<(SC O PEU I\IIT)((O PERA TO R, (newnm, parglist, pqual))) in
15 le t descr = m k -OperatorD (arglist, tqual, newqual, true) in
16 le t asitree = m k -Operator-signature\(name-to-namei (newnm), opparml, as\id) in
17 i f opqual £ dom drest th e n
18 e x i t (‘‘§2.2.2: Multiple appearence of operator definition”)
19 else
20 ({asitree} U oprest, drest + [opqual i—► descr])))

ty p e : Opspeco* —► Diet —» Operator-signaturei-se t Diet

O b je c tiv e Transform a list of operator definitions into ASi and update Diet to
include descriptors for the operators

P a ra m eters

oplist The list of AS0 operator definitions

R e su lt The ASi operator definitions and the updated diet
A lg o r ith m

Line 1 W hen through, return em pty objects (the function is recursive).
Line 4 Decompose the first operator definition in the list.
Line 5 Transform the rest of the operator definitions.
Line 6-7 Extract the Qual of the result sort and fetch the parent sort (pqual)

in the case of a syntype.
Line 8 Construct the ASi identifier of the result sort.
Line 9-10 Extract the Quals of the argum ent sorts and fetch the parent sorts

(parglist) in the case of any syntypes.
Line 11 Construct the ASx identifier list of the argum ent sorts.
Line 12 Construct the Quals of the operator. Note th a t the Operatorqual­

elem (see the dom ain definition) contains the parent sorts (no syn­
types) such th a t uniqueness of operators can be verified by inspect­
ing the operator Quals.

Line 13 Construct a unique name for the operator. (Unique names are
generated for all operators such th a t no overloading occurs in A Si).

Line 14 Construct the operator Qual which is used for transform ing the
applied occurrences of the operator into ASi.

Line 15 Construct the Diet descriptor for the operator. This time, the
argum ents and the result can be syntypes.

Line 16 Construct the ASi signature of the operator.

(3.4.7.1.25)

Fascicle X .4 - R ec. Z .100 - A n n ex F .2 111

Line 17 If the Qual of the operator occurs in the D i d contribution for the
rest of the operators then two operators w ith the same name, the
same argum ent sorts and the same result are defined within the
same sort definition.

Line 20 R eturn the signature for this operator unified with the signatures
for the rest of the operators and return the D id contributions for
th is operator and for the rest of the operators

3 .4 .7 .2 S t r u c t D e f in it io n s

transform -siruc(nm , nik-Struco(fl), mk-Propertieso(l, o, a, am, in i t)) (d id) ~

1 (let sid — m k-/do(dict(SCOPEUNIT), nm) in
2 le t (o ', a ' ,) = transform-fields(sid, fl, {}, ()) in
3 le t prop1 = mk-Propertieso(l, o o ' , a a ' , am, init) in
4 transform-sortdef (nm, prop1, nil)(dic<))

ty p e : Nameo Struco Propertieso —+ D id —► D id

O b je c t iv e Transform a STRU CT sort definition into ASi

P a r a m e te r s

nm The nam e of the sort being defined
f l The field list
l,o,a,am,init The literals, the operators, the axioms, the m apping axioms and

the default value specified in the ADDING construct

R e s u l t The D i d updated to include descriptors for the literals and operators
and updated to include the generated ASi objects in its DATATYPEDEF
entry

A lg o r i th m

Line 1 C onstruct the ASo identifier of the sort being defined.
Line 2 G enerate the ASo operator definitions and axioms implied by the

struct definition.
Line 3 C onstruct the ASo properties containing the implied properties and

the additional properties.
Line 4 Transform those properties in the usual way

(3.4.7.2.1)

112 F ascicle X .4 — R ec . Z.100 — A n n e x F .2

transform-fields(tid, flist, fset, sidlist) = (3.4.7.2.2)

1 (if flist = () th en
2 ((m k -OpspecQ(mk-Nameo("MAKE”, EXCLAMATION), sidlist, tid)), () ,len sidlist)
3 else
4 (let mk-Fieldspeco(fnml, fid) = h d flist in
5 le t nm = h d fn m l in
6 i f nm £ fset th en
7 e x i t ("§5.4.1.10: Two structure fields have the same name”)
8 else
9 (let flist' = if t l fnm l = () th en

1 0 t l flist
11 else
12 (mk-Fieldspeco(tl fnml, fid)) tl flist in
13 le t (asooprest, asoaxrest, argnum) =
14 transform-fields(tid, flist' , fset U {nm}, sidlist f id) in
15 le t (asoop, as$ax) — transform-field(tid, fid, nm, argnum, len sidlist + 1) in
16 (asoop aso oprest, asoax '“x asoaxrest, argnum))))

ty p e : Sortido Fieldspeco* Fieldnameo-set Sortido* —> Opo* Axiomo* N\

O b je c t iv e

P a r a m e te r s

tid
flist
fset
sidlist

R e s u lt

A lg o r i th m

Zine 1-2

l in e ^
Zine 5

Zine <?
Line 9
Line 13
Line 15

Line 16
properties for the rest of the fields

trans form-field (tid, fid, fnm , totnum, index) =

1 (let (modop, modax) = aso-modify-properties(tid, fid, fnm , totnum, index),
2 (extop, extax) = aso-extract-properties (tid, fid, fnm , totnum, index) in
3 ((modop extop), (modax ^ e*<ax)))

ty p e : Sortido Sortido Fieldnameo Ni N\ —*■ Opo* ^4a:romo*

Transform a field list from an AS0 struct definition into a list of operator
definitions and a list of axioms

The ASo identifier of the sort defining the struct
The field list
The set of already used field names (the function is recursive)
The current list of sorts for the fields. This list is used for con­
structing the signature of the MAKE! operator

The ASo operator definitions, the axioms implied by the field list and
the complete number of fields. This number is only used internal in the
function

W hen through then sidlist is complete and the signature of the
MAKE! operator can be constructed. The length of sidlist is also
returned such th a t the axioms including the MAKE! operator, con­
structed a t the other recursion levels, can be made properly.
Decompose the first field specification.
Let nm denote the first name in the field name list of the first field
specification.
If the name already has been used then it is an error.
Construct a new field list where the name in hand is excluded.
Transform the rest of the fields.
Construct the operator definitions and the axioms for the field in
hand
R eturn the properties for the field in hand concatenated with the

(3.4.7.2.3)

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 113

P a r a m e te r s

tid
fid
fn m
totnum
index

R e s u l t

A lg o r i th m

Line 1

Line 2

Line 3

O b je c tiv e C onstruct the implied operator definitions and axioms attached to a
field name

The ASo identifier of the sort defining the struct
The ASo identifier of the field sort
The field name
The complete number of fields for the sort tid
The position of the field in the argum ent list of the MAKE! oper­
a tor attached to tid

The O perator definitions and axioms attached to the field fn m

C onstruct the operator definition and axiom for the modify oper­
ato r attached to the field.
C onstruct the operator definition and axiom for the extract oper­
a to r attached to the field.
R eturn the two operator definitions and the two axioms

aso-modify-properties(tid, fid, m k-Nameo(fst ,) , totlistlength, index) ~

1 (let m n m = m k-Nam eo(fst “MODIFY” , EXCLAMATION) in
2 le t xnk-Ido(qualifier, t n m) = tid in
3 le t tqual = qualifier ((TYPE, tnm)) in
4 le t opspec = nik-Opspeco(mnm, (tid, fid), tid) in
5 le t fvarid = m k-/do((), create-unique-nameQ) in
6 le t makearglist = (m k-Ido((), create -unique-nameQ) | 1 < i < totlistlength) in
7 le t makearglist1 = (makearglist[i\ | 1 < i < index) /"x
8 (fvarid) '"X
9 (makearglist[i\ \ index < i < totlistlength) in

10 le t makenm = nik-Nameo("MAKE” , EXCLAMATION) in
11 le t makeop = mk-Operatortermo(m'k-Ido(tqual, makenm), makearglist),
1 2 makeop' = m'k.-Operatortermo(m'k-Ido(tqual, makenm), makearglist') in
13 le t Iterm = nik-Operatortermo(nik-Ido(tqual, mnm), (makeop, fvarid)) in
14 le t ax = mk-Equationo(lterm, makeop') in
15 (opspec, ax))

ty p e : Sortido Sortido Fieldname0 N-i N\

O b je c t iv e

Opo Axiomo

P a r a m e te r s

tid
fid
fs t
totlistlength
index

R e s u l t

A lg o r i th m

Line 1

Construct the ASo properties for the modify operator attached to a
struct field

The identifier of the sort defining the struct
The identifier of the field sort
The spelling of the field name
The num ber of fields defined for the sort tid
The position of the field in the argum ent list of the MAKE! oper­
a tor attached to tid

The implied operator definition and axiom as defined in §5.4.1.10 of
Z.100

C onstruct the name of the modify operator by concatenating the
spelling of the field name by the string ’’M ODIFY” .

(3.4.7.2.4)

114 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 2-3 C onstruct the qualifier (tqual) denoting the sort tid. The MAKE!
operator is qualified by tqual in order to avoid ambiguity.

Line 4 C onstruct the operator definition for the field modify operator.
Line 5-6 C onstruct a distinct value identifier (fvarid) and create a list of

distinct value identifiers to be used as argum ent to the (left-hand)
MAKE! operator (see the example in Z.100 §5.4.1.10).

Line 6-9 Modify the argum ent list by replacing the value identifier a t posi­
tion index by fvarid. This argum ent list is used on the right hand
side of the axiom.

Line 10 C onstruct the Name0 of the MAKE! operator.
Line 11 Make the ASo operator application for the left hand MAKE! oper­

ator.
Line 12 Make the AS0 operator application for the right hand side term .
Line 13 C onstruct the left hand side term.
Line 14-15 R eturn the operator definition and the constructed axiom

as0-extract -properties (tid, f id , m k-N am eo(fs t ,) , totlistlength, index) d

1 (let enm = mk-Nameo(fst ^ "EXTRACT", EXCLAMATION) in
2 le t m k -Ido(qualifier, tn m) = tid in
3 le t tqual = qualifier ((TYPE, tnm)) in
4 le t opspec = m k -Opspeco(enm, (tid), fid) in
5 le t makearglist = (m k-/do((), create-unique-name()) | 1 < i < totlistlength) In
6 le t makenm = mk-TVameoC'MAKE” , EXCLAMATION) in
7 le t makeop = mk-Operatortermo(mk-Ido(tqual, makenm), makearglist) in
8 le t Iterm = nik-Operatortermo(nik-Ido(tqual, enm), (makeop)) in
9 le t ax = mk-Equationo(lterm, makearglist[index]) in

10 (opspec, aa:))

ty p e : Sortido Sortido Fieldnameo N\ N\ —* Opo Axiomo

O b je c t iv e C onstruct the ASo properties for the extract operator attached to a
struct field

P a r a m e te r s

tid The identifier of the sort defining the struct
fid The identifier of the field sort
fs t The spelling of the field name
totlistlength The number of fields defined for the sort tid
index The position of the field in the argum ent list of the MAKE! oper­

ator attached to tid

R e s u l t The implied operator definition and axiom as defined in §5.4.1.10 of
Z.100

A lg o r i th m

Line 1 C onstruct the name of the extract operator by concatenating the
spelling of the field name by the string ’’EX TR A C T” .

Line 2-3 C onstruct the qualifier (tqual) denoting the sort tid.
Line 4 C onstruct the operator definition for the field ex tract operator.
Line 5-6 C onstruct a distinct value identifier (fvarid) and create a list of

distinct value identifiers to be used as argum ent to the (left-hand)
MAKE! operator (see the example in Z.100 §5.4.1.10).

Line 6-7 C onstruct the left hand side MAKE! operator application.
Line 8 C onstruct the left hand side term.
Line 10-11 R eturn the constructed operator definition and axiom

(3.4.7.2.5)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 115

3 .4 .8 T im er D efin itio n s

transform-timerdef (xtik- Timerdefo(vlist)) (diet) = (3.4.8.1)

1 i f (3 squal £ dom dict)(is-ServiceD(dict(squal)) A get-sur(squal) = dict(SCOPEUNIT)) th e n
2 e x i t ("§4.10.2: Process contains both service definitions and timer definitions”)
3 else
4 (let m k-Timerelemo(tnm, sortlist) = h d vlist in
5 le t tqual = dict(SCOPEUNIT) ((SIGNAL, tnm)) in
6 le t unm — i f is-Sermce.D(dtct(dtc<(SCOPEUNIT))) th e n create-unique-name() else tnm in
7 le t nqual = diet (SCOP EU NIT) ((SIGNAL, unm)) in
8 le t squallist = (get-visible-qual(sortlist[i],TYPE)(dict) \ i £ in d sortlist) in
9 le t as\idlist = (make-as\-identifier (squallist[i])(dict) \ i £ in d squallist) in

10 le t as\tree = nik-Tim er-defin it ioni(nam e-to-namei(unm), asiidlist),
11 delem = [tqual t—► m k- TimerD (squallist, nqual) | 1 < i < len squallist] in
12 i f t l td is t = () th e n
13 ((as\tree), delem)
14 else
15 (let (as^rest, drest) — transform-timerdef(mk-Timerdefo(tlvlist))(dict) in
16 ({asitree} U asirest, delem + drest)))

ty p e : Timerdefo+ —► Diet —* Timer-definitioni -set Diet

O b je c tiv e Transform a tim er definition into ASi

P a ra m eters

vlist

R e su lt

A lg o r ith m

Line 1-2
Line 4

Line 5
Line 6-7

Line 8-9

Line 10
Line 11
Line 12

Line 15-16

The list of (elementary) tim er definitions contained in the (com­
posite) tim er definition

A set of ASi tim er definitions and the Diet contribution containing the
descriptors for the timers

The surrounding process m ust not contain any services.
Decompose the next elementary tim er definition (the function is
recursive).
C onstruct the Qual for the timer.
C onstruct the unique name and the unique Qual which is used for
deriving the ASi identifier (see the definition of Newqual)
C onstruct the list of sort Quals attached to the tim er and construct
the corresponding ASi sort identifier list.
C onstruct the ASi tim er definition for the tim er in hand
C onstruct the Diet contribution for the tim er in hand
If this elementary tim er definition is the last element in the list
then return the ASi definition and the Diet contribution else
Join them w ith the definitions and Diet contribution corresponding
to the rest of the elementary tim er definitions

3 .4 .9 V ariab le D efin itio n s

(3.4.9.1)

1 (let m k- Vardefelemo(vl, tp, expr) = h d vlist in
2 le t tqual = get-visible-qual(tp,TYPE)(dict) in
3 le t pq = get-parent (tqual)(dict) in
4 le t expr' = if expr = nil th e n
5 cases dict(tqual):
6 (xnk-SortD(,, expri,) -* expri,

transform-vardef(mk-Vardefo(revatt, expatt, vlist))(dict) =

116 ' F ascicle X .4 — R ec . Z .100 — A n n e x F .2

7 m k -SyntypeD (,, expri ,) -* expri)
8 else
9 (let (expri , ,) = transform-expr(expr, CONSTANT, {pq})(dict) in

1 0 expri) in
1 1 le t vnum — len vl in
1 2 le t scope = diet (SCOPEUNIT) in
13 le t nmlist — (if is -ServiceD(diet(scope)) th e n create-unique-name() else vl[i) | 1 < i < vnum) in
14 le t quallist = (scope ((VALUE, v/[i])) | 1 < i < vnum),
15 newquallist = (scope ((VALUE, nmlist[i])) | 1 < i < vnum) in
16 le t (decll, dexport) = i f expatt = nil th e n
17 (0 , 0)
18 else
19 build - exported-vardef(vl, tqual, expr)(dict) in
2 0 le t (asiset, delem) =
2 1 (let asitp = make-asi-identifier(tqual)(diet) in
22 le t asidl = {m k- Variable-definitioni(name-to-namei(nmlist[i]), asitp, revatt) | i € indtmixra},
23 d = [quallist[i] t-+ m k-VarD (tqual, revatt, expatt, expr', newquallist[i]) | 1 < * < vnum] in
24 (asidl, d)) in
25 i f —’is -ProcessD(dict(scope)) A (revatt ̂ n il V expatt ^ nil) th e n
26 e x i t (“§2.4.5: Variable in procedure (or service) cannot be EXPORTED or REVEALED")
27 else
28 i f c a rd elem s t>/ ^ len vl th e n
29 e x i t ("§2.2.2: Two definitions in the same scopeunit use the same name”)
30 else
31 if t l vlist = () th en
32 (asiset U decll, delem + dexport)
33 else
34 (let (asirest, drest) =
35 transform-vardef (m k- Vardefo(revatt, expatt, t l vlist))(dict) in
36 if dom delem fl dom drest ^ {} th en
37 e x i t (“§2.2.2: Two definitions in the same scopeunit use the same name”)
38 else
39 (asiset U decll U asirest, delem -f drest + dexport)))

ty p e : Vardefo —* Diet —► Variable-definitioni -set Diet

O b je c t iv e Transform a variable definition into ASi

P a r a m e te r s The variable definition containing:

revatt The optional REVEAL a ttribu te
expatt The optional EX PO RT attribu te
vlist The list of (elementary) variable definitions

R e s u l t The set of ASi variable definitions and a Diet contribution containing
the descriptors of the defined variables

A lg o r i th m

Line 1 Decompose the first elementary variable definition (the function is
recursive).

Line 2 Extract the Qual of their sort.
Line 3 Extract the Qual of its parent (in the case of a syntype).
Line 4-10 If the initial expression is not specified in the variable definitions

then extract the ASi default expression for its sort (which also may
be n il) otherwise transform the expression specified.

Line 11 Let vnum denote the number of variable names introduced in the
elementary variable definition.

Line 12 Let scope denote the Qual of the scopeunit defining the variables.
Line 13 C onstruct new unique names for the variables if they are defined

in a service.

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 117

Line 14 C onstruct the variable Quals to be used as the Diet entries for the
variables.

Line 15 C onstruct the Quals to be put into the Newqual component of the
variable descriptors (they differs from the Quals constructed a t line
14 if in a service).

Line 16-19 If the variables have the EXPORT attrib u te then construct the
ASi definitions (decll) for the im plicit variables.

Line 20 C onstruct the ASi variable definitions and Diet contributions for
the variables by:.

Line 20 Constructing the ASi identifier of their sort.
Line 21 For each of the variables constructing an ASx variable definition

containing the name (nmlist[i]), its sort (as\tp) and possibly a re­
veal a ttrib u te (revatt).

Line 23 For each of the variables, construct a Diet descriptor containing
the Qual of its sort (tqual), possibly a reveal a ttrib u te (revatt),
possibly an export a ttrib u te (expatt), possibly an initial ASi ex­
pression (expr1) and the (possible new) Qual to be used in the
applied occurrences of the variable.

Line 25-26 Unless the variables are defined a t the process level they cannot be
EX PO RTED or REVEALED.

Line 28 The names in vl m ust be unique.
Line 31 If there are no more elementary variable definitions in the compos­

ite variable definition then return the constructed objects else
Line 34-39 Join them with the ASi definitions and Diet contributions for the

rest of the elementary variable definitions provided the names in
the variable definition are unique

build - exported-vardef (varlist, tqual, expr)(dict) =

1 i f varlist = () th en
2 ({},□)
3 else
4 (let nm = h d varlist in
5 le t (ydrest, drest) = build-exported-vardef (tl varlist, tqual, expr)(dict) in
6 le t ido = aso-id(tqual) in
7 le t nik-SignalnamesD(impnm , ,) = exportmap((tqual, nm)) in
8 le t vardefo = m k- Vardefo(nil, nil, (mk- Vardefelemo((impnm), ido, expr))) in
9 le t (vardefi, diet1) = transform-vardef (vardefo)(dict) in

1 0 (vdrest U vardefi, drest + diet1))

ty p e : Nameo* Qual [Expro] —> Diet —► Variable-definitioni -set Diet

O b je c t iv e C onstruct the ASi variable definitions for the objects implied by ex­
ported variables

P a r a m e te r s

varlist The list of variables which are exported
tqual The Qual of the variable sort
expr The expression denoting the initial value of the variables

R e s u l t The ASi definitions

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Let nm denote the first (next) name in the variable list.
Line 5 C onstruct the ASi definitions for the rest of the variable list
Line 6 (Re)construct the ASo identifier of the variable sort.

(3.4.9.2)

118 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 7 Decompose the export descriptor (SignalnamesD) in order to access
the name of the im plicit variable.

Line 8 C onstruct an ASo variable definition of th a t im plicit name.
Line 9 Transform the im plicit variable definition into ASi.
Line 10 R eturn th a t ASi definition joined with the definitions for the rest

of the exported variables. The VarD descriptor of the im plicit
variable (contained in diet') is included in the resulting Diet.

3 .4 .1 0 V iew D efin itio n s

transform-view def (m k- Viewdefo(vars))(dict) =

1 (let m k- View defelemo(varlist) tp) — h d vars in
2 i f ca rd elem s varlist ^ len varlist th en
3 e x i t (“§2.2.2: Two definitions in the same scopeunit use the same name”)
4 else
5 (let tqual = get-visible-qual(tp,TYPE)(dict) in
6 le t tqual' = get -parent (tqual)(dict) in
7 le t (as\set, d) = transform-view(varlist, tqual')(dict) in
8 i f tl vars = () th en
9 (a s ise t ,d)

1 0 else
11 (let (asirest, drest) = transform-viewdef(nik-Viewdefo(tlvars))(dict) in
1 2 i f dom d n dom drest ^ {} th en
13 e x i t (“§2.2.2: Two definitions in the same scopeunit use the same name”)
14 else
15 (asiset U asi rest, d d r e s t))))

t y p e : Viewdefo

O b jec tiv e

P a ra m eters

, vars

R esu lt

A lg o r ith m

Line 1

Line 2
Line 5
Line 6
Line 7
Line 8

Line 11-15

> Diet —> View-definitioni -set Diet

Transform a view definition into ASi

The list of (elementary) definitions contained in the (composite)
view definition

A set of ASi view definitions and a Diet contribution containing de­
scriptors for the view variables

Decompose the first (the next) elem entary view definition (the
function is recursive).
Check th a t the names in the variable list are unique.
Extract the Qual of their sort.
E xtract the Qual of the parent sort in the case of a syntype.
Transform the first elementary view definition.
If there are no more elementary view definitions then return the
ASi definition and Diet contribution for these view variables else
Join them with the definitions and contributions for the rest of the
elementary view definitions provided th a t the names in the view
definition are unique.

(3.4.10.1)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 119

transform-view(varlist, tqual)(dict) = (3.4.10.2)

1 (if varlist = () th en
2 (0 , 0)
3 else
4 (let itik-Ido(q, nm) = h d varlist in
5 le t as\tid = make-asi-identifier {tqual) (diet),
6 (asirest, drest) = transform-view(tl varlist, tqual)(dict) in
7 le t qual = (let bqual = firet-sitr(<fic<(SCOPEUI\IIT)) in
8 if (3! vqual £ dom diet)
9 ((get-sur(get-sur(vqual)) — bqual) A

10 (3?/)(? / q ((VALUE, nm)) = vqual) A
11 is-VarD (diet (vqual)) A
12 (let m k-VarD (tq , a t tr , , ,) = dict(vqual) in
13 tq — tqual A attr = REVEALED)) th en
14 (let vqual be s.t. (get-sur(get-sur(vqual)) = bqual A
15 is -VarD (diet (vqual)) A
16 (3 q')(q' q ^ ((VALUE, nm)) = vqual) A
17 (let m k-F arD (fg , a t t r , , ,) = dict(vqual) in
18 tq = tqual A attr — REVEALED)) in
19 vqual)
2 0 else
21 e x i t (‘‘§2.6.1.2: No unique corresponding revealed variable of tha t sort")) in
2 2 le t as\id = make-as\-identifier(qual)(dict) in
23 le t as\tree = m k -View-definition\(as\id, as\tid) in
24 ({ a ^ tre e} U as^rest, drest -f [dict(SCOPEUNIT) ((VIEW, qual)) i—► nik-ViewD (qual)])))

ty p e : Ido* Qual —► Diet —* View-definitioni-set Diet

O b je c t iv e Transform a list of view variables into ASx view definitions

P a r a m e te r s

varlist The view variables
tqual The Qual of the variables sort

R e s u l t The ASi definitions

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Decompose the first variable identifier.
Line 5 Transform the variable sort into an ASi identifier.
Line 6 Transform the rest of the view variables.
Line 7-21 Denote the Qual of the corresponding revealed variable by qual
Line 7 C onstruct the Qual of the surrounding block.
Line 8 There m ust exist a unique variable identifier (i.e. variable Qual)

which is defined in a process of the same surrounding block,
Line 10 which contains the qualifier and name specified in the view defini­

tion,
Line 11 which is a variable,
Line 13 which is of the same sort and which is revealed.
Line 14-19 If there exist such an identifier then let vqual denote its Qual.
Line 22-23 C onstruct the ASi view definition and

Line 24 Join it w ith the definitions containing the rest of the view vari­
ables (asirest). Also jo in the view descriptor (ViewD) w ith the
descriptors for the rest of the view definitions

120 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

transform-importdef (m k-Importdefo (importelemlist)) (diet) =

1 (let rnk-Importelemo(varl, tid) = h d importelemlist in
2 le t tqual = get-visible-qual(tid,TYPE)(dict) in
3 le t pqual = get-parent(tqual)(dict) in
4 le t scope — dict(SCOPEUNIT) in
5 le t delem = [scope ((IMPORT, (varl[i], pqual))) i—> m k-ImportD (tqual) | 1 < i < len varl] in
6 i f tl importelemlist = () th en
7 ({}, delem)
8 else
9 (let drest = transform-importdef(t\importelemlist)(dict) in

1 0 i f dom delem fl dom drest ^ {} th en
11 ex i t("§2.2.2: Two definitions in the same scopeunit use the same name”)
1 2 else
13 ({}, delem -f drest)))

ty p e : Importdefo —* Diet —* Decl\ -set Diet

O b je c tiv e C onstruct the Diet contribution for an im ported entity.

P a ra m eters The im port definition containing:

importelemlist A list of (elementary) im port definitions

R e su lt The Diet contributions for the im port variables and an em pty set (see
transform-signallistdef).

A lg o r ith m

Line 1 Decompose the first elementary im port definition (the function is
recursive).

Line 2 E xtract the sort Qual of the contained variables (varl).
Line 3 E xtract the parent sort in the case of a syntype.
Line 4-3 C onstruct the Diet contributions for the contained variables. Note

th a t pqual is used in the Qual in order to achieve uniqueness of
the pair of im port name- sort, while tqual is used in the descriptor
since the im plicit variable associated with im port expressions may
be of syntypes.

Line 6-9 And jo in them with the contributions for the rest of the elem entary
view definitions (if any).

Line 10 The pairs of im port name and sort m ust be unique

3 .4 .11 Im p o rt D efin itio n s

(3.4.11.1)

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 121

3 .4 .1 2 S ig n a lro u te D efin itio n s

transform-signalroutedef(nik-Sigroutedefo(nm, path, opath))(dict) =

1 (let xak-Sigroutepatho(endpointly endpoint2, siglist) = path in
2 le t sigroutequal = dtct(SCOPEUNIT) '''* ((SIGNALROUTE, nm)) in
3 le t sigset = transform-signallist(siglist)(dict) in
4 le t p i = get-visible-qual(endpointl, PROCESS)(<hct),
5 p2 = get-visible-qual[endpoint2, PROCESS)(dtc<) in
6 le t osigset =
7 if opath = nil th e n
8 {}
9 else

1 0 (let m k -Sigroutepatho(orig', dest', osiglist) = opath in
11 le t p i ' — get-visible-qual{orig', PROCESS)(dtct),
1 2 p2' = get-visible-qual(dest', PROCESS)(chc<) in
13 if p i = p2 ' A p2 = p i 7 th e n
14 transform-signallist (osiglist) (diet)
15 else
16 e x i t (“§2.5.2: The second path must denote reverse direction of the first path”)) in
17 if p i p2 A is-local(pl)(dict) A is-local(p2)(dict) th en
18 (let a s ip l = if p i = ENV th e n ENVIRONMENT else make-asi-identifier (p l)(d ic t) ,
19 a$ ip2 = i f p 2 = ENV th e n ENVIRONMENT else make-as\-identifier(p2)(dict),
2 0 asisigidset = make-asiidset(sigset)(dict),
2 1 asisigidset' = make-as\idset{osigset){dict) in
2 2 le t asipathl = m k -Signal-route-pathi(asipl, asip2 , as^sigidset),
23 asipath2 — i f asisigidset' = {} th e n
24 nil
25 else
26 vain-Signal-route-pathi{as\p2, a s ip l, as\sigidset1),
27 descr = m k -SignalrouteD (p i, p2, sigset, osigset) in
28 le t as\tree — xtik-Signal-route-definitioni(name-to-namei(nm), as\pathl, as\path2) in
29 ({asitree}, [sigroutequal h-> descr]))
30 else
31 if p i = p2 th en
32 ex i t ("§2.5.2: The endpoints of the signal route are not different”)
33 else
34 e x i t ("§2.5.2: The endpoints of the signal route are not locally defined”))

ty p e : Sigroutedefo —> Diet —» Signal-route-definitioni-set Diet
I

O b je c t iv e Transform a signalroute definition into ASi

P a r a m e te r s An ASo signalroute definition containing:

nm The name of the signal route
path The first path
opath The second optional path

R e s u l t A set containing an ASi signal route definition and a Diet contribution
containing the signal route descriptor

A lg o r i th m

Line 1 Decompose the first path.
Line 2 C onstruct the Qual denoting the signal route.
Line 3 Transform the signal list in the first pa th into a set of signal Quals.
Line ^-5 Extract the Qual of the two endpoints of the first pa th (get-visible-

qual can handle the case where the endpoint is ENV).
Line 6-16 Let osigset denote the set of signal Qual for the opposite direction

(the second path).

(3.4.12.1)

122 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 6
Line 10
Line 11-12
Line 13

Line 14
Line 17

Line 18-19

Line 20-21

Line 22-23
Line 27
Line 28
Line 29

Line 31-34

If the second path is om itted then it is the em pty set otherwise
Decompose the second path .
E xtract the Qual of the two endpoints of the second path .
The first endpoint of the first path must be equal to the second
endpoint of the second path and the second endpoint of the first
path m ust be equal to the first endpoint of the second path
Let osigset denote the set of signal Quals from the second path .
The endpoints of the signal route m ust be different and the end­
points m ust be locally defined.
Construct the ASi identifiers (or ENVIRONM ENT) of the two
endpoints.
Construct the two ASi signal sets of the signals conveyed in the
two directions.
Construct the two ASi paths of the directions.
Construct the signal route descriptor.
Construct the ASx signal route definition.
R eturn the ASi definition and the Diet contribution containing the
constructed descriptor.
For clarity, split the error condition into two ex its

3 .4 .1 3 S ig n a llis t D e f in itio n s

transform-signallistdef(mk-Signallistdefo(nm, signals))(diet) —

1 (let siglistqual = diet (SCOPEUNIT) ^ ((SIGNALLIST, nm)) in
2 le t () =
3 transform-signallist(signals)(diet + [siglistqual i—► m k-ErrorD Q]) in
4 ({}, [siglistqual i-> nik-SignallistD (signals)]))

ty p e : Signallistdefo —* Diet —> Decl\ -set Diet

O b je c t iv e Construct the Diet contribution for a signal list definition

The ASq signal list definition containing:P a r a m e te r s

nm
signals

R e s u lt

A lg o r i th m

Line 1
Line 3

Line 4

The signal list name
The associated list of signals

Beside of the Diet contribution, also an em pty set of ASi definitions
is returned (such th a t all ’’definition transform ing” functions can be
treated equally)

Construct the Qual of the signal list.
Transform the list of signals into a signal Qual set. However, the
result is not used as the function only is applied for checking of
recursive definition.
Return the Diet contribution containing the signal list descriptor

(3.4.13.1)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 123

transform -signallist (sigl) (diet) =

1 (if sigl = () then
2 {}
3 else
4 (let sigrest = if t l sigl = () th e n {} else transform-signallist (tl sigl)(dict) in
5 le t sigsetelem =
6 cases h d sigl'.
7 (m k-/do(,)
8 -» {signal-qual (hd sigl) (diet)},
9 nik-Signallistido (id)

10 -► (let qual = get-visible-qual(id, SIGI\IALLIST)(dict) in
11 le t m k -SignallistD (siglist) = dict(qual) in
1 2 transform-signallist(siglist)(dict + [qual m k-ErrorD ()]))) in
13 i f sigsetelem D sigrest ^ {} th en
14 e x i t ("§2.5.5: Signal identifiers in signal list are not distinct”)
15 else
16 sigsetelem sigrest))

ty p e : Signallisto —► Diet —► Signalqual-set

O b je c t iv e Transform a list of signals into a set of Quals

P a ra m eters

sigl

A lg o r ith m

Line 4

Line 5-12
Line 7

Line 9

Line 11

Line 12

Line 13

Line 16

The list of signals

Transform all but the first element in the list (the function is re­
cursive).
Let sigsetelem denote the Quals of the first element in the list.
If the first element in the list is an identifier then it denotes a signal
and sigsetelem denotes the set containing th a t signal Qual.
If the first element in the list is a signal list then let qual denote
the Qual of the signal list.
Let siglist denote the ASo signal list attached to the signal list
identifier.
Transform th a t signal list, but invalidate the signal list identifier
by denoting it as a ErrorD in Diet.
If any signal Qual from the first element also appear in another
element then it is an error otherwise
The union of the set from the first element and the set from the
rest of the list is returned

(3.4.13.2)

124 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .4 .1 4 C on n ect S ta tem en ts

transform-block-connect(decllist, sigrouteset, connectmap)(diet) = (3.4.14.1)

1 (if decllist — () th e n
2 (let bqual = dict(SCOPEUNIT) in
3 le t outerchanset = {mk-ChannelD (endpl, endp2, , , newc) £ rng diet \
4 bqual £ {endpl, endp2} A newc = nil} in
5 if outerchanset ^ dom connectmap th en
6 e x i t (“§2.5.3: No connection for channel connected to block’’)
7 else
8 i f sigrouteset = un ion rng connectmap th en
9 ({}, connectmap)

10 else
11 e x i t (“§2.5.3: Signal route does not appear in exactly one connect”))
12 else
13 (cases h d decllist:
14 (m k -Sigroutedefo(nm, xnk-Sigroutepatho(endl, end2 ,) ,)
15 — (let qset = if endl = ENV V end2 = ENV
16 th e n {chct(SCOPEUNIT) ^ ((SIGNALROUTE, nm))}
17 else {} in
18 le t newset = sigrouteset U qset in
19 transform-block-connect (tl decllist, newset, connectmap) (diet)),
2 0 mk-Connecto(,)
21 — (let (channel, routeset, connect) = block - connect (hd decllist) (diet) in
2 2 if channel £ dom connectmap th e n
23 exit("§2.5.3: Channel to signal route connection appears twice”)
24 else
25 if un ion rng connectmap n routeset {} th en
26 e x i t (”§2.5.3: Signal route mentioned in more than one connection”)
27 else
28 (let nconnectmap = connectmap + [channel routeset] in
29 le t (restasi, restmap) =
30 transform-block-connect (tl decllist, sigrouteset, nconnectmap)(dict) in
31 ({connect} U restasi, restmap))),
32 T transform-block-connect (tl decllist, sigrouteset, connectmap)(dict))))

ty p e : Declo* Qual-set BlockconnectionD —* Diet —► Channel-to-route-connectioni- s e t BlockconnectionD

O b jec tiv e Transform the connect definitions of a block into a set of ASi channel
to route connections

P a ra m eters

A lg o r i th m

been handled (recursively). Initially, this set is empty

the channels are connected. Initially, this m ap is empty

their endpoints. Do not include the channels which have been
replaced by two new channels (i.e. newc — n il).

block.

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 125

Line 8-11 R eturn if the set of signal route Quals derived from the signal
route definitions in the block is the same as the constructed set, by
merging the sets contained in the connectmap i.e. all signal routes
m entioned in a connect m ust be defined in the block and having
the environment as one of the endpoints and vice versa.

Line 14-19 If the first (the next) definition in the list is a signal route defini-
! tion then include the signal Qual (contained in qset) to sigrouteset

provided th a t one of the endpoints are ENV.
Line 20 If the next definition is a block connect then
Line 21 Derive the channel Qual, the signal route Quals and the ASi con­

nect definition from the block connect.
Line 22 If the channel already has been used in a block connect then it is

an error.
Line 25 Each signal route m ust be mentioned in only one channel to signal

route connection.
Line 28 U pdate the connectm ap to include the connect inform ation in hand
Line 32 If the next definition is anything else then continue with the rest

of the definitions

block-connect {m\i-Connecto{chid, routeidlist)){dict) =

1 (let equal = get-visible-qual{chid, CHANIMEL)(dzct) in
2 le t m k -ChannelD{, endpoint2, s igse tl , sigset2, newc) = dict(cqual) in
3 le t bqual = diet (SCOPEUIMIT) in
4 le t connectset — {get-visible-qual{routeidlist[i], SIGNALROUTE)(dict) | i £ in d routeidlist} in
5 le t (insigset, outsigset) = if endpoint2 = bqual th en {sigset 1, sigset2) else {sigset2, sigset 1) in
6 le t casiid = make-as\-identifier{cqual){dict),
7 sasiset = {make-as\-identifier(eg){diet) \ cq £ connectset} in
8 le t equal1 = if newc = nil th e n equal else convert-channel-qual{newc, bqual) in
9 if c a rd connectset = len routeidlist A

10 is-wf-connectsignalroutes{connectset, insigset, outsigset, {}, {}){dict) th en
11 {equal1, connectset, xxiV.-Channel-to-route-connectioni{cas\id, sas ise t))
12 else
13 e x l t (“§2.5.3: Channel to signal route connection is not well-formed”))

ty p e : Connecto —► Diet —► Channelqual Qual-set Channel-to-route-connection

O b je c tiv e Derive the channel Qual, the set of signal route Quals and an ASi
connect definition from an ASo channel to route connection

P a ra m eters

chid The ASo channel identifier in the connect
routeidlist The ASo list of signal route identifiers
Result The Qual of the channel in the enclosing scopeunit, a Qual set

containing the signal routes connected to th a t channel and the
ASi connection.

A lg o r ith m

Line 1 Extract the Qual of the channel.
Line 2 Decompose the channel descriptor.
Line 3 Let bqual denote the Qual of the block containing the connect def­

initions.
Line 4 C onstruct the set of Quals denoting the signal route identifiers

contained in the channel to route connection.
Line 5 Let insigset denote the incoming signals and let outsigset denote

the outgoing signals.

(3.4.14.2)

126 F ascicle X .4 - R ec . Z .100 — A n n e x F .2

Line 6-7

Line 8

Line 9

Line 10
Line 11

Construct the ASi identifier of the channel and the ASi identifier
set containing the signal routes.
If the channel has a substructure then use the Qual of the appro­
priate replacing channel.
A signal route identifier m ust not be mentioned twice in the connect
definition and
The signals in the signal routes m ust be mentioned in the channel.
R eturn the Qual of the channel, the set of signal route Quals and
an ASi channel to route connection

is-w f -connectsignalroutes(connectset, insigset, outsigset, res 1 , res2)(dict) ^

1 i f connectset = {} th en
2 insigset = res 1 A outsigset — res2
3 else
4 (let squal € connectset in
5 le t m k -SignalrouteD (endpointl, endpoint2, sset 1 , sset2) = dict(squal) in
6 i f EIMV ^ {endpointl, endpoint2} th en
7 false
8 else
9 (let (inset, outset) = if endpointl — ENV th e n (sset 1 , sset2) else (sset2, sse tl) in

1 0 is-wf-connectsignalroutes(connectset \ {sgua/}, insigset, outsigset,
11 inset U rea l, outset U res2)(dict)))

ty p e : Qual-set Signalqual-set Signalqual-set Signalqual-set Signalqual-set —» Diet

O b je c tiv e

Bool

P a r a m e te r s

connectset
insigset

outsigset

resl,res2

R e s u l t

A lg o r ith m

Line 1

Line 4
Line 5
Line 6
Line 9

Line 10

Check th a t signal routes in a channel to route connection are properly
interfaced

The (remaining) set of signal route Quals (the function is recursive)
The set of signal Quals leading to the block via the channel speci­
fied in the channel to route connection
The set of signal Quals leading out of the block via the channel
specified in the channel to route connection
The recursively created sets of input signals and ou tpu t signals
specified in the signal routes. Eventually, these set m ust be equal
to the corresponding set specified for the channel

The collected set of signal of incoming signal (resl) and the outgoing
signals (res2) must be equal to the incoming respective outgoing signals
specified in the channel

W hen through, return true if all signals from the channel have been
m entioned in a signal route.
Let squal denote a Qual in the signal route set.
Decompose the Diet descriptor for the signal route
ENV m ust be one of the endpoints for the signal route.
Let inset denote the signals, taken from the signal route descriptor,
which leads into the block and let outset denote the signals which
leads out of the block.
The rest of the signal routes in the connect m ust be properly in­
terfaced

(3.4.14.3)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 127

1 (if decllist = () th en
2 (let bqual = 0 e<-sur(dict(SCOPEUNIT)) in
3 le t outerchanset = {mk-C7mnne/.D(enc(pl, endp2,,, newc) £ rng d id \
4 bqual £ {endpl, endp2} A newc = nil} in
5 i f c a rd outerchanset > card dom connectmap th en
6 e x i t ("§3.2.2: No connection for channel connected to block substructure”)
7 else
8 i f channelset = un ion rng connectmap th en
9 {}

1 0 else
11 e x i t ("§3.2.2: Sub-channel does not appear in exactly one connect”))
1 2 else
13 (cases h d decllist:
14 (uik-Chandefo(nm,nik-Chanpatho(orig, d e s t ,) , , ,)
15 -♦ (let qset = i f orig = ENV V dest = ENV
16 th e n {d ic t(S C O P E U N IT)^ ((CHANNEL, nm))}
17 else {} in
18 le t newset = channelset U qset in
19 transform-substrudure-conned(t\ decllist, newset, conn ed m a p)(d id)),
2 0 m k -Connecto(,)
2 1 -► (let (chan, chanset, connect) = transform-block-substrudure-conned(hd decllist)(did) in
2 2 i f chan £ dom connectmap th en
23 e x i t (“§3.2.2: Channel connection appears twice”)
24 else
25 if un ion rng connectmap fl chanset {} th e n
26 e x i t ("§3.2.2: Sub-channel mentioned in more than one connection”)
27 else
28 (let nconnedmap = connectmap -f [chan chanset] in
29 {connect} U
30 transform-substrudure-conned(tl decllist, channelset, ncon n ed m a p)(d id))),
31 T transform-sub structure-connect (tl decllist, channelset, connectmap) (d id))))

ty p e : Declo* Channelqual-set (Channelqual s?Channelqual-set) —► D id —» Channel-connectioni-se t

trans form-sub structure-connect (decllist, channelset, connectmap) (d id) — (3.4.14.

P a r a m e te r s

nel.
channelset,
connectmap, During the recursive traverse through the definition list decllist,

channel names from channel definition leading from or to the envi­
ronm ent are collected and kept in channelset, connect inform ation
is collected and kept in connectmap. W hen transform-sub structure-
conned in itially is applied (in transform-blockdef), these param e­
ters are empty.

R e s u l t The collected ASi connections.

A lg o r i th m

their endpoints and which do not have a sub-structure.

points than channels in channel connections then some channel
connections are missing.

128 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 8-11 If all channels (having one of the endpoints as the environment)
have occurred in a connection then return.

Line 14 If the definition in hand is a channel definition then
Line 15-18 Construct the set consisting of the empty set if the channel do

not lead from or to the environment, otherwise consisting of the
channel Qual.

Line 19 Traverse through the rest of the definition list with the set added
to channelset

Line 21 If the definition in hand is a channel connection then transform the
connection into A Si, obtaining the channel Qual (chan), the set of
channel Quals (chanset), and the ASi connection connect.

Line 22 The channel m ust not be contained in more than one channel con­
nection.

Line 25 A sub-channel m ust be mentioned in only one channel connection.
Line 28-29 Traverse through the rest of the definition list with the connect

inform ation added to connectmap.

transform-block-substructure-connect(mk-Connecto(chid, chidlist))(dict) =

1 (let equal = get-visible-qual(chid, CHANNEL)(dtc<) in
2 le t ink*ChannelD (endpoint 1 , endpoint2, sigset 1 , sigset2, newc) = dict(cqual) in
3 le t bqual = jret-5tir(dic<(SCOPEUI\IIT)) in
4 if bqual £ {endpoint 1, endpoint2} th en
5 (let connectset = {get-visible-qual(chidlist[i\, CHANNEL)(dic<) | i £ in d chidlist} in
6 le t (insigset, outsigset) = if endpoint2 = bqual th en
7 (sigset1 ,sigset2)
8 else
9 (sigset2, sigsetl) in

1 0 le t casiid = make-as\-identifier(cqual)(dict),
11 casilist = {make-asi-identifier(cq)(dict) \ cq £ connectset} in
1 2 le t equal' = i f newc = n il th e n equal else convert-channel-qual(newc, bqual) in
13 if ca rd connectset = len chidlist A
14 is-wf-connectchannels(connectset, insigset, outsigset, {}, {})(dict) th e n
15 (equal1, connectset, m k -Channel-connection (cas\ id, casilist))
16 else
17 e x i t ("§3.2.2: Channel connection is not well-formed”))
18 else
19 e x i t (“§3.2.2: Channel connection is not well-formed”))

ty p e : Connecto —* Diet —» Channelqual Channelqual-set Channel-connection\

O b jec tiv e Transform a channel connect into ASi

P a ra m eters The channel connection containing:

chid The identifier of the channel in the enclosing scopeunit
chidlist The list of channels connected to chid

R esu lt The Qual of the channel in the enclosing scopeunit, a Qual set con­
taining the channels connected to th a t channel and the ASi channel
connection

A lg o r ith m

Line 1 Construct the Qual of chid.
Line 2 Decompose its channel descriptor.
Line 3 Let bqual denote the Qual of the enclosing block.
Line 4 The block must be one of the endpoints of the channel mentioned

in the connect definition.

(3.4.14.5)

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 129

Line 5 C onstruct a set containing the Quals of the channels connected to
chid.

Line 6 Let insigset denote the signal Qual set leading into the sub-struc­
ture via the channel and let outsigset denote the signal Qual set
leading out of the sub-structure via the channel.

Line 10-11 C onstruct the ASi identifier of the outer channel and the set of
ASi identifiers of the channels to which it is connected.

Line 12 If the channel has a substructure then use the Qual of the appro­
priate replacing channel.

Line 13 A channel m ust not be mentioned twice in a channel connection
and

Line 14 The signals in the channels m ust be properly interfaced to the outer
channel.

Line 15 If everything is OK then return the Qual of the outer channel,
the Qual set of the channels to which it is connected and an ASi
channel connection

is-wf-connectchannels(connectset, insigset, outsigset, res 1, res2)(dict) = (3.4.14.6)

1 (if connectset — {} th e n
2 is -w f -refinement(insigset, outsigset, resl, res2)(dict)
3 else
4 (let equal £ connectset in
5 le t m k- ChannelD (endpointl, endpoint2, sset 1 , sset2 ,) = dict(cqual) in
6 i f ENV £ {endpointl, endpoint2 } th en
7 false
8 else v
9 (let (inset, outset) = if endpointl = ENV th e n (sse tl , sset2) else (sset2, sset 1) in

10 is-wf-connectchannels(connectset \ {equal}, insigset, outsigset, r e s l U inset, res2 U outset) (diet))))

ty p e : Channelqual-set Signalqual-set Signalqual-set Signalqual-set Signalqual-set —> D id —► Bool

O b je c t iv e Chech th a t channels in a channel connection are properly interfaced

P a r a m e te r s

connectset The (remaining) set of channel Quals (the function is recursive)
insigset The set of signal Quals leading to the block sub-structure via the

sub-channel
outsigset The set of signal Quals leading out of the block sub-structure via

the sub-channel
resl,res2 The recursively created sets of input signals and ou tpu t signals

specified in the sub-channels.

R e s u l t True if success

A lg o r i th m

Line 1 W hen through, check th a t the constructed signal sets (resl,res2)
are well-formed refinements of the signals specified for the outer
channel.

Line 4 Let squal denote a Qual in the sub-channel set.
Line 5 Decompose the D id descriptor for the sub-channel
Line 6 ENV m ust be one of the endpoints for the sub-channel.
Line 9 Let inset denote the signals, taken from the sub-channel descriptor,

which leads into the block sub-structure and let outset denote the
signals which leads out of the block sub-structure.

Line 9 R eturn t r u e if the rest of the sub-channels in the connect is prop­
erly interfaced

130 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

is -w f -refinement(parentsetl, parentset2, subset1, subset2)(dict) = (3.4.14.7)

1 (i f * E subsetl U subset2)(get-sur(q) E parentset 1) th en
2 (let qr E su&setl U subset2 b e s .t . get-sur(q) E parentset 1 in
3 le t parent = get-sur(q) in
4 le t mk-5iflrna/D(, s«6 l , s«62) = dict(parent) in
5 i f g E subsetl A su&l C subsetl A su62 C subset2 th en
6 is-w f -refinement(parentsetl \ {parent}, parentset2, subsetl \ sub 1 , subset2 \ sub2)(dict)
7 else
8 false)
9 else

10 (if (3 q E subset2 U subsetl)(get-sur(q) E parentset2) th e n
11 (let q E su&setl U subset2 b e s .t . get-sur(q) E parentset2 in
1 2 le t parent = get-sur(q) in
13 le t ink-SignalD(, subl, sub2) = dict(parent) in
14 if q E subset2 A sub 1 C subset2 A sub2 C su&setl th e n
15 is-wf -refinement (parentset 1, parentset2 \ {parent}, subset 1 \ sub 2, subset2 \ subl)(dict)
16 else
17 false)
18 else
19 parentsetl = subset 1 A parentset2 = subset2))

ty p e : Signalqual-set Signalqual-set Signalqual-set Signalqual-set —> Diet —► Bool

O b jec tiv e

P a ra m eters

parentsetl
parentset2
subsetl
subsets

R esu lt

A lg o r ith m

Line 1

Line 2
Line 3
Line 4

Line 5

Line 6

Line 10-17

Line 19

Check th a t the signal refinement at a sub-structure boundary is made
properly

The set of incoming signal Quals conveyed by the outer channel
The set of outgoing signal Quals conveyed by the outer channel
The set of incoming signal Quals conveyed by the sub-channels
The set of outgoing signal Quals conveyed by the sub-channels

True if success

If there exist a signal conveyed by a sub-channel which has a incom­
ing parent signal conveyed by the outer channel then refinement of
an incoming signal has been used.
Extract any sub-signal.
E xtract the parent of the sub-signal.
Decompose the signal descriptor in order to access its sub-signals
subl and sub2.
As one of the sub-signals is specified in the sub-channels, all of the
sub-signals must be specified, th a t is the sub-signals in the two
directions (subl, sub2) must be subsets of the signals specified for
the sub-channels.
Remove the parent signal and its sub-signals from the param eters
before checking for further refinements.
Do the same as in line 1-6, but where the presence of an outgoing
parent signal is investigated.
If there is no (more) refinement then the incoming signals conveyed
by the outer channel m ust be equal to the incoming signals con­
veyed by the sub-channels and the outgoing signals conveyed by
the outer channel m ust be equal to the outgoing signals conveyed
by the sub-channels

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 131

service-connectmap(decllist, sigrouteset, connectmap)(diet) ^ (3.4.14.8)

1 (if decllist = () th e n
2 (let pqual — diet (SCOPEUIMIT) in
3 le t outer sigrouteset — {m k-SignalrouteD (endpl, endp2, ,) E rng diet \ pqual E {endpl, endp 2}} in
4 if sigrouteset = {} A connectmap = [] th en
5 D
6 else
7 if ca rd outer sigrouteset > card dom connectmap
8 th en e x i t (“§4.10.2: Missing signal route connection in process”)
9 else if sigrouteset ^ un ion rng connectmap

10 th e n e x i t (“§4.10.2: All service signal routes must be mentioned in a connect”)
11 else connectmap)
1 2 else
13 (cases h d decllist:
14 (nik-Sigroutedefo(nm, m k -Sigroutepatho(endl, end2 ,) ,)
15 -* (let qset = if endl = ENV V end2 = ENV
16 th e n {d ic t(SCOPEUNIT) ^ ((SIGNALROUTE, nm))}
17 else {} in
18 le t newset = sigrouteset U qset in
19 service-connectmap(t\ decllist, newset, connectmap)(diet)),
20 m k- Connecto (,)
21 — (let (route, routeset) = service - connect (hd decllist)(dict) in
2 2 le t nconnectmap = connectmap + [route i—> routeset] in
23 if route £ dom connectmap A routeset D un ion rng connectmap = {} th e n
24 service-connectmap (tl decllist, sigrouteset, nconnectmap) (diet)
25 else
26 e x i t (“§4.10.2: Illegal service signal route connection")),
27 T -> s ervice-connectmap (tl decllist, sigrouteset, connectmap) (diet))))

ty p e : Decompositiondeclo* Qual-set ProcessconnectionD —» Diet —+ ProcessconnectionD

O b je c tiv e Check th a t the service signal routes of a service decomposition are prop­
erly connected

P a ra m eters

A lg o r i th m

of the endpoints. The service signal routes are collected during
the recursive traverse through the definition list. W hen the func­
tion initially is applied (in transform-decomposition-body) the set
is empty
A m ap which defines the relationship between the signal routes
and the service signal routes to which it is connected. This map
is constructed during the recursive traverse through the definition
list

VIA constructs in services.

service signal routes mentioned in a service signal route connect
(line 9).

one of their endpoints

132 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 4 If no service signal routes (and connections) are specified for the
process then return the em pty map.

Line 7 If there are more signal routes having the process as one of their
endpoints than signal routes in service signal route connections
then some service signal route connections are missing (line 7).

Line 13 Consider the next definition:.
Line 14-18 If the next definition is a service signal route definition and one

of the endpoints is ENV then let newset denote the set which is
updated to include th a t service signal route.

Line 19 Continue w ith the next definition.
Line 20 If the next definition is a service signal route connection then
Line 21 Check th a t the connection is well-formed and derive the Qual of

the signal route (route) and the Quals of the service signal routes
to which it is connected (routeset).

Line 22 U pdate the connection map to include inform ation about this con­
nection

Line 23 No signal route or service signal route may be m entioned in more
than one connection, route and the signal routes in this connection
m ust not be connected in another connection.

Line 24 Continue with the rest of the definitions.
Line 27 Continue with the rest of the definitions

service-connect (mk-Connecto(sigrouteid, routeidlist))(dict) = (3 .4 .14.9)

1 (le t squal = get-visible-qual(sigrouteid , SIGNALROUTE)(<hct) in
2 le t m k -SignalrouteD(, endpoint2, sigset 1 , sigset2) = dict(squal) in
3 le t pqual = dtct(SCOPEUNIT) in
4 le t connectset = {get-visible-qual(routeidlist[i], SIGI\IALROUTE)(dic<) | i £ in d routeidlist} in
5 le t (insigset, outsigset) — i f endpoint2 = pqual th en (sigset 1, sigset2) else (sigset2, s igsetl) in
6 i f ca rd connectset len routeidlist th en
7 e x i t ("§4.10.1: Service signal route identifier occurs twice in service signal route connection”)
8 else
9 i f is-wf-connectsignalroutes(connectset, insigset, outsigset, {} , {})(d*ct) th e n

1 0 (squal, connectset)
11 else
12 e x i t (“§4.10.1: Signals in service signal routes must be the same as for the connected signal route”))

ty p e : Connecto —► Diet —* Qual Qual-set

O b jec tiv e Check th a t a service signal route connection is well-formed

P a ra m eters The ASq service signal route connection containing

sigrouteid The signal route
routeidlist The service signal routes

R esu lt The Qual of the signal route and the set of service signal route Quals

A lg o r ith m

Line 1 C onstruct the Qual of the signal route.
Line 2 Decompose the signal route descriptor.
Line 3 Let pqual denote the Qual of the surrounding process
Line 4 C onstruct the Quals of the service signal routes.
Line 5 Let insigset denote signals in the signal route which leads to the

process and let outsigset denote the signals which leads out of the
signal route.

Line 6-7 The service signal routes in the connection m ust be disjoint and

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 133

Line 9 The signals in the signal route must m atch the signals in the service
signal routes

3.5 T ran sform ation o f E xpressions

This section contains the functions which transform expressions and terms into ASj ex­
pressions and term s. They also takes care of the ” resolution by context” problem, th a t is,
sometimes the expression transform ing functions are called for the sake of identifying the
sort of an expression. Therefore, the functions also takes as argum ent a set of allowed sorts
and they return a set of allowed sorts which always is a non-empty subset of the argum ent
set. For instance, in the transform ation of equations, the set of all visible sorts are initially
given as argum ent when the left-hand side is transform ed. The resulting set of sorts is then
used when the right-hand side is transformed. The resulting set of sorts of this transform a­
tion m ust then contain exactly one sort. The left-hand side and the right-hand side is then
transform ed again, this tim e with th a t particular sort given as argum ent.

In addition, inform ation about the Context in which the expression/term is used is given as
argum ent. Four different kind of contexts are used: CONSTANT denoting th a t the argum ent
expression/term m ust be a constant expression, EXPRESSION denoting th a t the argum ent
may be a non-constant expression, AXIOMS denoting th a t the argum ent m ust be a term
used in the axioms and MAPPING denoting th a t the argum ent m ust be a term used in the
m apping p a rt of the axioms.

During the transform ation, inform ation is collected about the im port expressions and value
identifiers occurring in the expression/term . Therefore also a Diet is returned which may con­
ta in value identifier descriptors (ValueidD) and may contain inform ation about the im port
expressions in the Quotdict entries IMPLIED and IMPORTLIST (see the dom ain definition
of Quotdict).

The entry functions are the two (identical) functions transform-term and transform-expr

transform-term(term, context, sortset)(diet) ^

1 transform-expr(term, context, sortset)(diet)

ty p e : Termo Context Sortqual-set —► Diet —* Termi Sortqual -set Diet

O b je c t iv e Transform an ASo term into an ASi term . The function is identical to
transform-expr. It is introduced for the sake af readability.

(3.5.1)

134 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

transform-expr(expr, context, sortset)(dict) —

1 (let (asitree, sortset', diet') =
2 (cases expr:
3 (xxik-Scopeexpro(scope, ex)
4 -* transform-expr(ex, context, sortset)(dict + [SCOPEUNIT i-+ scope]),
5 nik-Ido(,)
6 -» if context £ {AXIOMS, MAPPING} th en
7 transform-axiom-id(expr, sortset)(dict)
8 else
9 transform-id(expr, context, sortset)(diet),

1 0 m k -Stringtermo(,)
11 -♦ transform-string expr (expr, sortset)(dict),
12 mk-C ondexpro(e l, e2, e3),
13 m k -Condtermo(el, e2, e3)
14 -» transform-condexpr(mk-Condexpro(el, e2, e3), context, sortset)(diet),
15 mk-Operatorappo(,)
16 -♦ transform-operatorexpr(expr, context, sortset)(diet),
17 mk-Operatortermo(,)
18 -► transform-operatorterm(expr, context, sortset)(dict),
19 mk-Monadexpro(op, ex),
2 0 xnk-Monadtermo(op, ex)
21 -♦ transform-monadexpr(xnk-Monadexpro(op, ex), context, sortset)(dict),
2 2 m.k-Infixexpr0(e l , op, e2),
23 m k-Infix term o(el, op, e2)
24 -♦ transform-infixexpr(mk-Infixexpro(el, op, e2), context, sortset)(dict),
25 m k-Errortermo()
26 -* e x i t (‘‘§5.4.1.7: Error term is used in a composite term”),
27 m.k-Spellingtermo()
28 -► transform-spelling (expr, context, sortset)(dict),
29 T -» transform-build-in-expression(expr, context, sortset)(dict))) in
30 le t as\tree' — i f context £ {AXIOMS, MAPPING} A is -Ground-termi(<wi tree) th e n
31 m k- Ground-expression^ (a$i tree)
32 else
33 asi tree in
34 (as\tree', sortset', diet'))

ty p e : (Expro \ Termo \ Scopeexpro) Context Sortqual-set —► Diet —*
[.Expressioni | Termi] Sortqual-set Diet

O b je c t iv e Transform an ASo expression into an ASi expression

P a r a m e te r s

expr The ASo expression or term
context The (syntactic) context in which expr is used (see above).
sortset The set of legal result sorts for the expression/term .

R e s u l t • The resulting ASi expression or term.

• The resulting set of (possible) legal result sorts of the expression.
This set will always be a subset of sortset. If the cardinality of the
set is greater than one then the resulting ASi expression/term is
not used (= n il) due to ambiguity. (W hich not necessarily is an
error as transform-expr also takes care o f ’’resolution by context”
see above).

• diet is updated with inform ation about possible im plicit value iden­
tifiers contained in a term and with im plicit im port variables (see
above).

A lg o r i th m

(3.5.2)

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 135

Line 3

Line 5-9

Line 10
Line 12-13
Line 15
Line 17
Line 19-20
Line 22-23
Line 25

Line 27
Line 29
Line 30-33

Line 34

I f the expression is the special synthetic Scopeexpro (see the defini­
tion of ASo) then transform the contained expression in the context
of the service denoted by scope.
If the expression is an identifier then transform it as a literal or
a value identifier if the expression occurs in the axioms else as a
literal, a synonym or a variable.
Transform a character string.
Transform a conditional expression or a conditional term .
Transform an operator application applied in expression context.
Transform an operator application applied in term context.
Transform a monadic expression or term .
Transform a dyadic expression or term.
The error term may generally not occur in terms (or expressions).
The special cases where it is allowed are excluded before applying
transform-term.
Transform the spelling term.
Transform the other (im perative) kind of expressions.
If the transform ed expression/term is constant then it is a Ground-
expressionx.
R eturn the ASi term /expression, the restricted set of allowed sorts,
and the Diet possibly containing value identifier descriptors and
inform ation about contained im port expressions

F ascicle X .4 — R ec . Z .100 — A n n ex F .2

3 .5 .1 Id en tifiers

transform-axiom-id(id, sortset)(diet) = (3.5.1.1)

1 i f c a rd sortset — 1 th e n
2 transform-axiom-id-of-this-sort(id, sortset)(dict)
3 else
4 (let mk-Jdo(g, nm) = id in
5 le t litset = all-visible-literals(id, sortset)(diet) in
6 le t litsortset = {get-sur(q) \ q 6 litset} in
7 le t qual = chct(SCOPEUNIT) /"x ((VALUE, nm)) in
8 le t sorts = if q / () th en
9 {}

1 0 else
11 i f qual 6 dom diet
12 th e n (let m k- ValueidD(, s o ,) = dict(qual) in
13 so)
14 else sortset in
15 le t valset = sortset D sorts in
16 le t totset = litsortset U valset in
17 i f ca rd totset — 0 th en
18 e x i t (‘‘§2.2.2: IMo sort can be used for value identifier”)
19 else
2 0 if ca rd totset = 1 th en
2 1 transform-axiom-id-of-this-sort(id, totset)(dict)
2 2 else
23 if q = () th e n
24 . (let m k - ValueidD (val, so, e) = i f qual (E dom diet th en
25 dict(qual)
26 else
27 m k- ValueidD(nil, sortset, false) in
28 if so PI sortset = {} th en
29 (nil, totset, diet)
30 else
31 (let diet1 = diet + [qual ► m k- ValueidD (val, so D sortset, e)] in
32 (nil, totset, diet')))
33 else
34 (nil, totset, diet))

ty p e : Ido Sortqual-set —► Diet —► [Termi] Sortqual -set Diet

P a r a m e te r s See transform-expr and the introduction to this section

R e s u l t See transform-expr and the introduction to this section

A lg o r i th m

Line 1 If the sort of the identifier has been determ ined thei
identifier given th a t sort.

identifier and being of an allowed sort in this context.
Line 6 C onstruct a Qual set containing the sort of the literals.

a value identifier in Diet (implied by explicit quantification or by

sort allowed in this context (sortset).

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 137

Line 16

Line 17
Line 20-34

Line 24-27

Line 28-29

Line 31-32

Line 15 Let valset denote the set of allowed sorts in this context if the
identifier is a value identifier.
Let totset denote the set of allowed sorts in this context if the
identifier denotes a value identifier or a literal.
There m ust exist a t least one possible sort.
If there exist exactly one possible sort then transform the identifier
given th a t sort else return no ASi object (n il) and return the
complete set of allowed sorts. But first, create or modify the value
identifier descriptor if the identifier can denote a value identifier (if
it is not qualified).
If a value identifier descriptor does not already exist then create a
descriptor.
If the sort set in the descriptor has no elements in common with
the allowed set of sorts in this context then the identifier cannot
denote a value identifier and no descriptor is therefore added to
Diet.
If the descriptor has elements in common w ith the allowed set of
sorts then restrict the sort set in the descriptor to contain only the
common elements. R eturn the modified Diet

F ascicle X .4 — R ec . Z .100 — A n n ex F .2

1 (let squal = get-visible-qual(id, VALUE)(chc<) in
2 le t sort = get-parent(s-Sortqual(dict(squal)))(dict) in
3 if is-local(squal)(dict) th en
4 i f (context = EXPRESSION V is-SynD (diet (squal))) A sort E sortset th e n
5 if is -SynD(diet (squal)) th en
6 transform-expr(s-Expr0(dict(squal)), CONSTANT, {sort})(d ict)
7 else
8 (make-asi-identifier(squal)(diet), {sort}, diet)
9 else

10 e x i t ("§2.2.2: Local synonym or variable is not of right sort”)
11 else
12 (let totalset = all-visible-literals(id, sortset)(diet) U
13 all-variables-and-synonyms(id, context, sortset)(dict) in
14 le t squalset = { 9 | (3d E totalset)(q = get-parent(s-Sortqual(dict(d)))(dict))} in
15 if totalset = {} th en
16 e x i t (‘‘§2.2.2: No synonym, variable or literal matches the sort of the context”)
17 else
18 i f card squalset = 1 th en
19 if card totalset ^ 1 th e n
20 e x i t (“§2.2.2: Several variables and synonyms are possible for the context”)
2 1 else
22 (let qual E totalset in
23 le t squal E squalset in
24 if is -SynD (diet (qual)) th e n
25 (let deflevel = [SCOPEUNIT 1—> get-sur (qual)] in ^
26 transform-expr(s-Expro(dict(qual)), CONSTANT, {squal})(dict + deflevel))
27 else
28 i f i s -LiteralD(dict(qual)) th en
29 (nik-Ground-termi(make-asi-identifier(qual)(dict)), {squal}, diet)
30 else
31 (make-asi-identifier(qual)(dict), {squal}, diet))
32 else
33 (nil, squalset, diet)))

ty p e : Ido Context Sortqual-set —► Diet —*■ [Expressionx] Sortqual-set Diet

O b jec tiv e Transform a literal or a variable or a synonym into ASi

P a ra m eters See transform-expr and the introduction to this section

R esu lt See transform-expr and the introduction to this section

A lg o r ith m

Line 1 F irst use the norm al visibility algorithm to find a variable or syn­
onym.

Line 3 If it is defined locally then
Line 4 If the context is constant expression then it must be a synonym

and the sort of the variable or synonym m ust be of a right sort
Line 5 If the identifier denotes a synonym then transform the expression

of the synonym else return the ASi identifier of the variable and
return the sort of the variable.

Line 12-26 If the synonym or variable is not locally defined the place of defi­
nition is solved by context.

Line 12-14 The to ta l set of possible Quals for visible literals, variables and
synonyms is denoted by totalset and their sorts are denoted by
squalset.

Line 15-16 There m ust exist a t least one appropriate variable or synonym or
literal.

transform-id(id, context, sortset)(diet) = (3.5.1.2)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 139

Line 18*19 If there exist exactly one possible sort for the context then there
m ust also exist exactly one possible identifier and if so then

Line 22 Let qual denote the Qual of the identifier.
Line 23 Let squal denote the Qual of the sort.
Line 24*26 If the identifier denotes a synonym then transform the expression

of the synonym in the context where the synonym is defined (i.e.
deflevel).

Line 28-31 R eturn the ASi identifier of the variable or synonym and if the
identifier denotes a literal then enclose the identifier in a Ground-
termi.

Line 33 If there is more than one possible sort then the expression is (still)
not unique and n il is returned

all-variables-and-synonyms(mk-Ido(qu , nm), context , sortset)(d id) =

1 (let level = dict(SCOPEUIMIT) in
2 {g € do m d id | (is-SynD (d id (q)) V (is -VarD (d id (q)) A context ^ CONSTANT)) A
3 (3 q')(get -parent (q1 /"> qu)(d id) '"x ((VALUE, nm)) = q A
4 (3 q ") (q ^ q" = level) A
5 get-parent(s-Sortqual(did(q)))(d id) £ sortset)})

ty p e : Ido Context Sortqual-set —► D id —► Qual -set

O b je c t iv e Extract the Quals of all the synonyms and variables which can be used
on a given condition

P a r a m e te r s

Ido An identifier which qualifies (restricts) the resulting Qual set
context if context equals CONSTANT then only the synonyms are extracted
sortset A set of sorts which also qualifies the resulting Qual set

A lg o r i th m

Line 1 Let level denote the enclosing scopeunit.
Line 2-5 R eturn all those Quals which denotes synonyms or variables, in­

cludes the qualifier (line 3), is visible (line 4) and which is of the
right sort (line 5).

(3.5.1.3)

140 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

1 (let mk-ldo(qual, nm) = id in
2 le t q = diet (SCOPEUNIT) ^ ((VALUE, nm)) in
3 i f qual = () A q £ d om d id A
4 (let mk-ValueidD(, so, e) — d id (q) in
5 so — totset A e) th en
6 (let mk-ValueidD (val , ,) = d id (q) in
7 i f val — n il th en
8 (mk-Com posite-term i(m ake-asi- identif ier(q)(did)), totset, d id)
9 else

1 0 transform-axiom-id-of-this-sort(aso-id(val), to tse t)(d id))
11 else
12 (let litset = all-visible-literals(id, to tse t)(d id) in
13 i f litset — { } th en
14 i f q ^ () th en
15 ex it(“§5.2.3: Value identifier must not be qualified”)
16 else
17 (let vald = i f q £ dom d id th en
18 (let m k -ValueidD(, so ,) = d id (q) in
19 i f so fl totset = {} th en
20 e x i t ("§5.2.3: Inconsistent use of implicitly quantified value name”)
21 else
22 m k- ValueidD(nil, so fl totset, false))
23 else
24 m k- ValueidD (nil, totset, false) in
25 le t d = d id + [?■—► vald] in
26 (mk-Composite-termi(make-as\-identifier(q)(did)), totset, d))
27 else
28 (let litqual £ litset in
29 (mk-Ground-termi(make-asi-identifier(litqual)(did)), totset, d id))))

ty p e : Ido Sortqual-set —► D id —* Termi Sortqual-set D id

O b jec tiv e Transform an identifier of a specific sort into ASi

P a ra m eters

id The ASo identifier to be transform ed
totset A sort Qual set containing only the specific sort

R esu lt See transform-expr and the introduction to this section

A lg o r ith m

Line 1 Decompose the identifier.
Line 2 C onstruct the Qual of the identifier supposing th a t it a value iden­

tifier.
Line 3 It denotes an explicit quantified value identifier if it is not qualified

and it has a ValueidD descriptor in D id (line 3) and the specific
sort equals the sort for the value identifier (line 5) and the flag (e),
indicating th a t the identifier is explicit quantified, is true.

Line 6-8 If the value identifier is not introduced by literal quantification
(val= nil) then return the composite term containing the ASi value
identifier else

Line 10 Transform the identifier of the associated literal.
Line 12 If the identifier does not represent an explicitly quantified value

identifier then all the possible literal Quals are extracted.
Line 13-14 If the identifier does not represent a literal then it represents an

im plicitly quantified value identifier and it m ust therefore not be
qualified.

transform -axiom -id-o f- th is-sort(id ,to tse t)(d id) — (3.5.1.4)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 141

Line 17-24 E xtract or construct the descriptor of the value identifier and de­
note it by vald.

Line 18 If the descriptor already is found in Diet (due to use elsewhere)
then it is decomposed and

Line 19 There m ust be a t least one legal and common sort for this usage and
for the usage elsewhere and the set of legal sorts in the descriptor
is then restricted by totset (line 2 2).

Line 24 Else a new descriptor is constructed.
Line 26 R eturn the ASx composite term containing the value identifier, the

(single) legal sort and the updated Diet.
Line 28-29 If there exist a literal Qual of the sort then transform it into ASi

3 .5 .2 C h a r a c te r S tr in g s

transform-stringexpr(xnk-Stringtermo(q, s trnm), sortset)(diet) =

1 (let Iqualset = all-visible-literals(mk-Stringtermo(q, strnm), sortset)(dict) in
2 le t litsortset = {get-sur(lit) \ lit £ Iqualset} in
3 i f Iqualset = {} th en
4 e x i t (‘‘§2 .2 .2 : Character string is not of appropriate sort”)
5 else
6 i f ca rd Iqualset = 1 th en
7 (let Iqual £ Iqualset in
8 le t asilit = make-asi-identifier(lqual)(dict) in
9 (m k -Ground-term\{as\lit) , sortset, diet))

1 0 else
11 (nil, litsortset, diet))

ty p e : StringterrriQ Sortqual-set —► Diet —> [Ground-termi] Sortqual-set Diet

O b je c t iv e Transform a character string into ASi

P a r a m e te r s See transform-expr and the introduction to this section

R e s u l t See transform-expr and the introduction to this section

A lg o r i th m

Line 1

Line 2
Line 3-4

Line 6-9

Line 11

Extract the Quals of all the literals which are of a sort in sortset
and which may be denoted by the Stringtermo
E x tract the Quals of their sort
There m ust exist a t least one possible literal which matches the
sort
If there exist exactly on possible literal (and resulting sort) then
extract the Qual of the literal (line 7), construct the ASi literal
(line 8) and return a ground term containing th a t literal, the sort
set containing its sort and the unchanged Diet.
If there (still) ,exist more than one possible literal (and sort) then
return no ASi term and return the set of possible sorts and the
unchanged Diet

3 .5 .3 O p e r a to r s

transform-operator expr (m k -Operatorappo(expr, exprlist), context, tpset)(dict) =

1 (let (qual, nm) = cases expr:
2 (m k -Ido(q,n) -> (? ,«) ,
3 vcik-Qualopo(q, n) -> (q, n),

(3.5.2.1)

(3.5.3.1)

142 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

4 T - (O .n il)) in
5 le t level = diet (SCOPE UN IT) in
6 le t opqualset = i f nm = nil th en {} else all-visible-operators(qual, nm, level)(dict) in
7 le t legalquahet = extrad-legal-operators(exprlist, context, opqualset, tpset)(dict) in
8 le t op = build-extract-operator{expr, exprlist) in
9 le t (as\tree', tpset', d i d 1) =

10 i f op — n il th en
11 (nil, {}> Q)
12 else
13 (trap ex it w ith (nil, { } , []) in
14 transform-operatorexpr(op, context, tpset)(d id)) in
15 le t fop = build-field-operator(expr, exprlist) in
16 le t (asitree", tpset", d id ") =
17 i f fop = nil th en
18 (nil, {}, 0)
19 else
20 (trap ex it w ith (nil, { } ,[]) in
21 transform-seledexpr(fop, context, tp se t) (d id)) in
22 (card (legalqualset U tpset' U tpset") = 0
23 -► e x i t (“§2.2.2: The operator term cannot be used in this context"),
24 card legalqualset — 0 A card tpset' = 0
25 -> (asi tree", tpset", d id ") ,
26 card legalqualset = 0 A card tpset" = 0
27 — (asi tree', tpset', d id ') ,
28 card (tpset' U tpset") — 0 A card legalqualset = 1
29 -» (let qu G legalqualset in
30 transform-qual-operator (qu, exprlist, context, tp se t) (d id)) ,
31 T (nil, {get-parent(s-Result(d id(q)))(d id) \
32 q G legalqualset} U tpset' U tpset" , diet)))

ty p e : Operatorappo Context Sortqual -set —► D id —► Expressioni Sortqual-set D id

O b jec tiv e Transform an ASi expression which is an operator application or an
extract shorthand or a field select shorthand into ASi

P a ra m eters See transform-expr and the introduction to this section

R esu lt See transform-expr and the introduction to this section

A lg o r ith m

Line 1-4 Extract the qualifier and the name of the operator. If the operator
is a general expression (line 4) then there is no nam e since it is a
shorthand for the extract operator in th a t case.

Line 5 Let level denote the enclosing scopeunit.
Line 6 E xtract the Quals of all the operators which are possible according

to the qualifier and name.
Line 7 Restrict the Qual set to contain only those operators which can be

used when taking into account the argum ent list.
Line 8-14 Try the extract operator shorthand, op contains the possible result

sorts for the extract application.
Line 15-21 Try the field selection shorthand, fop contains the possible result

sorts for the field selection.
Line 22 If neither the norm al operator application nor the extract applica­

tion nor the field selection can be used in this context then it is an

Line 24

Line 26

If only the field selection can be used in this context then select
this shorthand as the result.
If only extract application can be used in this context then select
this shorthand as the result.

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 143

Line 28 If only the norm al operator application can be used in this con­
text then ex tract the operator Qual and transform the operator
application given th a t Qual.

Line 31 Else the operator is (still) ambiguous and return therefore no ASi
expression, the sort set consisting of the result sorts of all possi­
ble operators in this context joined with the possible sorts for the
ex tract shorthand (tpset1) and joined with the sorts for the field
select shorthand (tpset").

all-visible-operators (qual, nm, level)(dict) =

1 {q G d o m diet \ (3q')(get-sur(get-sur(q)) /"x q' = level) A
2 (3 q")(get -parent (q" ^ qual)(dict) ^ ((OPERATOR, (n m ,,))) = 9)}

ty p e : Qual (Name0 | Quotedopo) Qual —► Diet —► Operatorqual-se t

O b je c t iv e E xtract the Quals of all those operators which are visible in the scopeu­
nit level and which includes the qualifier qual and which have the name
nm

A lg o r i th m The resulting set contains all those Operatorquals which are visible (i.e.
the scopeunit containing the partial type definition which defines the
operator m ust be part of level) and which includes the qualifier in the
Operatorqual.

transform-operatorterm(mk-Operatortermo(id, exprlist), context, tpset)(dict) =

1 (le t (qual, nm) = c a se s id:
2 (nik-Ido(q, n) -* (q ,n) ,
3 nik-Qualopo(q, n) -* (q, n)) in
4 le t level = 0 et-sur(dic<(SCOPEUI\IIT)) in
5 le t opqualset = all-visible-operators(qual, nm, get-sur(level))(dict) in
6 le t legalqualset = extract-legal-operators (exprlist, context, opqualset, tpset)(dict) in
7 i f ca rd legalqualset = 0 th e n
8 e x i t (“§2 .2 .2 : The operator term cannot be used in this context")
9 e lse

10 i f ca rd legalqualset — 1 th e n
11 (le t qu G legalqualset in
1 2 transform-qual-operator(qu, exprlist, context, tpset)(dict))
13 e lse
14 (n il, {get-parent(s-Result(dict(q)))(diet) | q € legalqualset}, diet))

ty p e : Operatortermo Context Sortqual -se t —► Diet —► Termi Sortqual-se t Diet

O b je c t iv e Transform an operator term into ASi

P a r a m e te r s See transform-expr and the introduction to this section

R e s u l t See transform-expr and the introduction to this section

A lg o r i th m N

Line 1-3 Extract the qualifier and the name of the operator.
Line 4 The level where the operator m ust be visible is the scopeunit sur­

rounding the sort definition where the operator is used
Line 5 E x tract the Quals of all those operators which are visible in the

surrounding scopeunit and which may have qual as the ASo quali­
fier and which have the name nm.

Line 6 R estrict the Qual set to contain only those operators which can be
used when taking into account the argum ent list

(3.5.3.2)

(3.5.3.3)

144 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 7 There m ust exist a t least one possible operator term which matches
the context.

Line 10-12 If there exist exactly one operator term m atching the context then
transform it into ASi given the right Qual (qu).

Line 14 If the operator term is (still) ambiguous then return no ASi term ,
but return the result sorts of the possible operators

build-extract-operator(expr, exprlist) =

1 i f ia-Qualopo(expr) th en
2 n il
3 else
4 (let nm = mk-ATameofEXTRACT” , EXCLAMATION) in
5 nik.-Operatorappo(nik-Ido((), nm), ((expr) exprlist)))

ty p e : Expro Exprlisto —► [OperatorappQ]

O b je c tiv e Construct an extract operator application from its shorthand notation,

example

a (b ,c)

(a is the formal param eter expr and the list b ,c is the formal param eter
exprlist) is transform ed into

EXTRACT!(a,b,c)

If the operator identifier is an infix operator then n il is returned since
the notation always denotes an operator application in th a t case

build-field-operator(var, exprlist) =

1 (le t expr = exprlist [len exprlist] in
2 le t rest — (exprlist[i\ | 1 < i < len exprlist — 1) in
3 if -yis-Ido(expr) A s-Quahfiero(expr) = () th en
4 nil
5 else
6 (let exprvar = i f len rest = 0 th e n var else build-field-operator (var, rest) in
7 if exprvar = nil th e n
8 n il
9 else

1 0 (let m k-/do(i nm) = expr in
11 nik-Selectexpro(exprvar, nm))))

ty p e : Expro Exprlisto —» [Selectexpro]

O b je c tiv e Construct a field extract shorthand from the shorthand notation with
parenthesis

example

a (b ,c)

(a is the formal param eter var and the list b,c is the formal param eter
exprlist) is transform ed into

a !b !c

The function is recursive. T h a t is, first a lb is constructed then a !b !c
is constructed

(3.5.3.4)

(3.5.3.5)

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 145

eztract-legal-operators(exprlist, context, opqualset, sorts ei){dici)

1 (if opqualset = {} th e n
2 {}
3 else
4 (let 5 E opqualset in
5 le t (, f s ,) =
6 (trap ex it w ith (nil, { } ,[]) in
7 transform-qual-operator {q, exprlist, context, sorfset)(dict)) in
8 le t 55 = i f ts = {} th e n {} else {5 } in
9 5s U extract-legal-operators(exprlist, context, opqualset \ {5 }, sorts ei){dict)))

ty p e : Exprlisto Context Operatorqual-set Sortqual-set —► Diet —♦ Operatorqual-set

O b je c t iv e

P a r a m e te r s

exprlist
context
opqualset
sortset

R e su lt

E xtract all the operator Quals which matches the sort of the actual
param eters and the sort of the result and which have a specific name

The actual param eters
The context in which the operator is used (see transform-expr)
The possible Quals which all have the specific name
The possible result sorts

The operator Quals which can be used. This set is a subset of opqualset

A lg o r i th m

Line 1
Line 4
Line 5-7

Line 8
Line 9

W hen through, return the em pty set (the function is recursive).
Take an operator Qual and test it by
Trying to transform the operator application, given th a t operator
Qual. If this transform ation goes well (if transform-qual-operator
is not trapped) then the set of result sorts (ts) is non-empty.
If the operator Qual can be used then qs denotes the Qual.
Join qs w ith the allowed operator Quals from the rest of opqualset

(3.5.3.6)

146 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

1 (le t (, (, p a r m , tqual)) — gual[len qual) in
2 i f tqual £ sortset th en
3 e x i t (“§2.2.2: Result sort of operator is illegal for the context”)
4 else
5 i f len parm ^ len exprlist then
6 exit("§5.2: Length of parameter list is not correct for an operator”)
7 else
8 (let (asiparmlist, d) = transform-actparms{parm, exprlist, context){dict) in
9 le t as\id = make-asi-identifier{qual){dict) in

10 le t const = (Vp 6 elem s asiparmlist)(is- Ground-term\{p)) in
11 le t asitree =
12 i f context £ {AXIOMS, MAPPING} then
13 i f const th en
14 mk-Ground-term\{{asiid , as\parmlist))
15 else
16 mk-Composite-termi{{asiid, asi parmlist))
17 else
18 i f const th en
19 mk-Ground-termi{{asiid , as\parmlist))
20 else
21 mk-Operator-applicationi{as\id, as\parmlist) in
2 2 {as\ tree, {tqual}, d)))

ty p e : Operatorqual (Exprlisto | Termo*) Context Sortqual-set —► Diet —*
(Term i I Expressioni) Sortqual-set Diet

O b jec tiv e Transform a operator of a specific definition into ASi

P a ra m eters

Qual The Qual which uniquely identifies the operator

exprlist The argum ent list which is a list of term s if the operator occurs in
equations. Otherwise it is a list of expressions.

context,sortset See transform-expr

trans form-qual-operator {qual, exprlist, context, sorts et){dict) = (3.5.3.7)

R e s u l t See transform-expr. The resulting sort set contains only one sort

A lg o r i th m

Line 1 Extract the Operatorqualelem from the operator Qual and identify
the resulting sort by tqual and the argum ent sorts by parm

Line 2-6 The result sort must be one of the allowed sorts of this context and
the length of the formal param eter list m ust be equal to the length
of the actual param eter list.

Line 8 Transform the actual param eters which are either term s or expres­
sions.

Line 9 C onstruct the A Si identifier of the operator

Line 10 const is true if all the actual param eters are ground term s (con­
stants).

Line 11-18 If the operator occurs in the axioms then form an A$i term (line
13) else form an ASX expression.

Line 22 Return the formed ASi term /expression, the result sort of the op-
erator and the Diet, possibly updated during the evaluation of the
actual param eters (see transform-expr)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 147

3 .5 .3 .1 T h e S p e llin g O p erator

1 i f context ^ MAPPING V q ^ () th e n
2 e x i t ("§5.4.1.15: Illegal use of the SPELLING operator”)
3 e lse
4 (le t stringsort = get-predef-sort(“CHARSTRING”)(<hc<) in
5 le t qualset = { g G d o m diet | is -ValueidD (diet (q)) A s -Mapvalue(dict[q)) ^ n il A
6 (VALUE, nm) = g[len g]} in
7 i f ca rd qualset = 1 A stringsort £ sortset th e n
8 (le t qual £ qualset in
9 le t m k - ValueidD(litq,,) = dict(qual) in

10 le t (, m k -N am eo(s tr ,)) = litq\len litq] in
11 transform-stringexpr(mk-Stringtermo((), str), {stringsort})(diet))
12 e lse
13 e x i t (“§5.4 .1 .15: Illegal use of the SPELLING operator”))

ty p e : SpellingtermQ Context Sortqual-set —+ Diet —+ Termi Sortqual-se t Diet

O b je c tiv e Transform the SPELLING operator into the ASi character string literal
which it denotes (in the function transform-mapping axioms an axiom
is generated for each possible literal of the quantified value name)

P a r a m e te rs See transform-expr and the introduction to this section

R e su lt See transform-expr and the introduction to this section

A lg o r ith m

Line 1

Line 4
Line 5-7

transform-spelling (mk-Spellingtermo(ink-Ido(q, nm)), context, sorts et)(dict) =

Line 8-9

Line 10
Line 11

The spelling operator m ust only be used in literal quantification
and the contained value identifier must not be quantified
E xtract the Qual of the character string sort
There m ust be only one Qual (i.e. a unique descriptor), of the
contained value name (nm), and the predefined character string
sort m ust be allowed in the context.
E xtract the Qual of the value name and decompose its descriptor.
litq denotes the Qual of the literal represented by the value name.
E xtract the spelling of the literal.
C onstruct an ASo string term from the literal spelling and trans­
form the string term

(3.5.3.1.1)

148 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .5 .3 .2 E x p o r t, Im p o r t, V iew , A ctiv e

transform-build-in-expression(expr , context, sortset)(dict) =

1 if context ^ EXPRESSION A - na-Selectexpro(expr) A ~>is-Tupleexpro(expr) th e n
2 e x i t ("§5.5.4: Imperative operator cannot be used in constant expression”)
3 else
4 cases expr:
5 (nik-Importexpro(v, exp)
6 transform-importexpr(v, exp, sortset)(dict),
7 mk-Viewexpro(v, exp)
8 -» transform-view expr [v ̂ exp, sortset)(diet),
9 m k -Nowexpr0()

1 0 — transform-nowexpr(sortset)(dict),
11 mk-Activeexpro(,)
1 2 -» transform-activeexpr{exprysortset){dict))
13 mk-5e/ec<expro(,)
14 -+ transform-selectexpr(expr, context, sortset)(dict))
15 m k- Tupleexpr0 (,)
16 -* transform-tupleexpr(expr, context, sortset)(diet),
17 T — transform-pid-build-in(expr, sortset)(dict))

ty p e : Expro Context Sortqual-set —+ Diet —* [Expression^] Sortqual-set Diet

O b je c t iv e Transform one of the special expressions into ASi

P a r a m e te r s See transform-expr and the introduction to this section

R e s u l t See transform-expr and the introduction to this section

A lg o r i th m

Line 1-2 Only the cases Selectexpro or Tupleexpro of the above alternatives
are allowed in constant expressions.

Line 5 Transform an IM PO RT expression.
Line 7 Transform a VIEW expression.
Line 9 Transform a NOW expression.
Line 11 Transform a tim er ACTIVE expression.
Line 13 Transform a field select expression.
Line 15 Transform a tuple expression.
Line 17 Otherwise, it is a predefined PID expression

(3.5.3.2.1)

F ascicle X .4 — R ec. Z .100 - A n n e x F .2 149

transform-importexpr(m.k-Ido(qu, nm), expr, sortset)(dict) = (3.5.3.2.2)

1 (let level = process-or-service-level(dict(SCOPEUNIT)) in
2 le t qualset — {g £ dom diet \ (3q ', sort)(q' ^ qu ^ ((IMPORT, (nm, sort))) = q A
3 (get-sur(q) = level V get-sur(q) = process-level(level)) A
4 sort £ sortset)} in
5 if qualset = {} th en
6 e x i t ("§2.2.2: No import variable matches the context”)
7 else
8 i f c a rd qualset — 1 th e n
9 (let qual £ qualset in

10 le t sort = s -Sortqual(dict(qual)) in
11 le t importlist — dtct(IMPORTLIST) in
12 le t imp = dict(\MPLIED) in
13 le t n m 1 = create-unique-name() in
14 le t newqual — level /' x ((VALUE, nm')),
15 imp' = imp U {(sort, nm ')} ,
16 as\id = make-asi-identifier(newqual)(dict) in
17 le t importlist' = importlist ((n m ', qual, expr)) in
18 (as\id , {get-parent(sort)(dict)} , dict -\- [IMPORTLIST t-» importlist',
19 IMPLIED I-. imp')))
20 else
21 (let sortset' = {sort | (3g £ qualset)(diet(q) = m k -ImportD(sort))} in
22 (nil, sortset', diet)))

ty p e : Ido [Expro] Sortqual-set —► Diet —* [Expressionx] Sortqual-set Diet

O b je c t iv e Transform an im port expression into its ASi representation

P a r a m e te r s

Id The identifier of the im ported variable
expr The optional PID expression denoting the exporting process
sortset See transform-expr

R e s u l t See transform-expr and the introduction to this section. The returned
expression is the im plicit variable identifier implied by the im port ex­
pression

A lg o r i th m

Line 1 Extract the level a t which the im port variable is defined, i.e. a
process or a service.

Line 2-4 E xtract the im port Quals of all the im port variables which can be
specified by means of a qualifier (qu), a name (nm) (line 2) and a
sort sort from sortset and which are defined in the enclosing service
or in the enclosing process (line 3).

Line 5 There m ust exist a t least one possible im port variable.
Line 9 If there exist a unique im port Qual then
Line 9 Denote the Qual of th a t im port variable by qual.
Line 10 Denote the Qual of its sort by sort.
Line 11 Denote the current list of im port expressions used elsewhere in the

surrounding expression by importlist.
Line 12 Denote the current set of im plicit variables used in the process

body by imp.
Line 13-14 Create a unique ASo variable name and construct its Qual.
Line 15 U pdate the current set of im plicit variables with the pair of its sort

(sort) and its new name.
Line 16 C onstruct the ASi identifier of the im plicit variable.

150 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 17 U pdate the current list of im port expressions.
Line 18 R eturn the ASi identifier and the Diet containing the updated

im portlist and im plicit variable set.
Line 21 If the im port expression is (still) ambiguous, then return the set of

possible sorts

transform-view expr {id, expr, sortset) {diet) =

1 (let xtik-Ido{qu, nm) = id in
2 le t pqual = process-or-service-level{dict(SCOPEUIMIT)) in
3 le t qset = {<f G d om diet | (let qual = pqual ^ ((VIEW, q)) in
4 qual G dom diet A
5 get-parent {s-Qual{dict{qual))){dict) G sortset A
6 (3 q'){q' /'> qu /~A ((VALUE, nm)) = q))} in
7 i f ca rd qset ^ 1 th en
8 e x i t ("§2.2.2: One and only one revealed variable must match the view expression”)
9 else

10 (let q G qset in
11 le t inst = get-predef-sort{“P]D"){dict) in
12 le t asiid = make-asi-identifier{q){dict),
13 {as iexpr , , d) = transform-expr{expr, EXPRESSION, {inst}){dict) in
14 le t as\tree — xnk.-View-expressionx{asxid, as\expr) in
15 {asitree,{s-Sortqual{dict{q))}, d)))

ty p e : Varido Expro Sortqual-set —► Diet —» View-expressionx Sortqual-set Diet

O b je c tiv e Transform a View expression into ASi
P a ra m eters

id The view variable
expr The Pid expression denoting the revealing process
sortset See transform-expr

R esu lt See transform-expr
A lg o r ith m

Line 1 Decompose the view variable identifier.
Line 2 Extract the level on which the view variable is defined.
Line 3-6 Let qset denote set which matches the view expression. The set

consist of those variable Quals which are viewed in the process
(line 3-4), are of an appropriate sort (line 5) and which includes
the qualifier and name specified in the view expression (line 6).

Line 11 Extract the Qual of the PID sort.
Line 12 C onstruct the ASj identifier of the revealing variable (which is the

same as the identifier of the viewed variable).
Line 13 Transform the PID expression.
Line 14 C onstruct the ASi view expression.
Line 15 R eturn the ASi view expression, the sort of the variable and the

(possibly) updated Diet

transform-nowexpr{sortset){dict) =

1 (let tqual = get-predef -sort{"T\ME”){dict) in
2 if tqual G sortset th e n
3 {nik-Now-expressionx{), {tqual}, diet)
4 else
5 e x i t (“§5.5.4.1: NOW expression must be used where TIME values are allowed”))

ty p e : Sortqual-set —► Diet —► Now-expressionx Sortqual-set Diet

(3.5.3.2.3)

(3.5.3.2.4)

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 151

Transform a NOW expression into ASi

See transform-expr

See transform-expr

E xtract the Qual denoting the TIM E sort.
If this sort is allowed a t this place
Then return the ASi now expression, the TIM E sort, and the un­
changed Diet

transform-activeexpr(nik-Activeexpro(id, actparm), sortset)(dict) =

1 (let qual = get-visible-qual(id, SIGI\IAL)(dict),
2 bqual = get-predef-sort ("BOOLEAN")(dict) in
3 le t as\id = make-asi-identifier{qual)(dict) in
4 i f -As-TimerD {diet {qual)) th e n
5 e x i t (“§2.8: Identifier in timer active expression does not denote a timer”)
6 else
7 (let m k- TimerD (tp l is t ,) = dict(qual) in
8 i f bqual £ sortset A len actparm = len tplist th en
9 (let (asi actparm, d) = transform-actparms {tplist, actparm , EXPRESSIOI\l)(d*c<) in

10 le t asitree = n ik -T im er-active-expression{asiid , as^actparm) in
11 (asitree , {bqual}, d))
12 else
13 exit("§2.8: Illegal timer active expression”)))

ty p e : Activeexpro Sortqual-set —>• Diet —* Timer-active-expression Sortqual-set Diet

O b je c tiv e Transform a tim er active expression into ASi

P a ra m eters

id
actparm
sortset

R e su lt See transform-expr

E xtract the Qual of the tim er and the Qual of the boolean sort.
C onstruct the ASi identifier of the timer.
The ASo identifier m ust denote a tim er (not a signal).
Let tplist denote the list of sorts of the param eters.
The boolean sort m ust be an allowed result sort in this context and
the length of the actual param eter list must be equal to the length
of the sort list.
Transform the actual param eters into ASi.
C onstruct the ASi tim er active expression and return it together
w ith the boolean sort and the (possibly) updated Diet

trans form-selectexpr(mk-Selectexpro(v, nm), context, sortset)(dict) ^

1 (let xnk-N am eo(str ,) = nm in
2 le t opnm = nik-N am e0(str '"x “EXTRACT” , EXCLAMATION) in
3 le t opid = mk-Jdo((), opnm) in
4 transform-expr(mk-Operatorappo(opid, (v)), context, sortset)(dict))

ty p e : Selectexpro Context Sortqual-set —> Diet —* Expression Sortqual-set Diet

A lg o r i th m

Line 1-2
Line 3
Line 4
Line 7
Line 8

Line 9
Line 10-11

The tim er identifier
The actual param eters
See transform-expr

O b je c t iv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Line 1
Line 2
Line 3

(3.5.3.2.5)

(3.5.3.2.6)

152 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

O b jec tiv e

P a ra m eters

R esu lt

A lg o r ith m

Line 1
Line 2

Line 3-4

Transform a field select expression into ASi

See transform-expr

See transform-expr

Let str denote the spelling of the field.
Form the name of the EXTRACT! operator, which operates on the
specified field.
Form the identifier of the operator, construct an operator applica­
tion given the left-hand expression as param eter and transform it
the usual way

transform-tupleexpr(xnk-Tupleexpro(q, exprlist), context, sortset)(dict) =

1 (let opid — mk.-Ido(q, mk-Nameo(“MAKE” , EXCLAMATION)) in
2 transform-expr(mk-Operatorappo(opid, exprlist), context, sortset)(diet))

ty p e : Tupleexpro Context Sortqual-set —► Diet —► Expressioni Sortqual-set Diet

O b jec tiv e

P a ra m eters

R esu lt

A lg o r ith m

Line 1
Line 2

Transform a tuple expression (a structure prim ary) into ASX

See transform-expr

See transform-expr

Form the identifier of the MAKE! operator.
Construct an operator application given the expression list as pa­
ram eter list and transform it the usual way

transform-pid-build-in(expr , sortset)(dict) =

1 (let pqual = get-predef-sort (“PID”) (diet) in
2 if pqual E sortset th en
3 (cases expr:
4 (mk-ParentexproQ
5 -♦ (nik-Parent-expressioni(), {pqual}, diet),
6 m k- Offspringexpro ()
7 -* (m k -O ff spring-expression\(), {pqual}, diet),
8 m k-5enderexpr0()
9 -* (mk-Sender-expressioni(), {pqual}, diet),

1 0 mk-Selfexpro()
11 -» (xnk-Self-expressioni(), {pqual}, diet)))
12 else
13 e x i t ("§5.5.4.3: PID expression is used in wrong context”))

ty p e : Expro Sortqual-set —► Diet —► Pid-expressioni Sortqual-set Diet

O b je c t iv e Transform one of the predefined PID expressions into ASi

P a r a m e te r s See transform-expr

R e s u l t See transform-expr

A lg o r i th m

Line 1 Extract the Qual of the PID sort.
Line 2 The PID sort m ust be one of the allowed sorts a t this place.
Line 4-10 R eturn the Qual of the PID sort (pqual), the unchanged Diet and
Line 4 A parent expression or
Line 6 An offspring expression or

(3.5.3.2.7)

(3.5.3.2.8)

Fascicle X .4 — R ec . Z .100 — A n n e x F .2 153

Line 8

Line 10

A sender expression or

A self expression

3 .5 .4 C o n d it io n a l E x p re s s io n s

transform-condexpr(mk-Condexpro(bexpr, expri, expr2), context, sortset)(diet) = (3.5.4.1)

1 (let boolqual = get-predef-sort(‘,BOOLEAN’’)(dict) in
2 le t (a « i , , d) = transform-expr(bexpr, context, {boolqual})(dict) in
3 le t (,s ', d ') = transform-expr(expr 1, context, sortset)(d) in
4 le t (j s " ,) = transform-expr(expr2, context, so rtse t)(d ') in
5 if s' n 5" = {} th en
6 e x i t ("§2.2.2: Conditional expression does not match the context")
7 else
8 if c a rd (5 ' fl s") = 1 th e n
9 (let sort £ s' D s" in

10 le t (asiunique , , diet1) = transform-expr(expri, context, {sort})(dict) in
11 le t (asi unique ' , , diet") = transform-expr (expr2, context, {sort})(dict ') in
12 le t as\tree =
13 if context £ {AXIOMS, MAPPING} th en
14 m k -Conditional-termx(as\, as^unique, asxunique')
15 else
16 mk-Conditional-expressioni(asi, as^unique, as\unique') in
17 le t as\tree' =
18 if is -Ground-termi (<*«i) A is -Ground-termi(asiunique) A is -Ground-term\(as\unique')
19 th e n xnk-Ground-term\(asitree)
20 else as\tree in
21
22
23

(asitree', {sort}, diet"))
else
(nil, s' O s", diet))

ty p e : Condexpro Context Sortqual-set —* Diet —> [Termi | Expressionx] Sortqual-set Diet

O b je c t iv e Transform a conditional expression or a conditional term into ASi

P a r a m e te r s See transform-expr

R e s u l t See transform-expr

A lg o r i th m

Line 1

Line 2

Line 3

Line 4

Line 12-16

Line 17-20

Line 5-6

Line 8

Line 9

Line 10-11

Line 20

E xtract the Qual of the boolean sort.

Transform the boolean condition.

Transform the ’’then” expression/term .

Transform the ’’else” expression/term .

There m ust exist a t least one resulting sort which can be used.

If there is exactly one sort which can be used then

Let sort denote the sort.

Transform the expressions again, this tim e with the unique sort
given as argum ent.

Form the ASi expression or term.

If both the condition, the ’’then” part and the ’’else” part are
ground term s then the resulting ASi expression is a ground term .

R eturn the ASi expression/term , the sort of the conditional ex­
pression/term and the (possibly) updated Diet

154 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

transform-monadexpr(mk-Monadexpro(op, expr), context, sortset)(dict) =

1 (let qinfix = mk-Qtta/opo(()t mk-<2 uofedopo(op)) in
2 le t operator =
3 if contert € {MAPPING, AXIOMS}
4 th e n xnk-Operatortermo(qinfix, (expr))
5 else xrik-Operatorappo(qinfix, (expr)) in
6 transform-expr(operator, context, sorfsef)(da:cf))

ty p e : Monadexpro Context Sortqual-set —► Zhcf —> [ZFxpressioni | Termi] Sortqual-set Diet

3 .5 .5 In fix an d P refix op era to rs

O b je c tiv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Zine 1

Ztne 5-5

Zinc 5

Transform a prefix operator application into ASi

See transform-expr

See transform-expr

From the operator symbol, construct the qualified prefix operator
(the qualifier is empty).
C onstruct the operator term or operator application depending of
whether it is used in the axioms or in the expressions.
Transform the constructed term /expression in the usual way

transform-infixexpr(mk-Infixexpro(expri, op, expr2), context, sortset)(dict) =

1 (let qinfix = nik-Qualopo((), m k- Quotedopo (op)) in
2 le t operator =
3 i f context £ {MAPPING, AXIOMS}
4 th e n m k -Operatortermo(qinfix, (expr 1, expr2))
5 else nik-Operatorappo(qinfix, (expri, expr2)) in
6 transform - expr (operator, context, sortset) (diet))

ty p e : Infixexpro Context Sortqual-set —* Diet —► [Expressiony \ Termi] Sortqual-set Diet

O b je c t iv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Line 1

Line 2-5

Line 6

Transform an infix operator application into ASi

See transform-expr

See transform-expr

From the operator symbol, construct the qualified infix operator
(the qualifier is em pty).
C onstruct the operator term or operator application depending of
whether it is used in the axioms or in the expressions.
Transform the constructed term /expression in the usual way

3 .6 V is ib ility H and ling

all-visible-sorts (diet) =

1 {qual £ dom diet \ is -SortD(diet(qual)) A
2 (3 q £ Qual)(get-sur (qual) /-x q = dicf(SCOPEUNIT))}

ty p e : Diet —► Sortqual-set

O b je c t iv e E xtract the set of sort Quals, which are visible a t a given place indicated
by SCOPEUNIT, from Diet

(3.5.5.1)

(3.5.5.2)

(3.6.1)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 155

A lg o r ith m R eturn all the Quals which denote a sort (line 1) and for which there
exist a partia l Qual (<jr) such th a t the Qual of the scopeunit which defines
the sort, when joined w ith q, can form the Qual of the current scopeunit

all-visible-literals(id, sortset)(dict) =

1 (le t (qual, nm) = cases id:
2 (mk-Ido(q, n) -* (q ,n) ,
3 vnk-Stringtermo(q, n) — (q, n)) in
4 {g G dom diet | (3squal € sortset)(squal ((LITERAL, nm)) = q) A
5 (3 qu)(get-parent(qu qual)(dict) ^ ((LITERAL, nm)) = q)})

ty p e : (Ido \ Stringtermo) Sortqual-set Diet —> Qual-set

O b je c tiv e

P a ra m eters

id
sortset

A lg o r ith m

Line 1-3
Line 4

E xtract the set of all literals Quals which are visible a t a given place
and which can be denoted by a certain AS0 identifier and which are of
some specific sorts

The ASo identifier which can denote the literal
The resulting literal Quals are all of a sort contained in sortset

E xtract the qualifier and the name of the identifier (or string).
R eturn all the Quals which denotes literals defined in one of the
possible sorts and which includes the qualifier.

all-input-signals(qual)(dict) =

1 (le t qual' = process-or-service-level(qual) in
2 cases diet (qual1):
3 (ixik-ServiceD(,, , inp ,) -» inp,
4 xtik-ProcessD(, inp , ,) -* inp))

ty p e : Qual —» Diet —* Signalqual-set

E xtract the Quals of the inpu t signals (including tim ers)O b je c tiv e

P a ra m eters

qual

A lg o r ith m

Line 1

Line 3
Line 4

The Qual denoting the level (scopeunit) where the input signals
are required

In the case of a procedure, modify the level by selecting the sur­
rounding process or service.
If the scopeunit is a service then return all the input signals.
If the scopeunit is a process then return all the input signals

(3.6.2)

(3.6.3)

156 F ascicle X .4 — R ec. Z .100 — A n n e x F .2

import-export-signals (diet) = (3.6.

1 (let (em p tyq , ,) — dict(GLOBALNAMES) in
2 le t (exportinput, exportoutput) — extract-exports(diet) in
3 le t importset = {(tq, nm) £ dom exportmap | (3g £ d o m dict)(process-level(q) = dict(SCOPEUNIT) A
4 (IMPORT, (nm, tq)) — g[len g])} in
5 le t importinput =
6 {xrq | (3 (tq ,n m) £ importset)
7 ((^e* ncik-SignalnamesD(, , xr') = exportmap ((tq, nm)) in
8 get-sur(tq) '"x ((SIGNAL, xr1)) — xrg))} in
9 le t importoutput =

10 {*?g | (3(<g, nm) £ importset)
11 ((te* tnk-SignalnamesD(, xq,) — exportmap ((tq, nm)) in
1 2 get-sur(tq) ((SIGNAL, xq)) = xqq))} in
13 (exportinput U importinput U {emptyq}, exportoutput U importoutput))

ty p e : Diet —► Signalqual-set Signalqual-set

O b jec tiv e

A lg o r ith m

Line 1

Line 2

Line 3-4

Line 5-8

Line 9-12
Line 13

Extract and return the Quals of all the im plicit signals associated to
im port and export for a process and return the em ptyq signal.

E xtract the Qual of the em ptyq signal used in enabling condi­
tion/continuous signal.
C onstruct the Quals of all the input signals and the Quals of all
the ou tpu t signals used when a process exports variables (i.e. the
xtQUERY input signals and the xtREPLY ou tpu t signals).
Extract the NameclosureDs (see the definition of exportmap) of all
the im ported variables in a process. The set consists of all those
pairs of sort (tq) and name (nm) for which there exist an im ported
variable defined in the process or in a contained service nm which
are of the sort tq.
C onstruct the Quals of all the xtREPLY signals used by a process.
The set consist of all those xtREPLY Quals which can be formed
from a xtREPLY name contained in a SignalnamesD descriptor of
a NameclosureD in importset.
Do the same for the xtQUERY signals used by a process.
R eturn the union of the Quals of the xtQUERY signals, of the
xtR EPLY signals and of the em ptyq signal. The em ptyq signal is
not returned as an ou tput signal because ou tpu t signals are col­
lected in order to construct im plicit signal routes and no signal
route contains the em ptyq signal.

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 157

extract-exports (diet) = (3.6.5)

1 (let vqualset — {qual £ d o m diet | process-level(qual) = chcf(SCOPEUNIT) A i s - VarD(diet (qual))} in
2 le t closset =
3 {(^9) nm) £ do m diet | (3g £ vqualset)
4 ((le* m k -V a rD (t , , exp, ,) = dict(q) in
5 t = tq A (VALUE, nm) — g[len q] A
6 exp = EXPORTED))} in
7 le t inputsig =
8 {qual | (3(tg, nm) £ closset)
9 ((^e* m k -SignalnamesD(, x q ,) = exportmap ((tq, nm)) in

10 get-sur(tq) ((SIGNAL, xq)) = qual))},
11 outputsig =
12 {qual | (3(<<jf, nm) £ closset)
13 ((let mk-SignalnamesD(, , x r) = exportmap ((tq, nm)) in
14 get-sur(tq) ((SIGNAL, xr)) = qual))} in
15 (inputsig, outputsig))

ty p e : Diet —► Signalqual-set Signalqual-set

O b je c t iv e E xtract and return the Quals of all the xtQUERY and xtR EPLY signals
used by an exporting process

A lg o r i th m

Line 1 E xtract the Quals of the process variables.
Line 2-6 C onstruct, from the variable set, the NameclosureDs used by the

process, i.e. the pairs of sort tq and variable name nm from Ex­
portmap for which the variable of the sort tq is exported.

Line 7-10 From this set of NameclosureDs construct the Quals of the x t­
QUERY signals (the same way as done for the xtR EPLY signals
in the function import-export-signals).

Line 11-14 Do the same for the xtR EPLY signals.
Line 15 R eturn the input signals and the ou tput signals

get-visible-qual(entity, entityclass)(dict) = (3.6.6)

1 i f entity = ENV th e n
2 ENV
3 else
4 (let (qual, nm) = cases entity :
5 (m k-Ido(q ,n) -+(<l,n),
6 m k -Stringtermo(q, n) -* (q, n),
7 mk-Qualop0(q, n) -*(<?, n)) in
8 le t level = dict(SCOPEUNIT) in
9 if (3g £ dom dict)((3q')(q' '"x qual ((entityclass, nm)) = q) A

1 0 (3 q")(get-sur(q) /"> q" = level)) th en
11 (let q £ dom diet b e s .t . (3 q')(q' qual ((entityclass, nm)) = q) A
12 (3q")(get-sur(q) q" = level A
13 ->(3qu)(get-sur(q) qu = level A len qu < len q")) in
14 i f is -ErrorD (did(q)) th e n
15 e x i t (‘‘§2 .2 .2 : Synonym or generator or signal list is recursive defined”)
16 else
17 4)
18 else
19 e x i t ("§2.2.2: Identifier is not visible”))

ty p e : (Ido \ Stringtermo \ Qualopo \ ENV) Quot —► Diet —> (Qual \ ENV)

O b je c t iv e C onstruct the Qual for an ASq identifier if the identifier is visible

158 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

P a r a m e te r s

entity

entityclass

A lg o r i th m

Line 1
Line 4-7

Line 9-10

Line 11-13

Line 14-15

The identifier (or string or infix operator) for which a Qual is con­
structed
The entity class of the identifier (see §2.2.2 of Z.1 0 0). The entity
class VALUE includes synonyms, variables and value identifiers.
The function is not used for constructing Quals of literals and
operators (due to special visibility rules).

If entity is ENV then return ENV (see in transform-channeldef).
Extract the qualifier and name of the identifier (or string or infix
operator).
If there exist a Qual in Diet which includes the qualifier and the
pair of entity class and name in the right-m ost part (line 9) and
the scopeunit denoted by the qualifiero is defined is visible then
Let q denote such a Qual (line 11-13) and make the selection unique
by expressing th a t q m ust denote the “nearest” Qual w ith respect
to the current level (line 13)
The identifier m ust not be recursively defined.

signal-qual(sigid)(dict) =

1 (let qual = (tra p exit w ith nil in
2 {get-visible-qual(sigid, SIGNAL)(dict)}) in
3 if qual n il th e n
4 qual
5 else
6 (let mk-/do(<7, nm) = sigid in
7 le t qualelem = q ((SIGNAL, nm)) in
8 le t level = dict(SCOPEUNIT) in
9 le t qualset = {qu £ dom diet | (3 qua)(qua /'"x qualelem = qu) A

10 (3g;, q"){q' /'_x q" = level A signaldeflevel(qu) = g ')} in
11 if ca rd qualset ^ 1 th en
12 e x i t (‘‘§2 .2 .2 : Signal identifier denotes more than one (sub) signal”)
13 else
14 (let quaV £ qualset in
15 qual1)))

t y p e : Sigido

O b je c tiv e

P a r a m e te r s

sigid

A lg o r i th m

Line 1-3

Line 7

Line 8
Line 9-10

Diet —♦ Signalqual

Construct and return the Qual of an ASo signal identifier. The reason
why the function get-visible-qual cannot be used directly for signals is
th a t the visibility rules for signals are a little bit more com plicated due
to the subsignal concept

The ASo signal identifier

If sigid is not a subsignal then the Qual can be found using the
function get-visible-qual.
C onstruct the partial Qual which includes the Qualelem containing
the signal name
level denotes the scopeunit where sigid is used.
The complete set of possible Quals for the signal identifier is the
Quals representing the sub-signals. The set of Quals for the sub­
signals are those which have the partia l Qual as the ending part
(line 9) and which are contained in a visible signal definition q' .

(3.6.7)

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 159

Line 11-15 If there is one and only one possible Qual for sigid then return the
Qual

signaldeflevel(qual) = ,

1 i f s-Kind(qual[len qual]) = SIGNAL th e n
2 signaldeflevel(get-sur(qual))
3 else
4 qual

ty p e : Signalqual —► Signalqual

O b jec tiv e

P a ra m eters

A lg o r ith m

Line 1-2

From a Qual denoting a scopeunit which is a (sub) signal definition,
construct the Qual of the scopeunit where the outerm ost signal defini­
tion is defined

If the last Qualelem contains the entity class SIGNAL then the
Qual (still) denotes a signal definition and the Qualelem is removed
before applying the function again

get-visible-variable(id, sortset, export)(dict) =

1 (let qualset = all-variables-and-synonyms(id, EXPRESSION, sortset)(dict) in
2 le t qualset' —
3 {qual € qualset | cases dict(qual):
4 (m k- VarD(, e , , ,)
5 -* export = false V e — EXPORT,
6 m k -SynD (,)
7 -» false)} in
8 i f ca rd qualset1 = 1 th e n
9 (let qual £ qualset' in

10 qual)
11 else
1 2 e x i t ("§2 .2 .2 : One and only one variable must match the context”))

ty p e : Ido Sortqual-set Bool —► Diet —► Qual

O b je c tiv e

P a ra m eters

id
sortset
export

R esu lt

A lg o r ith m

Line 1

Line 2-6

Line 1

E xtract the Qual of a variable, get-visible-variable is applied only where
synonyms are not allowed (e.g. assignment, IN /O U T param eters etc.)

The variable identifier.
The set of sorts which are allowed in the context.
A flag indicating whether the variable is used in an export action.

The Qual which is unique for the context.

C onstruct the set of Quals consisting of those variables and syn­
onyms which matches one of the sorts in sortset.
Restrict the set to contain only variables and if id is used in an
export action then the variables in the set m ust be exported.
The set m ust contain a unique Qual

(3.6.8)

(3.6.9)

160 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .7 T ran sform ation o f P roced u re- and P rocess G raph

In this section, the body of a process or a procedure is transform ed. The result is a Process-
graphi or a Procedure-graphi and a Diet which carries inform ation of the im plicit variables
and ou tpu t signals used in the body. If a process contains services, then also some ASi defini­
tions are returned. The entry function transform ing a process body is transform-process-body
and the entry function which transform s a procedure body is transform-body (which also is
used by transform-process-body if the process contains no service decomposition). For rea­
sons of simplicity, transitions are only traversed once which means th a t the short-hands in
transitions (i.e. option nodes, dash nextstate and im port/export) are expanded “on the fly”
while transitions are transform ed.

The transform ation of a body consist of the following steps:

1 . Insertion of term inators in answers of decisions and options such th a t every ASo
Transitiono contains a Termstmto

2. C onstruction of a Labeldict, i.e. a collection of the labels used in the body and their
associated transition

3. C onstruction of a Statedict i.e. the list of states is transform ed into a m ap which
is a more appropriate representation when the states are transform ed. During this
construction, m ultiple appearence of states and asterisk states are removed.

4. Expansion of asterisk inputs and asterisk save. Also the im plicit transitions are added.
As the signals implied by export and the empty queue signal are shared by all services,
the transitions for those signals is not added until the services have been merged.

5. If a process contains services, the Statedict of all services are merged (’’sta te exploded”)
in to a statedict, where each entry is a new sta te name.

6 . Expansion of enabling condition and continuous signal. The expansion is achieved by
modifying the constructed Statedict

7. Transform ation of Statedict and the contained transitions into a Process-graphi or
Procedure-graph\. During this transform ation, new entries implied by im port expres­
sions are added to Statedict

transform -process - body (body) (diet) =

1 if is-Bodyo (body) th e n
2 (let (asibody, bdict) = transform-body(body)(diet) in
3 ({},asibody, bdict, []))
4 else
5 (let nik-Decompositiono(decll) = body in
6 le t (asidclset, sdict) — transform-decllist(decll)(dict) in
7 le t connectmap = service-connectmap(decll, {}, |])(dict) in
8 i f is-w f -service signals (diet) th en
9 (let (asibody, diet') = transform-decomposition-body(diet) in

10 (asidclset, asibody, sdict + diet', connectmap))
11 else
12 e x i t (“§4.10.2: Service signals not well-formed”))

ty p e : Processbodyo Diet —► Decli-set Process-graphi Diet ProcessconnectionD

O b je c t iv e Transform a Processbodyo into its ASi representation

P a r a m e te r s

body The process body

(3.7.1)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 161

R e su lt A list of ASi definitions (the list is non-empty if the process contains
services), the ASi process body, a Diet carrying inform ation about im ­
plicit variables, ou tpu t signals etc. used in the process body and the
connections of signal routes w ith service signalroutes for the process.

A lg o r ith m

Line 1-3 If the process does not contain services then transform the sta te
body contained in the process (like for procedures) else

Line 5 Let decll denote the service definitions and service signal route
definitions.

Line 6 Transform the services and signal routes. During this transfor­
m ation, the services are replaced by the definitions they contain.
Their sta te body is represented as a Statedict in the descriptors of
the services (contained in sdict).

Line 8 The valid input signal set of the services m ust be disjoint and no
signal in a signal routes external to the process may be a high
priority signal.

Line 9 C onstruct the ASi process body from the Statedicts contained in
the service descriptors of diet.

Line 10 R eturn the ASi definitions from the services, the process body and
the Diet contributions from the definitions and from the im plicit
variables, ou tpu t signals etc. used in the services

trans form-body (mk-Bodyo (trans, statelist)) (diet) =

1 (let trans' = insert-trans-term(trans) in
2 le t statelist' = (insert-state-term(statelist[i]) | 1 < i < len statelist) in
3 le t labeldict = build-trans-labeldict (trans')(^) in
4 le t labeldict1 = build-state-labeldict(statelist')(labeldict) in
5 le t statedict = build-statedict(statelist', diet(SCOPEUNIT))([j) in
6 le t statedict' = remove-asterisk-input-and-save(statedict)(dict) in
7 le t statedict" = remove-cont-enable-from-statelist(dom statedict)(diet, statedict') in
8 le t diet' = diet + [LABELDICT (-► labeldict',
9 STATEDICT statedict"] in

1 0 le t (trans\, diet") = transform-transition(nil, trans', Q)(dict') in
11 le t (statebodyi, diet'") — transform-statelist({})(dict") in
1 2 le t trans i t ion — add-varinit(transx, diet'") in
13 if is-ProcedureD(dict(dict(SCOPEUN\T))) th en
14 (nik-Procedure-graphx(mk-Procedure-start-nodex(transitionx), statebodyx), diet'")
15 else
16 (nik-Process-graphx(rnk-Process-start-nodex(transitionx), statebodyx), diet'"))

ty p e : Bodyo —► Diet —► (Procedure-graphx | Process-graphx) Diet

O b je c tiv e Transform a sta te body of a process or procedure

P a ra m eters An ASo body containing

trans The in itial transition
statelist The list of states

R e su lt An ASX procedure- or process graph and a Diet carrying inform ation
about im plicit variables and ou tpu t signals

A lg o r ith m

Line 1 Insert term inators in answers of decisions and options in the initial
transition

Line 2 Insert term inators in answers of decisions and options in the sta te
list.

(3.7.2)

162 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

Line 3 Collect inform ation about the labels (connectors) used in the in itial
transition.

Line 4 Collect inform ation about the labels used in the statelist. labeldict'
reflects the association between the labels used in the process or
procedure body and their following transitions (see the definition
of Labeldict).

Line 5 Transform the statelist into a m ap from sta te names in to a StateD
descriptor (see the definition of Statedict in Quotdict). M ultiple
appearence of states and asterisk states are merged during this
transform ation.

Line 6 Expand asterisk inputs, asterisk saves and im plicit transitions in
the Statedict.

Line 7 Expand any enabling condition and continuous signal in the con­
structed Statedict. After this expansion, the Statedict contains
ContenablestateD descriptors for the states which are removed.
The new states are represented by a StateD descriptor.

Line 8 Include the Labeldict and the Statedict in the Diet such th a t the
transform ation functions only need one dictionary param eter (in­
stead of three).

Line 10 Transform the initial transition into ASi.
Line 11 Transform the statelist into a set of ASi states.
Line 12 Modify the initial transition to include the in itia tion of the im plicit

variables used in the process.
Line 13-16 R eturn an ASx procedure graph if the sta te body belongs to a

procedure, otherwise return an ASi process graph. In the returned
Diet (diet'") only the OUTSIGNALS and IMPLIED entries from
Quotdict are used

add-varinit(trans, diet) =

1 (let qualset = { qual £ dom diet | is-VarD (d id (qual)) A
2 get-sur(qual) = diet (SCOPEUNIT)} in
3 add-default-assign(trans, qualset)(did))

ty p e : Transition\ D id —* Transition

O b je c t iv e Modify the initial transition to include variable initiations.

P a r a m e te r s

trans The ASi initial transition.
d id The Diet containing the relevant VarD descriptors and containing

the ASo name of the variable attached to continuous signal (the
name is the same for all processes)

R e s u l t The modified ASi transition.

A lg o r i th m

Line 1-2 Extract the set of all those Quals which denote local variables.
Line 3 Modify the transition to include default assignments to the local

variables.

(3.7.3)

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 163

add-default-as sign(trans, descrset)(dict) = (3.7.4)

1 i f descrset = {} th en
2 trans
3 else
4 (let qual E descrset in
5 le t trans' = add-default-assign(trans, descrset \ {qual})(dict) in
6 le t nik -V arD (, ,, expri, qual) = dict(qual) in
7 i f expri = nil th e n
8 trans'
9 else

1 0 (let as\id = make-asi-identifier(qual)(dict) in
11 le t stm t — m k-Task-nodei(n ik-Assignm ent-s ta tem enti(asiid} expri)) in
1 2 le t m k-Transitioni(actl, term) = trans1 in
13 le t trans" — m k-TYansit ion^s tm t actl , term) in
14 if is-SyntypeD (diet (qual)) th en
15 (let range = s-Range-conditioni(dict(qual)) in
16 le t nik-Range-conditioni(, cset) = range in
17 if cset = {} th e n
18 trans"
19 else
20 (let des — xnk-Decision-nodei{expri, {mk-Decision-answeri(range, trans")},
21 m.k-Else-answeri(trans')) in
2 2 m k -Transitioni((), des)))
23 else
24 trans"))

ty p e : Transitioni Qual-set —► Diet —► Transitioni

P a r a m e te r s

the im plicit variables attached to export variables, the im plicit export
variables are autom atically initialized.

P a r a m e te r s

trans The transition which should be modified.
descrset The Quals of the local variables.

R e s u l t The modified transition.

A lg o r i th m

initiation for the rest of the Quals.

done).
If the descriptor do not conta
do not modify the transition.

returned.

164 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 20-22 R eturn a new transition which consist of an empty action list and
an ASi decision able of performing the default assignment only in
the case where the range condition is satisfied.

3 .7 .1 I n s e r t io n o f T e rm in a to r s in A n sw ers

insert-state-term(mk-Statebodyo(idl, stlist , tnm)) =

1 (let stlist1 = (insert-spec-term(stlist[i]) | 1 < i < 1 en stlist) in
2 m k -Statebodyo(idl, s t l i s t t n m))

ty p e : Statebodyo Statebodyo

O b je c tiv e

P a r a m e te r s

idl

R e s u lt

A lg o r i th m

Line 1

Line 2

Insert term inators in answers in decisions and options contained in an
ASo state

The sta te containing

The list of state names for the state

The modified AS0 state

Insert term inators in all the input transitions and

C onstruct the ASq state (again).

insert-spec-term(stspec) =

1 cases stspec:
2 (mk-Inputspeco(vars, enab, trans)
3 -► mk-Inputspeco(vars , enab , insert-trans-term(trans)),
4 mk-Contspec0(expr, prio, trans)
5 -♦ m.k-Contspeco(expr, prio, insert-trans-term(trans)),
6 m k -Priinputo(vars, trans)
7 -* mk-Priinputo(vars, insert-trans-term(trans)),
8 T -♦ stspec)

ty p e : Statespeco —* Statespeco

O b je c t iv e

P a r a m e te r s

stspec

R e s u l t

A lg o r i th m

Line 2

Line 4

Line 6

Line 8

Insert term inators in answers in decisions and options contained in an
input transition

The input transition

The modified ASq input transition

If the input transition is an input node then insert term inators in
the transition following the input node (trans)
If the input transition is a continuous signal then insert term inators
in the transition following the continuous signal (trans).
If the input transition is a priority input then insert term inators
in the transition following the priority input (trans).
Otherwise (in the case of a save node), return the transition un­
changed

(3.7.1.1)

(3.7.1.2)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 165

1 (if actl = () th e n
2 m k-Transitiono((),term)
3 else
4 (let nik-Actstm to{l , act) = h d act/ in
5 i f is-Decisiono(act) V is -Optiono(act) th e n
6 (let (answerl, 6 /5) = cases act:
7 (m k-D ecm ono(, ansZ, e/s)
8 -+ (ansi, els),
9 mk-0p<tono(, ans/, els)

1 0 -» (ansi, els)) in
11 le t (actV, answerV, els') — insert-answer-term(tl actl, term, answerl, els) in
1 2 le t act' = cases act :
13 (xtik-Decisiono(q,,)
14 -* i tik-Actstmto(l, mk-Decisiono(q, answerV, els')),
15 xtik-Optiono(q,,)
16 -► va]n-Actstmto(l,ink-Optiono(q, answerl', els1))) in
17 le t mk-Transitiono(actl" , t) = insert-trans-term(m.k-Transitiono(actl', term)) in
18 xnk-Transitiono((act') actl", t))
19 else
20 if t l actl = () A term = n il th e n
21 e x i t ("§2.6.7.1: Terminator missing in transition")
2 2 else
23 (let m k -Transitiono(actl", t) =
24 insert-trans-term(mk-Transitiono(tl actl, term)) in
25 nik-Transition{)((hd actl) actl", <))))

ty p e : Transitiono —» Transitiono

insert-trans-term(Tnk-Transitiono(actl, term)) =

O b je c t iv e

P a r a m e te r s

actl
term

R e s u l t

A lg o r i th m

Line 1

Line 4
Line 5
Line 6-9

Line 11

Line 12-15
Line 17
Line 18

Line 20-25
Line 20-21

Line 23-25

Insert term inators in answers of decision and option nodes in an action
list

1
The transition containing

The action list
The optional term inator following the action list

The modified ASo transition

W hen through, return the transition containing an em pty action
list (the function is recursive).
Decompose the first action statem ent.
If the action is a decision or an option then
E xtract the answer list (answerl) and the else part (els) from the
decision or option.
Insert term inators in the answer list and in the else part. If a
term inator is inserted (a join) then the rest of the action list (t l
actl) is modified (actl') to include a label.
C onstruct the modified decision or option node.
Insert term inators in the rest of the action list.
R eturn the transition containing the modified decision or option
(acf7), the rest of the action list (actl") and the term inator.
If the first action is not a decision or option node then
If the action is the last action and there is no term inator then it is
an error.
Insert term inators in the rest of the action list and compose the
modified transition

(3.7.1.3)

166 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

1 (if answerl = () th en
2 i f els = n il th e n
3 (actl, (), nil)
4 else
5 (let m k -Elseparto(trans) = els in
6 le t (actV, trans') =
7 cases trans:
8 (nil
9 -♦ (let (acl, term') = insert-join(actl, term) in

10 (acl, m.k-Transitiono((), term'))),
11 m k -Transitiono(actl", term")
12 -► i f term" = nil th en
13 (let (actl'" , term'") — insert-join(actl, term) in
14 (actl'" , insert-trans-term(nik-Transitiono(actl", term'"))))
15 else
16 (actl, insert -trans-term(trans))) in
17 (actl', (), mk-Elseparto(trans')))
18 else
19 (let (actl', answerrest, els') = insert-answer-term(actl, term, tl answerl, els) in
20 le t mk-Answero(vset, trans) = h d answerl in
2 1 le t (actlist, trans") =
2 2 cases trans:
23 (nil
24 -* (let (acl, term) — insert-join(actl', term) in
25 (acl, mk-Transitiono((), term))),
26 m k -Transitiono(actl", term")
27 -♦ if term" = nil th en
28 (let (actl'", term'") = insert-join(actl', term) in
29 (actl'" , insert-trans-term(mk-Transitiono(actl", term'"))))
30 else
31 (actl ', insert-trans-term(trans))) in
32 (actlist, (m k-Answero(vset, trans")) answerrest, els')))

ty p e : Actstmto* [Termstmto] Answero* [Elseparto] —> Actstmto* Answero* [Elseparto]

insert-answer-term(actl, te rm , answerl, els) ^

O b jec tiv e

P a ra m eters

Insert term inators in the answers of a decision or option node

actl
term

answerl
els

R esu lt

A lg o r ith m

Line 1-17
Line 2

Line 5

The action list which follows the decision or option node
The term inator which follows the decision or option node and which
follows the action list
The list of answers
The optional else part

The action list which follows the decision or option node. This
action list is modified to include a label if it is non-em pty and if
any term inators is missing in the answers and in the elsepart

The list of answers, all containing term inators

The else part containing a term inator (unless the else part is om it­
ted)

W hen through the answer list then modify the else part.
If the else part is om itted then return the action list, the fcmpty
list of answers and no else part.
If the else part is specified then decompose it.

(3.7.1.4)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 167

Line 6-17 Let actV denote the new action list which follows the decision or
option node and let trans' denote the new transition in the else
part which contains a term inator.

Line 8 If no transition is specified then construct a jo in (term) and insert
a label in the action list following the decision or option node (act).
The transition of the else part is an em pty action list and a jo in
(line 1 0).

Line 11-14 If a transition is specified in the else part, bu t the term inator is
om itted then insert a label in the action list (actl'"), following the
decision or option, construct a jo in (term'"), and insert term inators
in the action list in the transition (line 14).

Line 16 If a transition containing a term inator is specified then insert ter­
m inator in the action list of the transition and do not modify the
action list (actl) following the decision or option.

Line 17 R eturn the modified action list, an em pty answer list and the m od­
ified else part.

Line 19 Insert term inators in the rest of the answers.
Line 20 Decompose the first answer in the list.
Line 21-31 Do the same for the first answer in the answer list as done for the

else part as defined a t line 6-16.
Line 32 R eturn the new action list which follows the decision or option, the

first of the modified answers joined with the rest of the modified
answers and the modified else part (if specified)

insert-join(actl, term) =

1 (if actl = () th e n
2 i f term = n il th e n
3 e x i t ("§2.6.7.1: Terminator missing in transition")
4 else
5 (let m k-Term stm to(, t) = term in
6 ((), m k-Term sfrafo(nil, t)))
7 else
8 (let nik-Actstmto(l, act) = h d actl in
9 le t I' — i f I — nil th e n create-unique-name() else I in

1 0 ((nik.-Actstmto(l', act)) t l actl, nik-Termstmto(nil, mk-Joino(l')))))

ty p e : Actstmto* [Termstmto] —♦ Actstmto* Termstmto

O b je c t iv e From an action list and the following term inator, construct a jo in to
the first action in the action list- or if it is empty, to the term inator.
The jo in is used as term inator in the answers which are not term inating
decisions (see insert-answer-term)

P a r a m e te r s

actl The given action list
term The term inator which follows the action list

R e s u l t The action list where the first action have the same label as the con­
structed jo in and the constructed join

A lg o r i th m

Line 1 If the action list is em pty then
Line 2-6 A term inator must be present and if so then
Line 5-6 R eturn the same (but unlabeled) term inator as specified in the

transition following the decision or option.
Line 8 Decompose the first action in the action list following the enclosing

decision or option.

(3.7.1.5)

168 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

Line 9 Extract the label from the action and if it contains no label then
create one.

Line 10 R eturn the new action list which contains the label and return the
term inator statem ent containing a jo in to th a t label

3 .7 .2 B u ild in g o f L ab eld ict

build-state-labeldict (statebody)(labeldict) =

1 (if statebody = () th e n
2 labeldict
3 else
4 (let mk-Statebodyo(, specl,) = h d statebody in
5 le t specl' = (specl[i\ | 1 < i < len sped A -iis-5avespeco(«pecZ[t])) in
6 le t labeldict' = build-spec-labeldict(specl')(labeldict) in
7 build-state-labeldict (tl statebody) (labeldict1)))

ty p e : Statebodyo* Labeldict —* Labeldict

From the sta te body of a process, procedure or service, collect the labels
and their associated transitions to form a Labeldict (see the definition
of Labeldict)

The list of states
The labels collected so far (the function is recursive)

The constructed Labeldict

W hen through, return the constructed labeldict.
Decompose the first state in the list
Extract those input transitions which are not saves.
U pdate labeldict to include the labels in these input transitions.
Collect the labels in the rest of the states

O b jec tiv e

P a ra m eters

statebody
labeldict

R esu lt

A lg o r ith m

Line 1
Line 4
Line 5
Line 6
Line 7

build-spec-labeldict(speclist)(labeldict) =

1 (if speclist — () th en
2 labeldict
3 else
4 (let trans = s-Transitiono(hd speclist) in
5 le t labeldict1 = build-trans-labeldict(trans)(labeldict) in
6 build-spec-labeldict(t\ speclist)(labeldict')))

ty p e : Statespeco* Labeldict —► Labeldict

O b jec tiv e

P a ra m eters

From the transitions attached to a sta te (input transitions), collect
the labels and their associated transitions to form a Labeldict (see the
definition of Labeldict)

speclist
labeldict

The list of input transitions
The labels collected so far (the function is recursive)

R esu lt The constructed Labeldict

(3.7.2.1)

(3.7.2.2)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 169

A lg o r ith m

Line 1 W hen through, return the constructed Labeldict.
L ine 4-5 U pdate labeldict to include the labels in the transition of the first

input transition.
Line 6 Collect the labels for the rest of the input transitions

build-trans-labeldict (m k- Transitiono (actl, term)) (labeldict) A

1 (if actl — () th e n
2 (if term = nil th e n
3 labeldict
4 else
5 (let m k -Term stm to(l ,) = term in
6 i f I — n il th e n
7 labeldict
8 else
9 if I £ dom labeldict th en

10 e x i t (“§2 .6 .6 : Labels are not distinct”)
11 else
1 2 labeldict + [/►—► niix.-Transitiono((), term)]))
13 else
14 (let nik-Actstmto(l, a) = h d actl in
15 le t labeldict' =
16 i f / = nil th e n
17 labeldict
18 else
19 i f Z £ dom labeldict th e n
20 e x i t (“§2.6.6: Labels are not distinct”)
2 1 else
22 labeldict + [/ 1—► rnk-Transitiono(actl, term)] in
23 le t labeldict" =
24 cases a:
25 (m k-Decisiono(, ansi, els)
2 6 -► build-answerlist-labeldict(ansi, els)(labeldict'),
27 m k -Optiono(, ansi, els)
28 -» build-answerlist-labeldict(ansl, els)(labeldict'),
29 T -» labeldict') in
30 build-trans-labeldict(xvik-Transitiono(tl actl, term))(labeldict")))

ty p e : Transitiono —* Labeldict —► Labeldict

O b je c tiv e From a transition, collect the labels and their associated transitions to
form a Labeldict (see the definition of Labeldict)

P a ra m eters A transition containing

actl A list of action statem ents
term A term inator statem ent
labeldict The labels collected so far

R e su lt The constructed Labeldict

A lg o r ith m

Line 1-12 W hen through the list of action statem ents, consider the term ina­
tor

Line 5 Decompose the term inator statem ent in order to extract the label
(0 -

Line 6 If the label is om itted then return the constructed labeldict.

(3.7.2.3)

170 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 9 If the label already is present in the Labeldict then the label has
been used twice.

Line 12 R eturn the Labeldict which is updated to include the label in the
term inator statem ent. The Transition^ which follows the label has
an em pty list of action statem ents and a term inator statem ent

Line 14 Decompose the first action statem ent in the list.
Line 15-22 Let labeldict1 denote the labeldict which is updated to include the

label of the first action statem ent (if it is present and if the label
is distinct).

Line 23-29 Let labeldict" denote the labeldict which is further updated to in­
clude the labels of the answers in the case of a decision or option
action.

Line 30 Collect the labels in the rest of the action statem ents

build-answerlist-labeldict(an$werl, els)(labeldict) —

1 (if answerl = () th en
2 i f els = nil th e n
3 labeldict
4 else
5 (let mk-Elseparto(trans) = els in
6 build-trans-labeldict (trans) (labeldict))
7 else
8 (let mk-.Ansii;ero(, trans) = h d answerl in
9 le t labeldict1 — build-trans-labeldict(trans)(labeldict) in

1 0 build-answerlist-labeldict(tl answerl, els)(labeldict1)))

ty p e : Answero* [Elseparto] —* Labeldict —♦ Labeldict

O b je c t iv e From the answers in a decision or option action, collect the labels and
their associated transitions to form a Labeldict (see the definition of
Labeldict)

P a r a m e te r s

answerl The list of answers
els The optional else part
labeldict The labels collected so far

R e s u l t The constructed Labeldict

A lg o r i th m

Line 2-6 W hen through the list of answers, consider the else part.
Line 2 If the decision or option action contains no else part then return

the labeldict.
Line 5 E xtract the transition from the else part.
Line 6 U pdate labeldict to include the labels in the transition of the else

part.
Line 8 E xtract the transition of the first answer in the list.
Line 9 U pdate labeldict to include the labels of the transition.
Line 10 Collect the labels of the rest of the answers

(3.7.2.4)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 171

build-statedict(statelist, scope)(statedict) =

1 (if statelist = () then
2 statedict
3 else
4 (let mk-Statebodyo(statenml, stspec, tailname) = hd statelist in
5 let speclist = ((scope, stspec[i]) | 1 < i < lensispec) in
6 cases statenmh
7 (mk-Statenamelisto(nmlist)
8 -* i f tailname ^ nil A elem s nmlist {tailname} then
9 exlt("§2.6.3: Ending name of state must be the same as starting name”

10 else
11 (let statedict' — insert-state-names(nmlist, speclist)(statedict) in
12 build-statedict(tl statelist, scope)(statedict1)),
13 m k-Starredlisto(nmlist)
14 -► i f tailname ^ nil then
15 e x i t (“§2.6.3: Ending state name is not allowed in asterisk state”)
16 else
17 (let totaldict = build - statedict (tl statelist, scope)(statedict) in
18 insert-starred (nmlist, speclist) (totaldict)))))

type : Statebodyo* Qual —► Statedict —* Statedict

3 .7 .3 B u ild in g o f S ta ted ic t

O b je c tiv e

P a ra m eters

From the sta te body of a process, procedure or service, collect the states
and their associated transitions to form a Statedict (see the definition
of Statedict)

statebody
scope

statedict

R esu lt

A lg o r ith m

Line 1

Line 4
Line 5

Line 7-12

Line 9

Line 11

Line 12
Line 13-18

Line 14

Line 17

Line 18

The list of states
The Qual denoting the scopeunit which contains the states. Every
transition in Statedict m ust contain inform ation about the context
in which the transition is elaborated (since the Statedicts of services
are merged into one Statedict before they are transform ed into A Si)
The states considered so far (the function is recursive)

The constructed Statedict

W hen through, return the constructed Statedict.
Decompose the first sta te in the list.
C onstruct the list of Specs for the sta te (see the definition of State­
dict), th a t is, the list of pairs of context inform ation and input
transition for the state.
If a sta te name list is specified in the sta te then

If a tailing name is specified then the sta te name list m ust consist
of the same name.

For each of the sta te names in the list, add a StateD descriptor to
Statedict.
C onstruct StateD descriptors for the rest of the states.
If an asterisk sta te name list is specified then

A tailing name is not allowed.

C onstruct the Statedict for the rest of the states (the complete
statedict) before

The input transitions of the asterisk state are added

(3.7.3.1)

172 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

insert-state-names(namelist, stspec)(statedict) = (3.7.3.2)

1 (if namelist = () th e n
2 statedict
3 else
4 (let nm = h d namelist in
5 le t stspec' =
6 i f nm £ dom statedict th en
7 (let m k -StateD (specl,) = statedict(nm) in
8 specl)
9 else

1 0 () in
11 le t statedict1 — statedict + [nm t-» m k -StateD (stspec ^ stspec', nil)] in
1 2 i f nm £ elem s tl namelist th en
13 ex it("§2.6.3: State names in sta te must be distinct”)
14 else
15 insert-state-raames(tl namelist, stspec)(statedict')))

ty p e : Statenamelisto Speclist —► Statedict —► Statedict

U pdate Statedict to include the input transitions of a sta te node.

The list of s ta te names which are specified in the sta te node
A list of Specs which contains the input transitions and which, for
each sta te in the list, is added to Statedict

The updated Statedict

W hen through the sta te name list, return the updated Statedict
(the function is recursive).
Let nm denote the first name in the list.
If th a t name already has an entry in statedict then stspec' denotes
the input transitions associated to the entry else stspec' denotes
the empty list of input transitions.
Let statedict' denote the Statedict updated to include bo th the
input transitions which already were there (stspec1) and the new
ones (stspec). n il in StateD indicates th a t the sta te is not an im ­
plicit sta te implied from an im port expression (see the definition
of Statedict).
The sta te name list specified in the sta te m ust contain distinct
sta te names.
Consider the rest of the names in the sta te name list

insert-starred(namelist, stspec)(totaldict) =

1 (if ca rd elem s namelist ^ len namelist V
2 -i(elem s namelist C dom totaldict) V
3 elem s namelist = dom totaldict V
4 totaldict = [] th en
5 e x i t (“§4.4: Illegal asterisk state”)
6 else
7 (let restset = dom totaldict — elem s namelist in
8 le t namelist' = (ram | ram £ dom restset) in
9 insert-state-names(namelist ' , stspec)(totaldict)))

ty p e : Statenamelisto Speclist —* Statedict —► Statedict

O b jec tiv e

P a ra m eters

namelist
stspec

R esu lt

A lg o r ith m

Line 1

Line 4
Line 5-8

Line 11

Line 12-13

Line 15

(3.7.3.3)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 173

O b je c tiv e

P a ra m eters

U pdate Statedict to include the input transition from an asterisk sta te

namelist The names mentioned in the asterisk state
stspec The Specs containing the input transitions of the asterisk state.

R e s u l t The update Statedict

A lg o r i th m

Line 1 The names in the sta te name list m ust be distinct and
Line 2 They m ust not be the only occurrences of the sta te name and
Line 3 They m ust not include all states and
Line 4 There m ust be a t least one state which is not an asterisk state.
Line 7 E xtract the set of states which are covered by the asterisk state.
Line 8 Transform the set into a list.
Line 9 Add the Specs to Statedict for the deduced list of states (in the

usual way)

3 .7 .4 E x p a n s io n o f A s te r is k I n p u t , A s te r is k S ave a n d Im p lic i t T ra n s it io n s

In this section, the asterisk from input nodes and save nodes are removed from the body
of a process, procedure or service and it is checked th a t each sta te contains a t most one
asterisk. As enabling conditions, continuous signals and im port expressions have not been
removed yet, the replacement of the asterisk does not include the em pty queue signal and
the signals im plied by im port.

remove-asterisk -input- and-save(statedict)(dict) =

1 [stnm i—► remove-asterisk-from-state(statedict(stnm))(dict) \ stnm £ dom statedict]

ty p e : Statedict —> Diet —► Statedict

O b je c t iv e Remove asterisk input and asterisk save from the sta te bodies of a
process, procedure or service

P a r a m e te r s

statedict The Statedict representing the sta te bodies

R e s u l t The modified Statedict

A lg o r i th m C onstruct the Statedict (the m ap) where every sta te have its asterisk
input and asterisk save removed

(3.7.4.1)

174 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

remove-asterisk-from-state(vak-StateD(speclist,))(dict) = (3.7.4.2)

1 (let (speclist1, saveset, inputset, priinput) —
2 remove-asterisk-from-spec(speclist, {}, {}, {}, false)(chcf) in
3 le t (inputsignals, prisignals) =
4 (let qual = prc>ce$s-or-servtce-/eveZ(<h'c<(SCOPEUIMIT)) in
5 cases diet (qual):
6 (nik-ProcessD(, sig , ,) - >(s*<7){}))
7 nik-ServiceD (, , , sig, pst#) — (si<7, pshjr))) in
8 i f priinput = prisignals A (savesef U inputset) C inputsignals th en
9 (let (expimpinput ,) = import-export-signals (diet) in

1 0 le t implicitinput — inputsignals \ saveset \ priinput \ inputset \ expimpinput in
11 le t implicittrans = asQ-implicit-transitions(implicitinput)(dict) in
12 nik-StateD (speclist1 implicittrans, nil))
13 else
14 e x i t ("§2.6.3: Signals in s tate node are not well-formed”))

t y p e : StateD

O b je c tiv e

P a r a m e te r s

speclist

R e s u l t

A lg o r i th m

Line 1

Line 3-7

Line 8

Line 9

Line 10

Line 11
Line 12

Diet —► StateD

Remove asterisk input and asterisk save from a sta te and include the
im plicit transitions for the unspecified signals in the Speclist

The Statedict descriptor (StateD) containing

The Speclist containing the Statespec^s of the state

The modified StateD descriptor

C onstruct the modified Speclist and extract the signals specified in
the save, the signals specified in the inputs and the signals specified
in the priority inputs
Extract the complete valid input signal set and the priority signals
for the process or service.
The signals in the priority inputs of the sta te m ust be equal to the
priority signals for the service and the signals specified in the save
and in the other inputs m ust be included in the complete valid
input signal set.
Let expimpinput denote the im plicit xtQUERY and xtR EPLY sig­
nals received in export and im port shorthands and the em ptyq
signal.
The signals for which implicit transitions are to be constructed are
the signals in the complete valid input signal set minus the signals
mentioned in the save minus the high priority signals minus the
signals mentioned in the input minus the im plicit signals.
Construct the implicit transitions.
C onstruct the modified StateD descriptor

aso-implicit-transitions (signalqualset)(dict) =

1 i f signalqualset = {} th en
2 0
3 else
4 (let signalqual £ signalqualset in
5 let inputvars = aso-inputvars({signalqual})(dict) in
6 le t input = mk-Inputspeco(inputvars, nil,
7 mk-Transitiono((), mk-Termstmto(nil, m.k-Nextstateo(nii)))) in
8 ((chef(SCOPEUIMIT)), input) ^ aso-implicit-transitions(signalqualset \ {signalqual})(dict))

ty p e : Signalqual-set —* Diet —► Speclist

(3.7.4.3)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 175

O b je c t iv e C onstruct the im plicit transitions for a sta te

P a r a m e te r s

signalqualset The set of signals for which implicit transitions are to be con­
structed

R e s u l t A Speclist containing the im plicit transitions

A lg o r i th m

Line 1 W hen through, return the input Speclist.
Line 4 Let signalqual denote the next signal to be dealt with.
Line 5 C onstruct the param eter list for the signal.
Line 6 C onstruct the input transition for the signal. The transition con­

tains a nextstate dash only.
Line 8 C onstruct a Spec and jo in it with the Speclist for the rest of the

signals

176 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

remove-asterisk-from-spec(speclist, sigset, saveset, priset, asterisk)(diet) = (3 .7 ,

1 (if speclist = () th e n
2 ({), sigset, saveset, priset)
3 else
4 (let (q, spec) = h d speclist in
5 cases spec:
6 (nik-Savespeco(sigl)
7 -* i f is-Starredo(sigl) th e n
8 i f asterisk th en
9 exlt("§4.7: S tate has more than one asterisk input or save")

1 0 else
11 (let (specrest, inputtot, savetot, pritot) —
1 2 remove-asterisk-from-spec(t l speclist, sigset, saveset, priset, t r u e)(dict) in
13 le t sigq = all-input-signals(dict(SCOPEUN\T))(dict) in
14 le t (expimpinput,) = import-export-signals(diet) in
15 le t sigq' = sigq \ inputtot \ savetot \ pritot \ expimpinput in
16 le t asQsiglist — (aso-id(sig) | sig 6 sigq') in
17 le t spec' — if asQsiglist = () th en
18 ()
19 else
20 ((q, mk-Savespeco(asosiglist))) in
21 (specrest spec', inputtot, sigq' U savetot, pritot))
2 2 else
23 (let sigq — transform-signallist(sigl)(dict) in
24 le t (specrest, inputtot, savetot, pritot) =
25 remove-asterisk-from-spec(t 1 speclist, sigset, saveset U sigq, priset, asterisk)(diet) in
26 if sigq n (sigset U saveset U priset) — {} th en
27 (specrest (hd speclist), inputtot, savetot, pritot)
28 else
29 e x i t (“§2.6.3: Signals in state are not disjoint”)),

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 177

30 nik-Priinputo(inp ,),
31 xnk-Inputspeco(inp, enab , trans)
32 -♦ i f is-Starredo(inp) th e n
33 if asterisk th en
34 exit("§4.7: State has more than one asterisk input or save”)
35 else
36 (let (specrest, inputtot, savetot, pritot) =
37 remove-asterisk-from-spec(t l speclist, sigset, saveset, pritot, tx\ie)(dict) in
38 le t sigq = all-input-signals(dict(SCOPE\)[i\T))(dict) in
3 9 le t (expimpinput,) — import-export-signals(dict) in
40 le t sigq' = sigq \ inputtot \ savetot \ pritot \ expimpinput in
41 le t inpvars = aso~inputvars(sigq')(dict) in
42 le t spec1 = if inpvars = () th en
43 ()
44 else
45 ((q, mk-Inputspeco(inpvars, enab, trans))) in
46 (specrest spec', sigq' U inputtot, savetot, pritot))
47 else
48 (let sigq = {signal-qual(id)(diet) | nik-Inputvarso(id ,) £ elem s inp} in
49 le t (sigset', priset') = if is-Priinputo(spec) th en
50 (sigset, priset U sigq)
51 else
52 (sigset U sigq, priset) in
53 le t (specrest, inputtot, savetot, pritot) =
54 remove-asterisk-from-spec(tl speclist, sigset', saveset, priset ', asterisk)(diet) in
55 if sigq fl (sigset U saveset U priset) = {} th en
56 (specrest '"x (hd speclist), inputtot, savetot, pritot)
57 else
58 e x i t (“§2.6.3: Signals in state are not disjoint”)),
59 T -♦ remove-asterisk-from-spec(tl speclist, sigset, saveset, priset, asterisk)(diet))))

ty p e : Statespeco* Signalqual-set Signalqual-set Signalqual-set Bool —> Diet
Statespeco* Signalqual-set Signalqual-set Signalqual-set

O b je c tiv e

P a ra m eters

speclist

sigset

saveset

priset

asterisk

R e su lt

A lg o r ith m

Line 1

Line 4

Remove asterisk input and asterisk save from a state. In addition to
the input nodes, the function also returns the set of signals mentioned
in the input nodes, the set of signals mentioned in the save nodes and
the set of signals mentioned in the priority input nodes

The list of remaining inputs and saves to be dealt with (the function
is recursive)
The Quals of the signals which have been recognized in an input
node so far
The Quals of the signals which have been recognized in an save
node so far
The Quals of the signals which have been recognized in an priority
input node so far
A flag indicating whether an asterisk save or asterisk input has
been recognized so far

The modified list of inputs and saves constructed so far, the complete
Qual set of input signals, the complete Qual set of save signals and the
set of high priority signals received in the state,

W hen through, return the complete Qual set of input signals, the
complete Qual set of save signals and the set of high priority signals
Decompose the first Spec of the state.

178 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 6-27
Line 6
Line 8

Line 11

Line 13

Line 14-15

Line 16
Line 17

Line 21

Line 23

Line 24

Line 26

Line 27
Line 31-59
Line 32
Line 33

Line 36

Line 38

Line 39-40

Line 41

Line 4%

Line 45

Line 46

Line 40

Line 53

If the Statespeco in the first Spec is a save node then
If an asterisk is specified in the save node then
If an asterisk save or asterisk input already has been encounted
then it is an error.
Remove the asterisk input and save from the rest of the input and
save nodes, t r u e indicates th a t an asterisk save (or input) now
have been encounted. inputtot and savetot are the complete sets of
input signals and save signals explicitly specified.
E xtract the Quals of the signals which are contained in the com­
plete valid input signal set for the service or process.
The set of signals to be specified in the save node are the signals in
the complete valid input signal set (sigq) minus the signals specified
in the input nodes inputtot minus the signals specified in the other
save nodes (savetot) minus the priority input signals minus the
signals implied from im port/export.
Convert the set of signal Quals to an ASo list of identifiers.
C onstruct the new save Spec provided there exist any signals to
save.
R eturn the Spec joined with the rest of the Specs, the complete set
of input signals, the complete set of save signals and the set of high
priority signals.
If the save contains a signallist then transform the signallist to
obtain the signals specified (sigq).
Remove the asterisk input and save from the rest of the input and
save nodes where the set of save signals obtained so far is updated
to include the signals of this save node.
The signals in the save must be disjoint from the other signals in
the state.
Add the Spec to the resulting list of Specs (and leave it unchanged).
If the Statespeco in the first Spec is an input node then
If an asterisk is specified in the input node then
If an asterisk save or asterisk input already has been encounted
then it is an error.
Remove the asterisk input and save from the rest of the input and
save nodes, t r u e indicates th a t an asterisk input (or save) now
have been encounted.
E xtract the Quals of the signals which are contained in the com­
plete valid input signal set for the service or process.
The set of signals to be specified in the input node are the signals in
the complete valid input signal set (st^g) minus the signals specified
in the other input nodes inputtot minus the signals specified in the
save nodes (savetot) minus the priority input signals minus the
signals implied from im port/export.
Convert the set of signal Quals to a list of Inputvarsos where the
variables to receive the values are om itted (n il).
C onstruct the new input Spec provided there are any signals not
explicitly mentioned.
R eturn the Spec joined with the rest of the Specs, the complete set
of input signals and the complete set of save signals.
If the input contains a list of Inputvarsos then extract the Qual of
the signals contained in them
if the input is a priority input then add the signals to the priority
input set (priset) else add the signals to the set of norm al signals
(sigset).
Remove the asterisk input and save from the rest of the input and
save nodes

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 179

Line 55 The signals in the input m ust be disjoint from the other signals in
the state.

Line 56 Add the Spec to the resulting list of Specs (and leave it unchanged).
Line 59 If the Statespeco is a continuous signal, then continue with the next

Statespeco

aso-inputvars(starinput) (diet) =

1 (if starinput = {} th e n
2 0
3 else
4 (let qual 6 starinput in
5 le t (n m ,) = qual[len qual] in
6 le t id = m k-Ido(()) nm) in
7 le t t = cases dict(qual):
8 (m k -SignalD (t l i , ,) -* tli,
9 m k -TimerD (tl i ,) -* tli) in

1 0 le t vnurn = len t in
11 le t inpu = mk-Inputvarso(id, (nil | 1 < i < vnum)) in
1 2 (inpu) aso-inputvars(starinput \ {qual})(dict)))

ty p e : Signalqual-set —+ Diet —► Inputvarso*

O b je c t iv e C onstruct the ASo variable lists for the signals which are received in an
asterisk input node or received in im plicit transitions.

P a r a m e te r s

starinput The set of valid input signals for a process which neither have been
specified explicitly in an input node, priority inputnode nor in a
save node

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Let qual denote a signal Qual in the set.
Line 5 Extract the name of the signal.
Line 6 C onstruct the identifier of the signal.
Line 7-9 Let t denote the sort list of the signal or timer.
Line 10 Let vnum denote the number of values conveyed by the signal.
Line 11 C onstruct the ASo input variable list where every variable is n il

(om itted) and
Line 12 R eturn it together with those for the rest of the signals

3 .7 .5 E x p a n s io n o f C o n tin u o u s S ig n a ls a n d E n a b lin g C o n d it io n

remove-cont-enable-from-statelist(stateset)(dict, statedict) =

1 (if stateset = {} th e n
2 statedict
3 else
4 (let state £ stateset in
5 le t m k-Sta teD (speclist,) = statedict(state) in
6 le t statedict1 = remove-cont-enable-from-state(speclist, state)(dict, statedict) in
7 remove-cont-enable-from-statelist(stateset \ {state})(diet, statedict')))

ty p e : Statenameo-set —> Diet Statedict —► Statedict

(3.7.4.5)

(3.7.5.1)

180 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

O b jec tiv e Remove all continuous signal and enabling condition from Statedict by
replacing the appropriate StateD descriptors by Contenable stateD de­
scriptors and by adding new StateD descriptors for the implied states

P a ra m eters

stateset The names of the states which shall have the continuous signals and
enabling conditions removed. Initially this set includes all states
(the function is recursive)

R e su lt The modified Statedict

A lg o r ith m

Line 1 W hen through, return the modified Statedict.
Line 4-5 Let speclist denote the Speclist of one of the rem aining states.
Line 6 Remove continuous signals and enabling conditions in th a t state.
Line 7 Remove continuous signals and enabling conditions in the rest of

the states

remove-cont-enable-from-state(speclist, s tnm)(d ic t, statedict) =

1 (let enable = (3(, sp) 6 elem s speclist)(is-Inputspeco(sp) A s-Enablingo(sp) ^ nil) in
2 le t cont = (3(, sp) £ elem s speclist)(is-Contspeco(sp)) in
3 i f -i enable A -> cont th e n
4 statedict
5 else
6 (let (emptyqid, fo rm u ln m , form u2nm) = dict(GLOBALNAMES) in
7 le t fo rm a l = xrik-Ido((), fo r m u ln m) ,
8 formu2 = m k-Ido(() , form u2nm) in
9 le t ptrans = pretrans(emptyqid, fo rm a l) in

1 0 le t speclist1 =
11 i f cont
12 th e n expand-continuous(stnm, speclist, emptyqid, fo rm u l , formu2)(diet)
13 else speclist in
14 i f - ienable th en
15 (let newstnm = create-unique-name() in
16 le t preterm = m.k-Transitiono(ptrans,m.k-Nextstate0(newstnm)) in
17 statedict -f [stnm m k -ContenablestateD(preterm),
18 newstnm >-> mk-StateD(speclist1, nil)])
19 else
2 0 (let emptyqinput =
2 1 i f cont th e n
22 {)
23 else
24 (let term = xnk-Termstmto(nil,mk-Nextstateo(stnm)) in
25 (emptyqtrans(term, emptyqid, fo rm a l, formu2)(diet))) in
26 le t (mk-Transitiono(decision ,), statedict') =
27 expand-enable(speclist1 ^ emptyqinput)(statedict) in
28 le t preterm = m k -Transitiono(ptrans (decision), nil) in
29 statedict' + [stnm m k -ContenablestateD(preterm)])))

ty p e : Speclist Nameo Diet Statedict —> Statedict

O b je c t iv e Remove continuous signals and enabling conditions from a sta te by
modifying Statedict

P a r a m e te r s

speclist The Speclist containing the input transitions of the sta te
stnm The name of the sta te

(3.7.5.2)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 181

R e s u l t

A lg o r i th m

The modified Statedict

Line 8-10 If the priority is om itted in a continuous signal then no other con­
tinuous signals may be specified.

Line 1-4 If the sta te neither contains enabling conditions nor continuous
signals then leave the Statedict unchanged.

Line 6 E x tract the ASo identifier of the empty queue signal and the ASo
names of the two variables used in connection with the em pty queue
signals.

Line 7-8 C onstruct ASo identifiers of the two variables.
Line 9 C onstruct the ASo action list which updates the ” unique” variable

(fo rm u l) and which outputs the em pty queue signal.
Line 10-13 Expand continuous signals by modifying the Speclist (speclist).
Line 14 If the state contains no enabling conditions then
Line 15 Create a new name for the sta te (which contains continuous sig­

nals).
Line 16 C onstruct the transition which m ust be interpreted in every next-

sta te containing this state.
Line 17 U pdate Statedict w ith two descriptors: The first is used in the

transform ation of nextstate nodes. W hen a nextstate node contains
the name stnm then the nextstate node is replaced by preterm. The
second one is used when the sta te containing continuous signals
(stnm) is transform ed into ASi.

Line 20-29 Expand enabling conditions.
Line 20-25 C onstruct the em pty queue input unless it already is included in

speclist' , i.e. unless the sta te contains continuous signals. W hen
a sta te contains no continuous signals, the transition following the
em pty queue is considerable simpler since no decision nodes are
present in th a t case (only a nextstate back to the same sta te is
implied).

Line 26 Expand the enabling condition. The result of this expansion is
a composite decision action (decision) testing on the expressions
in the enabling condition and the Statedict which is extended to
include StateD descriptors of all the im plicit states involved.

Line 28 C onstruct the transition to be interpreted in the appropriate next-
sta te nodes (as in line 16-17) and

Line 29 Replace the StateD descriptor for the state, by a ContenablestateD
in Statedict (as in line 16-17)

expand-continuous (statenm, speclist, emptyqid, fo rm u l , formu2)(dict) =

1 i f (3(,stsp) £ elem s speclist)(is-Contspeco(stsp) A s-Priorityo(stsp) = nil) A
2 c&id{(,stsp) £ elem s speclist | is -Contspec0(stsp)} > 1 th en
3 e x i t (“§4.11: Only one continuous signal may be specified if the priority is omitted”)
4 else
5 (let priomap — collect -priority-info(speclist, len speclist) (diet) in
6 le t conttrans = build-cont-trans(speclist, statenm, priomap) in
7 le t contterm = m k -TransitioriQ(conttrans, nil) in
8 le t normtrans = (speclist[i\ | i £ in d speclist A - i s - Contspeco(speclist[i])) in
9 le t emptyqinput = emptyqtrans(contterm, emptyqid, fo rm u l , formu2)(dict) in

10 normtrans ''"x (emptyqinput))

ty p e : Statenameq Speclist Sigid® Varido Varid^ —» Diet —► Speclist

O b je c t iv e Modify the input transition for a sta te containing continuous signals.

(3.7.5.3)

182 Fascicle X .4 — R ec. Z .100 — A n n e x F .2

P a ra m eters

statenm The name of the sta te containing continuous signals
speclist The list of Specs which contains the input transitions
emptyqid The ASq identifier of the empty queue signal
form ul,form u2 The ASq identifiers of the variables used in the continuous signal

model

R e s u l t The modified list of Specs

A lg o r i th m

Line 1 There
Line 5 C onstruct a m ap which contains the relation between the priority

of a signal, and its position (index) in speclist.
Line 6-7 C onstruct the composite decision action which tests on the various

expression in the order given by the priorities.
Line 8 Remove the input transitions, which contains continuous signals,

from speclist.
Line 9 C onstruct the empty queue input transition which tests on whether

it is the right em pty queue signal (i.e. test whether fo rm u l equals
formu2) and which uses the composite decision (contterm) in the
’’true” branch.

Line 10 Add the em pty queue input transition to the input transitions con­
taining no continuous signals

pretrans(emptyqid, fo rm u lid) =

1 (let li t! -= nik-Nam e0(“1", nil),
2 self -= mk-Selfexpro() in
3 le t infix = m k-Infixexpro (form ul id , PLUS, l i t l) in
4 le t update = nik-Assignstmto(formulid , infix) in
5 le t task = mk-Tasko((update)),
6 outtoself = xnk-Outputo((mk-Outputsigo(emptyqid, (form ulid))) , self, ()) in
7 (mk-Actstm<o(nil, task), nik-Actstmto(nil, outtoself)))

ty p e : Sigido Varido —► Actstmto+

O b je c t iv e Construct the action statem ents:

TASK fo rm u lid := fo rm u lid + 1;
OUTPUT e m p ty q id (fo rm u lid) TO SELF;

A lg o r i th m

Line 1 C onstruct the integer literal ” 1” .
Line 2 C onstruct the PiD self expression.
Line 3 C onstruct fo rm u lid + 1 .
Line 4 C onstruct fo rm u lid := fo rm u lid + 1 .
Line 5 C onstruct TASK fo rm u lid := fo rm u lid + 1.
Line 6 C onstruct OUTPUT em p ty q id (fo rm u lid) TO SELF.
Line 7 Return the two actions as action statem ents (w ithout labels)

(3.7.5.4)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 183

emptyqtrans(conttrans, emptyqid, fo rm u lid , formu2id)(dict) = (3.7.5.5)

1 (let emptyqinput = vnk-Inputvarso(emptyqid , (form u2id)) in
2 let a n s i = m k-A nstaero^m k-C ondtfion^nil, mk-JVame<)(“TRUE”, nil))), conttrans),
3 ans2 = mk-Answero((mk-Conditiono(iiil, m.k-Name0("FALSE’ ’.n il))) ,
4 mk-Termstmto(nil, mk-Nextstateo(nil))) in
5 let decision — mk-Decisiono(mk-Infixexpro(formulid, EQ, formu2id),
6 (an s i, ans2), nil) in
7 let emptytrans = mk-Transitiono((mk-Actstmto(iu\, decision)), nil) in
8 (dtcf(SCOPEUNIT), mk-Inputspeco((emptyqinput), nil, emptytrans)))

type : Transitiono Sigido Varido Varido —► Diet —► Spec

O b je c tiv e

P a ra m eters

conttrans

emptyqid
form ulid ,form u2id

C onstruct the input transition:

INPUT emptyqid(formu2id);
DECISION (formulid = formu2id)
(true) : conttrans;
(false) : NEXTSTATE(-);

ENDDECISION;

and return the Spec which contains the input transition

The transition which correspond to the ’’true” branch. If the sta te
contains no continuous signals (but contains enabling conditions)
then it contains a nextstate to the original state, otherwise it con­
tains the composite decision constructed in build-cont-trans. The
nextstate in the ’’false” branch implies continuation a t the im plicit
sta te (not the original state) to which the input transition is asso­
ciated
The ASo identifier of the em pty queue signal
The ASo identifiers of the variables used in continuous signal and
enabling condition

build-cont-trans(speclist, stnm, priomap) =

1 (let i £ dom priomap b e s .t . ->(3n £ dom priomap)(n < i) in
2 le t trans — if priomap \ {*} = []
3 th e n rtik-Transitiono((), mk-Termstmto(nil, mk-Nextstateo(stnm)))
4 else build-cont-trans(speclist, stnm, priomap \ {*}) in
5 le t index — priomap(i) in
6 le t (scope, m k-Contspeco(expr,, exittrans)) = speclist[index] in
7 le t yesval = mk-Conditiono(nil, mk-Ido((), mk-JVaraeoC'TRUE’ '.n il))) ,
8 noval = xnk-Conditiono(ni\, m k-Ido(() , mk-Nameo("FALSE”, nil))) in
9 le t yestrans = mk-Answero((yesval), exittrans),

1 0 notrans = mk-Answero((noval), trans) in
11 le t decision — mk-Decisiono(mk-Scopeexpro(scope, expr), (yestrans, notrans), nil) in
1 2 xnk-Transitiono((mk-Actstmto(nil, decision)), nil))

ty p e : Speclist Statenameo (Ni ^ N \) —► Transitiono

O b jec tiv e

P a ra m eters

sj
stnm

C onstruct the composite decision which tests and branch on the expres­
sions in continuous signals in the order given by the priorities

The Specs which contains continuous signals
The name of the (explicit) sta te to which the continuous signals
are attached

184 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

(3.7.5.6)

priomap The relation between the priority of continuous signals and their
position (index) in speclist

R e s u l t The composite decision action statem ent

A lg o r i th m

Line 1 Let i denote the entry in the priority m ap which has the lowest
value (i.e. the highest priority among the rem aining elements in
priomap).

Line 2-4 If this value has the lowest priority (i.e. if it is the only one left in
the m ap) then let trans denote the term inator statem ent containing
a nextstate to the old explicit state (line 3) else let trans denote
the decision action for the rest of the priorities (line 4).

Line 5-6 Let scope denote the Qual of the scopeunit which defined the sta te
(recall th a t the Statedicts of services have been merged before this
transform ation takes place and th a t the evaluation of the expres­
sion depends on the actual service), let expr denote the expression
in the continuous signal and let exittrans denote the transition in
the continuous signal

Line 7-12 construct the transition containing the decision:

DECISION (expr):
(true) : exittrans;
(false) : trans;

ENDDECISION
where it is specified th a t expr shall be transform ed into ASi in the
context of the scopeunit denoted by scope which either is a process,
a procedure or a service

collect -priority -info (speclist, index){dict) =

1 (if index — 0 th e n
2 0
3 else
4 (let emap = collect-priority-info (speclist, index — 1)(dict) in
5 le t (scope, inp) = speclist [index] in
6 le t diet1 = [51-+ dict(q) | q € d o m d tc t A -iiz-SynD (diet (q))] + [SCOPEUNIT 1—► scope] In
7 cases inp:
8 (m k -Contspeco(, p r io ,)
9 -* (let prio1 = if prio = nil th e n 1 else eval-simple-expr(prio, ,'INTEGER”)(ch'c</) in

1 0 i f prio1 6 dom emap th en
11 exit("§4.11: Several continuous signals with the same priority”)
1 2 else
13 emap + [prio11—» index]),
14 T -» emap)))

ty p e : Speclist No —► Diet —► (Ni m*Ni)

O b je c t iv e

P a r a m e te r s

speclist
index

Construct a m ap containing the relation between the priority of a con­
tinuous signal and the index value of the Spec in a Speclist containing
the continuous signal

The Speclist which contains the continuous signals
The current index value into speclist. Initially, the index value
equals the length of the list. The recursion term inates when the
index value reaches zero

R e s u l t The constructed priority m ap

(3.7.5.7)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 185

A lg o r ith m

Line 1 W hen through, return the empty map.
Line 4 Collect the priorities of the rest of the continuous signals.
Line 5 E x tract the Qual of the scopeunit which defined the continuous

signal and the input transition.
Line 6 Override Diet w ith the Qual of the scopeunit such th a t the priority

expression can be evaluated in the right context. Also exclude
synonyms from Diet because it is illegal to specify a synonym in
the priority construct.

Line 8-13 If the input transition is a continuous signal then Determine the
priority of the continuous signal. If the priority is om itted then set
the priority to ” 1” else evaluate the simple expression.

Line 10-11 There m ust not exist another continuous signal which has the same
value.

Line 13 Add the priority to the m ap containing the rest of the priorities.
Line 14 If the input transition is not a continuous signal then return the

m ap containing the priorities of the rest of the continuous signals

expand - enable (speclist)(statedict) =

1 (let enabset = {speclist[i\ \ i £ in d speclist A is-Inputspeco(speclist[i]) A
2 s-Enablingo(s-Statespeco(speclist[i])) ^ nil} in
3 le t normtrans = (speclist[i\ | 1 < * < len speclist A speclist[i] ^ enabset) in
4 build - enable-decision(normtrans, enabset)(statedict))

ty p e : Speclist Statedict —► Transitiono Statedict

O b je c t iv e C onstruct the enclosed decision actions which models an enabling con­
dition sta te and update Statedict w ith the implied im plicit states

P a r a m e te r s

speclist A Speclist containing the input transitions of a state

R e s u l t A transition containing the nested decision action and the updated
Statedict

A lg o r i th m

Line 1-2 Let enabset denote the set of Specs which contains enabling condi­
tion and

Line 3 Let normtrans denote the set of Specs which contains no enabling
condition.

Line 4 C onstruct the decision action and the im plicit states

(3.7.5.8)

186 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

build - enable-decision(normtrans, enabset)(statedict) =

1 (let falsevalue = mk-Condition©(nil, m k-/do((), mk-Nameo(“FALSE", nil))) in
2 le t truevalue = m k-Condition0 (nil,m k-Ido((),ink-JV am eo(“TRUE,',n il))) in
3 le t enab £ enabset in
4 le t (scope, mk-Inputspeco(vl, expr, t r)) = enab in
5 le t sigl = (sigid | (3varl £ elem s vl)(s-Sigido(varl) = sigid)) in
6 le t newtrans = normtrans ^ ((scope, nik-Savespeco(sigl))) in
7 le t newtrans' = normtrans ((scope, m k-Inputspeco(vl, nil, <r))) in
8 le t (transO, statedict') =
9 if enabset \ {enab} = {}

1 0 th e n build-implicit-state(newtrans) (statedict)
11 else build-enable-decision(newtrans, enabset \ {enab})(statedict) in
12 le t (trans 1 , statedict") —
13 if enabset \ {enab} = {}
14 th e n build - implicit -state(newtrans1) (statedict1)
15 else build - enable - decision(newtrans', enabset \ {enab})(statedict') in
16 le t ansO = nik-Answero(falsevalue, trans0) in
17 le t an a l = xiik-Answero(truevalue, trans 1) in
18 le t decexpr = mk-Scopeexpro(scope, expr) in
19 le t decision = m k-Decisiono(decexpr, (ans0 , anal), nil) in
2 0 le t actstmt = mk-Actstmto(nil, decision) in
2 1 (vak-Transitiono((actstmt), nil), statedict"))

ty p e : Speclist Spec-set —► Statedict —> Transition^ Statedict

O b je c t iv e See expand-enable

P a r a m e te r s

normtrans A Speclist which contains the input transitions which does not con­
ta in an enabling condition.

enabset A set of Specs containing the input transitions which contains an
enabling condition.

R e s u l t See expand-enable

A lg o r i th m

Line 1 Construct the “false” case label
Line 2 Construct the “true” case label
Line 3 Extract a Spec from the Spec set representing the input transitions

w ith an enabling condition
Line 6 Decompose the Spec
Line 5 Extract the signal identifiers from the input node
Line 6 Form a new Speclist containing the old Speclist and a Savespeco■
Line 7 Form a new Speclist containing the old Speclist and an Inputspeco.
Line 8-11 C onstruct the decision tree for the “false” case.
Line 10 If enab is the last enabling condition, construct a decision leading

the Nextstate os.
Line 11 if enab is not the last enabling condition, construct a decision lead­

ing to decisions.
Line 12-15 Construct the decision tree for the “true” case.
Line 16 Construct the “false” answer.
Line 17 C onstruct the “true” answer.
Line 18 C onstruct the decision expression.
Line 19 C onstruct the decision.
Line 20 C onstruct the action statem ent.
Line 21 R eturn the new transition and the updated Statedict.

F a sc ic le .X .4 — R ec . Z .100 — A n n ex F .2 187

build-implicit-state (alltrans)(statedict) = (3.7.5.10)

1 (let stnm = create-unique-name() in
2 le t trans = nik-Transitiono((), mk-Termstmto(nil, nik-Nextstate0(stnm))) in
3 (trans, statedict + [stnm m k - StateD (alltrans, nil)]))

ty p e : Speclist —> Statedict —+ Transition^ Statedict

C reate a new im plicit sta te w ith the complete Speclist and update the
Statedict

The complete Speclist

See expand-enable

Create an ASo name for the new im plicit state.
C onstruct the transition containing the nextstate which is to the
im plicit state.
R eturn the transition and the updated Statedict

3 .7 .6 T ran sform ation o f S ta te s and In p u t N o d es

transform-statelist(transformedstates)(did) =

1 (le t statedict = dtct(STATEDICT) in
2 i f d o m statedict = transformedstates th e n
3 ({}, diet)
4 e lse
5 (le t stnm £ (d o m statedict \ transformedstates) in
6 i f is - ContenablestateD (statedict(stnm)) th e n
7 transform-statelist(transformedstates U {s tn m }) (d id)
8 e lse
9 (le t m k -StateD (speclist, importinf) = statedict(stnm) in

10 le t (currentstate, impact) = i f importinf = n il th e n (s tn m ,) e lse importinf in
11 le t (saveseti, inputseti, diet') = tr ansform - state specl(currentstate, speclist) (diet) in
12 le t inputset(=
13 i f importinf = n il V impact — n il
14 th e n inputseti
15 e lse insert-importact(impact, inputseti) in
16 le t statenode = m k -State-nodei(name-to-name\(stnm), saveseti, inputset() in
17 le t (bodyrest, d id ") = transform-statelist(transformedstates U { s tn m }) (d id ') in
18 ({statenode} U bodyrest, d id"))))

ty p e : Statenameo -se t —+ D id —> State-nodei - s e t D id

O b je c tiv e Transform the states of a process or procedure body into A Si. The
states are transform ed by considering every sta te in Statedict. The
im plicit states implied from services, continuous signals and enabling
conditions are already included in the ASo states th a t are to be trans­
formed. During the transform ation, new states implied by im port ex­
pressions may be added to Statedict

P a ra m eters

transformedstates The ASo names of the states which already have been transform ed.
W hen transform-statelist initially is applied, the set is empty

O b jec tiv e

P a ra m eters

alltrans

R esu lt

A lg o r ith m

Line 1
Line 2

Line 3

(3.7.6.1)

188 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

R e s u l t The ASi states and a Diet updated with inform ation about the im plicit
variables (the IMPLIED entry) implied by im port expressions used in
the process or procedure and updated to include the ou tpu t signals (the
O U TSIG N A LS entry) used in the process or procedure.

Extract the Statedict from Diet
W hen the transform ed states are all states in Statedict then return.
Let stnm denote a sta te which has not been transform ed.
If the sta te contained continuous signals or enabling conditions
then the sta te has been replaced by a number of im plicit states
and is therefore not transformed.
Decompose the Statedict descriptor of the state. If importinf is dif­
ferent from n il then the sta te is an im port sta te (see the definition
of Importstateinf}.
Let currentstate denote the sta te name to be inserted in the next-
sta te dash of the input transitions. If the sta te in hand is an
im plicit sta te implied from an im port expression then the sta te
nam e is found in the StateD descriptor.
Transform the inputs and the save of the state.
If the sta te is an im plicit sta te implied from im port then the ASi ac­
tion which uses the im plicit im port variable m ust be inserted in the
transform ed state. This action was not inserted while transform ­
ing the im port expression because it is during the transform ation
of expressions th a t the im port states are constructed.
C onstruct the ASi sta te node.
Transform the rest of the states.
Join the constructed sta te with the rest of the states and also return
the updated Diet

transform-statespecl(stnm, statespeclist)(did) = (3.7.

1 (let (saveset, state speclist') =
2 if (3 i 6 in d 8tatespeclist)(is-Savespeco(8-Statespeco(statespeclist[i]))) th e n
3 (let i b e s .t . (i8-Savespeco(s-Statespeco(statespeclist[i]))) in
4 le t xtik-Savespeco(sigl) = 8-Statespeco(statespeclist[i]) in
5 le t sigqualset = transform-signallist(sigl)(dict) in
6 (sigqualset, (state speclist[n] | 1 < n < len state speclist A n ^ *)))
7 else
8 ({}, state speclist) in
9 le t diet1 = diet -f [SCOPEUNIT i—► process-/eve/(oh‘ct(SCOPEUNIT))] in

10 le t varset = {qual £ dom diet | is -VarD(dict(qual)) A process-level(qual) = dict^SCOPEUNIT)} in
11 le t xtQUERYspeco = aso-xtQUERY-inputs(varset , s tn m)(d id) in
12 le t (as\nodeset , diet') = transform-input(stnm, statespeclist' /"> xtQUERYspeco)(did) in
13 le t saveseti = xnln-Save-signalseti(make-asiidset(saveset)(did)) in
14 (saveseti, as\nodeset, d id '))

ty p e : Statenameo Speclist —► Diet —► Save-signalset\ Input-node i-se t Diet

O b je c t iv e Transform a sta te into ASi

P a r a m e te r s

stnm The name of the state. It is inserted in the nextstate dash in the
state

statespeclist The Speclist containing the input transitions of the sta te

R e s u l t The ASi save node and the ASi input nodes

A lg o r i th m

Line 1
Line 2
Line 5
Line 6-7

Line 9

Line 10

Line 11
Line 12-14

Line 16
Line 17
Line 18

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 189

A lg o r ith m

Line 1-8 Let saveset denote the Signalqual set containing the signals which
are saved in the sta te and let statespeclist1 denote the modified
Speclist where the save has been removed (if any).

Line 2 If there exist a save in the Speclist then
Line 3-4 E xtract the save from the Speclist.
Line 5 Transform the signals in the save.
Line 6 Remove the save from the Speclist
Line 9-10 U pdate SCOPEUNIT to denote the surrounding process, diet' is

only used for extracting the variables local to the process (line 1 0).
Line 11 Construct the ASo input transitions for the xtQUERY signals.
Line 12 Transform the input transitions where the xtQUERY inputs have

been added.

Line 13 Construct the ASi save node from the set of Signalquals.

Line 14 Return the save node and the input nodes

aso-xtQUERY-inputs(exportset, stnm)(dict) =

1 (if exportset = {} then
2 0
3 else
4 (let qual E exportset,
5 term = m k-Nextsta teo(stnm),
6 mk- V arD (tq ,, export, ,) = dict(qual) in
7 if export — nil then
8 aso-xtQUERY-inputs(exportset \ {qual}, stnm)(dict)
9 else

10 (let (,nm) = qual[len qual],
11 itxk-SignalnamesD(imp, xq, xr) = exportmap ((tq, nm)) in
12 let sigelem = (nik-Outputsigo(nik-Ido((), xr), (m k-/do((), im p)))) in
13 let xroutput — xnk-Outputo(sigelem,mk-Senderexpro(), ()) in
14 let xrtrans = xnk-Transitiono((mk-Actstmto(nil, xroutput)), term) in
15 let xqinput = itik-Inputspeco((mk-Inputvarso(ixik-Ido((), xq), ())), nil, xrtrans) in
16 ((diet (SCOPEUNIT), xqinput)) aso-xtQUERY-inputs(exportset \ {qual}, stnm)(diet))))

type : Qual-set Nameo —♦ Diet —► Speclist

O b je c t iv e

P a r a m e te r s

Create ASo input nodes for all the signals, implied from export, for a
process as defined in §4.13 of Z.100

exportset
stnm

The set of variable Quals defined in the exporting process
The nam e of the sta te to which the im plicit inputs are to be a t­
tached to.

R e s u l t See the definition of Speclist

A lg o r i th m

Line 1 W hen through, return nothing (the function is recursive).
Line 4 Let qual denote a variable Qual in the set.
Line 5 C onstruct the ASo nextstate node which follows the im plicit inputs.
Line 6 Decompose the descriptor of the variable.
Line 1 If it is not an exported variable then continue to consider the next

variable.
Line 10 E xtract the name of the exported variable.

(3.7.6.3)

190 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 11 Decompose the SignalnamesD descriptor (see the definition of Ex­
portmap) common for all export variables in the system having
th a t name (nm) and th a t sort (tq). imp denotes the nam e of the
im plicit variable attached to the export variable, xq is the nam e of
the xtQUERY signal and xr is the name of the xtR EPLY signal.

Line 13 Create the AS0 ou tput node which sends the xtR EPLY signal.
Line 14 Create the transition which directly follows the input node.
Line 15 Create the input node which contains the xtQUERY signal.

Line 16 R eturn the Spec containing the complete input transition (xqinput)
joined with the Speclist for the rest of the export variables

transform-input(stnm, statespecl)(dict) =

1 (if statespecl = () then
2 (O.dt'cf)
3 else
4 (let (scope, node) = hd statespecl in
5 let labeldict' =
6 if is - ServiceD (diet (scope))
7 then s -Labeldict(diet(scope))
8 else ch’c<(LABELDICT) in
9 let diet1 = diet + [S C O P E U N IT scope,

10 LABELDICT ~ labeldict'] in
11 cases node:
12 (nik-Priinputo(inputvars, trans),
13 mk-Inputspeco(inputvars,, trans)
14 -» (let (asise t1, diet") — transform-input-transition(stnm, inputvars, trans)(dict') in
15 let (asirest, diet"') = transform-input(stnm, tl statespecl)(diet") in
16 (as ise t 'U asirest, diet'")))))

ty p e : Statename0 Speclist —► Diet —> Input-nodei-se t Diet

O b je c t iv e Transform the input transitions of a state and update diet with infor­
m ation about im plicit variables and with ou tput signals.

P a r a m e te r s

stnm The name of the state
statespecl The Speclist for the state.

R e s u l t The set of ASX input nodes for the state.

A lg o r i th m

Line 1 W hen through, return the em pty set.
Line 4 Decompose the next Spec to be considered.
Line 5 Extract the Labeldict for the scopeunit. If the input transition

originates from a service (before they were merged) then extract it
from the service descriptor.

Line 9 Update SCOPEUNIT in Diet to denote the scopeunit from which
the input transition originates and update LABELDICT to denote
the Labeldict of the scopeunit.

Line 12-13 decompose the present input transition.
Line 14 Create a set of ASX input nodes for all signals in the AS<> input

node.
Line 15 Transform the rest of the input transitions

Line 16 Add the newly created input nodes to the rest.

(3.7.6 .4)

F ascicle X .4 - R ec. Z .100 — A n n ex F .2 191

transform rinput-transition(stnm, inpvars, trans)(dict) ~ (3.7.6.5)

1 (if inpvars = () th e n
2 ({}, diet)
3 else
4 (let (vl\ , sigq) = transform-inputvars(hdinpvars)(dict) in
5 le t asisigid = make-asi-identifier (sigq) (diet) in
6 le t (<mnsi, diet7) = transform-transition(stnm, trans, ())(dtcf) in
7 le t inputnode = m k-Input-nodei(asisigid, vli, transi) in
8 le t (inprest , diet") = transform-input-transition(stnm, t l inpvars, trans)(dict') in
9 ({mpufnode} U inprest, diet")))

ty p e : Statenameo Inputvarso+ Transitiono —* Diet —+ Input-nodei-se t Diet

O b je c t iv e

P a r a m e te r s

stnm
inpvars
trans

R e s u l t

A lg o r i th m

Line 1

Line 4

Line 5
Line 6
Line 7
Line 8
Line 9

Transform an input transition into ASi

The name of the state
The list of pairs of signal and param eters for the input
The transition which follows the input

The set of ASi input nodes. There are as many input nodes as there
are pairs of signal and param eters in the ASq input nodes.

W hen through all the pairs of signal and param eters then return
the em pty set.
C onstruct the ASi param eter list (vl\) and the signal Qual from
the first pair of ASo signal and param eters.
Construct the ASi identifier of the signal.
Transform the transition.
Construct the ASi input node for the signal.
C onstruct the ASi input nodes for the rest of pairs of signal
R eturn the ASi input nodes joined with the rest of ASi input
nodes, and param eters

transform-inputvars(mk-Inputvarso(sigid, varl))(dict) ~

1 (let squal = signal-qual(sigid)(dict) in
2 le t tquallist = cases dict(squal):
3 (m k-SignalD (tquallist, ,) -♦ tquallist,
4 m k -TimerD (tquallist,) -» tquallist) in
5 if (len varl — len tquallist) th en
6 (let vl — transform-inputvarlist(varl, tquallist)(diet) in
7 (vl, squal))
8 else
9 e x i t ("§2.6.4: Wrong number of parameters in input node”))

ty p e : Inputvarso —► Diet —* [Variable-identifieri]* Signalqual

O b je c t iv e C onstruct the ASi variable list of an input node and extract the Qual
of the input signal

P a r a m e te r s

sigid The ASo signal identifier
varl The ASq variable list

(3.7.6 .6)

192 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 1 Let squal denote the Qual of the signal.
Line 2-4 Let tquallist denote the list of sorts for the param eters for the

signal.
Line 5 The length of the sort list must be equal to the length of the vari­

able list.
Line 6-7 Transform the variable list into ASi and return it together with

the signal Qual

transform-inputvarlist(varl, sortlist)(dict) = (3.7.6.7)

1 (if varl = () th en
2 {)
3 else
4 (let restvl = transform-inputvarlist (t\ varl, t l sortlist)(dict) in
5 if h d varl = n il th e n
6 (nil) restvl
7 else
8 (let vqual = get-visible-variable(hd varl, {get-parent (hd sortlist)(dict)}, fa lse)(d tct) in
9 le t m k- VarD(, , , , nqual) = dict(vqual) in

1 0 le t as\id — make-asi-identifier(nqual)(dict) in
11 (asi id) ^ restvl)))

ty p e : [Varido]* Sortqual* —► Diet —> [Variable-identifier^]*

O b je c t iv e C onstruct the ASi variable list to be attached to an input node

P a r a m e te r s

varl The AS0 variable list
sortlist The sort list for the signal

A lg o r i th m

Line 1 W hen through, return the em pty list.
Line 4 Transform the tail of the list.
Line 5 If the first variable is om itted then return a n il object.
Line 8 Extract the Qual of the first identifier by looking a t the context
Line 10 C onstruct the ASX variable identifier
Line 11 R eturn the ASi variable identifier joined with the variable identi­

fiers for the rest of the list

A lg o r ith m

(3.7.6 .8)

1 (let mk-Input-nodei (replyid, val, trans) £ signalset\ in
2 le t mk-Transitioni(nodes, term) = trans in
3 if is -Decision-nodex [impact) th en
4 {xiik-Input-nodei (reply id, val, m k -Transition\(nodes, impact))}
5 else
6 {xiik-Input-nodei (replyid, val, mk-Transitioni(nodes (impact), term))})

ty p e : (Graph-node \ | Decision-node i) Input-nodei-set —* Input-nodei-set

O b je c t iv e Insert an ASi action in an ASi input node containing the xtR EPLY sig­
nal. This action was constructed in connection with the transform ation
of an expression which contain im port expressions. As im port expres­
sions are expanded into AS0 states, the action could not be inserted
until the sta te has been transform ed

insert-importact(impact , signalseti) —

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 193

P a ra m eters

impact The ASi action to be inserted
signalseti The ASi input node set which consist of the xtR EPLY input node

only

R e s u l t The modified ASi input node set containing the xtR EPLY input node

A lg o r i th m

Line 1 Decompose the ASi input node.
Line 2 ' Decompose the contained transition.
Line 3 If the node to be inserted is an decision (in the case where a ques­

tion contained im port expression) then
Line 4 Replace the term inator by the decision action else
Line 6 Append the action to the action list

194 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .7 .7 T ran sform ation o f T ran sition S trin gs

1 (if actl = () th e n
2 (let mk-Termstmto(, t) = term in
3 cases t :
4 (mk-Nextstateo(stnm)
5 -» if tnm = nil A stnm = nil
6 th e n e x i t (“§4.9: Dash nextstate in initial transition”)
7 else (let statedict = dict(STATEDICT) in
8 le t stnm 1 = if stnm = n il th e n tnm else stnm in
9 le t nextstate =

10 if tnm = nil A is-Sermce.D(dict(ch‘ct(SCOPEUNIT))) A stnm' ^ dom statedict th e n
11 (let (,servicelist) = dtct(SERVICES) in
12 extract-initial-state(servicelist, s tnm ', ())(d ict))
13 else
14 i f is-SeriucejD(chct(dict(SCOPEUNIT))) A stnm' £ dom statedict
15 th e n extrad-servicestate(tnm, s tn m ')(d id)
16 else stnm' in
17 if nextstate £ dom statedict th en
18 if is -ContenablestateD {statedict {nextstate)) th e n
19 (let trans — &-lPransitiono(statedid(nextstate)) in
20 transform-transition(tnm, trans, nodesi)(d id))
2 1 else
22 (mk-Transitioni(nodesi, irik-Nextstate-nodei (name-to-namei (nextstate))), diet)
23 else
24 e x i t ("§2.6.7.2.1: Name in nextstate must denote a defined state”)),
25 mk-StopoO
26 -* (mk-Transitioni(nodesx, ink-Stop-nodei()), diet),
27 mk-iZetttrnoO
28 -» (nik-Transitioni (node s i ,n ik -R e turn-nodei ()), diet),
29 xnk-Joino(l)
30 -» (let labeldict = dict(LABELDICT) in
31 i f / € dom labeldict th en
32 (let trans = labeldict(l) in
33 transform-transition(tnm, trans, nodesi)(diet))
34 else
35 e x i t ("§2 .6 .7.2 .2 : Label in join is not defined”))))
36 else
37 (let (trani, diet') = transform-act(tnm, actl, term, nodesi)(dict) in
38 cases trani:
39 (nik-Transitioni(,)
40 -* (trani, diet'),
41 T -+ transform-transition(tnm,xiik-Transitiono(tl actl, term), nodesi ^ trani)(dict '))))

ty p e : [Statenameo] Transitiono Graph-nodei* —► D id —♦ Transitioni D id

O b jec tiv e Transform a transition into ASi

P a ra m eters

tnm The name of the sta te containing the transition. If tnm is n il then
the transition is an initial transition

actl The action list of the transition

term The term inator of the transition

nodesi The nodes (from the transition) which already have been trans­
formed

R e su lt The ASi transition

transform-transition(tnm,nik-Transitiono(adl, term), nodes\)(dict) = (3.7.7.1)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 195

W hen through the action list then transform the term inator.
If the term inator is a nextstate then it m ust not contain a dash if
it is contained in the in itial transition.
Let statedict denote the Statedict of the process.
Let stum ' denote the name in the nextstate if it is specified, o th­
erwise it denotes the name of the sta te leading to the nextstate.
Let nextstate denote the nam e of the next state.
If it is the initial transition and the scopeunit is a service and it is
not a nextstate leading to an im port sta te then extract the sta te
nam e of the next sta te by considering the nextstate nodes in the
in itial term inator of all services.
If the scopeunit is a service and the sta te name cannot be found
in Statedict (because the explicit states in the services have been
merged and each new sta te in statedict have a distinct new name)
then ex tract the distinct new sta te by considering the old service
sta te name and the new service sta te name.
The name of the next sta te m ust be defined.
If the nextstate leads to a sta te which has been replaced by a
num ber of enabling condition states then the Statedict contains a
transition only and this transition replaces the nextstate node.
C onstruct the ASX transition containing the transform ed actions
(nodesi) and the nextstate node.
If the term inator is a stop then construct the ASi transition con­
taining a stop node.
If the term inator is a return then construct the ASi transition
containing a return node.
If the term inator is a jo in then let labeldict denote the Labeldict for
the scopeunit.
The label m ust be defined.
Extract the transition where the label is defined.
Replace the join by th a t transition.
If there are more actions in the transition then transform the first
action in the action list. Note th a t although only the first action
is transform ed, the full action list is given as param eter.
If the result of transform ing the first action is a full transition then
the first action contains im port expressions and the transition is
returned.

Line 41 Otherwise transform the rest of the actions

extract-initial-state (servicelist, nextstate, statelist)(diet) =

1 (if servicelist = () th e n
2 (let (statetuplemap ,) = dict(SERVICES) in
3 i f statelist G dom statetuplemap th en
4 statetuplemap (statelist)
5 else
6 e x i t (“§2 .6 .7.2 .1 : Name in nextstate must denote a defined state”))
7 else
8 i f h d servicelist = dict(SCOPEUNIT) th e n
9 extract-initial-state(tl servicelist, ..., statelist (nextstate))(dict)

1 0 else
11 (let m k -ServiceD (trans , , , ,) = dict(h d servicelist) in
12 le t mk-Transitiono(, nik-Termstmto(, rnk-Nextstateo(stnm))) — trans in
13 extract-initial-state(tl servicelist, nextstate, statelist (stnm))(d ic t)))

ty p e : Servicetuple Statenameo Statenameo* —> Diet —> Statename0

Line 1-35
Line 4

Line 7
Line 8

Line 9-16
Line 9-12

A lg o r ith m

Line 14

Line 17
Line 18-20

Line 22

Line 25

Line 27

Line 29

Line 31
Line 32
Line 33
Line 37

Line 39

(3.7.7.2)

196 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

O b jec tiv e

P a ra m eters

servicelist
nextstate
statelist

R esu lt

A lg o r ith m

Line 1
Line 2

Line 3

Line 4

Line 8-9

Line 11

Line 12
Line 13

E xtract the first (composite) sta te in the case where the states con­
sist of merged service states and one of the services contains an in itial
transition

The list of service Quals m atching the sta te nam e tuple (statelist)
The name of the next service state
The sta te name tuple

The deduced (unique) sta te name

W hen having considered the initial nextstates of all services then
Let statetuplemap denote the relation between the sta te name tu ­
ples and the associated unique names.
The constructed state name tuple for nextstates m ust be included
in statetuplemap, otherwise there is one of the nextstates which
contains an undefined sta te name.
R eturn the unique sta te name corresponding to the service next­
states.
If the service to be considered is the current one then add the
nextstate name to the state name tuple before considering the rest
of the services. The name in the nextstate of the current service
in not used by the function any longer (therefore ” ...”).
Let trans denote the initial transition of the service to be considered
(it has an empty action list).
Let stnm denote the name of the sta te in its initial nextstate node.
Add the sta te name to the sta te name tuple before considering the
rest of the services

extract-servicestate(oldstate, s tnm)(dict) =

1 (let (statetuplemap , servicelist) — diet (SERVICES) in
2 le t statelist b e s .t . statelist £ dom statetuplemap A statetuplemap (statelist)
3 le t index b e s .t . servicelist [index] = dtct(SCOPEUNIT) in
4 le t newstatelist — (statelist[i\ | 1 < i < index)
5 (stnm)
6 (statelist[i\ \ index < i < len statelist) in
7 if newstatelist £ dom statetuplemap th e n

statetuplemap (newstatelist)

oldstate in

9
10

else
e x i t (“§2 .6 .7.2 .1 : Name in nextstate must denote a defined state"))

ty p e : Statename0 Statenameo —► Diet —> Statename0

O b jec tiv e

A lg o r ith m

Line 1

Line 2

Line 3
Line 4-6

From the name of an old (but unique) sta te and the name of a new
service sta te extract the name of the unique sta te which is defined in
Statedict

Let statetuplemap denote the relation between the sta te name tu ­
ples and the unique sta te names. Let servicelist denote the list of
service Quals which m atched the state name tuples.
Let statelist denote the sta te name tuple which correspond to the
old sta te name.
Let index denote the index to the current service.
Overstrike the sta te name tuple w ith the new sta te nam e a t the
position indicated by index.

(3.7.7.3)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 197

Line 7-8 If there exist a unique sta te name for this sta te name tuple then
re turn the unique name else the new service sta te name is not
defined

3 .7 .8 T ran sform ation o f A ctio n S ta tem en ts

In this subsection, action statem ents are transform ed into A Si. To every transform ation
function the nam e of the s ta te containing the action statem ent, the action statem ents fol­
lowing the action statem ent, the term inator following the rest of the action statem ents and
the action statem ents which already have been transform ed are given (see transform-act).
The im port expressions in the action statem ent are represented by an im plicit variable in
the ASi action statem ent. If the action statem ent contained any im port expressions then
a com plete Transitioni containing the previously transform ed nodes and a nextstate to the
im plicit sta te is returned instead and Statedict is updated to include the StateD descriptor
which contains inform ation about the im plicit state, the action statem ents following the
action statem ent, the term inator following the action statem ents, the name of the sta te fol­
lowing the action statem ents and the transform ed node (see the definitions of StateD and
especially Importstateinf)

transform-act(tnm , actl, term, nodesi)(dict) ~ (3.7.8.1)

1 (let mk-ActstmtQ(, act)
2 cases act:
3 (m k- Tasko(stmtl) -.
4 xxik-Outputo(,,) —
5 xiik-Prioutputo() -*
6 nik-Createo(,) ->
7 nik~Decisiono(,,) -»
8 xiik-Optiono(,,) -»
9 mk-.fteseto() -♦

10 mk-SetoQ -*
11 xrik-Exporto(idl) -*
1 2 xnk-Callo(,) -»

= h d actl in

transform-stmtlist(tnm, stm tl , t l actl, term, nodes\)(dict),
transform-output(tnm, act, t l actl, term, nodesi)(dict),
transform-prioutput (tnm, act, tl actl, term, node si) (diet),
transform-create (tnm, act, t l actl, te rm , node si) (diet),
transform-decision(tnm, act, nodesi)(did),
transform-option(tnm, act, n odes \)(d id) ,
transform-re set (tnm, act, t l actl, term, node s\) (d id) ,
transform-set (tnm, act, tl actl, term, nodes \)(d id) ,
((transform-export(idl[i])(did) | 1 < i < len idl), d id) ,
transform-call(tnm, act, t l actl, term, nodes\)(d id)))

ty p e : [Statenameo] A d stm to + [Termstmto] Graph-node* —*• D id —► (Transitioni | Graph-nodei +) D i d

Transform an action statem ent into ASiO b je c tiv e

P a ra m eters

tnm

actl

term

nodesi

R esu lt

A lg o r ith m

Line 1-2
Line 3

The name of the sta te to which the action statem ent belongs. The
nam e is used for replacing nextstate dash
The action statem ent list. The first action statem ent in this list is
the one which is transformed. The rest is only used if the action
statem ent contains im port expressions
The term inator which follows the action statem ent list. The ter­
m inator is only used if the action statem ent contains im port ex­
pressions
The previous nodes which already have been transform ed.

A Graph-nodei if the action statem ent contains no im port expressions,
otherwise a Transitioni which term inates a t the im plicit im port state.
D id is updated to include inform ation about the ou tpu t signals and
the im plicit variables

Transform an action (act) which is either.
A task. ^

198 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 4 Or an output.
Line 5 Or a priority output.
Line 6 Or a create request.
Line 7 Or a decision.
Line 8 Or an option.
Line 9 Or a tim er reset.
Line 10 Or a tim er set.
Line 11 Or an export.
Line 12 Or a procedure call

Note th a t the label in the Actstmto is not used any longer as the
association inform ation about it is contains in the Labeldict

transform-stmtlist (tnm, stmtl, actl, term , nodes\)(dict) —

1 (if stmtl = () th en
2 (nodes\, diet)
3 else
4 (let (asitask , d) — cases h d stmtl:
5 (mk-Assignstmto (,)
6 — transform-assign(hd stmtl)(dict),
7 nik-Texto(text)
8 — (transform-informal(text), diet)) in
9 if d(IMPORTLIST) = () th e n

10 transform-stmtlist(tnm, tl stmtl, actl, term, nodes\ as\task)(d)
11 else
12 (let rest = if t l stmtl = () th e n (} else (vak-Tasko(tl stmtl)) in
13 le t (outputtrans, d') — transform-import(tnm, asitask, rest actl, term)(d) in
14 transform-transition(tnm, outputtrans, nodesi)(d'))))

ty p e : [Statenameo] (Assignstmto* | Texto*) Actstmto* [Termstmto] Graph-node* —>
Diet —> (Transitioni \ Graph-nodei +) Diet

O b je c tiv e Transform a statem ent list into ASi

P a ra m eters

stmtl The statem ent list to be transform ed
tn m ,
actl,
term,
nodesi See transform-act and the introduction to this subsection

R e su lt See transform-act and the introduction to this subsection

A lg o r ith m

Line 1 W hen through, return the list of ASi task nodes each containing
a statem ent and return the updated Diet.

Line 4-7 Let asitask denote the task of the first statem ent in the list.
Line 5 If the first statem ent is an assignment then transform it.
Line 7 If the first statem ent is informal text then transform it and leave

Diet unchanged.
Line 9-10 If there are no im port expressions in the statem ent then transform

the rest of the statem ents else
Line 12 Construct a task which contains the rest of the statem ents (if there

are any).
Line 13 U pdate Statedict to include inform ation about the im plicit sta te

and construct the transition which contains the action statem ents
which previously have been transform ed, the ou tpu t of the x t­
QUERY signal and the nextstate to the im plicit state.

(3.7.8.2)

Fascicle X .4 — R ec . Z .100 - A n n ex F .2 199

L in e 14 Transform the constructed transition

transform-informal(text) =

1 (le t mk-Tex<o(0 = »n
2 m k-Task-nodei(n ik-In form al-tex ti(t)))

ty p e : Texto —► Informal-text\

O b je c tiv e Transform informal text into its ASi representation.

transform-assign(xnk-Assignstmto(vid , expr))(dict) =

1 (if is-Ido(vid) th e n
2 (let sortset = all-visible-sorts(diet) in
3 le t (, sortset1,) = transform - expr (expr , EXPRESSION, sortset) (diet) in
4 le t qual = get-visible-variable(vid, sortset1, false)(diet) in
5 le t m k -VarD (q , , , , vqual) = dict(qual) in
6 le t (asitree , , d) = transform-expr(expr , EXPRESSION, {get-parent(q)(dict)})(dict) in
7 le t as\id = make-as\-identifier(vqual)(dict) in
8 le t asi assign = m k -Assignment-statement\(as\id^ as\tree) in
9 (xtik-Task-nodei(asiassign), d))

1 0 else
11 transform-modifyassign(vid , expr)(dict))

ty p e : Assignstmto —1> D id —* Task-nodei Diet

O b je c tiv e Transform an assignment statem ent into ASi

P a ra m eters The assignment statem ent containing

vid The variable to be assigned
expr The right-hand side expression

R e su lt The ASi assignment and a Diet updated to include inform ation about
im port expressions in expr and im plicit variables

A lg o r ith m

Line 1 If the variable is an identifier then
Line 2-4 C onstruct its Qual by extracting the sorts which m atches the ex­

pression (line 3) and by using those sorts when resolving the right-
hand side by context (line 4).

Line 5 Decompose the variable descriptor, let q denote the qual of its sort
and let vqual denote its unique Qual (differs in case of services).

Line 6 Transform the right-hand side expression which m ust be of the sort
?•

Line 7 C onstruct the ASi identifier from its unique Qual.
Line 8 C onstruct the ASi assignment statem ent.
Line 9 Construct and return the task which contains the assignment sta te­

ment.
Line 11 If the variable is not an identifier then the assignment is a short­

hand notation for the MODIFY! or field modify operator

(3.7.8.3)

(3.7.8.4)

200 F ascicle X .4 - R ec . Z .100 - A n n e x F .2

1 (let makeezpr(var) —
2 i f is -Indexedvaro(var) th en
3 mk-Operatorappo(makeexpr(s- Variable0(var)), s-Exprlisto(var))
4 else
5 i f is-Fieldvaro(var) th en
6 nik-Selectexpr0(makeexpr(s-Expro(var))y s-Nameo(var))
7 else
8 var in
9 cases vid :

1 0 (mk-Indexedvaro(vid', exprlist)
11 - (let opid = mk-/do((),mk-iVameo^'M ODIFY", EXCLAMATION)) in
1 2 le t vid" = makeezpr(vid') in
13 le t righthandside = nik-Operatorapp0(opid, (vid") exprlist ^ (expr)) in
14 le t (as\node, diet') =
15 (tra p exit w ith (nil, diet) in
16 transform-assign(mk-Assignstmto(vid', righthandside))(dict)) in
17 le t (asinode1, diet") =
18 if is-Ido(exprlist[len exprlist]) A
19 &-Qualifiero(exprlist[\en exprlist]) = () th en
20 (let field = s-Nameo(exprlist[len exprlist]) in
2 1 le t vid" = if len exprlist = 1 th en
2 2 vid'
23 else
24 nik-Indexedvaro(vid ' , (exprlist[i\ \ 1 < i < len exprlist — 1)) in
25 le t vid'" — nik-Fieldvaro(vid" , field) in
26 tra p exit w ith (nil, diet) in
27 transform-assign(xn\n-Assignstmto(vid '" , expr))(dict))
28 else
29 (nil, diet) in
30 (asinode = nil A as\node' ̂ nil
31 ' — (a s inode ' , diet"),
32 as\node ^ nil A as\node' = nil
33 -* (asi nodey diet'),
34 T -+ e x i t (“§5.5.3: None or multiple expansions of modify assignment”))),
35 xnk-Fieldvaro(vid', m k -Name0(s tr ,))
36 (let opid = m k-/do((), m k -Name0(str ^ "MODIFY”, EXCLAMATION)) in
37 le t righthandside = nik-Operatorappo(opid, (vid', expr)) in
38 transform-assign(mk-AssignstmtQ(vid ' , righthandside)) (diet))))

ty p e : Variableo Expro —► Diet —► Task-nodei Diet

O b je c tiv e Transform an assignment of an indexed variable or a field variable into
AS!

P a ra m eters

vid The left-hand side variable
expr The right-hand side expression

R e su lt The task node which contains the ASi representation of the assignment
shorthand

A lg o r ith m

Line 1-8 Construct a recursive function which converts an indexed left-hand
side to an indexed right-hand side (i.e. an operator application)
and a field left-hand side to a field right-hand side (a Selectexpro)

Line 10-16 Expand the shorthand of an indexed variable assignment. For ex­
ample

trans form-modify assi<jn(vid, expr)(dict) = (3.7.8.5)

F ascicle X .4 — R ec. Z .100 - A n n ex F .2 201

Line 11
Line 12
Line 13
Line 16
Line 17-29

Line 17-19

Line 20
Line 21-24

Line 25
Line 26-27
Line 30-34

Line 35-38

Line 36

Line 37
Line 38

v (e l) (e 2 ,e 3) := e4

is expanded into

v (e l) := M O D IF Y !(v (e l),e2 ,e3 ,e4)

which via transform-assign is expanded into

v := M O D IF Y !(v ,e l,M O D IF Y !(v(e l),e2 ,e3 ,e4))

before it is transform ed into AS*. If the transform ation fails, the
error is trapped because it may mean th a t the assignment is the
other shorthand (constructed line 17-29).
C onstruct the identifier of the MODIFY! operator and
Let vid" denote the converted left-hand side.
C onstruct the new right-hand side.
Transform the new assignment statem ent.
Expand the parenthesis form of a field select assignment. For ex­
ample

v (e l) (e 2 ,e 3) := e4

is expanded into

v (e l) (e 2) ! e 3 := e4

provided e3 is an unqualified identifier. This constructed FieldvarQ
is transform ed into ASi and if the transform ation fails, the error
is trapped because it may mean th a t the assignment is the other
shorthand (constructed line 11-16).
Unless the last expression in the expression list is an unqualified
identifier then this shorthand is not possible.
E xtract the name of the field
If there are more expressions in the expression list then construct
another Indexedvaro else return the Variableo (vid').
C onstruct the field select construct.
Try to transform the field select assignment.
There m ust be one and only one of the two possible expansions
which is well-formed.
Expand a field select assignment for example

a !b !c := e

is expanded into

a !b := cMODIFY! (a ! b ,e)

which via transform-as sign is expanded into

a := bM ODIFY!(a,cMODIFY!(a!b,e))

before it is transform ed into ASi.
Construct the identifier of the modify operator, which modifies the
field w ith the spelling str.
C onstruct the new right-hand side.
Transform the new assignment statem ent

202 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

(3.7.8.6)

1 (let mk-Reseto(resetlist) = resetnode in
2 le t (actli, d) — transform-reset-elems(tnm, reseilist, actl, term , nodesi)(dict) in
3 if tl resetlist = () V ia-Transitioni(actli) then
4 (actli, d)
5 else
6 transform-re set (tnm, m k -i2eseto(tl resetlist), actl, term, nodesi actti)(d))

transform-re set (tnm , resetnode, actl, term, nodes\)(dict) =

ty p e : [5<a<enameo] Reseto Actstmto* [Termstmto] Graph-nodei*
Diet —► (Transitioni | Graph-node*) Diet

O b jec tiv e

P a ra m eters

Transform a reset action into ASi

tnm,
actl,
term,
nodesi
resetnode

See transform-act
The reset action to be transformed

R esu lt

A lg o r ith m

Line 1
Line 2
Line 3

Line 6

See transform-act

Let resetlist denote the list of tim ers to be reset.
Transform the first tim er to be reset.
If this tim er reset is the last in the list (the function is recursive) or
if a transition is returned (because of im port export expressions in
the expression list) then stop the transform ation (if the expression
list contains im port expressions then the rest of the tim ers will be
transform ed when the implicit im port sta te is transform ed).
Else transform the rest of the tim er resets

trans form-re set-elems (tnm, resetlist, actl, term, nodes\)(dict) = (3.7.8 .7)

1 (let mk-Resetelemo(timerid, actparm) — hd resetlist in
2 let squal = get-visible-qual(timerid, SIGNAL)(d*ct) in
3 if is -SignalD (diet (squal)) th en
4 e x i t (“§2 .8 : Identifier in reset action is not a timer")
5 else
6 (let m k- TimerD (tp lis t ,) = dict(squal) in
7 if len actparm = len tplist th en
8 (let (asiactparm, d) = transform-actparms(tplist, actparm, EXPRESSION^diet) in
9 le t asiid = make-asi-identifier(squal)(dict) in

1 0 le t asitree = m k -Reset-nodex(asiid, asiactparm) in
11 if d(IMPORTLIST) = () th en
1 2 ((asitree), d)
13 else
14 (let rest = i f t l resetlist = () th e n () else (mk-iZese<o(tl resetlist)) in
15 le t (outputtrans, d') = transform-import(tnm, asitree, rest actl, term)(d) in
16 transform-transition(tnm, outputtrans, nodesi)(d')))
17 else
18 e x i t (“§2.8: Parameter list length in reset action must equal the length specified in the definition”)))

ty p e : [Statenameo] Resetelemo* Actstmto* [Termstmto] Graph-nodei* —»
Diet —► (Transitioni \ Graph-nodei*) Diet

O b je c t iv e Transform a tim er reset into ASi

Fascicle X .4 - R ec. Z .100 — A n n e x F .2 203

P a r a m e te r s See transform-reset

R e s u l t See transform-reset

A lg o r i th m

Line 1 Decompose the Resetelemo which is going to be transformed.
Line 2 E xtract the Qual of the identifier specified.
Line 3 The identifier must denote a tim er signal.
Line 6 Let tplist denote the sorts of the expression list specified for the

timer.
Line 7 There m ust be as many expressions in the list as there are sorts

for the timer.
Line 8 Transform the expressions.
Line 9 C onstruct the ASi identifier of the timer.
Line 10 C onstruct the ASi reset node.
Line 11 If there are no im port expressions in the expression list then
Line 12 R eturn the ASi reset node else
Line 14 C onstruct an ASo reset action of the rest of the tim er resets. This

action will be attached to the im plicit im port state.
Line 15 U pdate Diet with the im port sta te and construct the ASo transition

which leads to the im port state.
Line 16 Transform the transition

transform-set(tnm, setnode, actl, term, nodesi)(dict) ^

1 (let nik-Seto(setlist) = setnode in
2 le t (actl\, d) = transform-set-elems(tnm, setlist, actl, term, nodesi)(dict) in
3 if tl setlist = () V is-Transitioni(actli) th en
4 (actli, d)
5 else
6 transform-set(tnm, mk-5e<o(tl setlist), actl, term, nodes\ ^ actlx)(d))

ty p e : [Statenameo] Seto Actstmto* [Termstmto] Graph-nodei* —+
Diet —> (Transitioni \ Graph-node*) Diet

O b je c t iv e

P a r a m e te r s

Transform a set action into ASi

tnm,
actl,
term,
nodesi
resetnode

R e s u l t

A lg o r i th m

Line 1
Line 2
Line 3

Line 6

See transform-act
The set action to be transform ed

See transform-act

Let setlist denote the list of timers to be set.
Transform the first tim er to be set.
If this tim er set is the last in the list (the function is recursive) or
if a transition is returned (because of im port export expressions in
the expression list) then stop the transform ation (if the expression
list contains im port expressions then the rest of the tim ers will be
transform ed when the im plicit im port sta te is transform ed).
Else transform the rest of the tim er sets

(3.7.8 .8)

204 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

1 (let irik-Setelemo(timeexpr, timerid, actparm) = h d setlist in
2 le t timesort = get-predef -sort ("TIME”)(dict) in
3 le t (as^expr, d) = transform-expr(timeexpr, EXPRESSION, {timesort})(dict) in
4 le t squal — get-visible-qual(timerid, SIGNAL)(ohc<) in
5 if is -SignalD (diet (squal)) th en
6 exit("§2.8: Identifier in set action is not a timer”)
7 else
8 (let ink- TimerD (tp l is t ,) = dict(squal) in
9 i f len actparm = len tplist th en

1 0 (let (asiactparm, d') = transform-actparms(tplist, actparm, EXPRESSION)(d) in
11 le t as\id = make-asi-identifier(squal)(dict) in
12 le t as\tree — m k-Set-nodei(asi expr, as\id, asiactparm) in
13 if d'(IMPORTLIST) = () th en
14 ((asitree), d')
15 else
16 (let rest = i f t l setlist = () th e n () else (nik-Seto(tl setlist)) in
17 le t (outputtrans, d") =
18 transform-import(tnm, a$i tree, rest actl, term)(d ') in
19 transform-transition(tnm, outputtrans, nodesi)(d")))
2 0 else
21 exit("§2.8: Parameter list length in set action must equals the length specified in the definition”)))

ty p e : [5<a<enameo] Setelemo* Actstmto* [Termstmto] Graph-nodei* —♦
Diet —► (Transitioni I Graph-nodei*) Diet

transform-set-elems(tnm, setlist, actl, term, nodes\)(dict) = (3.7.8.9)

O b je c tiv e Transform a tim er set into ASi

P a r a m e te r s See transform-set

R e s u l t See transform-set

A lg o r i th m

Line 1 Decompose the Setelemo which is going to be transform ed.
Line 2 Let timesort denote the Qual of the time sort.
Line 3 Transform the tim e expression specified.
Line 4 E xtract the Qual of the identifier specified.
Line 5 The identifier m ust denote a tim er signal.
Line 8 Let tplist denote the sorts of the expression list specified for the

timer.
Line 9 There m ust be as m any expressions in the list as there are sorts

for the timer.
Line 10 Transform the expressions.
Line 11 Construct the ASi identifier of the timer.
Line 12 Construct the ASi set node.
Line 13 If there are no im port expressions in the expression list or in the

tim e expression then
Line 14 R eturn the ASi set node else
Line 16 C onstruct an ASo set action of the rest of the tim er sets. This

action will be attached to the im plicit im port state.
Line 17 U pdate Diet w ith the im port sta te and construct the ASo transition

which leads to the im port state.
Line 19 Transform the transition

F ascicle X .4 — R ec . Z .100 — A n n e x F .2 205

transform-export(id)(dict) = (3.7.8.10)

1 (let sortset = all-visible-sorts(dict) in
2 le t qual = get-visible-variable(id, sortset, tT\ie)(dict) in
3 le t vak-SignalnamesD(impnm , ,) = exportmap((s-Sortqual(dict(qual)),s-Nameo(id))) in
4 le t as\id = make-asx-identifier(qual)(dici),
5 as\id ' = make-asx-identifier(impnm)(dict) in
6 (jnk-Task-nodex{m\i-Assignment-statementi{asxidl , asxid))))

ty p e : Varido —► Diet —* Task-nodex

Transform an export action into an ASi assignment statem entO b je c t iv e

P a r a m e te r s

id

R e s u l t

A lg o r i th m

Line 1-2
Line 3

Line 4-5

Line 6

The ASo identifier of the exported variable

An ASi task containing the constructed assignment statem ent

C onstruct the Qual of the exported variable by using the context.
Let impnm denote the name of the im plicit variable attached to
the exported variable
C onstruct the ASi identifiers of the explicit export variable (asxid)
and of the im plicit export variable (asxid1) and
R eturn the task which assigns the explicit variable to the im plicit
variable

3 .7 .8 .1 T ra n s fo rm a tio n o f O u tp u t N o d e s

transform-prioutput(tnm, nik-Prioutputo(outputsigs), actl, term, nodesx)(dict) =

1 (let self — mk-Selfexpro() in
2 le t (actlx, d) = transform-output-elems (tnm, outputsigs, self, (), actl, term, nodesx, t r u e)(dict)
3 if t l outputsigs — () V is-Transitionx(actlx) th en
4 (actlx, d)
5 else
6 transform-prioutput (tnm , nik-Prioutputo(tl outputsigs), actl, term, nodesx actlx)(d))

ty p e : [Statenameo] Prioutputo Actstmto* [Termstmto] Graph-nodex* —*
Diet —► (Transitionx \ Graph-nodex*) Diet

O b je c t iv e

P a r a m e te r s

tn m ,
actl,
term,
nodesx
outputsigs

R e s u l t

A lg o r i th m

Line 1-6

Transform a priority ou tpu t action into a sequence of ASi ou tput ac­
tions (one for each signal mentioned)

See transform-act
A list of outputs contained in the priority ou tput action

See transform-act

The algorithm follows the same scheme as for transform-reset The
argum ent t r u e to the function transform-output-elems indicates
th a t the signals are high priority signals

(3.7.8.1.1)

in

206 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

transform-output (tnm , outnode, actl, te rm , nodes\)(dict) = (3.7.8.:

1 (let ink-Outputo(outputsigs, expr, via) = outnode in
2 le t (actlx, d) = transform-output-elems(tnm, outputsigs, expr, via, actl, term, nodesx, false)(<ftc<) in
3 if t l outputsigs = () V is-Transitionx(actlx) th en
4 (actlx, d)
5 else
6 trans form-output (tnm , mk-Outputo(tl outputsigs, expr, via), actl, term, nodesx ^ actlx)(d))

ty p e : [Statenameo] Outputo Actstmto* [Termstmto] Graph-nodex*
Diet —* (Transitionx | Graph-nodex*) Diet

O b je c t iv e

P a r a m e te r s

Transform a ou tpu t action into a sequence of ASi ou tpu t actions (one
for each signal mentioned)

tnm,
actl,
term,
nodesx
outputsigs

R e s u l t

A lg o r i th m

Line 1-3

See transform-act
A list of ou tpu ts contained in the ou tput action

See transform-act

The algorithm follows the same scheme as for transform-re set The
argum ent fa lse to the function transform-output-elems indicates
th a t the signals are not high priority signals

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 207

1 (le t m k -Outputsigo(sigid, actparm) = h d sigs in
2 le t instsort = get-predef -sort("P \D ")(did) in
3 le t (a«i expr, d) =
4 if expr = nil
5 th e n (nil, diet)
6 else transform-expr(expr, EXPRESSION, { ins tsor t})(d id) in
7 le t squal = signal-qual(sigid)(dict) in
8 le t qual = process-or-sertnce-Zei>e/(dtcZ(SCOPEUNIT)) in
9 le t existreceiver = (3 q G d o m did)(is-ServiceD (did(q)) A

10 get-sur(q) = get-sur(qual) A
11 sgua/ G s-Prrnij>u<seZ(ch'ct(g))) in
12 i f (i s -ProcessD(dict(qual)) A isprioutput) V
13 (isprioutput ^ existreceiver) th en
14 e x i t (“§4.10: Illegal use of high priority signal”)
15 else
16 (le t qualset = transform-via(squal, v ia)(d id) in
17 le t asipathidset = make-asi idset(qualset)(did) in
18 le t d i d 1 = d -f [OUTSIGNALS i—► dict(OUTSIGNALS) U {jgua/}] in
19 i f is - TimerD (did(squal)) th e n
20 e x i t (“§2.7.4: Identifier in output action must denote a signal")
2 1 else
22 (let mk-SignalD (tplist , ,) = did(squal) in
23 if len actparm — len tplist th en
24 (let (asi actparm, d') —
25 transform-adparms(tplist, actparm, EXPRESSION)(dict/) in
26 le t as\id = make-asi-identifier(squal)(did) in
27 le t as\tree = m k-O utput-nodei(as\id , as\actparm, as\expr, asipathidset) in
28 if ^(IM PORTLIST) = () th e n
29 ((as\tree), d')
30 else
31 (let rest = i f t l sigs = () th e n
32 ()
33 else
34 (mk-Outputo(tl sigs, expr, via)) in
35 le t (outputtrans, d") —
36 transform-import(tnm, asitree, rest ^ actl, term)(d ') in
37 transform-transition(tnm, outputtrans, nodes\)(d")))
38 else
39 e x i t (“§2.7.4: Not the right number of arguments to output action”))))

ty p e : [Statenameo] Outputsigo* [Expression^ Viao Actstmto* [Termstmto] Graph-node* Bool
D i d —► (Transitioni \ Graph-nodei*) D id

O b je c t iv e Transform an output or a priority ou tpu t into ASi

P a r a m e te r s

tnm,
actl,
term,
nodesi See transform-act
sigs The list of outputs which were contained in the ou tpu t action.

Only the first element in this list is transform ed in this function
expr The destination expression. If the ou tpu t is a priority ou tpu t then

expr is SELF
via The list of channel or signal route identifiers contained in the ou t­

pu t node. If the ou tpu t is a priority ou tpu t then the list is empty

transform-output-elems(tnm, sigs, expr, via, actl, term , nodes\, isprioutput)(dict) = (3.7.8.1.3)

208 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

R e s u l t

A lg o r i th m

Line 1

Line 2
Line 3-6

Line 7
Line 8

Line 9-11

Line 12-13

Line 16-17
Line 18

Line 19
Line 22
Line 23

Line 24
Line 26
Line 27
Line 28-29

Line 31

Line 35

Line 37

Let sigid denote the signal identifier of the ou tpu t to be trans­
formed and let actparm denote the associated actual param eter
list.
E xtract the Qual of the PiD sort.
If the destination expression is specified then transform it into ASi.
It must be of the PiD sort (instsort).
Let squal denote the Qual of the signal.
Let qual denote the Qual of the surrounding service or process (not
procedure)
existreceiver is true if there exist a service (q) in the same process
(line 1 0) which can receive the signal in an high priority input node.
If the ou tput is contained in a process then it m ust not be a high
priority ou tput (line 1 2) and if it is a high priority signal then there
m ust exist a receiving service and versa versa.
Construct the ASi VIA set.
U pdate the OUTSIGNALS entry of Diet to include the ou tpu t signal
squal
The signal specified m ust not be a timer signal.
Let tplist denote the sort list attached to the signal.
The length of the actual param eter list m ust be equal to the length
of the sort list.
Transform the actual param eters.
Construct the ASi identifier of the signal.
Construct the ASi ou tput node.
If there are no im port expressions in the destination expression and
in the actual param eters then return the ou tput node else
Construct an AS0 output action of the rest of the outputs. This
action will be attached to the implicit im port state.
Update Diet w ith the im port state and construct the ASo transition
which leads to the im port state.
Transform the transition

See transform-act

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 209

1 (let processlevel = process-/et>e/(dtc<(SCOPEUNIT)) in
2 le t servicelevel = process-or-service-level(dict(SCOPEDN\T)) in
3 le t nik-ProcessD(, sset ,, connectmap) = diet (processlevel) in
4 le t explicitsigroutes — s-Explicitroutes(dict(get-sur(processlevel))) in
5 i f pathlist = () th e n
6 i f —>explicitsigroutes th e n
7 {}
8 else
9 if (3 m k -SignalrouteD (endpl, endp2 , sigset 1, sigset2) E dom diet)

10 ((processlevel — endpl A signalqual E siflrsetfl) V
11 (processlevel = endp2 A signalqual E sigset2)) th e n
12 {}
13 else
14 if signalqual E sset th e n
15 {}
16 else
17 e x i t (“§2.7.4: Signal in output has no possible receiver”)
18 else
19 (let id = h d pathlist in
2 0 le t qual = (tra p exit w ith get-visible-qual(id, CHANNEL)(dic<) in
2 1 get-visible-qual(id, SIGI\IALROUTE)(ch'c<)) in
2 2 le t qualrest = if t l pathlist = () th e n
23 {}
24 else
25 transform-via(signalqual,tlpathlist)(dict) in
26 i f qual € qualrest th e n
27 e x i t (“§2.7.4: Signal route or channel specified twice in VIA set”)
28 else
29 cases diet (qual):
30 (xn\i-SignalrouteD (endpl, endp2, sigset 1 , sigset2)
31 -► (if (processlevel = endpl A signalqual G sigset 1) V
32 (processlevel = endp2 A signalqual € sigset2) th en
33 if connectmap ^ [] Ais-ServiceD(dict(servicelevel)) A
34 “’(39 ^ connectmap (qual))
35 ((le t nik-SignalrouteD(epl, ep2, sigs 1, sigs2) = dict(q) in
36 (servicelevel = epl A signalqual E stysl) V
37 (servicelevel = ep2 A signalqual G s*flfs2))) th en
38 ex it("§4.10.2: No service signal routes are connected to signal route in VIA”)
39 else
40 ifis-ProcessD(dict(servicelevel)) A connectmap ^ []
41 th e n e x i t ("§2.10.2: VIA illegal outside services when service signal routes defined”)
42 else {qual} U qualrest
43 else
44 e x i t (“§2.7.4: Illegal VIA set”)),

)

ransform-via(signalqual, pathlist)(dict) = (3.7.8.

210 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

in k -ChannelD (, , , ,)
-» i f explicitsigroutes th e n

ex it("2.7.4: If signal routes are specified then channels cannot be mentioned in VIA”)
else
(let blockqual = get-sur (processlevel) in
le t m k -BlockD(, , , cmap) = diet (blockqual) in
i f qual dom cmap

th e n e x i t ("§2.7.4: Channel in VIA set is not connected to block”)
else (let squalset =

{q G cmap(qual) | (let mk-SignalrouteD (endpl, endp2, sigset 1, sigset2)
dict(q) in

(processlevel = endpl A signalqual G sigset 1) V
(processlevel = endp2 A signalqual G sigset2))} in

if squalset = {}
th e n e x i t ("§2.7.4: Signal cannot be conveyed by channel in VIA set”)
else squalset U qualrest)))))

ty p e : Signalqual Viao —> Diet —► Qual-set

O b je c t iv e

P a r a m e te r s

signalqual
pathlist

R e s u l t

A lg o r i th m

Line 1

Line 4

Line 5
Line 6

Line 9-11

Line 14

Line 19-59
Line 19

Line 20-21

Line 22
Line 26

L in e 30-44

Transform the list of channel or signalroute identifiers specified in the
VIA construct into a signal route Qual set

The Qual of the signal specified in the output
The AS0 via list

The signal route Qual set

Let processlevel denote the Qual of the surrounding process (not
procedure or service).
Let explicitsigroutes equals t r u e if signal routes are specified in the
surrounding block.
If no channel identifiers or signalroute identifiers are specified then
if no signal routes are specified for the surrounding block then
return the em pty set else
If there exist a signal route which includes the signal specified and
which has the surrounding process as one of its endpoints then
return the em pty set indicating th a t the signal may follow any
path else
If explicit signal routes are specified and the signal is not contained
in one of them then the signal m ust be part of the valid input signal
set for the surrounding process.
If signal routes or channels are specified in the VIA then
Let id denote the identifier of the first channel or signal route in
the list.
Look up the identifier in Diet as a signal route. If it fails then
it m ust denote a channel and look up the identifier in Diet as a
channel.
Transform the rest of the channels or signal routes in the via list.
If the signal route or channel also occurs in the Quals of the rest
of the via list then the channel or signal route has been specified
twice.
If the Qual denotes a signal route then the signal m ust be included
in the signal route, the surrounding process m ust be one of its
endpoints and if service signal routes are specified (i.e. connectmap
non-empty) then there must exist a service signal route connected
to the service and to the signal route (line 33-38).

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 211

Line 40

Line 45
Line 46-47
Line 49
Line 50
Line 51-52
Line 53-57

Line 58-59
Line 60

If service signal routes are specified then VIA cannot be used in
procedures on process level.
If the Qual denotes a channel then
It m ust be because no signal routes are specified explicit
Let blockqual denote the Qual of the surrounding block.
Let cmap denote the BlockconnectionD for the block.
The channel in the VIA m ust be connected to the block.
Let squalset denote the signal route Quals which are connected to
the channel and for which the signal is outgoing.
There m ust be a t least one such signal route.
R eturn the selected signal routes joined with the signal routes for
the rest in the VIA set.

3 .7 .8 .2 T ran sform ation o f C reate N o d es

transform-create{tnm,mk-Createo{pid, exprlist), actl, term, nodesi){dict) =

1 (le t pqual = get-vi$ible-qual(pid, PROCESS)(d id) in
2 le t bqual = get-sur{pqual) in
3 le t asiid = make-asi-identifier(pqual)(dict) in
4 le t m k-ProcessD { tp lis t , , ,) = diet {pqual) in
5 if get-sur{process-level{dict{SCOPE\JN\T))) ^ bqual th en
6 e x i t (“§2.7.2: Created process must be defined in the same block")
7 else
8 (if len tplist ^ len exprlist th en
9 e x i t (“§2.7.2: Actual parameter length must be equal to formal parameter list length”)

1 0 else
11 (let {actparmlist, d) = transform-actparms{tplist, exprlist, EXPRESSION)(dic<) in
1 2 le t asitree = vnk-Create-request-nodei{asiid, actparmlist) in
13 i f d(IM PORTUST) = () th en
14 {{as\tree), d)
15 else
16 (let {outputtrans, d') — transform-import{tnm, asitree, actl, term){d) in
17 transform-transition{tnm, outputtrans, nodes\){d')))))

ty p e : [Statenameo] Createo Actstmto* [Termstmto] Graph-node*
Diet —► {Transitioni I Graph-nodei +) Diet

O b je c t iv e

P a r a m e te r s

tnm,
actl,
term,
nodesx
pid
exprlist

R e s u l t

A lg o r i th m

Line 1

Line 2
Line 3
Line I

Transform a create request action into ASi

See transform-act
The process identifier contained in the create request action
The list of actual param eters

See transform-act

Let pqual denote the Qual of the process identifier.
Let bqual denote the Qual of the surrounding block.
C onstruct the ASi identifier of the process identifier.
Let tplist denote the sorts of the actual param eters.

(3.7.8.2.1)

212 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 5 The surroundings of the process where the create request node is
placed m ust be the same (block) as the surrounding of the process
identifier.

Line 8 The length of the sort list m ust be equal to the length of the actual
param eter list.

Line 11 Transform the actual param eters.
Line 12 Construct the ASi create request node.
Line 13-14 If the actual param eter list contains no im port expressions then

return the constructed ASi create request node.
Line 16 Else update Diet with the im port state and construct the ASo

transition which leads to the im port state.
Line 17 Transform the transition

transform-actparms{tplist, exprlist, context){diet) =

1 (if tplist = () th e n
2 ({),dict)
3 else
4 (let (asiexpr , , d) =
5 if h d exprlist = nil
6 th e n (n il , , diet)
7 else transform-expr {h d exprlist, context, {hd tplist}){diet) in
8 le t (a r r e s t , drest) = transform-actparms{tl tplist, tlexprlist, context){d) in
9 ((asiexpr) as\rest, drest)))

ty p e : ParameterD* Actparmlisto Context —► Diet —>• [Term! | D*pressioni]* Diet

O b je c t iv e Transform the actual param eters of an ou tput action or a create request
action or an operator argum ent list into ASi

P a r a m e te r s

tplist The sorts of the actual param eters
exprlist The actual param eters
context The context in which the expressions are transform ed. In the case

of ou tput action or create request action, the context is always
EXPRESSION.

R e s u l t A list of optional expressions in the case of ou tput action or create
request action, and a list of term s or expressions in the case of operator
actual param eters. Diet possibly updated to include inform ation about
im port expressions in the actual param eter list

A lg o r i th m

Line 1-2 W hen through, return the em pty list and the (unchanged) Diet.
Line 4~7 Transform the first actual param eter if it is present in the actual

param eter list.
Line 8 Transform the rest of the actual param eters.
Line 9 R eturn the first actual param eter joined with the rest of the actual

param eters

(3.7.8 .2.2)

Fascicle X .4 - R ec. Z .100 — A n n ex F .2 213

1 (le t pqual = get-visible-qual(procid, PROCEDURE)(rftc<) in
2 le t m k -ProcedureD(formparmlist, nqual) = dict(pqual) in
3 le t asiid = make-a$i-identifier (nqual) (diet) in
4 i f len actparmlist = len formparmlist th en
5 (let (asiactparm, d) = transform-actparmlist(formparmlist, actparmlist)(diet) in
6 le t asitree = mk-Call-nodei(asiid , asiactparm) in
7 i f d(IMPORTLIST) = () th en
8 ((asitree), d)
9 else

10 (let (outputtrans, d') = transform-import(tnm, as\tree, actl, term)(d) in
11 transform-transition(tnm, outputtrans, nodesx)(d')))
12 else
13 e x i t (“§2.7.3: Length of procedure parameter list must equals the length of formal parameter list”))

ty p e : [5tafenameo] Callo Actstmto* [Termstmto) Graph-node* —+
Diet —► (Transitioni \ Graph-nodei*) Diet

O b je c t iv e Transform a procedure call into ASi

P a r a m e te r s

procid The identifier of the procedure
actparmlist The actual param eter list
tnm,
actl,
term,
nodesi See transform-act

R e s u l t See transform-act

A lg o r i th m

Line 1 Construct the Qual of the procedure.
Line 2 Let formparmlist denote the descriptors of the formal param eters

and nqual denote the unique Qual (see the definition of Newqual).
Line 3 Construct the ASi identifier of the procedure.
Line 4 The length of the formal param eter list m ust be equal to the length

of the actual param eter list.
Line 5 Transform the actual param eters.
Line 6 Construct the ASx call node.
Line 7-8 If there are no im port expressions in the actual param eters then

return the call node else
Line 10 U pdate Statedict to include the im plicit im port states and return

the AS0 transition leading to the im plicit state.
Line 11 Transform the constructed transition

3 .7 .8 .3 T ran sform ation o f C all N o d es

transform-call(tnm,itik-Callo(procid, actparmlist), actl, term, nodes\){dict) = (3.7.8.3.1)

214 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

1 (i t formparmlist = () th en
2 ((),dtcf)
3 else
4 (let (actparm, diet1) =
5 if h d actparmlist = nil th en
6 ((n H)> diet)
7 else
8 cases h d formparmlist:
9 (m k -InDescr(tqual)

10 -> (let (a s \exp r , , d) —
11 transform-expr (hd actparmlist, EXPRESSION, {tqual}) (diet) in
1 2 (as\expr, d)),
13 m.k-InoutDescr()
14 -* transform-inoutactparm(hd formparmlist, hd actparmlist)(diet)) in
15 le t (actparmrest, drest) = trans form-actparmlist (tl formparmlist, t l actparmlist) (d i d 1) in
16 ((actparm) /~x actparmrest, drest)))

ty p e : FormparmD* Actparmlisto —* Diet —► [Expression^]* Diet

trans form-actparmlist (formparmlist, actparmlist) (diet) =

O b je c t iv e

P a r a m e te r s

formparmlist
actparmlist

R e s u lt

A lg o r i th m

Line 1-2

Line 4-14

Line 5-6
Line 9-12

Line 13-14

Line 15-15
Line 16

Transform an actual procedure param eter list into a list of ASi expres­
sions

The list of formal param eter descriptors
The list of actual param eters

The list of ASi expressions and a Diet possibly updated to include
inform ation of contained im port expressions (see transform-act)

W hen through, return the empty param eter list (the function is
recursive).
Let actparm denote the ASi expression denoting the first actual
param eter.
If the actual param eter is om itted then actparm is n il else
If the param eter is an IN param eter then transform the expression
which is the actual param eter. It m ust be of the sort denoted by
tqual.
If the param eter is an IN /O U T param eter then transform the
IN /O U T param eter.
Transform the rest of the actual param eters.
R eturn the first actual param eter joined with the rest of the actual
param eters

(3.7.8.3.2)

Fascicle X .4 — R ec. Z .100 — A n n e x F .2 215

(3.7.8.3.3)

1 (if is-Ido(expr) th e n
2 (let vqual = get-visible-variable(expr, {get-parent(tqual)(dict)},fal&e)(dict) in
3 le t n ik -V a rD ftq , , , , nqual) = dict(vqual) in
4 le t a$\id — make-asi-identifier(nqual)(dict) in
5 if tq = tqual th e n
6 (asiid, diet)
7 else
8 e x i t (“§2.7.3: Same sort must be specified for formal and actual IN/OUT parameter”))
9 else

10 e x i t ("§2.7.3: Actual IN/OUT parameter must be a variable identifier”))

ty p e : InoutDescr Expro —► Diet —* Expression\ Diet

O b je c tiv e

P a ra m eters

tqual
expr

R e su lt

A lg o r ith m

Line 1
Line 2
Line 3
Line 4
Line 5-8

param eter. In this case the same sort reference identifier m ust be
specified, th a t is a sort is not com patible w ith syntypes of the sort.

Transform an actual IN /O U T param eter into ASi

An IN /O U T descriptor containing

the Qual of its sort
The actual param eter

The ASi actual param eter

The actual param eter m ust be an identifier.
Construct the Qual of the identifier.
Let tq denote its sort or syntype and let nqual denote its Newqual.
C onstruct its ASj identifier
The sort of the variable (tq) must be equal to the sort of the formal

transform-inoutactparm(mk-InoutDescr(tqual), expr)(dict) =

216 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

3 .7 .8 .4 T ran sform ation o f D ec is io n N o d es

1 (let xn.'k-Decisiono(quest, anslist, elsepart) = decision in

transform-decision(tnm, decision, nodes\)(dict) ^ (3.7.8.4.1)

2 le t isinformalanswers =
3 ('iixik-Conditiono(vl, v2) € e le m s anslist)(v 1 = n il A is-Stringiermo(v2) A s-(?u ah /iero (v2) = ()) in
4 le t isinformalquestion = is-Stringtermo(quest) A s-Qualifier0(quest) = () in
5 le t isinformaldecision = isinformalanswers A isinformalquestion in
6 le t qualset — all-visible-sorts(dict) in
7 le t (,tpset ,) = transform-expr(quest, EXPRESSION, qualset)(diet) in
8 le t tp = i f isinformaldecision th e n
9 n il

10 e lse
11 i f isinformalquestion th e n
12 (tra p e x it w ith get-answer-sort(anslist, qualset)(dict) in
13 get-answer-sort(anslist, tpset)(dict))
14 e lse
15 get-answer-sort(anslist, tpset)(dict) in
16 le t (asitrans, d") = transform-answers(tnm, anslist, tp)(dict) in ’
17 le t (els, d ,n) —
18 i f elsepart = n il th e n
19 (n il, d")
20 e lse
21 (le t mk-Elseparto(trans) = elsepart in
22 le t (transi, diet1) = transform-transition(tnm, trans, Q)(d") in
23 (xnk-Else-answeri(transi), diet1)) in
24 le t (as\quest ' , , d) =
25 i f isinformalquestion th e n
26 (le t mk-Stringo(str) = s-Stringo(quest) in
27 i f isinformaldecision th e n
28 (m k -Informal-texti(str), {}, diet)
29 e lse
30 (tra p e x it w ith (m k -Informal-texti(str) , {}, diet) in
31 transform-expr(quest, EXPRESSION, {tp})(d '")))
32 e lse
33 transform-expr(quest, EXPRESSION, {<p})(<f"/) in
34 le t decisionnodei = vnk-Decision-node\(asiquest', as\trans, els) in
35 i f d(IMPORTLIST) = () th e n
36 (m k -Transitioni (nodesi, decisionnodei) , d)
37 e lse
38 (le t (outputtrans, d') — transform-import(tnm, decisionnode\, () ,n i l) (d) in
39 transform-transition(tnm, outputtrans, nodesi)(d')))

ty p e : [Statename0\ Decision^ Graph-nodei* —* Diet —* Transitioni Diet

O b jec tiv e Transform a decision node into ASi

P a ra m eters

tnm,
decision,
nodesi

R esu lt

A lg o r ith m

See transform-act. As opposed to the other action transform ing
functions, transform-decision does not take the action list following
the decision as argum ent as a decision term inates a transition and
because all answers a t this stage contains term inators

A transition containing nodesi and either leading to the decision node
or leading to an im plicit im port state

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 217

Line 1 Decompose the decision action.
Line 2 Let isinformalanswers be true if all answers consist of an unquali­

fied character string.
Line 4 Let isinformalquestion be true if the expression in the question

consist of an unqualified character string.
Line 5 Let isinformaldecision be true if the decision consist solely of in­

formal text (character strings).
Line 6 Let qualset denote the Quals of all the sorts which are visible at

this place.

Line 7 Extract the possible sorts for the decision question.
Line 8-15 Let tp denote the sort of the answers. If it is an informal decision

then tp equals n il otherwise the sort is derived by looking a t the
answers and thereby restricting the set of sorts allowed for the
question. Furtherm ore, if the question is a character string (line
1 1), then any visible sort may m atch the set of answers (line 1 2) if
it fails to derive the answer sort from the set of sorts m atching the
question.

Line 16 Transform the answers given their sort (tp which is n il if the whole
decision is informal).

Line 17-23 Transform the else part.
Line 21 Let trans denote the transition in the else part.
Line 22-23 Transform the transition and construct the ASi else part.
Line 24-33 Transform the question.
Line 24 If the question is an unquantified character string then it denotes

inform al text if the whole decision is informal (line 27) or if the
transform ation of the question as a character string literal fails
given the answer sort tp (line 31).

Line 34 C onstruct the ASi decision node.
Line 35-36 If the question contains no im port expressions then return the tran ­

sition containing the preceding nodes and the decision node else
Line 38 U pdate Statedict to include the im plicit im port states and con­

struct the ASo transition leading to the im plicit im port node.
Line 39 Transform the constructed transition

get-answer-sort(anslist, tpset)(dict) =

1 (i f anslist = () th e n
2 i f ca rd tpset ^ 1 th e n
3 e x i t (“§2.2.2: No appropriate sort exist for decision action”)
4 e lse
5 (le t tp £ Qual b e s . t . tp £ tpset in
6 tp)
7 e lse
8 (le t m k-A nsw ero(v lis t ,) = h d anslist in
9 le t isinformal1 —

10 le n vlist = 1 A
11 (le t nik-C onditiono(v l , v2) = h d vlist in
12 t>l = n il A is-Stringtermo(v2) A &-Qualifiero(v2) — ()) in
13 le t (t s e t ,) = i f isinformal' th e n (tp se t ,) e lse transform-valueset(tpset, vlist)(dict) in
14 get - answer-sort(t l anslist, tset)(dict)))

ty p e : Answero+ Sortqual-set —> Diet —> [Sortqual]

O b je c t iv e E xtract the sort of a decision answers

P a r a m e te r s

(3.7.8 .4.2)

218 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

anslist The list of answers attached to the decision action (excluding the
elsepart)

tpset The possible sorts of the answers. During each recursive call of get-
answer-sort this set is restricted by the allowed sorts for the answer
in hand. W hen initially applied, tpset denotes the possible sorts
for the decision question or if the decision question is informal, all
visible sorts.

R e s u l t

A lg o r i th m

The Qual of the sort for the decision action

Line 1-5 W hen through the answer list, the set of possible sorts m ust contain
only one element and this element is returned.

Line 8 Decompose the first answer in the list.
Line 9-12 Let isinformal1 be true if the answer consist of an unqualified char­

acter string.
Line 13 Let tset denote the set of sorts possible for the answers after having

considered the first (next) answer. If the answer is an unqualified
character string, it is not considered when determ ining the answer
sort.

Line 14 Consider the rest of the answers.

trans form-answers { tn m , anslist, tp)(dict) =

1 (i f anslist = { } th e n
2 ({} , diet)
3 e lse
4 (le t nik-Answero{vlist, trans) = h d anslist in
5 le t (,as\tree) =
6 i f tp — n il th e n
7 (O .n i l)
8 e lse
9 (tra p e x it w ith ({ } ,n i l) in

10 transform-valueset({tp}, vlist){dict)) in
11 le t [trans\, diet') = transform-transition(tnm, trans, ()){dict) in
12 le t (restrans , diet") — trans form-answers {tnm, t l anslist, tp){dict') in
13 i f asitree = n il th e n
14 (le t m k -Conditiono{, xnk-Stringtermo{, lit)) = h d vlist in
15 {{nik-Informal-texti{lit)} U restrans, diet"))
16 e lse
17 {{vnk-Decision-answer\{asitree, transi)} U restrans, diet")))

ty p e : [Statenameo] Answero* [Sortqual] —► Diet —► Decision-answer^-set Diet

O b je c t iv e Transform the answers of a decision or option into ASi

P a r a m e te r s

tnm See transform-act
anslist The list of answers to be transform ed
tp The sort of the answers. If tp equals n il then the question and all

answers consist of character strings (i.e. the decision is informal)

R e s u l t The set of ASi answers

A lg o r i th m

Line 1 W hen through the answer list, return the em pty set (the function
is recursive).

Line 4 Let vlist and trans denote the conditions and the transition of the
first answer in the list.

(3.7.8 .4.3)

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 219

Line 5-10

Line 11
Line 12
Line 13-15

Line 15

Line 17

Try to transform the conditions. If it fails then the conditions
m ust contain inform al text as vlist already has been checked for
consistency (in get-answer-sort).
Transform the transition of the first answer.
Transform the rest of the answers.
If the transform ation of the condition list in hand failed then the
condition list m ust denote informal text.
Transform the condition as informal text and return the resulting
answer joined w ith the rest of the ASi answers.
Else return the transform ed answer joined w ith the rest of the ASi
answers

3 .7 .8 .5 T ran sform ation o f O p tion s

transform-option(tnm, xxik-Optiono(quest, anslist, elsepart), nodes\)(dict) =

1 (let qualset = all-visible-sorts(dict) in
2 le t (,tpse t ,) = transform-expr(quest, CONSTANT, qualset)(diet) in
3 le t tp — get-answer-sort(anslist, tpset)(dict) in
4 le t trans = eval-option-trans(tp, quest, anslist, elsepart)(dict) in
5 transform-transition(tnm, trans, nodes\)(dict))

ty p e : [Statenameo] Option^ Graph-nodex* —► Diet —*• Transitioni Diet

O b je c tiv e

P a ra m eters

tnm,
nodesi

A lg o r ith m

Line 1

Line 2

Line 3

Line 4
Line 5

Evaluate an option action and return the resulting transition

See transform-act

Let qualset denote the Quals of all the sorts which are visible a t
this place.
Transform the option question, tpset denotes the sorts which are
allowed for the question.
Let tp denote the sort of the option. It is deduced by inspecting
the answers (in the same way as done in transform-decision).
Select the transition which matches the question.
Transform the selected transition

(3.7.8.5.1)

220 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

eval-option-trans(tp, question, anslist, elsepart)(diet) = (3.7.8.5.

1 (if anslist = () th en
2 i f elsepart = nil th en
3 exit("§4.3.4: No option answer matches the option question”)
4 else
5 &-Transitiono(elsepart)
6 else
7 (let mk-Answero(vlist, trans) = h d anslist in
8 i f match- option - answer (tp, vlist, question) (diet) th en
9 if (3ons € elem s tl anslist)(match-option-answer(tp, s-Conditionlisto(ans), question)(dict)) th e n

10 e x i t (“§4.3.4: More than one option answer matches the question”)
11 else
1 2 trans
13 else
14 eval-option-trans(tp, question, t l anslist, elsepart)(diet)))

ty p e : Sortqual Expro Answero* [Elseparto] —► Diet —► Transitiono

O b jec tiv e Select the answer of an option action which m atched the option question

P a r a m e te r s

tp The Qual of the question sort
question The option question
anslist The list of option answers
elsepart The option else part

R e s u l t The transition contained in the m atching answer

A lg o r i th m

Line 1-5 If none of the answers matches the question then an else part m ust
be specified and if so, return the transition contained in the else
part.

Line 7 Decompose the first (the next) answer in the list.
Line 8 If it matches the question then
Line 9-12 It m ust be the only matching answer and if so, the transition con­

tained in the answer is returned.
Line 14 Else continue searching for a m atching answer

match - option - answ er (tp , vlist, question) (diet) =

1 (let asooperator — build - ans w er-operator (tp, vlist, question) in
2 eval-simple-expr(asooperator, “BOOLEAN”)(dtc<))

ty p e : Sortqual Conditionlisto Expro —* Diet —> Bool

(3.7.8 .5.

O b je c tiv e

P a r a m e te r s

tp
vlist
question

Test whether an option condition list matches the option question

The sort of the question and conditions

The condition list
The option question

R e s u l t True if the condition list matches the question

Fascicle X .4 - R ec . Z .100 - A n n ex F .2 221

A lg o r ith m

Line 1

Line 2

From the question and the condition list, construct a boolean op­
erator application which delivers true if the condition list matches
the question.
Evaluate the operator application

build-answer-operator (ip , vlist, question) =

1 (let m k-Conditiono(op, const) = hd vlist in
2 le t orop = mk-Qualopo{{), m k- Quotedopo (OR)) *n
3 le t op' = if op — n il th e n EQ else op in
4 le t asoop = i f op' 6 {NE, EQ, GT, LT, LE, GE} th en
5 mk-Operatorappo(mk-Qualopo(tp, mk-Quotedopo(op')), (question, const))
6 else
7 (let andop — mk-Qualopo{{), mk-Quotedopo (AND)) in
8 le t lesseqop = mk-Qualopo(tp,mk-Quotedopo(LE)) in
9 m k -Operatorappo(andop, (mk-Operatorapp0{lesseqop, {op1, question)),

1 0 m k -Operatorappo(lesseqop, (question, const))))) in
1 1 i f t l vlist = ()
1 2 th e n asoop
13 else mk-Operatorappo(orop, (asoop, build-answer-operator {tp, t l vlist, question))))

ty p e : Sortqual Conditionlisto Expro Operatorappo

O b jec tiv e

P a ra m eters

tp
vlist
question

R esu lt
A lg o r ith m

Line 1
Line 2
Line 3

Line 4

Line 7-10

Line 11

Line 13

Construct a boolean operator which delivers the boolean literal true if
an option answer matches the option question

The sort of the question
The condition list which is contained in the answer
The option question

The constructed ASq operator application

Decompose the first condition in the condition list.
C onstruct the prefix ” O R” operator name.
If no operator or expression is specified as the first element in the
condition then it is the same as specifying the equality operator
(EQ) .
If the first element in Condition^ is an relational operator then
construct the operator

tp o p ’ (q u e s t io n ,c o n s t)

where tp is the qualifier of the operator, op' is the relational oper­
ator and (q u e s t io n ,c o n s t) is the argum ent list.
If the first element in Conditiono is an expression then the condition
reflects a range and the constructed operator is then

"AND"(tp "< = "(o p ’ .q u e s t io n) , t p "< = "(q u e s t io n ,c o n s t)) .

where tp is the qualifier, op' is the lower bound and c o n s t is the
upper bound.
If this was the last condition in the list then return the constructed
operator application else
Construct an operator application which ” OR”s the result from
the previous operator application with the result of the operator
application constructed from the rest of the condition list

(3.7.8.5.4)

222 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

3 .8 G eneral A Si C reating Functions

make-asi-identifier(q)(dict) = (3.8.1)

1 (let qual = make-new-qual(q)(dict) in
2 le t nameq = get-sur(qual) in
3 le t (,nm) = qual[len qual] in
4 le t asitiameq = make-asi-qual (nameq) in
5 xnk-Identifieri(asinameq , name-to-namei(nm)))

ty p e : Qual —* Diet —► Identifieri

O b je c t iv e From a Qual (q) construct and return the corresponding ASi identifier

A lg o r i th m

Line 1

Line 2

Line 3
Line 4
Line 5

E xtract the Newqual (see the definition of Newqual) from the Diet
descriptor, i.e. insert unique names in the Qual.
Let nameq denote its qualifier (i.e. the Qual of the surrounding
scopeunit).
Extract the name part of the entity.
Transform the Qual into an ASi qualifier.
C onstruct the ASi identifier containing the ASi representation of
the name, string or infix operator

make-asi-qual(qual) =

1 i f t l qual = () th e n
2 0
3 else
4 (let (q, nm) = h d qual in
5 le t asinm = name-to-nam ei(nm) in
6 le t asiq = cases q:
7 (SYSTEM
8 -* nik-System-qualifieri(asinm),
9 BLOCK

10 - ♦ m \i- Block-qualifier i(as \nm),
11 PROCESS
12 -» mk-Process-qualifieri(asinm),
13 PROCEDURE
14 vak-Procedure-qualifier\(asinm),
15 TYPE
16 mk-Sort-qualifieri(asinm),
17 SIGNAL
18 -» m k -Signal-qualifier^asinm),
19 SUBSTRUCTURE
2 0 — m k -Block-sub structure - qualifier (asinm)) in
2 1 le t q' — make-asi-qual (tl qual) in
22 (o«i q^q'))

ty p e : Qual Qualifieri

O b je c t iv e C onstruct and return an ASi qualifier from a Qual (qual)

A lg o r i th m

Line 1 W hen through, return the empty qualifier (the function is recur­
sive).

Line 4 Let q and nm denote the entity class and the name of the first
element in the qual.

(3.8.2)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 223

Line 7 If the entity class is the system then construct an ASi system
qualifier element.

Line 9 If the entity class is a block then construct an ASi block qualifier
element.

Line 11 If the entity class is a process then construct an ASi process qual­
ifier element.

Line 13 If the entity class is a procedure then construct an ASi procedure
qualifier element.

Line 15 If the entity class is sort then construct an ASx sort qualifier ele­
ment.

Line 17 If the entity class is a signal then construct an ASi signal qualifier
element.

Line 19 If the entity class is a block sub-structure then construct an ASi
block sub-structure qualifier The two other entity classes services
and channel sub-structure have been removed from the Qual in the
function make-new-qual.

Line 21-22 Transform the rest of the Qual into ASi and jo in it w ith this ele­
ment

make-new-qual(qual)(dict) = (3.8.3)

1 (let level = diet (SCOPEUNIT) in
2 le t qual' = cases dict(qual):
3 (m k- TimerD (, q)
4 - 9,
5 m k -ProcedureD(, q)
6 - 9 ,

7 m k -S o r tD (, ,, q)
8 - 9 ,
9 m k-SyntypeD(, q , ,)

10 - q,
11 m k- V arD (,, , , q)
12 q,
13 mk-OperatorD (,, q ,)
14 q,
15 m k -ChannelD (, , , , sub)
16 If sub = nil th e n qual else convert-channel-qual(sub, level),
17 m k -ChannelsubD (bqual)
18 — bqual (qual[len qual]),
19 m k-5ertuce.D (,, , ,)
2 0 -» get-sur[qual),
21 T -* qual) in
2 2 le t qualelem = qual'[len qual'] in

Line 5 Let asi nm denote the ASi representation of the name.

23 i f t l qual' = () th e n
24 (qualelem)
25 else
26 (let qualrest =
27 if is - OperatorD (dict(qual)) V is -LiteralD (dict(qual))
28 th e n get-sur[get-sur(qual'))
29 else get-sur[qual') in
30 make-new-qual[qualrest)[dict) (qualelem)))

ty p e : Qual —> Diet —► Qual

O b je c t iv e Insert unique names in the Qual of an entity. Unique names are neces­
sary because of services and because of operator overloading

R e s u l t The new unique qual

224 Fascicle X .4 — R ec . Z .100 — A n n e x F .2

A lg o r ith m

Line 1 Let level denote the Qual of the scopeunit defining the entity
Line 3-21 In the descriptor of the entity, the new Qual is found. Only enti­

ties which may be defined in services, channels and channel sub­
structure are renamed (channels are renamed if they contain a
sub-structure (sub ^ n il) and channel sub-structures are renamed
to a block sub-structure). For the Qual of a service, the Qual of
the enclosing process is returned.

Line 22-29 Take the qual of the scopeunit (qualrest) which defined the entity
and rename th a t Qual. If the old Qual denotes an operator or a
literal then do not use the TYPE qualifier element in the new Qual.

Line 30 R eturn the renamed scopeunit joined with the pair of entity class
and name for the entity

convert-channel-qual(sub, level) =

1 (let (61, c l, 62, c2) = sub in
2 i f (3 q)(level = 61 q) th en
3 get-sur(bl) ^ ((CHANNEL, c l))
4 else
5 g e t - s u r (b 2) {(CHANNEL, c2)})

ty p e : Newchannels Qual —* Qual

O b je c t iv e

P a r a m e te r s

sub

level

R e s u l t

A lg o r i th m

Line 1

Line 2-5

Channels which contains a sub-structure are represented by two new
channels, each leading to the sub-structure which is represented by a
block sub-structure. W hen the name of the channel is used (in an
identifier in a VIA set) it is replaced by the name of one of the new
channels depending of where the channel is used, convert-channel-qual
return the Qual of such a new channel. Note th a t it is not allowed to
refer to the old channel name inside the channel sub-structure

The inform ation about the two new channels. This inform ation is
extracted from the channel descriptor
The scopeunit where the channel is used

The Qual of the new channel

Let bl denote one of the block endpoints, c l the new channel con­
nected to th a t endpoint, b2 the other endpoint and c2 the new
channel connected to th a t endpoint.
If level indicates a scopeunit which is contained in bl then return
the Qual of the channel connected to th a t block, else return the
Qual of the other endpoint

make-as\idset(idset)(dict) =

1 {make-asi-identifier(id)(diet) | id £ idset}

ty p e : Qual-set —♦ Diet —» Identifieri -set

O b je c t iv e From a set of Quals construct the corresponding set of ASi identifiers

(3.8.4)

(3.8.5)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 225

make-asi tree (node, name, asi set, parm l, parm2,parmZ)(dict) = (3.8.6)

1 (le t as\name = name-to-name\(name),
2 data = <hct(DATATYPEDEF) in
3 i f sorts -have-values (data) (diet) th e n
4 (let blocks = {elem \ elem £ asiset A is-Block-definitioni(elem)},
5 channels = { elem | elem £ asyset A is -Channel-definitioni(elem)},
6 signals — {elem | elem £ as\set A \b-Signal-definition(elem)},
7 sigroutes = {elem | elem £ asiset A is-Signal-route-definition(elem)},
8 syntypes = {elem | elem £ asiset A is-Syn-type-definit ion(elem)},
9 procedures — {elem \ elem £ asiset Ais-Procedure-definition(elem)},

10 processs = {elem | elem £ as^set A is -Process-definitioni(elem)},
11 views — {elem | elem £ as^set A is-V iew -de fin it ion (e lem)} ,
1 2 timers = {elem \ elem £ as\set A\s>-Timer-definition(elem)},
13 vars = {elem \ elem £ asiset A is-Variable-definitioni (elem)} in
14 cases node:
15 (SYSTEM
16 -> m k-Sys tem -def in i t ion (as\ name, blocks, channels, signals, data, syntypes),
17 BLOCK
18 — m k -Block-definition (asi nam e, processs, signals, parm l, sigroutes, data, syntypes, parm2),
19 SUBSTRUCTURE
20 — mk-Block-substructure-definitioni(asiname, blocks, p a r m l , channels, signals, data, syntypes),
21 PROCESS
2 2 -* mk-Process-definitioni (asi name, parm l, parm2, procedures, signals, data,
23 syntypes, vars, views, timers, parmZ),
24 PROCEDURE
25 mk-Procedure-definitioni(asi name, parm l, procedures, data, syntypes, vars, parm2)))
26 else
27 exit("§5.2.1: Sort in data type definition have no values”))

ty p e : Quot [iVame0] Decli-set [Channel-to-route-connection | Channel-connection |
Number-of -instancesi \ Procedure-formal-parameteri*}
[Process-formal-parameteri* \ Procedure-graphi \ Block-substructure-definition]
[Process-graphi] —* Diet —> Decli

O b je c t iv e C onstruct the ASi representation of a scopeunit, th a t is of a system, a
block, a block sub-structure a process or a procedure.

P a r a m e te r s

node The kind of scopeunit to be constructed
name The name of the scopeunit
asi set The set of definitions contained in the scopeunit
pa rm l ,parm2,parm3 Some param eters which differs depending on the kind of scopeunit.

For instance, if the scopeunit is a process then parm l is Number-
of-instancesi

R e s u l t The ASi system, block, block sub-structure, process or procedure defi­
nition

A lg o r i th m

Line 1 E xtract the ASj representation of the name.
Line 2 E xtract the Data-type-definition of the scopeunit.
Line 3 Every sort in the Data-type-definition m ust have a t least one value.
Line 4-13 Partition the set of definitions into a set of block definitions.
Line 5 A set of channel definitions.
Line 6 A set of signal definitions.
Line 7 A set of signal route definitions.
Line 8 A set of syntype definitions.

226 Fascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 9 A set of procedure definitions.
Line 10 A set of process definitions.
Line 11 A set of view definitions.
Line 12 A set of tim er definitions.
Line 13 A set of variable definitions.
Line 15-16 C onstruct a system definition.
Line 17-18 C onstruct a block definition.
Line 19-20 C onstruct a block sub-structure definition,
Line 21-23 C onstruct a process definition.
Line 24-25 C onstruct a procedure definition.

sorts-have-values(mk-D ata-type-defin it ion^ , snm set , signatureset,))(dict) =

1 (le t level = <hc<(SCOPEUI\IIT) in
2 (Vnm G snmset)
3 ((3 si<7n £ signatureset)
4 ((le t xnk-Identifieri(qual, signm) = s-Resulti(sign) in
5 /eve/ = gual A nm = signm))))

ty p e : Data-type-definition —» Zhct —> 5ooZ

O b je c tiv e

P a r a m e te r s

snmset
signatureset

R e s u lt

A lg o r i th m

Tine 2

Line 4-5

Test whether a da ta type definition for a scopeunit has values for every
sorts i.e. whether there exist at least one literal of the sort or one
operator which returns a value of the sort

The d a ta type definition containing

The set of sorts defined by the d a ta type definition
The set of literal and operator signatures for the d a ta type defini­
tion

True if success

For all sort names in the set of sorts it m ust hold th a t there exist
a signature in the set of signatures such th a t
The result sort is locally defined and its name is the same as the
sort name (nm)

(3.8.7)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 227

make - asi - concaxioms (qualset)(dict) = (3.8.8)

1 (if qualset = {} th e n
2 {}
3 else
4 (let qual £ qualset in
5 le t (,nm) = g«a/[len qual] in
6 le t sort = get-sur(qual) in
7 i f is-ATameo(nm) th e n
8 make-asi-concaxioms (qualset \ {qual})(dict)
9 else

10 (let mk-Stringo(str) = nm in
11 i f len str < 1 th e n
1 2 make-asi-concaxioms (qualset \ {qual})(dict)
13 else
14 (let ch = s tr [len str] in
15 le t rest = mk-Strm<7o({str[i] | 1 < i < len s tr — 1)) in
16 i f sort ^((L IT E R A L , rest)) £ d o m diet th en
17 m ake-asi-concaxioms(qualset\{qual})(dict)
18 else
19 (let concop = mk-Qualop0(sort,mk-Quotedop0(COHC)) in
2 0 le t strexprl = nik-Stringtermo(() , rest),
21 strexpr 2 = mk-Stringtermo((),mk-Stringo((ch))),
2 2 strexprZ = m k -Stringtermo((), nm) in
23 le t equation —
24 mk-Equationo(mk.-Operatortermo(concop, (strexpr 1, strexpri)), strexprS) in
25 le t equationi =
26 (tra p ex it w ith {} in
27 {transform-axiom(equation, AX\OMS)(dict)}) in
28 equationi U make-asi-concaxioms (qualset \ {<jfua/})(dtct))))))

ty p e : Qual-set —* Diet —► Equationsi

O b je c t iv e C onstruct the ASi representation of the implied concatenation axioms
attached to character string literals, for example ’ abc * have the implied
axioms:

’ab’//’c ’ == ’abc’;
' a V / ’b 1 == ’ab’;

provided the equations are statically well-formed

P a r a m e te r s The set of literal Quals defined in a partial da ta type definition

R e s u l t The constructed ASi equations

A lg o r i th m

Line 1 W hen through, return the em pty set of equations (the function is
recursive).

Line 4 Consider the next literal.
Line 5 Let nm denote the name of the literal.
Line 6 Let sort denote its sort.
Line 7-8 If the literal is represented by a norm al name then continue w ith

the rest of the literals else
Line 10 Let str denote the characters in the string.

Line 11-12 Unless the number of character is greater than one then continue
with the rest of the literals.

Line 14 Let ch denote the last character in the string.
Line 15 Let rest denote the string containing all bu t the last character.

228 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 16-17

Line 19
Line 20

Line 21

Line 22
Line 23
Line 25-27

Line 28

If the string where the last character has been removed is not
defined for the sort then continue with the rest of the literals.
Construct the ” / / ” operator.
Construct a string term containing the rest of the characters and
containing no qualifier {strexpri).
Construct a string term containing the last character and contain­
ing no qualifier (strexpr2).
Construct a string term containing the string literal {strexpr3).
Construct the equation : s t r e x p r l / / s t r e x p r 2 == s t r e x p r3
Try to transform the equation into ASi. If it fails then the equation
is not well-formed and is therefore not implied.
Join the equation with the equations implied from the rest of the
literals

aso-id{qual) =

1 i f qual = EIMV th en
2 EIMV
3 else
4 (let (,nm) = gua/flen qual] in
5 le t qualifier = get-sur{qual) in
6 m k -Ido{qualifier, nm))

ty p e : {Qual | EIMV) - {Ido | ENV)

O b je c tiv e Retrieve an AS0 identifier from a Qual. This function is used in the
expansion of short-hands.

P a ra m eters

qual The Qual to be converted to an ASo identifier. As the function
also is applied channel and signal route endpoints, the function
may take ENV as argument.

R e su lt The constructed AS0 identifier

A lg o r ith m

Line 1 If it is ENV then do not change it else
Line 4 E xtract the name part.
Line 5 E xtract the qualifier which is the Qual of the surrounding scopeu­

nit.
Line 6 R eturn the composed identifier

make -implicit-var decl {diet) =

1 (let (, / l n m , / 2 nra) = dect(GLOBALNAMES) in
2 le t asoid = aso-id{get-predef-sort{"\NTEGER”){dict)) in
3 le t init = m k-/do((), nik-Nameo{,,0", nil)) in
4 le t formudecl = m k- Vardefo{nil, nil, (mk- Vardefelemo{(flnm, f2 n m) , asoid, init))) in
5 le t closureset = dict(IMPUED) in
6 le t asodefs = formudecl {make-implicit-import-vardef {closure) | closure 6 closureset) in
7 transform-vardef (aso defs){dict))

ty p e : Diet —► Variable-definitioni-set Diet

O b jec tiv e Construct the ASi variable definitions for the two im plicit variables
used in enabling condition and continuous signal and construct the ASi
variable definitions for the im plicit im port variables in a process

(3.8.9)

(3.8.10)

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 229

A lg o r ith m

Line 1 Let f l n m and f2nm denote the ASo names of the two im plicit vari­
ables used in enabling condition and continuous signal.

Line 2 Let asoid denote the ASo identifier of the IN TEG ER sort.
Line 3 C onstruct the in itiation expression. The variables are initialized

to zero.
Line 4 C onstruct the ASo variable definitions for the two variables.
Line 5 Extract the set of pairs of variable name and variable sort contain­

ing the im plicit variables used in the transform ation of the im port
expressions.

Line 6 Let asodefs denote all the im plicit definitions.
Line 7 Transform the definitions into ASi

make-implicit-import-vardef ((i, nm)) =

1 (let as0tid = asQ-id(t) in
2 m k- Varde/o(nil, nil, (m k- Vardefelemo((nm) , as0tid, nil))))

ty p e : NameclosureD —» Vardefo

O b je c t iv e C onstruct the AS<j variable definition for an im plicit im port variable

P a r a m e te r s The pair of variable sort t and variable name (nm)

Line 1 C onstruct the ASo identifier of the variable sort.
Line 2 C onstruct the ASo variable definition. The variable is not in itia l­

ized as the first use of it always is in an input node

(3.8.11)

230 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

transform-import (tnm, originalnodei, actl, term)(dict) = (3.8.12)

1 (let importlist = diet (IMPORTLIST) in
2 le t (im p n m , qual, expr) = hd importlist,
3 statenm = create -unique- name () in
4 le t (, (n m ,)) = gua/[len qual] in
5 le t m k -ImportD (tq) = dict(qual) in
6 le t mk-SignalnamesD(, xq, xr) = exportmap ((tq , nm)) in
7 le t lev = diet (SCOPEUIMIT) in
8 le t osig = m k -Outputsigo(mk-Ido((), xq), ()) in
9 le t outputnode — m k-Actstm to(m l, mk-Outputo((osig), expr, ())) in

10 le t sigset = all-input-signals(lev)(dict) \ {lev ((SIGNAL, *r))} in
11 le t savenode = mk-Savespeco((aso-id(sig) | sig £ sigset)),
12 statedict = diet (STATEDICT) in
13 le t term stm t' = mk-Termstmto(nil, mk-Nextstateo(mk-Ido((), statenm))) in
14 le t outputtrans = m k -Transitiono(outputnode, termstmt') in
15 let impdict — [IMPLIED i-» (chct(IMPLIED) U {(tq, impnm)}),
16 IMPORTLIST ■-» tl importlist] in
17 i f tl importlist = () th en
18 (let inputtrans — mk-Transitiono(actl, term) in
19 le t inpvars = (mk-Inputvarso(mk-Ido(() , xr), (mk-Ido((), impnm)))) in
2 0 le t inputnode = mk-Inputspeco(inpvars, nil, inputtrans) in
21 le t stated — m k-S ta teD ({(lev, inputnode), (lev, savenode)), (tnm , originalnode i)) in
2 2 le t statedict' = statedict -f [statenm i—► stated] in
23 le t diet' = diet + [STATEDICT i—♦ statedict'] in
24 (outputtrans, diet' + impdict))
25 else
26 (let (te rm stm t" , diet") = transform-import(tnm, originalnode\, actl, term)(dict + impdict) in
27 le t inpvars = (mk-Inputvarso(mk-Ido((), xr), (mk-Ido((), impnm)))) in
28 le t inputnode — mk-InputspecQ(inpvars, nil, termstmt") in
29 le t statedict' =
30 statedict -f [statenm i—* m k -StateD (((lev, inputnode), (lev, savenode)), (tnm , nil))] in
31 le t diet'" — diet" + [STATEDICT i—> statedict'] in
32 (outputtrans, diet'")))

ty p e : Statename0 (Graph-nodei \ Decision-nodei) Actstmto+ [Termstmto] —* Diet —* Transitiono Diet

expression and construct the transition leading to the im plicit state

P a ra m eters

sion belongs. The name is saved in the StateD descriptor of the
im port sta te such th a t during the transform ation of the transi­
tion following the im port state, dashed nextstate can be properly
substitu ted
The ASi version of the action which contained the im port expres­
sion. This node is also saved in the im port state (the two objects
forms the Importstateinf defined in Quotdict) as it must be included
in the ASi transition following the im port state
The ASo actions and term inator which followed the action contain­
ing im port expression(s). The transition which follows the x tR E ­
PLY input contains these two objects. W hen the im port state

expression then the transition following the xtREPLY input for the
other im port states consist of an ou tput of the xtQUERY signal
and a nextstate to the next im port state.

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 231

R e s u l t

A lg o r i th m

Line 1

Line 2

Line 3
Line 4
Line 5
Line 6

Line 7

Line 8-9

Line 10

Line 11
Line 13-14

Line 15

Line 17

Line 18

Line 20
Line 22-23

Line 24

Line 26

Line 28

Line 29-31

Line 32

An ASo transition containing an output of the xtQUERY signal associ­
ated to the first im port sta te and a Diet updated to include descriptors
for the im plicit im port states

E xtract the inform ation about the im port expressions which oc­
curred in the expression.
E xtract inform ation about the first im port expression, impnm de­
notes the name of the im plicit variable replacing the im port ex­
pression, qual denotes the Qual of the im port variable used in the
im port expression and expr denotes the ASo pid expression from
the im port expression.
C onstruct a name for the im plicit state.
E xtract the name of the im port variable.
E xtract the Qual of the result sort of the im port expression.
Decompose the SignalnamesD associated to the pair of result sort
and im port variable name, xq is the name of the xtQ U ERY signal
and xr is the name of the xtREPLY signal.
Let lev denote the current scopeunit, th a t is the process, a service
or a procedure.
Construct the ou tpu t action containing the xtQUERY signal and
the PiD expression.
Let sigset denote the Quals of the signals which m ust be saved in
the im plicit state.
C onstruct the ASo save node.
C onstruct the transition containing the ou tpu t of the xtQUERY
signal and which term inates in the im plicit state.
Add the new im port variable to the set of im plicit variables con­
tained in the IMPLIED entry in Diet and remove the inform ation
about the im port expression from the list contained in the IM­
PORTLIST entry.
If this im port expression was the last (or the only one) in the
expression then
C onstruct the transition containing the actions and term inator
which followed the action containing the expression.
C onstruct the input of the xtREPLY signal.
Add the im plicit sta te to Statedict. lev indicates th a t the input
node and the save node shall be transform ed in the same context
as the one in which the im port expression occurred (recall th a t the
states are transform ed after services have been merged).
R eturn the transition containing the ou tput and return the up­
dated Diet.
If there are more im port expressions then construct the ou tput
transition leading to the next im port sta te and update Diet to
include the rest of the im port states and to include the new implicit
variable.
C onstruct the input containing the transition leading to the next
im port state.
U pdate Statedict to include the new im plicit state. The Import­
stateinf descriptor in the StateD descriptor do not contain the ASi
action (originalnode\) since this sta te is not the last of the states
implied by the im port expressions in the action.
R eturn the transition containing the ou tput and return the up­
dated Diet

232 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

3.9 E xp an sion o f Services

build-service-descriptor(m k-Servicedefo(id, sigset, dell, body, tid))(dict) = (3.9.

1 (let m k -Ido(q, snm) = id in
2 le t squal = dicf(SCOPEUNIT) ^ ((SERVICE, snm)) in
3 le t diet' — diet + [SCOPEUNIT squal) in
4 if q {) th e n
5 e x i t ('*§2.4.1: Defining names may only be qualified in remote definitions”)
6 else
7 if tid € {id, nil} th e n
8 (let sigqualset — transform-validinputset(sigset)(dict') in
9 le t (asidclset, diet") — transform-decllist(dcll)(dict') in

1 0 le t (starttrans, labeldict, statedict, priinput) =
11 build-service-statedict(body)(dict) in
1 2 (asydclset, diet" + [squal i—► m k -ServiceD (starttrans, labeldict, statedict, sigqualset, priinput)]))
13 else
14 e x i t ("§2.2.2: Ending name in service definition is different from defining name’’))

ty p e : Servicedefo —► Diet —► Decl\-set Diet

O b je c t iv e Transform the definitions contained in a service definition into ASi and
construct a service descriptor which contains the service graph in the
form of a Statedict and a Labeldict

P a r a m e te r s The service definition containing

id The identifier of the service
sigset The valid input signal set for the service
dell The local definitions
body The service graph
tid The identifier ending the service definition

R e s u l t The ASi definitions of the local definitions and a Diet containing the
service descriptor and the descriptors of the local definitions

A lg o r i th m

Line 2-3 U pdate SCOPEUNIT in Diet to denote the service
Line 4-7 The service identifier must not be qualified (line 4) and if the end­

ing identifier is specified then it m ust be the same as the service
identifier (line 7)

Line 8 The signals which may be received in an input or a priority input in
the service are the signals specified in the valid input signal set or
specified in the service signal route joined w ith the tim ers defined
in the service.

Line 9 Transform the local definitions.
Line 10 Extract the in itial transition (starttrans), construct the Statedict

(statedict) and the Labeldict (labeldict) from the service graph and
extract the signals which are high priority.

Line 12 R eturn the ASi version of the local definitions and the Diet up­
dated to include their descriptors and the descriptor of the service

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 233

build-service-statedict(nik-Bodyo(trans, statelist))(diet) = (3.9.2)

1 (let trans1 = insert-trans-term(trans) in
2 le t statelist' = (insert-state-term(statelist[i]) | 1 < i < len statelist) in
3 le t labeldict = build-trans-labeldict(trans ')([]) in
4 le t labeldict' = build-state-labeldict(statelist')(labeldict) in
5 le t statedict — build-stat edict (statelist ' , dic<(SCOPEUNIT))([]) in
6 le t statedict' = remove-asterisk-input-and-save(statedict)(dict) in
7 le t priinput = extract-priinput (statedict')(dict) in
8 (trans', labeldict', statedict', priinput))

ty p e : Bodyo —* Diet —► Transitiono Labeldict Statedict Signalqual-set

O b je c t iv e

P a r a m e te r s

trans
statelist

R e s u l t

A lg o r i th m

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

Line 7
Line 8

C onstruct the Statedict and the Labeldict for a service

The body of a service containing

The initial transition
The states of the service

The in itial transition where term inators have been inserted in decision
answers, the constructed Labeldict, the constructed Statedict and the
Quals of the high priority signals

Insert term inators in the initial transition.
Insert term inators in the states of the service.
C onstruct the Labeldict for the initial transition.
Extend the Labeldict to include the whole service body.
C onstruct the Statedict.
Remove the asterisk inputs and asterisk saves from the states in
Statedict.
E xtract the Quals of the high priority signals.
R eturn the in itial transition, the Labeldict, the Statedict and the
high priority signals

extract -priinput (statedict) (diet) =

1 (if statedict — [] th e n
2 {}
3 else
4 (let stnm E dom statedict in
5 le t m k -StateD (speclist,) = statedict (stnm) in
6 le t inputset = {inp | (, inp) E elem s speclist A is-Priinputo(inp)} in
7 le t inpvars = {inpv \ (3nik-Priinputo(inpl ,) E inputset)(inpv E elem s inpl)} in
8 le t priset = {signal-qual(id)(dict) \
9 (3rxik-Inputvarso(id ' ,) E inpvars)(id' = id)} in

10 priset U extract-priinput(statedict \ {s tnm })(dict)))

ty p e : Statedict —*• Diet —> Signalqual -set

O b je c t iv e

P a r a m e te r s

R e s u l t

A lg o r i th m

Line 1

Extract the high priority signals from the states of a service by inspect­
ing the input nodes

The Statedict containing the service states

The high priority signals of the service

W hen through statedict, return the empty set (the function is re­
cursive).

(3.9.3)

234 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 4 Take some state in Statedict.
Line 5 Extract the inputs of the state.
Line 6 Extract the priority input nodes from the state.
Line 7-8 Extract the high priority signals from the priority inputs.
Line 10 R eturn the high priority signals together with the high priority

signals from the rest of the state

(3.9.4)

1 (let servicelist — (squal £ dom diet \ is-local(squal)(dict) A
2 is -ServiceD(dict(squal))) in
3 if servicelist = () th en
4 e x i t('‘§4.10: A decomposition must contain at least one service definition”)
5 else
6 (let statetuplemap = merge-states(servicelist, (), (), 1)(dict) in
7 le t statetuplenamemap = [statetuple create -unique-name() \
8 statetuple £ dom statetuplemap] in
9 le t statedict = [statetuplenamemap(tuple) i—► (statetuplemap(tuple), nil, nil) |

1 0 tuple £ dom statetuplemap] in
11 le t statedict1 = double-states (statedict, servicelist)(dict) in
1 2 le t statedict" — remove-cont-enable-from-statelist(dom statedict')(dict, statedict') in
13 le t diet' = diet + [SERVICES ■-» (statetuplenamemap, servicelist),
14 STATEDICT t-» statedict"] in
15 le t (firststate, firstservice) = extrad-firststate-or-service(servicelist, (), n il)(d icf) in
16 if firstservice = nil th en
17 (let term\ = mk-Nextstate-nodei(name-to-namei(firststate)) in
18 le t transi = add - service-varinit(mk-Transitioni((), termi), elems servicelist)(dict) in
19 le t (statebodyi, diet"") — transform-statelist({}) (diet1) in
2 0 (mk-Process-graphi(mk-Process-start-nodei(transi), statebodyi), diet""))
21 else
2 2 (let m k -ServiceD (trans, labeldict, , ,) = d id (firstservice) in
23 le t d id " = d id ' + [LABELDICT ►-» labeldict,
24 S C O P E U N IT firstservice] in
25 le t (transi, d id " ') = transform-transition(firststate, trans, Q)(d id") in
26 le t trans[= add-service-varinit(transi, elem s servicelist)(did) in
27 le t (statebodyi, diet"") — transform-statelist({})(did" ') in
28 (mk-Process-graphi(mk-Process-start-nodei(trans(), statebodyi), d id""))))

ty p e : Diet —► Process-graphi D id

transform-decomposition-body (d id) =

O b je c t iv e Transform a service decomposition into an ASi process graph

P a r a m e te r s The Diet which contains the descriptors of the services

R e s u l t The ASi process graph and a Diet which contains inform ation about
ou tpu t signals used in the services and about im plicit variables (same
as for transform-body)

A lg o r i th m

Line 1-2 Create a list of service Quals. This list is essential in the trans­
form ation of services. The positions in the list correspond to the
positions in the sta te name tuples as also mentioned in the trans­
form ation model in §4.10.2 of Z.100.

Line 3 There m ust exist a t least one service in a decomposition

Line 6 Merge the states of the services. The result is a special Statedict
where the entries are state name tuples instead of sta te names.

Line 7-8 C onstruct a m ap which defines a unique sta te name for each sta te
name tuple in the special Statedict.

F ascicle X .4 — R ec. Z .100 — A n n e x F .2 235

Line 12

Line 13

Line 9

Line 11

Line 15

Line 16
Line 17
Line 18

Line 19
Line 20

Line 22

Line 23

Line 25
Line 26

Line 27
Line 28

C onstruct a norm al Siaiedici where the name tuples are replaced
by the associated unique names.
C onstruct a new Statedict where each sta te is split in to two states:
The sta te receiving the priority inputs and the sta te receiving all
other inputs. The second of these states are given a unique name.
Remove enabling conditions and continuous signals from the State•
diet in the same way as done for a norm al process graph.
Make the servicelist and the relation between the sta te name tuples
and the unique sta te names available for the state transform ing
functions by including the inform ation in Diet. Also include the
Statedict in Diet in the same way as done for a norm al process
graph.
Extract the Qual of the service which contains the in itial actions
or extract the first sta te in the case where there is no service which
contains an initial transition i.e. either firststate is n il or firstser­
vice is n il.
If there is no service which contains an initial transition then
C onstruct the ASi nextstate to the first state.
Construct the ASi action list which initiates the variables of the
services and which term inates with the nextstate to the first state.
Transform the states.
Return the process graph where the in itial transition contains the
in itia tion of the variables and the constructed nextstate node.
If there is a service containing an initial transition then extract it
(trans). Also extract the Labeldict to be used in the transform ation
of the in itial transition.
Make Labeldict and the context in which the initial transition is
transform ed in, available for the transform ation function by in­
cluding them in Diet.
Transform the in itial transition.
Add the ASi action list which initiates the variables of the services
to the initial transition.
Transform the states.
R eturn the process graph

236 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

double-states(statedict, servicelist)(dict) = (3.9.5)

1
9

(if statedict = [] th e n
n

3
LJ

else
4 (let stnm £ dom statedict in
5 le t m k -StateD (speclist,) = statedict (stnm) in
6 le t (priinput, norminput) b e s .t . priinput U norminput — elem s speclist A
7 (V(,mp) £ priinput)(is-Priinputo(inp)) A
8 (V(,mp) £ norminput)(-iis-Priinputo(inp)) in
9 if priinput = {} th en

1 0 [stnm i—► statedict (stnm)] -f double-states (statedict \ {stnm }, servicelist) (diet)
11 else
12 (let saveset =
13 {(servicelist[i],mk-Savespeco(siglist)) | i £ ind servicelist A
14 (let sigset =
15 all-input - signals (servicelist [t])(dict) in
16 siglist = (aso-id(sig) | sig £ sigset))} in
17 le t qual £ elem s servicelist in
18 le t newstnm = create-unique-name() in
19 le t continput = (qual, mk-Contspeco(mk-Ido((), mk-Nameo("TRUE” , nil)), nil,
2 0 m k-Termsfmfo(nil, nik-Nextstateo(newstnm)))) in
21 le t firstspec — (spec \ spec £ (priinput U saveset)) ^ ((continput, nil)),
2 2 secondspec = (spec | spec £ norminput) in
23 le t firststate = [stnm i—> vain-StateD (fir stspec, nil)],
24 secondstate = [newstnm i—► nik-StateD (secondspec, (stnm, nil))] in
25 firststate + secondstate + double-states(statedict \ {s tnm }, servicelist)(diet))))

ty p e : Statedict Servicequal+ —♦ Diet —> Statedict

O b je c t iv e Replace every state in Statedict by two states where the first sta te has
the priority signals as inputs and the second sta te has the other signals
as inputs.

P a r a m e te r s

statedict
servicelist

R e s u l t

A lg o r i th m

Line 1
Line 4
Line 5
Line 6-8
Line 9-10
Line 12-U

Line 17

Line 18
Line 19

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 237

The (rest of) the old Statedict (the function is recursive)
The list of service Quals (see transform-decomposition)

The expanded Statedict

W hen through, return the empty map.
Take the next state to be dealt with.
Let speclist denote the list of inputs.
Split the inputs into priority inputs and other inputs.
If there is no priority inputs then do not modify the state.
Construct the Specs which each contains a save of all the norm al
signals. There is one Spec for each service.
Take some arb itrary service Qual from the service list. This service
is used in the constructed Spec (line 19) which contains the contin­
uous signal to the second state, th a t is, the constructed continuous
signal is transform ed in the context of an arb itrary service because
the continuous signal do not use any identifiers which are context
dependent.
Create a unique name for the second state.
Construct the continuous signal which leads to the second state.
The condition in the continuous signal is ’’true” . Note th a t contin­
uous signal has not been mentioned explicit in the model of services

Line 21

Line 22
Line 23
Line 24
Line 25

in Z.100. However, SAM ETOKEN (see §4.11 of Z.100) correspond
to the im plicit variable (called “n” in §4.12) and XCONT corre­
spond to the im plicit signal emptyq.
C onstruct the Speclist for the first state. It includes the continuous
signal.
C onstruct the Speclist for the second state.
C onstruct the Statedict contribution for the first state.
C onstruct the Statedict contribution for the second state.
Continue to double the rest of the states

extract -firststate-or-service (servicelist, statelist, firstservice)(dict) =

1 (if servicelist = () th e n
2 i f firstservice ^ nil th e n
3 (nil, firstservice)
4 else
5 (let (statetuplenamemap,) = diet (SERVICES) in
6 {statetuplenamemap{statelist), firstservice))
7 else
8 (let m k -ServiceD (m k -Transitiono{actl, t e r m) , , s td ic t , ,) = dicf(hd servicelist) in
9 i f actl = () Ais-Nextstateo{s-Terminatoro{term)) th en

10 (let nik-Termstmto{,jnk-Nextstateo{stnm)) = term in
11 i f stnm £ dom stdict th e n
1 2 extract-firststate-or-service{tl servicelist, statelist ^ {stnm), firstservice){dict)
13 else
14 e x i t (“§2 .6 .7.2 .1 : Name in nextstate must denote a defined state”))
15 else
16 if firstservice ^ nil th e n
17 e x i t (‘‘§4.10.2: More than one service contains an initial transition string”)
18 else
19 extract-firststate-or-service{t\ servicelist, nil, hd servicelist){diet)))

ty p e : Servicequal* [Statenameo*] [Servicequal] —♦ Diet —► [Statenameo] [Servicequal]

O b je c t iv e E xtract either the initial sta te of the composite states in Statedict or
the service which contains an initial transition.

P a r a m e te r s

servicelist The list of services (see transform-decomposition)
statelist A sta te name tuple which is constructed during the recursive call

of the function. W hen all the services in servicelist have been
considered, this name tuple defines the unique sta te name to be
returned (via the sta te tuple map, see transform-decomposition)

firstservice If a service containing an initial transition has been found then
firstservice contains the Qual of th a t service. As soon as such a
service has been found, the recursion could stop and the service
returned, but for the sake of checking th a t there is only one such
service, the service is taken as param eter to the next recursion call

R e s u l t If there exist a service which contains an initial transition then the Qual
of th a t service (Servicequal) else the name of the unique starting state

A lg o r i th m

Line 1-2 W hen having considered all the services then if a service containing
an initial transition has been found then return the Qual of th a t
service {firstservice) else

Line 5-6 the starting sta te is the sta te which correspond to the initial next­
states in the services {statelist contains those initial service states).

(3.9.6)

238 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

Line 8
Line 9
Line 10
Line 11

Line 12

Decompose the descriptor of the next service to be considered.
If the s ta rt transition contains a nextstate only then
Let stnm denote the name of the sta te in the nextstate.
If the state is defined in the service (i.e. if it can be found in the
Statedict local to the service) then
Continue with considering the next service. Add the sta te name
to the sta te name list such th a t eventually the new unique sta te
can be found if none of the services contains an initial transition
string (line 6).

Line 16-19 If a service containing an initial transition string has not already
been found then consider the next service. As a service containing
an initial transition has been found the sta te name list is of no use
(i.e. it is n il)

add - service-varinit (trans, s quals et)(dict) =

1 (if squalset = {} th en
2 add-varinit (trans, diet)
3 else
4 (let squal £ squalset in
5 le t d i d 1 = d id -f [SCOPEUNIT t—► squal] in
6 le t trans1 = add-varinit(trans, d id ') in
7 add-service-varinit(trans', squalset \ {squa l})(d id)))

ty p e : Transitioni Servicequal-set —» D id —► Transitioni

O b je c tiv e Add the ASi initiations of the service variables to the initial transition.

P a r a m e te r s

trans The initial transition
squalset The Quals of the services of a service decomposition

R e s u l t The updated transition

A lg o r i th m

Line 1 W hen through all the services then add the initiations of the vari­
ables defined on process level to the transition.

Line 4 Let squal denote one of the (remaining) services.
Line 5 Let SCOPEUNIT in D id denote th a t service.
Line 6 Let trans' denote the transition updated the variable in itiations for

th a t service. The function add-varinit is also used when construct­
ing the initial transition attached to a process or procedure.

Line 7 Add the initiations for the remaining services

merge-states(servicelist, statenmtuple, statelist, ind ex)(d id) =

1 (if index > len servicelist th en
2 [statenmtuple t—► nik-StateD (statelist, nil)]
3 else
4 (let m k-5ertncel?(,, statedict, ,) = did(servicelist[index]) in
5 m erge {merge-states(servicelist,
6 statenmtuple (statenm),
7 statelist &-Speclist(statedid(statenm)),
8 index + 1) (d id) \ statenm € dom statedict}))

ty p e : Servicequal+ Statenameo* Speclist Ni —► D id —» (Statenameo+ StateD)

(3.9.7)

(3.9.8)

Fascicle X .4 - R ec. Z .100 — A n n ex F .2 239

O b je c tiv e

P a ra m eters

servicelist

statenmtuple,
statelist

index

A lg o r ith m

Line 1

Line 4

Line 5-9

Merge (’’STATE EX PLO D E”) the Statedicts of the services into a State­
dict like m ap where the entries are sta te name tuples (same kind of
sta te name tuples as defined in the m odel-part of §4.10.2 of Z.100).
The function transform-decomposition-body, where this function is ap­
plied, introduces a unique sta te name for each of the tuples and thereby
converts the m ap into an ordinary Statedict

The list of Servicequals of the services. The positions of a service
in this list equals the position of its states in the state name tuples

The sta te name tuple (statenmtuple) and the inputs (statelist) for a
resulting sta te is creating recursively. W hen merge-states initially
is applied, they are empty.
The index to servicelist which indicates which service to be treated
a t this recursion level.

W hen having constructed a (complete) sta te name tuple (staten­
mtuple) then return the contribution for this particular tuple.
Let statedict denote the Statedict of the service corresponding to
index.
For this service, form the m ap which includes all the sta te tuples
which have statenmtuple as the first elements (formed from the
services which already have been treated) and which have a sta te
(statenm) from the service as the next element. The contributions
from the various states of the service are unified into a single map
by means of the m erge operator

is-wf-servicesignals(dict) = (3.

1 (le t processsignals =
2 {squal | (3nik-SignalrouteD (p i , p2, s i , s2) £ rng diet)
3 ((p i = dtc<(SCOPEUNIT) A squal £ s2) V (p2 = dict(SCOPEUNIT) A squal £ s i))} in
4 (3 d l, d2 £ do m diet) (is-ServiceD(diet (d l)) A is-ServiceD (diet (d2)) A
5 get-sur(d l) = ohct(SCOPEUI\IIT) A get-sur(d2) = dtct(SCOPEUNIT) A
6 s- Validinputset(dict(dl)) n s-Validinputset(dict(d2)) ^ {} D
7 (d l = d2 A s-Priinputset(d ict(d l)) fl processsignals = {})))

ty p e : Diet —► Bool

O b je c tiv e

R e su lt

A lg o r ith m

Line 1-3

Line 4

Check th a t the input signals of the services are disjoint and th a t no
priority signals are external to the enclosing process

True if the signals are well-formed

Let processsignals denote the signals contained in a signal route
(im plicit or explicit).
For every two Quals d l and d2 of entities defined in a process
it m ust hold th a t if they denote services (line 4) and they are
defined in the surrounding process (line 5) and they have input
signals in common (line 6) then they m ust denote the same service
and th a t service m ust have no high priority signals leading to the
environment of the surrounding process (line 7).

240 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

transform-servicesigroutedef(xnk-Sigroutedefo(nm, path, opath))(dict) = (3.9.10)

1 (let mk-Sigroutepatho(endpointl, endpoint2, siglist) = path in
2 le t sigroutequal = dict(SCOPEUNIT) ^ ((SIGNALROUTE, nm)) in
3 le t sigset = transform-signallist(siglist)(dict) in
4 le t 51 = get-visible-qual{endpointl, SERVICE)(diet),
5 s 2 — get-visible-qual(endpoint2, SERVICE)(dic<) in
6 le t osigset =
7 i f opath = nil th en
8 {}
9 else

10 (let m.k-Sigroutepatho(orig', dest', osiglist) = opath in
11 le t sV — get-visible-qual(orig1, SERVICE)(diet),
12 s2' = get-visible-qual{dest', SERVICE)(cfoc<) in
13 i f s i = s2' A s2 = s i ’ th en
14 transform-signallist (osiglist)(dict)
15 else
16 e x i t (''§4.10.1: The endpoints in the directions of a bidirectional signal route must match”)) in
17 if s i ^ s2 th e n
18 (let descr = mk-SignalrouteD (s i , s2, sigset, osigset) in
19 ({}, [sigroutequal descr]))
2 0 else
21 e x i t (“§4.10.1: The endpoints of service signal route must be different’’))

ty p e : Sigroutedefo —► Diet —► Decli-set Diet

O b jec tiv e

P a ra m eters

nm
path
opath

R esu lt

A lg o r ith m

Line 1
Line 2
Line 3
Line 4-5
Line 6-16

Line 10
Line 11-12
Line 12-13

Line 17
Line 18

Construct the Diet descriptor of a service signal route

The service signal route containing

The name of signal route
The first path
The second optional path

An em pty set of ASi definitions (because all the functions which trans­
forms ASi definitions returns ASi definitions) and the Diet contribution
containing the descriptor

Decompose the first path in the service signal route.
Construct the Qual which denotes the service signal route.
C onstruct the Quals for the signals in the first path.
Construct the Qual of the endpoints.
If the second path is om itted then osigset is empty else osigset
denotes the signals in the second path (the opposite directions as
sigset).
Decompose the second path.
Construct the Qual of the endpoints in the second path
The first endpoint of the first path must be equal to the second
endpoint of the second path and the second endpoint of the first
path m ust be equal to the first endpoint of the second path
The same service must not be specified in both endpoints.
Construct the service signal route descriptor

3 .10 C reation o f Im plic it C hannels and S ignal R ou tes

This section contains the functions which for a block create:

F ascicle X .4 - R ec. Z .100 - A n n ex F .2 241

• The im plicit channels which are connected to the block if it contains exporting pro­
cesses (for im porting processes, it is the other block endpoint containing exporting
processes which creates the channels)

• The im plicit sub-channels which are connected to the block if it contains im porting or
exporting processes

• The connect definitions if the block contains a sub-structure which im ports from- or
exports to its environment

• The im plicit signal routes and their associated connect definitions implied by im­
p o rt/ex p o rt and implied by the valid input signal sets in the case where no signal
routes are specified in ASo

• The ExpimpchanD descriptors to be contained in the BlockD descriptor. These de­
scriptors contains inform ation about how the block should be interfaced such th a t
im plicit sub-channels can be created for the other block endpoint

The entry function which is applied in transform-block is implicit-channels-and-signalroutes.

implicit-channels-and-signal-routes(decllist)(dict) = (3.10.1)

1 (let (exportset, importset) = imp-exp-in-processes(dict) in
2 le t sigroutes = implicit-signalroutes(decllist)(dict),
3 blockimport = all-importeurs (d iet) ,
4 blockexporteurs — all-exporteurs (diet),
5 (fatherimpm, fatherexpm) = father-block-import-export(dict) in
6 le t exporttoenv — {closure \ closure £ (exportset f ld o m fatherexpm)},
7 importfromblock = {closure | closure £ (importset n dom blockexporteurs)},
8 importfromenv — {closure \ closure G (importset fl dom fa therimpm)} in
9 le t importblockmap = [closure blockexporteurs (closure) \ closure G importfromblock),

10 importenvmap = [cl (—► {(EIMV, create-unique-name ()) | 1 < i < len fatherimpm) |
11 cl £ importfromenv],
12 exportblockmap = [cl i—► ((bqual, create-unique-name()) \ cl G (exportset D blockimport (bqual))) \
13 bqual G dom blockimport],
14 exportenvmap = [cl i—> ((ENV, create-unique-name ()) | 1 < i < len fatherexpm) |
15 cl £ exporttoenv] in
16 le t importenv channels — aso-channels (importenvmap, false) (diet),
17 exportblockchannels = aso-channels(exportblockmap,tr\ie)(dict),
18 exportenvchannels = aso-channels (exportenvmap, t iue)(d ic t) in
19 le t connects = implicit-connects(importblockmap, exportblockmap)(diet) in
2 0 le t decll = importenvchannels exportblockchannels /"A exportenvchannels in
21 (decll, sigroutes, connects, importblockmap, exportblockmap))

ty p e : Declo* Diet —* Declo* Declo* Declo* ExpimpchanD ExpimpchanD

O b je c t iv e C onstruct the im plicit channels, connect definitions and signal routes
for a block

P a r a m e te r s

decllist

R e s u l t

The definition list of the block. It is used for used for testing on
whether there are explicit signal routes in the block

The channels to be defined a t the same level as the block, the signal
routes and the signal route connections to be defined in the block, the
block sub-structure connections to be defined in the sub-structure (if
any), the relation between the im plicit channel names and the im port
signals it conveys (the channel name is deduced from the ExpimpchanD
defined for the exporting block) and the relation between the im plicit
channel names and the export signals

242 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 1

Line 2
Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Line 9

Line 10-11

Line 12-12

Line 14-15

Line 16

Line 17

Line 18

Line 19

Line 20

A lg o r ith m

Line 21

Let exportset denote the set of pairs of sort Qual and export name
(NameclosureDs) for the processes in the block and let importset
denote the NameclosureDs corresponding to export in the block.
Let sigroutes denote the implicit signal routes created for the block.
Let blockimport denote the relation between the block Quals and
the NameclosureDs for the im ported names in the block.
Let blockexporteurs denote the ExpimpchanD containing the ex­
ported names in all the other blocks and their names.
Let fatherimpm denote the im port ExpimpchanD descriptor for the
block which contains this block and let fatherexpm denote the ex­
port ExpimpchanD descriptor for the block which contains this
block
The NameclosureDs for the names which are exported from this
block to the environment of the scopeunit is the intersection be­
tween the NameclosureDs for the names exported from this block
(exportset) and the NameclosureDs for the names also exported in
the surrounding block
The NameclosureDs for the names which are im ported to this block
from another block is the intersection between the NameclosureDs
for the names im ported from this block (importset) and the N am e­
closureDs for the names exported in another block
The NameclosureDs for the names which are im ported to this block
from the environment of the scopeunit is the intersection between
the NameclosureDs for the names im ported from this block (im ­
portset) and the NameclosureDs for the names exported in the
surrounding block.
Construct the ExpimpchanD descriptor which contains inform ation
about the channel names conveying im port signal names. The
channel names are deduced from the descriptor contained in the
BlockD for the exporting block.
Construct the ExpimpchanD descriptor which contains inform ation
about the sub-channel names conveying im port signal names to
the environment of the block. In this case the channel names are
created since the other endpoint is ENV.
Construct the ExpimpchanD descriptor which contains inform ation
about the channel names conveying export signal names to other
blocks (in the same scopeunit).
Construct the ExpimpchanD descriptor which contains inform ation
about the sub-channel names conveying export signal names to the
environment of the scopeunit.
Construct the ASo sub-channels for the im ported names in the
block.
C onstruct the ASo channels for the names which are exported to
another block
C onstruct the AS0 channels for the names which are exported to
the surrounding scopeunit.
C onstruct the connect definitions for all the im plicit sub-channels
in the sub-structure of the block.
Let decll denote the definitions which are to be defined a t the same
level as where the block is defined, th a t is, all the constructed
channels.
R eturn the channel definitions, the signal route definitions and the
two ExpimpchanD maps

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 243

3 .1 0 .1 C rea tio n o f Im p lic it C hannels

aso-channels(map, isexport)(dict) =

1 (if map = [] th e n
2 {)
3 else
4 (let clos £ dom map in
5 (aso-channeldefs (map (clos), isexport, diet (clos)) (diet))
6 aso-channels (map \ {clos}, is export) (diet)))

ty p e : ExpimpchanD Bool —> Diet

O b je c t iv e

Chandefo*

P a r a m e te r s

map

isexport

R e s u l t

A lg o r i th m

Line 1

Line 4
Line 5

Line 6

C onstruct the im plicit channels associated to either im port from the
environment of a block or export to the environment of a block or
export from a block to another block

An ExpimpchanD containing inform ation about the channel name
and the name of one of the endpoint. The second endpoint is the
current block, i.e. constructed from dictf(SCOPEUJ\IIT)
True if channels for export names in the current block are to be
created

The constructed list of AS0 channel definitions

W hen through all the im ported or exported names then return the
em pty list.
Take the next NameclosureD for an im ported or exported name.
Construct the channel definition for th a t im ported or exported
name.
Construct the channel definitions for the rest of the NameclosureDs

aso-channeldefs(list, isexport, signalnames)(dict) =

1 (if list = () th e n
2 ()
3 else
4 (let level = dict(SCOPEUIMIT),
5 blkid — aso-id(level),
6 m k -SignalnamesD(, xq, xr) = signalnames in
7 le t signallist 1 = (mk-Ido((), xr)),
8 signallist2 = (mk-Jdo((), xq)),
9 (bqual, chan) = h d list in

1 0 le t blkid' = aso-id(bqual) in
11 le t (fromblock, toblock) = i f isexport th e n (blkid, blkid') else (blkid', blkid) in
1 2 le t direction 1 = m k -Chanpatho(fromblock, toblock, signallist 1),
13 direction2 = m k -Chanpatho (toblock, fromblock, signallist2) in
14 (nik-Chandefo(chan, directionl, direction2, nil, chan))
15 aso-channeldefs(t\ list, isexport, signalnames)(dict)))

ty p e : (Otherend Channameo)* Bool SignalnamesD —► Diet —► Chandefo*

O b je c t iv e For a given SignalnamesD, the two endpoint of channels and the channel
names, the channel definitions conveying the xtREPLY signal and the
xtQUERY signal are constructed

P a r a m e te r s

(3.10.1.1)

(3.10.1.2)

244 Fascicle X .4 — R ec . Z .100 — A n n ex F .2

list A list of pairs each consisting of the other endpoint than the current
one and the channel name. The list of pairs defines the channels
to be created

isexport T ru e if the current block is the exporting block
signalnames The SignalnamesD descriptor containing the xtR EPLY and the

xtQUERY signals corresponding to some NameclosureD

R e s u l t The list of ASo channel definitions

A lg o r i th m

Line 1 W hen through, return the empty list (the function is recursive).

Line 4-14 Construct a channel definition for the next item in the list.
Line 4 Let level denote the current block Qual.
Line 5 Let blkid denote the identifier of the current block.
Line 6 Let zgand xr denote the xtQUERY signal and the xtR EPLY signal

to be conveyed by the channel.
Line 7-8 Construct the two signal lists which contain the signals.
Line 9 Let bqual denote the Qual of the other end block and let chan

denote the channel name.

Line 10 C onstruct the identifier of the other end.
Line 11-11 If the current block is the exporter then fromblock denotes th a t

block, otherwise fromblock denotes the other endpoint (in the case
of a sub-channel).

Line 12-13 C onstruct the paths for the two signal lists.

Line 14 C onstruct the channel definition.
Line 15 C onstruct channel definitions for the rest of the list (list)

father - block - import-export (diet) =

1 (let level = dict(SCOPEUNIT) in
2 i f len level > 2 th en
3 (let fatherlevel = get-sur(get-sur(level)) in
4 le t m k -BlockD (exp, im p , ,) = diet (fatherlevel) in
5 (exp, imp))
6 else
7 (0 , 0))

ty p e : Diet —> ExpimpchanD ExpimpchanD

O b je c tiv e E xtract the two ExpimpchanDs for the block which contains the current
block

R e s u l t The ExpimpchanD for the export channels and the ExpimpchanD for
the im port channels

A lg o r i th m

Line 1 Let level denote the Qual of the current block.

Line 2 If the block is contained in a sub-structure then
Line 3 Let fatherlevel denote the Qual of the block containing the sub­

structure.

Line 4-5 R eturn the ExpimpchanDs for th a t block.

Line 8 If the current block is defined a t the system level then the m aps
are em pty as it is not possible to im port/export fro m /to the envi­
ronment of the system

(3.10.1.3)

F ascicle X .4 - R ec. Z .100 - A n n ex F .2 245

imp-exp-in-processes(dict) =

1 (le t level = dtct(SCOPEUNIT) in
2 le t pquals = {qual \ qual £ d o m diet A
3 is -ProcessD (diet (qual)) A
4 get-sur(qual) = level} in
5 i f pquals = {} th e n
6 (le t subblockquals = {gu a / | qual £ d o m d id A
7 is-BlockD (dict(qual)) A
8 get-sur(get-sur(qual)) = level} in
9 le t e ise f = {imp-exp-in-processes(dict + [SCOPEUNIT i—» gua/]) | qual £ subblockquals} i

10 (u n io n {imp | (im p ,) £ eiset}, u n io n {exp | (, exp) £ eiset}))
11 e lse
12 (le t eset = {vqual \ vqual £ d o m diet A
13 i s - VarD (diet (vqual)) A
14 get-sur(vqual) £ pquals},
15 iset = {vqual \ vqual £ d o m diet A is-ImportD(dict(vqual)) A
16 get-sur(vqual) £ pquals} in
17 le t expset =
18 {closure | (3 g £ eset)
19 ((let rn k -V a rD (t , , exp, ,) = dict(q),
20 (,vnm) = g [len g] in
21 exp = EXPORTED A closure = (t, u n m)))} ,
2 2 impset —
23 {closure | (3 g £ iset)
24 ((le t nik-ImportD (t) = dict(q),
25 (,vnm) — g [len g] in
26 closure — (t, u n m)))} in
27 (expset, impset)))

ty p e : Diet —♦ NameclosureD -se t NameclosureD -set

O b je c tiv e

R esu lt

A lg o r ith m

Line 1
Line 2-4
Line 5
Line 6-8

Line 9

Line 10

Line 12-14

Line 15-16

Line 17-21

Line 22-26

E xtract the pairs of sort and variable names (NameclosureDs) for the
export variables and for the im port variables defined in the processes
in a block- or - if the block contains no processes then for the processes
in the contained sub-structure

The NameclosureDs for the exported variables and the NameclosureDs
for the im ported variables

Let level denote the Qual of the current block.
Let pquals denote the Quals of the processes defined in the block.
If there are no processes in the block then
Let subblockquals denote the Quals of the blocks contained in the
sub-structure.
Extract the set of pairs of NameclosureD for exported variables
and for im ported variables for the sub-blocks.
Join all the export NameclosureDs in the set and jo in all the im port
NameclosureDs in the set.
If the block contains processes then let eset denote the set of vari­
able Quals for the variables defined in the processes.
Let iset denote the set of variable Quals for the im port variables
defined in the processes.
Let expset denote the NameclosureDs for the exported variables,
i.e. the set of pairs of sort (f) and exported (exp = EXPORTED)
variable name (vnm).
Let impset denote the NameclosureDs for the im ported variables.

(3.10.1.4)

246 F ascicle X .4 — R ec. Z .100 — A n n ex F .2

Line 27 Return the two sets

1 (let level = chct(SCOPEUNIT) in
2 le t sur = get-sur(level) in
3 le t blockqset = {qual \ qual (E dom diet A
4 is -BlockD(diet(qual)) A
5 get-sur(qual) — sur} \ {level} in
6 le t expimpmap = [g t—> imp-exp-in-processes(dict + [SCOPEUNIT n ► g]) | q £ blockqset] in
7 [? *—► closset | q € dom expimpmap A (, closset) — expimpmap (q)])

ty p e : Diet —> (Blockqual is* NameclosureD -set)

O b je c t iv e Extract inform ation about the relation between the NameclosureDs for
im port and the im porting block. The current block is excluded in the
relation (map)

all-importeurs (diet) —

A lg o r i th m

Line 1 Let level denote the current block.
Line 2 Let sur denote the Qual of the surrounding block sub-structure.
Line 3-5 C onstruct a set consisting of all blocks in the sub-structure except

the current one.
Line 6 C onstruct a m ap from im porting blocks to the pairs of Nameclo­

sureDs sets for the block.
Line 7 R eturn a m ap from im porting blocks to the NameclosureD for the

im ported variables in the blocks

all-exporteurs (diet) =

1 (let level = dtct(SCOPEUNIT) in
2 le t sur = get-sur(level) in
3 le t blockqset = {qual \ qual 6 dom diet A
4 is -BlockD(diet(qual)) A
5 get-sur(qual) = sur} \ {level} in
6 get-exporteurs (blockqset) (diet))

ty p e : Diet —* ExpimpchanD

O b je c t iv e C onstruct the (composite) ExpimpchanD which includes the exported
variables in all the other blocks (except the current one) which exports.

A lg o r i th m

Line 1
Line 2
Line 3-5

Line 6

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 247

Let level denote the Qual of the current block.
Let sur denote the Qual of the surrounding block sub-structure.
Let blockqset denote the set of Quals for all the other blocks in the
sub-structure.
Traverse recursively through the set of Quals while joining the
ExpimpchanDs for the blocks

(3.10.1.5)

(3.10.1.6)

get-exporteurs (blockqset) (diet) = (3.10.1.7)

1 (i f blockqset = { } th e n

2 0
3 e lse
4 (le t q £ blockqset in
5 le t blkqual = dtct(SCOPEUIMIT) in
6 le t m k -BlockD (expm , , ,) = dict(q) in
7 le t expm! = [closure i—► tup \ closure £ d o m expm A
8 (le t tup' = expm(closure) in
9 i f (3 t £ in d tup1)(s-Otherend(tup[i]) = blkqual) th e n

10 (le t i £ in d tup' b e s . t . s-Otherend(tup[i]) = blkqual in
1 1 tup = (<up[i]))
12 e lse
13 fa lse)] in
14 le t rest = get-exporteurs(blockqset \ {q})(dict) in
15 [clos i—► (rest -f expm')(clos) \ clos £ (dom rest — domerpm')] -f
16 [clos newlist \ clos £ (dom rest n dom expm') A newlist = rest(clos) /"> expm'(clos)]))

ty p e : Blockqual -se t —► Diet —> ExpimpchanD

O b je c t iv e C onstruct the composite ExpimpchanD which includes the inform ation
about export in all blocks

P a r a m e te r s

blockqset The set of (rem aining) blocks to be dealt with (the function is
recursive)

R e s u l t The constructed composite ExpimpchanD

A lg o r i th m

Line 1
Line 4
Line 5
Line 6

Line 7-13

Line 14
Line 15-16

W hen having dealt with all the blocks, return the em pty map.
Let q denote the next block Qual in the set.
Let blkqual denote the Qual of the current block.
Let expm denote the ExpimpchanD corresponding to export from
the block.
Restrict the ExpimpchanD m ap such th a t it only includes the ele­
m ents where the other endpoint is the current block.
C onstruct the composite ExpimpchanD for the rest of the blocks.
R eturn the ExpimpchanD where the lists in the two maps (expm'
and rest) have been concatenated. Line 15 defines the unchanged
entries and line 16 defines the entries which are constructed by
concatenating the lists for two entries from the maps

248 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

implicit-signalroutes (decll) (diet) =

1 (let existexplicit = (3d £ decll)(is-Sigroutedefo(d)) in
2 i f - iexistexplicit A (3mk-Prdefo(, ins t , , , , ,) € elem s decll)(inst = nil) th e n
3 e x i t (“§2.5.2: Valid input signal set must be specified when no signal routes are specified")
4 else
5 (let bqual = drct(SCOPEUNIT) in
6 le t cqualset =
7 {equal £ dom diet | is - ChannelD (dict(cqual)) A
8 (let mk-ChannelD (endpl, endp2 ,, ,) = dict(cqual) in
9 bqual £ {endpl, endp2})} in

10 le t pathset = {p £ dom diet | is -ProcessD(diet(p)) A is-local(p)(diet)} in
11 le t pathpairset £ (Processqual-set)-set b e s .t . (Ve £ pathpairset)(card e = 2) A
12 u n ion pathpairset = pathset A
13 (V p l,p 2 £ pathset)(pl ^ p2 D { p l ,p 2 } £ pathpairset) in
14 make-asQ-local-signalroutes(paihpairset, existexplicit)(dict)
15 make-aso-env-signalroutes (cqualset, existexplicit)(dict)))

ty p e : Declo* Diet —*■ Declo*

O b je c t iv e C onstruct the ASo im plicit signal routes for a block

A lg o r i th m

Line 1 Let existexplicit be t r u e if there are specified any signal routes in
the block.

Line 2-3 If no explicit signal routes are specified for the block then all con­
tained process definitions m ust contain a valid input signal set.

Line 5 E xtract the Qual of the block.
Line 6-9 Extract the descriptors for those channels which have the block as

one of the endpoints.
Line 10 C onstruct a set containing the Qual of all the processes in the

block.
Line 11-13 C onstruct a set of Processqual sets where each contained set con­

tains two elements (line 1 1), the sets contains only those process
Quals which are defined in the block (line 12) and the set contains
all possible com binations of sets (line 13).

Line 14 C onstruct the signal routes between processes in the block and
Line 15 C onstruct the signal routes connected to the environment of the

block

3 .1 0 .2 C rea tio n o f Im p lic it S ign a lrou tes

(3.10.2.1)

F ascicle X .4 — R ec . Z .100 — A n n ex F .2 249

1 (if pathset = {} th e n
2 ()
3 else
4 (let { p i, p 2} € pathset in
5 le t m k -ProcessD (, insig 1, outsig 1 ,) = diet (p i) ,
6 m k-Proces5D(, insig2, outsig2 ,) = dict(p2) in
7 le t (m stp l', orttszpl') = if existexplicit th en
8 import-export-signals (diet)
9 else

10 (mstgrl, outsi<7l) ,
11 (insig2 ', outsig2') = if existexplicit th en
1 2 import-export-signals (diet)
13 else
14 (insig2, outsig2) in
15 le t asop ltd = aso-id(p l),
16 asop2id = aso-id(p2) in
17 le t (com ls ig , com2sig) — (insigV fl outsig2', insig2' D oufsip l') in
18 le t asQsigsetl = {ajo-*d(id) | *d € com lsip},
19 a$o^<7sef2 = {aso-id(id) \ id £ com2sip} in
2 0 le t com l = if comlsig = {}
2 1 th e n nil
22 else mV.-Sigroutepatha(asoplid , asop2id, asosigsetl),
23 com2 = if com2sig = {}
24 th e n nil
25 else irik-Sigroutepatho(asop2id, asoplirf, a5o5ipse<2) in
26 le t (com ', com") — if com l = nil th e n (com 2 , com l) else (com l, com2) in
27 le t routeo =
28 if com' = nil A com" = nil
29 th e n ()
30 else (let nmo = create-unique-name() in
31 (m k-Sigroutepatho(nmo, com', com"))) in
32 routeo make-aso-local-signalroutes(pathset \ {{p i, p 2}}, existexplicit)(diet)))

ty p e : (Processqual-se t)-se t B o o l—> Diet —► Sigroutedefo*

O b je c t iv e C onstruct ASo signal routes which leads between processes in a block

P a r a m e te r s

pathset The set of pairs (sets containing two elements) of process
existexplicit True if there are specified signal routes for the block in ASo

R e s u l t A list of ASo signal routes

A lg o r i th m

Line 1 W hen through, return the empty list (the function is recursive).
Line 4 Let p i and p2 denote a com bination of processes to be dealt with.
Line 5-6 Decompose the descriptors of the processes.
Line 7-11 If signal routes are specified for the process in ASo then signal

routes are only constructed for the im port/export signals.
Line 15-16 Make the ASo identifiers for the processes.
Line 17 Let comlsig denote the signals which leads from p2 to p i and let

com2sig denote the signals which leads from p i to p2.
Line 18 C onstruct the ASo identifier set corresponding to comlsig.
Line 19 C onstruct the ASo identifier set corresponding to com2sig.
Line 20-25 Let coml and com2 denote the ASo communication paths from p2

to p i respectively from p i to p2 (n il if a pa th contains no signals).

make-aso~local-signalroutes(pathset, existexplicit)(dict) = (3.10.2.2)

250 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 26-31

Line 32

Let routeo denote a signal route which contains the signal between
the two processes.
Join the signal route definition with those for the rest of pairs of
processes

make-aso-env-signalroutes (cqualset, existexplicit) (diet) =

1 (if cqualset = {} th en
2 ()
3 else
4 (let bqual = diet (SCOPEUIMIT) in
5 le t equal £ cqualset in
6 le t pqualset = {pqual \ pqual £ dom diet A is-local(pqual)(dict)} in
7 le t sigroutes = make-aso-channel-signalroutes(equal, pqualset, existexplicit)(diet) in
8 if sigroutes = {} th en
9 make-aso-env-signalroutes(cqualset \ {equal}, existexplicit)(diet)

1 0 else
11 (let asochanid = aso-id(cqual),
1 2 routenameset = {nm | (3m k-Sigroutedefo(nm', ,) £ sigroutes)(nm' = nm)} in
13 le t asolist = (aso-id(bqual /'x ((SIGNALROUTE, nm)))] nm £ routenameset) in
14 (sigroute \ sigroute £ sigroutes) ^
15 (mk-Connecto(asochanid, asolist))
16 make-asQ-env - signalroutes (cqualset \ {equal}, existexplicit) (diet))))

ty p e : Channelqual-set Bool —■> Diet —► Declo*

O b je c tiv e

P a r a m e te r s

cqualset
existexplicit

R e s u l t

A lg o r i th m

Line 1
Line 4
Line 5
Line 6
Line 7
Line 8

Line 11
Line 12
Line 13
Line 14
Line 15
Line 16

Construct the im plicit ASo signal routes which are connected to the
environment of the block

The set of channels to which the block is connected
T ru e if signal routes are specified in the concrete syntax for the
block

The constructed list of ASo signal routes and the appropriate connect
definitions

W hen through, return the empty list (the function is recursive).
Let bqual denote the Qual of the block.
Take a next channel Qual to be dealt with.
Let pqualset denote the Quals of the processes in the block.
Construct the signal routes connected to the channel.
If there are no signal routes connected to the channel (this is an
error, but it is checked when the signal routes are transform ed into
ASx) or signal routes already exist for the channel then continue
to consider the rest of the channels.
Construct the ASo identifier of the channel.
E xtract the names of the constructed signal routes.
Turn the names into identifiers.
Return the signal routes and
Their associated connect definition and
The signal routes and connects corresponding to the rest of the
channels

(3.10.2.3)

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 251

make-aso-channel-signalroutes (equal, pqualset, existexplicit) (diet) = (3,10.2.4)

1 (if pqualset = {} th e n
2 ()
3 else
4 (let m k -C hanne lD (end l, , sigset 1, sigset2 ,) = dict(cqual) in
5 le t pqual £ pqualset in
6 le t mk-ProcessD(, insig, outsig ,) = diet (pqual) in
7 le t (insig1, outsig1) — i f existexplicit th en
8 import-export-signals (diet)
9 else

1 0 (insig, outsig) in
11 le t bqual = diet (SCO PE UN IT) in
1 2 le t (fromprocesssignals, toprocesssignals) = i f bqual = endl th en
13 (sigsetl fl outsig1, sigset2 n insig1)
14 else
15 (sigset2 n outsig1, sigset 1 n insig1) in
16 i f fromproces s signals U toprocesssignals = {} th e n
17 make-aso-channel-signalroutes(cqual, pqualset \ {pqual}, existexplicit)(dict)
18 else
19 (let routenm = create-unique-nameQ in
2 0 le t asopid = aso-id(pqual) in
2 1 le t asofromsignals = {as<}-*d(td) | id £ fromprocesssignals},
2 2 asotosignals = {aso-id(id) | id £ toprocesssignals} in
23 le t path l = i t fromprocess signals — {}
24 th e n nil
25 • else itik-Sigroutepatho(asopid, ENV, asofromsignals),
26 path2 = i f toprocesssignals = {}
27 th e n nil
28 else mk-Sigroutepatho(EN\/, asopid, asotosignals) in
29 le t (path1, path") = i f pathl = nil th e n (path2, pathl) else (pathl, path2) in
30 (nxk-Sigroutedefo(routenm, path1, path"))
31 make-aso-channel-signalroutes(cqual, pqualset \ {pqual}, existexplicit)(diet))))

ty p e : Channelqual Processqual-set Bool —> Diet —► Sigroutedefo*

O b je c t iv e C onstruct the im plicit signal routes corresponding to a given channel

P a r a m e te r s

existexplicit T ru e if signal routes are specified in the block

R e s u l t The constructed list of ASo signal routes

A lg o r i th m

received.

denote the ou tpu t signals of the process.
If signal routes are specified in the concrete syntax then tb
signal routes are only those implied from im port/export.

which are received through the channel.

252 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 16-17

Line 19
Line 20
Line 21
Line 22
Line 23-25

Line 26-28

Line 29

Line 30

If there are no signals sent or received through the channel then
continue to consider the rest of the processes.
Create an im plicit name for the signal route to be constructed.
C onstruct the ASo identifier of the process.
Turn the ou tpu t signals into ASo signal identifiers.
Turn the input signals into ASo signal identifiers.
If there are any signals sent from the process through the channel
then construct the appropriate Sigroutepatho.
If there are any signals received by the process through the channel
then construct the appropriate Sigroutepatho.
Let path' denote the path which contains signals (the first path)
and let path" denote the second optional path .
C onstruct and return a signal route connected to the channel and
construct signal routes for the rest of the processes connected to
the channel

3 .1 0 .3 C rea tion o f Im p lic it C on n ect S ta tem en ts

implicit-connects(exp, imp)(dict) =

1 (le t level = dict(SCOPEUNIT) in
2 le t expset =
3 {expmap | (Bqual £ d o m diet)
4 (i s -BlockD(diet(qual)) A
5 get-sur(qual) = level A
6 diet (qual) = m k -BlockD (expm ap , , ,)) } in
7 le t impset —
8 {impmap \ (Bqual £ d o m diet)
9 (is -BlockD(diet(qual)) A

10 get -sur (qual) = level A
11 dict(qual) = m k -BlockD(, im pm ap , ,))} in
12 le t outconnect =
13 i f exp = [] th e n
14 ()
15 e lse
16 (le t closure £ d o m exp in
17 gen-connect(expset, closure, exp(closure), exp \ {closure})),
18 inconnect —
19 i f imp = [] th e n
20 <)
21 e lse
22 (le t closure £ d o m imp in
23 gen-connect(impset, closure, imp(closure), imp \ {closure})) in
24 outconnect inconnect)

ty p e : ExpimpchanD ExpimpchanD —» Diet —► Connecto*

O b je c t iv e C onstruct the ASo channel connections for the im plicit channels implied
by im port/export

P a r a m e te r s

exp The ExpimpchanD export map for the block containing the blocks
to which the im plicit sub-channels are associated

imp The ExpimpchanD im port m ap for the block containing the blocks
to which the im plicit sub-channels are associated

R e su lt The list of ASq channel connections

(3.10.3.1)

Fascicle X .4 — R ec . Z .100 — A n n e x F .2 253

Line 2-6 C onstruct a set of export ExpimpchanD maps. There is one m ap
for each sub-block in the sub-structure.

Line 7-11 C onstruct a set of im port ExpimpchanD map. There is one m ap
for each sub-block in the sub-structure.

Line 12-17 C onstruct the channel connections for the channels implied from
export from the sub-structure, closure denotes the first Nameclo­
sureD to be treated.

Line 18-23 C onstruct the channel connections for the channels implied from
im port to the sub-structure, closure denotes the first Nameclo­
sureD to be treated

A lg o r ith m

L in e 1 Let level denote the Qual of the current block sub-structure.

gen-connect(mapset, closure, list, map) =

1 (if list = () th e n
2 i f map = [] th e n
3 0
4 else
5 (let closure' £ dom map in
6 gen-connect(mapset, closure', map (closure'), map \ {closure1}))
7 else
8 (let (m apset ', chanlist) = gen-connect-elem(mapset, closure, ()) in
9 le t (,channame) = h d list in

1 0 le t connect = mk-Connecto(channame, chanlist) in
11 (connect) ''"x gen-connect(mapset', closure, t l list, map)))

ty p e : ExpimpchanD-set NameclosureD (Otherend Channameo)* ExpimpchanD —+ Connecto+

O b je c tiv e

P a ra m eters

expimpset

closure
list

map

R e su lt

A lg o r ith m

Line 1

Line 2
Line 5
Line 6

Line 8

C onstruct the channel connections implied from im port or export of a
variable to /from a block sub-structure

The set of export ExpimpchanDs or im port ExpimpchanDs for the
blocks in the block sub-structure, i.e. inform ation about export or
im port in the sub-blocks
The NameclosureD to be treated
Contains the list of im plicit channels connected to the sub-structure
which conveys the im plicit signals corresponding to the Nameclo­
sureD (closure)
The ExpimpchanD for the rest of the nameclosureDs to be treated
for the sub-structure

A list of ASo channel connections

W hen through the channels connected to the block sub-structure
which correspond to closure then
If there are no more NameclosureDs to be treated then return else
Let closure denote the next NameclosureD to be treated.
Create the channel connections for the implied sub-channels cor­
responding to closure and create the channel connections for the
rest of the NameclosureDs.
U pdate the set of ExpimpchanD maps (mapset') for the sub-blocks
such th a t the entries corresponding to closure which leads to the
environment of the sub-structure are excluded. Also construct the
ASo sub-channel identifier list to be used in the channel connection.

(3.10.3.2)

254 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Line 10
Line 11

Line 9 Let channame denote the name of the im plicit channel connected
to the sub-structure.
C onstruct the channel connection.
Join the channel connection with the channel connections for the
rest of the im plicit sub-channels

g en-connect-elem(map set, closure, chanlist) —

1 (if mapset — {} th en
2 ({}, chanlist)
3 else
4 (let map £ mapset in
5 le t (mapset1, chanlist') = gen-connect-elem(mapset \ {map}, closure, chanlist) in
6 le t clist = map (closure) in
7 if (Bindex £ in d clist)(s-Otherend(clist[index]) = ENV) th en
8 (let index b e s .t . B-Otherend(clist[index]) = ENV in
9 le t clist' = (ch’stfij | 1 < i < len clist A i ^ index) in

1 0 le t map' = map + [closure (—► c/tst'] in
11 le t (,c/ian) = ch'st[index] in
12 (mapset' U {map'}, chanlist' (m k-/do((), chan))))
13 else
14 (mapset', chanlist')))

ty p e : ExpimpchanD -set NameclosureD Ido* —1" ExpimpchanD-set Ido*

O b jec tiv e

P a ra m eters

mapset

closure
chanlist

R esu lt

A lg o r ith m

Line 1

Line 4
Line 5

Line 6

Line 7

Line 8

Line 9
Line 10
Line 11

Extract the channel identifiers to be used in a channel connection which
is implied by a certain im port or export variable. The channel iden­
tifiers are found in the ExpimpchanD descriptors of the various sub­
blocks. After having extracted a channel identifier, the inform ation is
removed from the ExpimpchanD descriptor. The function also returns
the modified ExpimpchanD descriptors

The set of ExpimpchanD maps. There is one map for each sub­
block
The NameclosureD to which the implicit sub-channels are attached
The list of channel identifiers which is created recursively •

The modified set of ExpimpchanD maps and the constructed sub-chan­
nel identifier list

W hen through all the ExpimpchanD descriptors then return the
constructed channel identifier list.
Let map denote a next ExpimpchanD descriptor to be considered.
Modify the set of ExpimpchanD maps corresponding to the rest of
the sub-blocks and construct the appropriate sub-channels leading
to the rest of the sub-blocks
clist contains inform ation about all the sub-channel connected to
a sub-block conveying im plicit signals corresponding to the Nam e­
closureD (closure)
If one of the sub-channels are leading to the environment of the
sub-structure then
Let index be an index to the element containing the name of the
channel leading to the environment.
Exclude th a t element from the list.
Modify the ExpimpchanD m ap with the new list.
Let chan denote the sub-channel name.

(3.10.3.3)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 255

Line 12 R eturn the modified ExpimpchanD map set and the channel iden­
tifier list.

Line 14 If there is no sub-channel leading to the environment of the sub­
structure then return the ExpimpchanD m ap and the channel iden­
tifier list unchanged

3.11 U tility F u nctions

get-predef -sort (quot)(dict) =

1 (let nm == xtik-Nameo(quot, nil),
2 level = dict(SCOPEUIMIT) in
3 let sys = /eve/[l] in
4 sys ((TYPE, nm)))

type : Char*

O b je c tiv e

P a ra m eters

quot

A lg o r ith m

Line 1
Line 2-3
Line 4

Diet —+ Sortqual

E xtract the Qual of a predefined sort

The sequence of characters representing the spelling of the sort
name

C onstruct an ASo name from the spelling.
Let sys denote the Qual of the system level.
R eturn the Qual for the predefined sort (defined at system level)

get-parent(qual)(dict) =

1 (if qual £ dom diet then
2 (if is -SortD(diet(qual)) then
3 qual
4 else
5 (let m k-SyntypeD (g , , ,) = dict(qual) in
6 get-parent(q)(dict \ {qual})))
7 else
8 e x it ("§5.4.1.9: Syntype is defined in terms of itse lf’))

type : Sortqual —► Diet —+ Sortqual

O b je c tiv e

A lg o r ith m

Line 1
Line 2-3
Line 5-6

is-local(qual)(dict) =

From a Qual denoting either a sort or a syntype, extract the parent sort
(in the case of a syntype)

If the Qual is in the Diet then
If the Qual denotes a sort then return the Qual else
If the Qual denotes a syntype then extract the parent sort, but
exclude the syntype Qual from Diet such th a t it can be detected if
the syntype is recursively defined

1 qual = ENV V
2 dicf(SCOPEUNIT) = get-sur(qual)

type : (Qual | ENV) —* Diet —* Bool

(3.11.1)

(3.11.2)

(3.11.3)

256 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

O b je c tiv e Return true if a Qual is defined local to a scopeunit

A lg o r ith m

Line 1 If qual is the quotation ENV (used in connection w ith channels and
signal routes) or

Line 2 They are defined in the same scopeunit then return true

process-level(qual) =

1 (let (q ,) = qual [len qual] in
2 i f q £ {PROCEDURE, SERVICE} th en
3 process-level(get-sur(qual))
4 else
5 qual)

ty p e : Qual —* Qual

O b jec tiv e From a Qual denoting a process, procedure or service extract the Qual
of the surrounding process

A lg o r ith m

Line 1-5 If the Qual denotes a procedure or a service then apply the function
on the Qual of the surrounding scopeunit

process-or-service-level(qual) =

1 (let (<?,) = qual[len qual] in
2 i f q = PROCEDURE th en
3 process-or-service-level(get- sur (qual))
4 else
5 qual)

ty p e : Qual —► Qual

O b jec tiv e From a Qual denoting a process, procedure or service extract the Qual
of the surrounding process or service

A lg o r ith m

Line 1-5 If the Qual denotes a procedure then apply the function on the
Qual of the surrounding scopeunit

get-sur(qual) =

1 (qual[i] | 1 < i < len qual — 1)

ty p e : Qual —► Qual

O b jec tiv e From a Qual, return the Qual of the surrounding scopeunit by removing
the last element.

(3.11.4)

(3.11.5)

(3.11.6)

Fascicle X .4 — R ec . Z .100 — A n n ex F .2 257

get - inherited -parent (qual)(diet) = (3.11.7)

1 (if qual £ dom diet th e n
2 cases diet (qual):
3 (m k - SortD (, pqual, ,)
4 -» i t pqual = n il th e n qual else get-inherited-parent (pqual)(dict \ {qual}),
5 m k -SyntypeD (pqual , , ,)
6 -► get-inherited-parent(pqual)(dict\{qual}))
7 else
8 ex it("§5.4.1.9: Syntype is defined in terms of itself '))

ty p e : Sortqual —► Diet —► Sortqual

O b je c t iv e From a Qual denoting either a sort or a syntype, extract the parent sort
for an inheriting sort.

A lg o r i th m

Line 1 If the Qual is in the Diet then
Line 3 If the Qual denotes a none-inheriting sort then return the Qual else

if the Qual denotes an inheriting sort then extract the parent sort,
bu t exclude the sort Qual from Diet such th a t it can be detected
if the sort inherits from itself.

Line 5 If the Qual denotes a syntype then extract the parent sort, but
exclude the syntype Qual from Diet such th a t it can be detected if
the sort inherits from itself.

3 .12 G en era tion o f A u xiliary In form ation

This section contains the functions which generates the Auxiliary inform ation to be used by
the underlying system. The entry function is generate-auxiliary-information

generate - auxiliary-information (extparms)(d ict) =

1 (let (startt im e, timeunit) = derive-time-inf (extparms)(diet) in
2 le t tick = make-tick-function(timeunit)(diet) in
3 le t term in f = m ake-term -in f (diet) in
4 le t expired = make-expired-function(dict) in
5 le t delayf — derive-delay-inf (extparms) (diet) in
6 ((tick, starttime), terminf, expired, delayf))

ty p e : External-Information

O b je c t iv e

Diet —* Auxiliary-Information

P a r a m e te r s

extparms

R e s u l t

A lg o r i th m

Line 1

Line 2

Line 3

Derive the auxiliary inform ation to be used by the underlying system
(annex F.3)

The external inform ation from which the required objects are ex­
tracted

The Auxiliary-Information

Derive the TIM E literal denoting the starttim e and the DURA­
TION literal denoting the atom ic time unit
C onstruct the function which is used for updating the current time
(i.e. it adds timeunit to the current time)
Construct the identifier for the PID sort and for the three literals
NULL, TRU E and FALSE

(3.12.1)

258 F ascicle X .4 — R ec . Z .100 — A n n e x F .2

Construct the function which is used for testing whether a given
tim er has expired (i.e. it compares two TIM E values)
Derive the function which is used in the model of indeterm inistic
delay in channels
Construct and return the Auxiliary-Information

make - tick-function (t im eunit) (diet) =

Line 4

Line 5

Line 6

1 (let durationq = get-predef-sort(“DU RATION”)(diet),
2 timeq = get-predef-sort('T IM E”) (diet) in
3 le t m k -OperatorD(, , nq ,) = dict(timeq ((OPERATOR, (PLUS, (timeq, durationq), timeq)))) in
4 le t as\id = make-asi-identifier(nq)(diet) in
5 le t f (value) = m k -Ground-termi((asi id, (value, timeunit))) in
6 /)

ty p e : Literal-operator-identifieri —► Diet —> (Ground-termi —► Ground-termi)

O b je c tiv e

P a r a m e te r s

timeunit

A lg o r i th m

Line 1
Line 2
Line 3

Line 4
Line 5-6

Construct a function which updates the time with a given atom ic tim e­
unit. The function is used in the abstract SDL machine. The current
value of NOW is applied and the new value is returned

The tim eunit represented by an ASi literal.

Construct the Qual of the DURATION sort.
Construct the Qual of the TIM E sort.
Decompose the descriptor of the operator defined for the
TIM E sort. The Qual of the operator is formed by concatenat­
ing the TIM E Qual w ith the element containing the entity class
(OPERATOR), the name of the operator (PLUS), the argum ent
sorts (timeq and durationq) and the result sort (timeq). Refer to
the definition of Operatorqualelem.
Construct the ASi identifier of the operator.
Construct and return a M eta-IV function which when given an
SDL value, adds the tim eunit to the value

m ake-term -in f (diet) =

1 (let bqual = get-predef -sort (“BOOLE AN")(dzct) in
2 le t pidqual — get-predef-sort("PlD")(dict) in
3 le t pidi — make-asi-identifier(pidqual)(diet),
4 nulli = make-asi-identifier (pidqual ((LITERAL, mk-iVameo("NULL” , nil)))) (diet),
5 truei = make-asi-identifier(bqual /'x ((LITERAL, mk-iVaraeo(“TRUE” , n il))))(d ie t),
6 false i — make-asi-identifier (bqual ((LITERAL, mk-Nameo(“FALSE” , n il)))) (ch’ct) in
7 (p id i, nulli , truei , falsei))

ty p e : Diet —> Term-Information

O b je c t iv e C onstruct the Term-Information to be used in the Dynamic Semantics
(see the dom ain definition of Term-Information)

R e s u l t The Term-Information consisting of the identifiers for the PID sort, the
NULL literal, the TRU E literal and the FALSE literal

(3.12.2)

(3.12.3)

Fascicle X .4 — R ec. Z .100 — A n n ex F .2 259

make-expired-function(dict) = (3.12.4)

1 (let bqual = get-predef -sor<("BOOLEAN")(dict) in
2 le t geop = mk-Qualop0(bqual, mk-Quotedop0(QE)) in
3 le t expiredf (currenttime, expiredtime) =
4 eval-simple-expr(mk-Operatorappo(geop, (currenttime , expiredtime)), “BOOLEAN”)(dic<) in
5 expiredf)

ty p e : Diet —► Is-expiredF

O b je c t iv e C onstruct a function which tests on whether a given time value exceeds
an expiration time value, i.e. make the function which returns the
M eta-IV value t r u e if

c u r r e n t t im e >= e x p ire d tim e

where c u r r e n t tim e and e x p ire d tim e are formal param eters.

The function is to be used in the Dynamic Semantics

A lg o r i th m

Line 1
Line 2
Line 3-5

C onstruct the Qual of the BOOLEAN sort.
C onstruct the ASo identifier of the ” > = ” operator
Construct and return the Is-Expired function (expiredf)

3 .13 G lob a l C on stan t M appings

In the following, two global mappings name-to-namei and exportmap are defined.

3 .13 .1 R e la t io n b e tw e e n ASo n a m e s a n d A S i n a m e s

Names in ASi does not have the same representation as in ASo, since the spelling etc.
of nam es is of no concern for the in terpretation . Therefore, ASo names (Name0), charac­
ter strings (Stringo) and Q uoted operators (Quotedopo) are transform ed into ASi names
(N am e i) by means of a global m appings (name-to-namey).

le t name-to-namei b e s .t . (Vnmi € rng nam e-to-nam e\)(is-N am e\(nm i)) A
(V (nm l, nm 2) £ (Nameo | Stringo | Quotedopo))
(({ n m l, nm2} C d o m naijie-to-namei) A
(n m l ^ nm 2 D nam e-to -nam ei(nm l) ^ name-to-namei(nm2))) in

O b je c t iv e C onstruct a m ap which converts ASq names, strings and quoted operators to ASi
names.

A lg o r i th m C onstruct the m ap th a t every possible ASo name, string or quoted operator is in the
dom ain of the m ap and every two entities maps onto different ASi names.

3 .1 3 .2 R e la t io n b e tw e e n im p o r t / e x p o r t n a m e s a n d im p lic it s ig n a l n a m e s

In SDL, some im plicit signals are attached to each export variable. Two export variables
have the same im plicit signals attached if they have the same name (spelling) and they are of
the same d a ta sort. In order to manage this ’’sharing” of signals, a special constant m apping
exportmap is used, which m aps pairs of export variable sort and export variable name into
a descriptor of the attached signal names:

260 F ascicle X .4 — R ec . Z .100 - A n n e x F .2

le t exportmap = [closure i—► m k-SignalnamesD (create-unique-nameQ,
create-unique-name (),
create-unique-nameQ) | closure £ NameclosureD] in

The dom ain of exportmap is defined in the following:

1 Exportmap = NameclosureD is*SignalnamesD
2 NameclosureD = Sortqual Nameo
3 SignalnamesD :: Impliednm Xquerynm Xreplynm
4 Impliednm = Nameo
5 Xquerynm = Nameo
6 Xreplynm = Nameo

The signal descriptor (SignalnamesD) consists of

Impliednm The im plicit variable attached to each export variable.

Xquerynm The xtQUERY signal send by an im porter.

Xreplynm The xtREPLY signal send by the exporter and carrying a value of sort
Sortqual.

3 .14 In form al Functions
apply-generic-parameters(genericsystem, extparameters) ~

1 /* Turn a generic system definition into a concrete system definition */

ty p e : Syso External-Information —> Syso

SDL does not define how generic param eters are applied. This informal function takes
an AS0 system definition and the external inform ation which includes some actual generic
param eters and returns an ASo system definition containing no generic param eters, th a t
is, a system definition which contains no external synonyms and no informal text in the
answers of the option actions

derive-time-inf(extparms)(dict) =

1 /* Derive the start time and the unit for time from the external information */

ty p e : External-Information —► Diet —> Literal-operator-identifieri Literal-operator-identifieri

This inform al function returns the Literal-operator-identifieri of the sort TIM E denoting
the starting tim e of the system and the Literal-operator-identifieri of the sort DURATION
denoting the increm ent value of the absolute tim e (both used in the model for the NOW
expression, see Annex F.3)

derive-delay-inf (extparms)(dict) =

1 /* Derive the delay function from the external information */

ty p e : External-Information —> Diet —> DelayF

This inform al function derives from the external inform ation the im perative function (De­
layF) used in Annex F.3 for modelling the indeterm inistic delay in channels.

eval-expr(expr, sort)(dict) ^

1 /* Evaluate the expression */

ty p e : Ground-expression Char+ —> Diet —> (Intg \ Bool)

(3.14.1)

(3.14.2)

(3.14.3)

(3.14.4)

Fascicle X .4 - R ec . Z .100 — A n n ex F .2 261

O b jec tiv e

P a ra m eters

Evaluate an ASi simple expression

expr The ASi simple expression
sort The spelling of the sort of the expression

R e s u l t The M eta-IV types Intg if the SDL sort is “Integer” and the M eta-IV
dom ain Bool if the SDL sort is “Boolean” .

A lg o r i th m For reason of economy in space, this function is not included in the
form al definition. Refer to §5.6 of Z.100 for a formal specification of
the predefined sorts and to Annex F.3 for a formal definition of the
SDL d a ta model.

select-consistent-subset(systemdefinition, genericparameters) =

1 /* B y means of A S \ and the actual subset parameters, select a consistent subset */

(3.14.5)

ty p e : System-definitioni External-Information —♦ Block-identifieri-set

This inform al function returns the set of block identifiers denoting the consistent subset. It
is used in Annex F.3 for selecting the blocks which should be interpreted. In Annex F.3 it
is also checked, th a t the consistent subset conforms to the properties defined in §3.2.1 of
Z.100.

(3.14.6)create-unique-name () =

1 /* Create a new m k-N am eo (Token,nil) */

ty p e : () —► Nameo

This inform al function returns an ASo Name0 which has not previously been used. Note
th a t this function by nature is im perative. A global variable keeping track of the used names
is assum ed used by the function

(3.14.7)

1 /* Convert a character string to uppercase letters */

ty p e : Char* —* Char*

First, any sequence of underline character followed by spaces is removed, then any sequence
of spaces are replaced by an underline character then the spelling is converted to uppercase
and finally it is checked th a t the resulting spelling conforms to the lexical rules for names
as defined in §2.2.1 of Z.100.

check-name-syntax (string) —

4 D eviations From Z.100

After the final approval of the Z.100 recom m endation text by SG X (M arts 1988) some few
inconsistencies or omissions have been found in the recom m endation text. For reasons of
completeness of the Formal Definition some decisions in these situations have been taken:

1. §2.7.4 in Z.100 the sentence:
“However, order is preserved if the two signals are conveyed by identical path connect­
ing the Originating-process with the Destination-process.”
is interpreted as
“However, order is preserved if the two signals are conveyed by identical channels con­
necting the Originating-process with the Destination-process or if they are defined in
the same block.”

262 F ascicle X .4 — R ec . Z .100 — A n n ex F .2

2. §2.7.5 in Z.100 the sentence:
“The Decision-answers m ust be m utually exclusive.”
is interpreted as
“The Decision-answers m ust be m utually exclusive and they m ust be of the same sort.
If the Decision-question contains an Expression then it m ust be of the same sort as
the Decision-answers.n

3. §2.7 in Z.100 a new sentence before Model is added in order to avoid a circular defini­
tion:
“The context of the decision (i.e. the sort) is determined w ithout regard to <answ er>s
which are < character string> .

4. §3.3 in Z.100 the sentence:
“If the consistent partitioning subset contains a block definition com m unicating with
sub-signals, then the blocks w ith which it communicates must use the same sub­
signals”
is interpreted as
“W hen selecting the consistent subset, the set of signals on signalroutes connected to
an endpoint of a channel m ust not contain parent signals of contained sub-signals and
unless the other endpoint is the system ENVIRONM ENT, the set of signals for the
first endpoint m ust be equal to the set of signals on signalroutes connected to the other
endpoint.”

5. §4.3.3 in Z.100 the sentence:
“The < boolean simple expression> must not be dependent on any definition within
the < select definition>.
is modified as follows (in order to guarantee a unique selection and a unique binding
of synonyms):

A Synonym used directly or indirectly (via other synonyms) in < boolean simple
expression> of a <select definition> m ust satisfy the following conditions:

• It m ust conform to the visibility rules stated in §2.2.2 even if the synonym defi­
nition is not selected.

• The sort in the <synonym definition> must be qualified with the system level if
there exist a visible redefinition of th a t (predefined) sort, even if the redefinition
is local and not selected.

• There m ust exist an order of selection which allows all <sim ple expression>s to
be evaluated.

6 . §4.10.2 in Z.100 the sentence:
“ A signal is a high priority signal if and only if it is mentioned in a < priority input >
of a < service definition> .”
is interpreted as
“ A signal is a high priority signal in a process if and only if it is m entioned in a
< priority in p u t> of a <service definition> in the process.”

7. §4.10.2 in Z.100 the sentence:
“ A <procedure definition> m ust not have < s ta te> s when the enclosing <process
definition> contains a <service d e f in it io n s”
is extended as
“ A <procedure definition> m ust not have < s ta te> s when the enclosing <process
definition> contains a <service d e fin itio n s <procedure d e f in i t io n s visible to more
th an one service m ust not contain a VIA construct”

8 . §5.6.7.1 in Z.100 the equations:

r > 1 == True => a * r > a == T rue;
r > 1 == True => a / r < a == T rue;

should be

F ascicle X .4 — R ec. Z .100 — A n n ex F .2 263

r > 1 T rue => a * r >= a == T ru e ;
r > 1 == True => a / r <= a == T ru e ;

to cover the case where a equals zero.

Fasciclei X.,4 —- Re,c> Z.1:0Q. A n n ex F .2

Dom ain Index

Acto 7, 8

Activeexpro 18, 149, 152
Actparmlisto 8 , 213, 215
Actstmto 7, 166, 167, 168, 170, 183, 184,

187, 190, 198, 199, 203, 204, 205,
206, 207, 208, 212, 214, 231

Andregexpo 16, 97
Answero 9, 1 1 , 167, 171, 184, 187, 2 1 8 ,

219, 221
Assignment-statementi Z .100, 164, 200,

206
Assignstmto 8 , 18, 183, 199, 200, 201
Auxiliary-Information 30, 33, 258
A x io m 0 1 2 , 13, 17, 85, 1 0 0 , 1 0 1 , 106, 107,

109, 110, 113, 114, 115

BlockD 21, 22, 23, 52, 54, 63, 211, 245,
246, 247, 248, 253

Block-definitioni Z .100 , 30, 226
Block-identifieri Z .100, 262
Block-qualifier] Z .1 0 0 , 223
Block-substructure-definition] Z .1 0 0 , 226
Block-sub structure-qualifier] Z .100, 223
BlockconnectionD 23, 125
Blockdeclo 3
Blockdefo 3, 1 0 , 1 1 , 33, 35, 37, 38, 41, 48,

52, 54, 58
Blockido 3, 5, 37
Blocknameo 3
Blockqual 23, 24, 247, 248
Blockrefo 3, 1 0 , 1 1 , 37
BlocksubD 2 2 , 23, 54
Blocksubo 3, 1 0

Blocksubdeclo 1 0
Blocksubdefo 1 0 , 38, 39, 43, 44, 48, 54, 58
Blocksubido 19
Blocksubnameo 1 0

Blocksubrefo 1 0 , 38
Bodyo 4, 5, 7, 1 1 , 39, 48, 161, 162, 234
Bool 22, 23, 27, 30, 39, 41, 44, 47, 69, 70,

74, 97, 98, 99, 100, 127, 130, 131,
160, 178, 208, 221, 227, 240, 244,
250, 251, 252, 256, 261

Call-node] Z .100, 214
Callo 8 , 198, 214
Chandefo 3, 5, 1 0 , 1 1 , 38, 41, 48, 52, 57,

58, 128, 244
Channameo 5, 23, 24, 60, 244, 254
ChannelD 21, 22, 24, 57, 58, 125, 126,

128, 129, 130, 211, 224, 249, 252
Channel-connection] Z .100 , 128,129, 226
Channel-definition] Z .100, 30, 57, 226
Channel-path] Z .100 , 57
Channel-to-route-connection] Z .100, 125,

126, 226

Channelqual 23, 126, 128, 129, 130, 251,
252

ChannelsubD 2 2 , 23, 59, 224
Chanpatho 5, 57, 58, 128, 244
Chansubo 5, 1 0

Chansubdeclo 1 0
Chansubdefo 3, 1 0 , 35, 38, 39, 48, 58, 59
Chansubido 1 0 , 38
Chansubname0 1 0

Chansubrefo 10, 38
Char 2, 3, 44, 96, 97, 98, 99, 100, 256,

261, 262
Closed-rangei Z .100 , 92
Composite-term] Z .1 0 0 , 83, 141, 147
Condequationo 13, 14, 85, 1 0 1 , 105, 107
Condexpro 17, 135, 154
Condition-item] Z .100, 92
Condition0 14, 91, 184, 187, 217, 218, 219,

222
Conditional-equation] Z .100, 82, 105
Conditional-expression] Z .1 0 0 , 154
Conditional-term] Z .100 , 83, 154
Conditionlisto 9) 12, 14, 2 2 1 , 2 2 2

Condtermo 13, 85, 135
Connecto 3, 6 , 1 0 , 1 1 , 41, 48, 60, 125, 126,

128, 129, 132, 133, 251, 253, 254
Connectpointo 48
ContenablestateD 28, 181, 188, 195
Context 30, 100, 101, 102, 103, 104, 105,

134, 135, 139, 140, 143, 144, 146,
147, 148, 149, 152, 153, 154, 155,
213

Contspeco 7, 1 2 , 165, 181, 182, 184, 185,
237

Create-request-node] Z .100 , 212
Createo 8 , 198, 2 1 2

Data-type-definition] Z .100 , 28, 30, 33,
56, 73, 94, 227

Datadefo 3, 4, 5, 1 0 , 1 1 , 17, 32, 33
Decision-answer] Z .100 , 164, 219
Decision-node] Z .100, 28, 164, 193, 217,

231
Decisiono 8 , 9, 166, 170, 184, 187, 198,

217
Declo 11, 35, 39, 41, 43, 44, 45, 46, 48,

49, 50, 51, 52, 60, 125, 128, 242,
249, 251

Decl] 30, 51, 52, 54, 57, 59, 70, 71, 72,
121, 123, 161, 226, 233, 241

Decompositiono 4, 1 1 , 38, 39, 43, 44, 48,
161

Decompositiondeclo 1 1 , 132
DelayF 30, 261
Descr 21
Descriptordict 20, 21

F ascicle X .4 — D om a in In d ex 265

Desto 5
Destinationo 5
Destinationprocess 25
Diet 20, 22, 33, 43, 44, 45, 46, 47, 48, 51,

52, 54, 56, 57, 59, 60, 61, 63, 64,
65, 6 6 , 67, 6 8 , 69, 70, 71, 72, 73,
74, 75, 77, 78, 79, 80, 81, 84, 90,
91, 32, 93, 94 1 0 0 , 1 0 1 , 1 0 2 , 103,
104 105, 106 107, 108, 109, 1 1 0 ,
1 1 1 1 1 2 , 116 117, 118, 119, 1 2 0 ,
1 2 1 1 2 2 , 123 124, 125, 126, 127,
128 129, 130 131, 132, 133, 134,
135 137, 139 140, 141, 142, 143,
144 146, 147 148, 149, 150, 151,
152 153, 154 155, 156, 157, 158,
159 160, 161 162, 163, 164, 174,
175 178, 180 181, 182, 184, 185,
188 189, 190 191, 192, 193, 195,
196 197, 198 199, 2 0 0 , 2 0 1 , 203,
204 205, 206 207, 208, 2 1 1 , 2 1 2 ,
213 214, 215 216, 217, 218, 219,
2 2 0 2 2 1 , 223 224, 225, 226, 227,
228 229, 231 233, 234, 235, 237,
238 239, 240 241, 242, 244, 245,
246 247, 248 249, 250, 251, 252,
253 256, 258 259 260 261

Else-answeri Z .1 0 0 , 164, 217
Elseparto 9, 1 1 , 167, 171, 217, 2 2 1
Emptyqid 28
Enablingo 7, 1 2 , 181, 186
Endpoint 24, 59, 60
Entity 21
Equation0 13, 85, 1 0 1 , 1 0 2 , 105, 107, 109,

114, 115, 228
Equationi Z .1 0 0 , 82, 104, 105
Equationsi Z .100, 26, 81, 100, 1 0 1 , 1 0 2 ,

106, 228
ErrorD 22, 28, 43, 46, 70, 93, 123, 124,

158
Error-termx Z .100, 83, 103
Errortermo 13, 14, 103, 105, 135
ExpimpchanD 23, 242, 244, 245, 247, 248,

253, 254, 255
Explicit 27, 77, 104
Explicitroutes 23, 210
Export0 8 , 1 2 , 198
Exportchannels 23
Exportmap ,2 6 1
Expro 4, 8 , 9, 1 1 , 1 2 , 14, 17, 18, 26, 28, 44,

47, 92, 118, 135, 139, 145, 149,
150, 151, 153, 201, 216, 221, 222

Expressioni Z .100 , 26,135, 139, 143,147,
149, 150, 152, 153, 154, 155, 208,
213, 215, 216

Exprlisto 18, 145, 146, 147, 2 0 1

External-Information 30, 32, 33, 258, 261,
262

Extpropertieso 1 2 , 14

Fieldnameo 15, 113, 114, 115
Fieldspeco 15, 113
Fieldvaro 18, 2 0 1
FormparmD 25, 6 8 , 69, 215
Formuniquenm 28

Genactparmo 16, 89
GeneratorD 21, 22, 26, 70, 84
Generatorido 13
Generatornameo 13
Geninsto 16, 84
Geninstlisto 14, 15, 16, 71
Genparmo 15, 26, 70, 89
Globalnames 28, 35
Graph-nodei Z .100, 28, 193, 195, 198,

199, 203, 204, 205, 206, 207, 208,
212, 214, 217, 220, 231

Ground-expressioni Z .100, 135, 261
Ground-term^ Z .100, 30, 83, 135, 139,

141, 142, 147, 154, 259

Id0 2, 3, 4, 5, 6 , 8 , 9, 10, 11, 13, 15, 16,
17, 35, 37, 38, 39, 48, 54, 58, 60,
61, 6 6 , 69, 71, 84, 85, 87, 89, 102,
107, 109, 110, 112, 114, 115, 120,
124, 135, 137, 139, 140, 141, 142,
144, 145, 148, 150, 151, 152, 153,
156, 158, 159, 160, 180, 181, 184,
187, 190, 200, 201, 216, 229, 231,
233, 237, 244, 255

Identifieri Z .100, 73, 83, 223, 225, 227
Impliednm , 261
Impoperatoro 17, 18
ImportD 21, 22, 27, 121, 150, 231, 246
Importchannels 23
Importdefo 4, 1 1 , 1 2 , 41, 52, 12 1

Importelemo 1 2 , 1 2 1

Importexpr0 12, 18, 149
Importqualelem 21
Importstateinf 28
InDescr 25, 69, 215
In-parameteri Z .100, 69
Indexedvaro 18) 2 0 1
Infixexpro 17, 135, 155, 183, 184
Infixopo 14, 17, 18
Infixtermo 13, 14, 85, 107, 109, 1 1 0 , 135
Informal-texti Z .100, 101, 200, 217, 219
Inheritedo 14, 15, 71, 73
Initialo 4
Initialvalueo 1 2 , 14, 16, 18
InoutDescr 25, 69, 215, 216
Inout-parameteri Z .100, 69
Inoutparmo 5, 6 8

Inparmo 5, 6 8

Input-nodei Z .100, 189, 191, 192, 193
Inputseto 4, 1 1 , 63
Inputspeco 7, 165, 175, 178, 181, 184, 186,

187, 190, 191, 231
Inputvarso 7, 1 1 , 178, 180, 184, 190, 192,

231, 234

266 Fascicle X .4 — D o m a in In d ex

Instanceso 4, 41, 61
Intg 44, 99, 261
Is-expiredF 30, 260

Joino 8 , 168, 195

K ind 2 1 , 160

Labelo 7, 8 , 28
Labeldict 23, 28, 169, 170, 171, 191, 234
LiteralD 21, 22, 27, 71, 75, 94, 106, 139,

224
Literal-operator-identifieri Z .1 0 0 , 30, 75,

81, 82, 83, 259, 261
Literal-signaturex Z .100 , 73, 94
Literalo 1 2 , 85, 87, 89, 1 1 0

Literalaxiomo 17
Literalpairo 15, 76
Literalrenamingo 15, 75, 76
Litparmo 15, 70, 89

Mappingaxiomo 1 2 , 17, 85, 1 0 1 , 106
Mapvalue 27, 104, 148
Maximumo 4
Monadexpro 17, 109, 135, 155
Monadtermo 13, 14, 85, 107, 135

Nameo 2 , 3, 4, 5, 6 , 7, 9, 1 0 , 1 1 , 1 2 , 13, 14,
15, 16, 17, 18, 21, 28, 35, 37, 43,
44, 45, 46, 48, 49, 50, 59, 69, 70,
73, 78, 84, 85, 87, 89, 94, 96, 98,
99, 100, 102, 107, 109, 110, 112,
113, 114, 115, 118, 144, 145, 148,
152, 153, 181, 183, 184, 187, 190,
201, 206, 226, 228, 229, 237, 256,
259, 260, 261, 262

Namei Z .100 , 260
NameclosureD , 23, 28, 230, 246, 247, 254,

255, 201
Newchannels 24, 225
Newliteralo 15
Newoperatoro 15, 79
Newqual 24, 25, 26, 27, 73
Nextstate-nodei Z .100, 195, 235
Nextstateo 8 , 175, 181, 184, 188, 190, 195,

196, 231, 237, 238
Nmclasso 1 2 , 16, 87, 89, 96, 1 1 0
Now-expressioni Z .100, 151
Nowexpro 18, 149
Number-of -instancesi Z .100, 61, 226
N 0 185
N t 113, 114, 115, 184, 185, 239

Offspring-expressioni Z .1 0 0 , 153
Offspringexpro 18, 153
Oldliteralo 15
Oldoperatoro 15
Op0 1 2 , 85, 113, 114, 115
Open-rangei Z .100 , 92
OperatorD 2 1 , 22, 27, 71, 77, 78, 79, 80,

92, 111, 224, 259

Operator-applicationi Z .100, 147
Operator-identifieri Z .100, 77, 81, 82, 83
Operator-signaturei Z .100, 77, 78, 111
Operatorappo 17, 18, 135, 142, 143, 145,

152, 153, 155, 201, 222, 260
Operatornameo 1 2 , 15
Operatorpairo 15, 77, 78
Operatorqual 30, 144, 146, 147
Operatorqualelem 2 1

Operatorrenamingo 15, 77, 78
Operatortermo 13, 85, 114, 115, 135, 144,

155, 228
Opparmo 15, 70, 89
Opspec0 12, 85, 107, 108, 110, 111, 113,

114, 115
Optiono 8 , 1 1 , 166, 170, 198, 2 2 0

Orderingo 1 2 , 17, 108
Origo 5
Origino 5
Originprocess 25
Orregexpo 18) 97
Otherend 23, 244, 248, 254, 255
Output-nodex Z .100, 208
Outputo 8 , 183, 190, 198, 207, 208, 231
Outputset 25
Outputsigo 8 , 1 1 , 183, 190, 208, 231

ParameterD 25, 213
Parenregexpo 16, 97
Parent-expressioni Z .100, 153
Parentexpro 18, 153
Parentido 14, 15
Parentqual 20
Parmo 4, 64
Partialtypedefo 1 2 , 17, 50, 52, 71
Partregexpo 16
Pid-expressioni Z .100, 153
Piexpr0 8

Prdeclo 4
Prdefo 3, 4, 1 1 , 35, 37, 39, 41, 48, 52, 54,

61, 249
Prido 4, 8 , 37
Priinputo 7, 1 1 , 165, 178, 191, 234, 237
Priinputset 23, 208, 240
Priorityo 1 2 , 182
Prioutputo 8 , 1 1 , 198, 206
Prnameo 4
Procdeclo 5
Procdefo 3, 4, 5, 1 1 , 35, 37, 39, 41, 52, 6 6 ,

67
ProcedureD 21, 22, 25, 67, 162, 214, 224
Procedure-definitioni Z .100, 30, 67, 226
Procedure-formal*parameteri Z .100 , 6 8 ,

69, 226
Procedure-graphi Z .100, 67, 162, 226
Procedure-qualifieri Z .100, 223
Procedure-start-nodei Z .100, 162
ProcessD 2 1 , 22, 25, 61, 117, 156, 175,

208, 210, 212, 246, 249, 250, 252

F ascicle X .4 — D o m a in In d ex 267

Process‘definitioni Z .100 , 30, 61, 226
Process-formal-parameteri Z .100, 64, 226
Process-graphi Z .100 , 161, 162, 226, 235
Process-qualifieri Z .100 , 223
Process-start-nodei Z .100 , 162, 235
Processbodyo 4, 161
ProcessconnectionD 25, 132, 161
Processqual 25, 30, 249, 250, 252
Procido 5, 8 , 37
Procnameo 4, 5
Procparmo 5, 6 8

Procrefo 4, 5, 1 1 , 37
Propertieso 1 2 , 15, 26, 73, 84, 94, 96, 108,

112
Prrefo 3, 4, 1 1 , 37

Qual 21, 23, 24, 25, 27, 28, 30, 35, 39, 41,
76, 78, 79, 80, 93, 106, 118, 120,
125, 126, 127, 132, 133, 140, 144,
151, 155, 156, 158, 160, 164, 172,
190, 211, 218, 223, 224, 225, 228,
229, 256, 257

Qualelem 21
Qualifiero 2 , 8 , 13, 17, 18, 37, 49, 89, 1 0 1 ,

145, 201, 217, 218
Qualifieri Z .100 , 223
Qualifierelemo 2
Qualopo 13, 18, 87, 142, 144, 145, 155,

158, 222, 228, 260
Quantequationo 13, 85, 1 0 1 , 104, 107, 109
Quantified-equationsi Z .100 , 82, 104
Questiono 9, 11

Quot 158, 226
Quotdict 20, 28
Quotedopo 1 2 , 16, 18, 2 1 , 85, 87, 89, 144,

155, 222, 228, 260

Range-conditioni Z .100 , 26, 91, 164
Refdeclo 3, 39
Refinemento 6 , 1 0 , 65
Regexpexpo 16, 98, 99, 1 0 0

Regularexpo 16, 97, 1 0 0

Relopo 14, 92
Remotedefo 3
Reset-nodei Z .100 , 203
Reseto 8 , 9, 198, 203
Resetelemo 9, 203
Result 27, 71, 143, 144
Resulti Z .1 0 0 , 227
Return-nodei Z .1 0 0 , 195
Returno 8 , 195
Rngregexpo 16, 97

Save-signalseti Z .100 , 189
Savespeco 7, 169, 177, 187, 189, 231, 237
Scopeo 8

Scopeexpr0 8 , 9, 135, 184, 187
Scopeunito 2 , 21
Selecto 3, 4, 5, 1 0 , 1 1 , 39, 44, 49, 50
Selectexpro 17, 145, 149, 152, 2 0 1

Self - expressioni Z .100, 153
Selfexpro 18, 153, 183, 206
Sender-expressioni Z .100, 153
Senderexpro 18, 153, 190
ServiceD 22, 23, 63, 6 6 , 67, 69, 90, 94,

116, 117, 156, 175, 191, 195, 196,
208, 210, 224, 233, 235, 238, 239,
240

Servicedeclo 11
Servicedefo 3, 1 1 , 35, 37, 39, 48, 52, 233
Serviceido 1 1 , 37
Servicenameo 11
Servicequal 28, 237, 238, 239
Servicerefo 1 1 , 37
Servicetuple 28, 196
Set-nodei Z .100, 205
Set0 8 , 9, 198, 204, 205
Setelemo 9, 205
Sigdefo 3, 4, 6 , 1 0 , 1 1 , 35, 41, 52, 65, 73
Sigelemo 6 , 35, 65, 73
Sigido 6 , 7, 8 , 159, 182, 183, 184, 187
SignalD 2 1 , 2 2 , 24, 63, 65, 131, 180, 192,

203, 205, 208
Signal-definitioni Z .1 0 0 , 30, 65, 226
Signal-qualifieri Z .100, 223
Signal-refinementi Z .1 0 0 , 65
Signal-route-definitioni Z .100, 30, 122,

226
Signal-route-pathi Z .100, 122
SignallistD 2 1 , 2 2 , 25, 123, 124
Signallisto 4, 5, 6 , 7, 25, 63, 124
Signallistdefo 3, 4, 6 , 1 0 , 1 1 , 41, 52, 123
Signallistido 6 , 124
Signallistnameo 6
SignalnamesD , 73, 118, 157, 158, 190,

206, 231, 244, 261
Signalqual 23, 24, 25, 28, 59, 63, 6 6 , 124,

127, 130, 131, 156, 157, 158, 159,
160, 175, 178, 180, 192, 211, 234

SignalrouteD 21, 22, 25, 63, 122, 127, 132,
133, 210, 211, 240, 241

Signameo 6

Sigroutedefo 3, 5, 1 1 , 41, 48, 52, 54, 122,
125, 132, 241, 249, 250, 251, 252

Sigroutenameo 5
Sigroutepatho 5, 1 2 2 , 125, 132, 241, 250,

252
Singregexpo 16, 97
SortD 2 1 , 2 2 , 26, 46, 73, 74, 90, 92, 94,

116, 155, 224, 256, 258
Sort-identifieri Z .100, 30, 82
Sort-qualifieri Z .100, 223
Sortgenerator0 15, 17, 52, 70
Sortido 4, 5, 6 , 9, 1 2 , 13, 15, 16, 17, 113,

114, 115
Sortnameo 1 2

Sortparmo 15, 70, 89
Sortqual 21, 24, 25, 26, 27, 64, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 91, 92,

268 F ascicle X .4 — D om a in In d ex

94, 106, 107, 108, 109, 110, 134,
135, 137, 139, 140, 141, 142, 143,
144, 146, 147, 148, 149, 150, 151,'
152, 153, 154, 155, 156, 160, 193,
206, 218, 219, 221, 222, 256, 258,
261

Spec 28, 184, 187
Speclist 28, 173, 175, 181, 182, 184, 185,

186, 187, 188, 189, 190, 191, 239
Spellingtermo 13, 17, 85, 135, 148
Starredo 7, 177, 178
Starredlisto 7, 172
StateD 28, 173, 175, 180, 181, 188, 231,

234, 237, 239
State-nodei Z .100, 188
Statebodyo 7, 165, 169, 172
Statedict 23, 28, 172, 173, 174, 180, 181,

186, 187, 188, 234, 237
Statenameo 7, 8 , 28, 180, 182, 184, 188,

189, 191, 192, 195, 196, 197, 198,
199, 203, 204, 205, 206, 207, 208,
212, 214, 217, 219, 220, 231, 238,
239

Statenamelisto 7, 172, 173
Statespeco 7, 28, 165, 169, 178, 186, 189
Statetuplemap 28
Stop-nodei Z .100, 195
Stopo 8 , 195
Stringo 3, 1 2 , 13, 15, 16, 2 1 , 87, 89, 96,

98, 99, 217, 228, 260
Stringtermo 13, 17, 87, 1 0 1 , 1 1 0 , 135, 142,

148, 156, 158, 217, 218, 219, 228
Struco 14, 15, 71, 1 1 2

Sub signal-definitioni Z .100, 6 6

Subsignalo 1 0 , 6 6

SynD 21, 22, 26, 46, 93, 139, 140, 160,
185

Syn-type-definitioni Z .100, 30, 90, 226
Synonymdefo 16, 17, 46, 49, 52, 93
Synonymnameo 16
SyntypeD 21, 22, 26, 74, 90, 117, 164, 224,

256, 258
Syntypedefo 14, 17, 50, 52, 71, 90
Syntypenameo 14
Sys0 3, 32, 33, 261
Sysdeclo 3
Sysdefo 3, 33
Sysnameo 3
SystemD 21, 22, 23, 33
System-definition! Z .100 , 33, 226, 262
System-qualifieri Z .100, 223

Tailido 3, 4, 5, 1 0 , 11

Tailnameo 3, 5, 7, 1 2 , 14, 15
Task-nodei Z .100, 164, 2 0 0 , 201, 206
Tasko 8 , 183, 198, 199
Term-Information 30, 259
Term0 13, 14, 16, 85, 87, 89, 103, 134,

135, 147

Termi Z .1 0 0 , 83, 103, 134, 135, 137, 141,
144, 147, 148, 154, 155, 213

Terminaioro 8 , 238
Termparm0 15, 70, 89
Termstmto 7, 8 , 167, 168, 170, 175, 181,

184, 188, 195, 196, 198, 199, 203,
204, 205, 206, 207, 208, 212, 214,
231, 237, 238

Text0 3, 8 , 199, 2 0 0

Time-information 30
TimerD 21, 2 2 , 24, 63, 116, 152, 180, 192,

203, 205, 208, 224
Timer-active-expressioni Z .100 , 152
Timer-definitioni Z .1 0 0 , 30, 116, 226
Timerdefo 4, 9, 1 1 , 41, 52, 116
Timerelemo 9, 116
Timerido 9, 18
Timernameo 9
Transitiono 7, 9, 1 1 , 1 2 , 23, 28,-166, 167,

169, 170, 175, 181, 182, 184, 186,
187, 188, 190, 192, 195, 196, 221,
231, 234, 238

Transitioni Z .100, 163, 164,193, 195, 198,
199, 203, 204, 205, 206, 207, 208,
212, 214, 217, 220, 235, 239

Tupleexpro 17, 149, 153

Unquantequationo 13, 14, 1 0 2 , 105
Unquantified-equationi Z .1 0 0 , 82,102, 105

Validinputset 23, 25, 240
Valueo 6 , 14
ValueidD 2 1 , 2 2 , 27, 104, 106, 137, 141,

148
Valuenameo 13, 17
VarD 21, 22, 26, 69, 117, 120, 140, 158,

160, 163, 164, 189, 190, 193, 200,
216, 224, 246

Vardefo 4, 5, 0 , 1 1 , 41, 52, 64, 116, 117,
118, 229, 230

Vardefelemo 6 , 64, 116, 118, 229, 230
Variable-definitioni Z .100 , 30, 117, 118,

226, 229
Variable-identifieri Z .100, 192, 193
Variableo 18, 2 0 1
Varido 6 , 7, 1 2 , 18, 151, 182, 183, 184,

193, 206
Varname0 4, 5, 6 , 12

Via0 8 , 208, 2 1 1

ViewD 21, 22, 27, 120
View-definitioni Z .100 , 30, 119, 120, 226
View-expressioni Z .100 , 151
Viewdefo 4, 6 , 1 1 , 41, 52, 119
Viewdefelemo 6 , 119
Viewexpro 18, 149
Viewqualelem 21

Xquerynm , 261
Xreplynm ,2 6 1

Fascicle X .4 — D om ain In d ex 269

Function Index

add-default-assign , 163, 164
add-equality , 94, 107
add-ordering , 94, 108
add-service-varinit , 235, 239
add-varinit , 162, 103, 239
all-exporteurs , 242, 247
all-importeurs , 242, 247
all-input-signals , 156, 177, 178, 231, 237
all-variables-and-synonyms , 139, 140, 160
all-visible-literals , 137,139,141, 142,156
all-visible-operators , 92, 143, 144
all-visible-sorts , 81, 93, 103, 155, 200,

206, 217, 220
o-pply-generic-parameters , 33, 261
aso-channeldefs , 244
aso-channels , 242, 244
aso-extract-properties , 113, 115
aso-global-entities 33, 35
aso-id , 58, 73, 107, 109, 110, 118, 141,

177, 229, 230, 231, 237, 244, 250,
251, 252

aso-implicit-transitions , 175
aso-inputvars , 175, 178, 180
aso-modify-properties , 113, 114
as0-order , 108, 1 1 0
asq-ordering-axioms , 108, 109
aso-ordering-typing , 108, 1 1 0

aso-xtQ U ERY-inputs , 189, 190

block-conned , 125, 120
build-answer-operator , 2 2 1 , 2 2 2

build-answerlist-labeldict , 170, 171
build-cont-trans , 182, 184
build-enable-decision , 186, 187
build-exported-vardef , 117, 118
build-extract-operator , 143, 145
build-field-operator , 143, 145
build-implicit-operators , 77, 80
build-implicit-state , 187, 188
build-literal-renaming , 75, 70
build-operator-renaming , 77, 78
build-quant-equation , 102, 104, 105
build-service-descriptor , 52, 233
build-service-statedict , 233, 234
build-spec-labeldict , 169
build-state-labeldict , 162, 109, 234
build-statedict , 162, 172, 234
build-trans-labeldict , 162, 169, 170, 171,

234

check-name-syntax , 96, 262
collect-genparms , 84, 89
collect-illegal-synonyms , 43, 49
collect-priority-info , 182, 185
collect-sorts , 43, 50
collect-synonyms , 45, 46
convert-axiom , 81, 82

convert-channel-qual , 126, 129, 224, 225
convert-term , 82, 83
create-unique-name , 33, 35, 56, 58, 6 6 ,

69, 71, 79, 80, 90, 94, 107, 109,
111, 114, 115, 116, 117, 150, 168,
181, 188, 231, 235, 237, 242, 250,
252, 261, 262

definition-of -SDL 32
derive-delay-inf , 258, 261
derive-time-inf , 258, 261
double-states , 235, 237

emptyqtrans , 181, 182, 184
eval-expr , 44, 261
eval-option-trans , 2 2 0 , 2 2 1
eval-simple-expr , 44, 61, 185, 221, 260
expand-continuous , 181, 182
expand-enable , 181, 180
extract-exports , 157, 158
extract-firststate-or-service , 235, 238
extract-inherited-axioms , 73, 81
extract-initial-state , 195, 190
extract-legal-operators , 143, 144, 146
extract-priinput , 234
extract-servicestate , 195, 197

father-block-import-export , 242, 245
form-integer , 98, 99, 100
form-names-and-strings , 96

gen-connect , 253, 254
gen-connect-elem , 254, 255
gen-formparm-unique , 70
generate-auxiliary-information , 33, 258
get-answer-sort , 217, 218, 220
get-exporteurs , 247, 248
get-inherited-parent , 73, 258
get-parent , 46, 64, 69, 79, 80, 90, 93, 111,

116, 119, 121, 139, 140, 143, 144,
150, 151, 156, 193, 200, 216, 256

get-predef-sort , 44, 47, 91, 92, 107, 109,
110, 148, 151, 152, 153, 154, 205,
208, 229, 256, 259, 260

get-sur , 63, 67, 71, 78, 116, 120, 128, 129,
131, 137, 139, 142, 144, 150, 155,
157, 158, 160, 163, 208, 210, 211,
212, 223, 224, 225, 228, 229, 240,
245, 246, 247, 253, 256, 257

get-visible-qual , 46, 57, 60, 64, 65, 69,
73, 84, 90, 93, 104, 106, 111, 116,
119, 121, 122, 124, 126, 129, 133,
139, 152, 158,159, 203, 205, 210,
212, 214, 241

get-visible-variable , 100, 193, 200, 206,
216

imp-exp-in-processes , 242, 246, 247

270 Fascicle X .4 - F u n ction In d ex

implicit-channels-and,-signal-routes , 54,
242

implicit-connects , 242, 253
implicit-signalroutes , 242, 249
import-export-signals , 63, 157, 175, 177,

178, 250, 252
initialdatadef , 54, 50, 61, 67
insert-answer-term , 166, 107
insert-equah-true , 101, 102, 105
insert-genparms , 84, 85
insert-importact , 188, 193
insert-join , 167, 108
insert-parm , 85, 87
ins ert- spec - term , 105
insert-starred , 172, 173
ins ert-state-names , 172, 173
ins ert-state-term , 162, 105, 234
insert-trans-term , 162, 165, 100, 167,

234
is-consistent-Diet 2 2

is-in-regular-expr , 96, 97, 100
is-in-regular-par , 97, 100
is-in-regular-range , 97, 98
is-in-regular-single , 97, 99
is-local , 57, 63, 122, 139, 235, 249, 251,

250
is-recursive-sort , 73, 74, 90
is-wf-connectchannels , 129, 130
is-wf-connectsignalroutes , 126, 127, 133
is-wf-entities , 39, 41
is-wf-refinement , 130, 131
is-w f -servicesignals ,161 , 240
is-wf-simple-expr , 44, 47

make-aso-channel-signalroutes , 251, 252
make-aso-env-signalroutes , 249, 251
make-aso-local-signalroutes , 249, 250
make - as i-concaxioms , 73, 94, 228
make-asi-identifier , 56, 57, 64, 65, 69,

73, 75, 77, 78, 81, 90, 91, 92, 94,
104, 111, 116, 117, 120, 122, 126,
129, 139, 141, 142, 147, 150, 151,
152, 164, 192, 193, 200, 203, 205,
206, 208, 212, 214, 216, 223, 225,
259

make-aSi-qual , 223
m ake-asi-typing , 77, 78
make-asxidset , 57, 122, 189, 208, 225
make-asitree , 33, 54, 61, 67, 220
make-expired-function , 258, 200
make-implicit-decl , 72, 73
make-implicit-import-vardef , 229, 230
make-implicit-sig decls , 71, 72
make-implicit-vardecl , 61, 229
make-new-qual , 223, 224
m ake-term -in f , 258, 259
make-tick-function , 258, 259
match-option-answer , 2 2 1

merge-states , 235, 239

pretrans , 181, 183
process-level , 63, 150, 157, 158, 189, 210,

212, 257
process-or-service-level, 67, 150, 151, 156,

175, 208, 210, 257

remove-asterisk-from-spec , 175, 177, 178
remove-asterisk-from-state , 174, 175
remove-asterisk-input-and-save , 162 ,174 ,

234
remove-cont-enable-from-state , 180, 181
remove-cont-enable-from-statelist, 162, 180,

235
remove-references , 35, 37, 38, 39
remove-select , 33, 43, 48
remove-select-in-decllist , 43, 44
remove-select-in-enclosed-scopeunit , 43,

48
rename-operator , 78, 79
repeat-collecting-synonyms , 43, 44, 45
replace-connects , 58, 00
replace-references , 33, 35

select-consistent-subset , 32, 202
select-remote-number-of-instances , 37, 41
service-connect , 132, 133
service-connectmap , 132, 161
signal-qual , 124, 159, 178, 192,.208, 234
signaldeflevel , 159, 100
sorts-have-values , 226, 227

transform-act , 195, 198
transform-activeexpr , 149, 152
transform-actparmlist , 214, 215
transform-actparms , 147, 152, 203, 205,

208, 212, 213
transform-answers , 217, 219
transform-assign , 199, 200, 201
transform-axiom , 1 0 0 , 1 0 1 , 228
transform-axiom-id , 135, 137
transform-axiom-id-of -this-sort , 137, 141
transform-axioms , 94, 100, 104, 106
transform-block-connect , 54, 125
transform-block-substructure-connect , 128,

129
transform-blockdef , 52, 54
transform-body , 67, 161, 102
transform-build-in-expression , 135, 149
transform-call , 198, 214
transform-channel-sub , 57, 58
transform-channeldef , 52, 57
transform-condequation , 101, 105
transform-condexpr , 135, 154
transform-create , 198, 212
transform-decision , 198, 217
transform-decl , 51, 52
transform-decllist , 33, 51, 54, 59, 61, 67,

72, 161, 233
transform-decomposition-body , 161, 235
transform-equation , 1 0 1 , 1 0 2

F ascicle X .4 — F u n ction In d ex 271

transform-export , 198, 200
transform-expr , 44, 46, 47, 90, 92, 93,

94, 117, 134, 135, 139, 151, 152,
153, 154, 155, 200, 205, 208, 213,
215, 217, 220

transform-field , 113
transform-fields , 112, 113
transform-geninst , 70, 71, 84
transform-id , 135, 139
trans form -im port , 199, 203, 205, 208, 212,

214, 217, 231
transform-importdef , 52, 121
transform-importexpr , 149, 150
transform-infixexpr , 135, 155
transform-informal , 199, 200
transform-inherited , 71, 73
transform-inoutactparm , 215, 210
transform-input , 189, 191
transform-input-transition , 191, 192
transform-inputvarlist , 192, 193
transform-inputvars ,1 9 2
transform-lhs-rhs , 102, 103, 105
transform-literal-renaming , 73, 75
transform-mapping , 1 0 1 , 1 0 0

transform-mappingaxioms , 1 0 0

transform-modifyassign , 2 0 0 , 2 0 1

transform-monadexpr , 135, 155
transform-nameclass , 94, 90
transform-nowexpr , 149, 151
transform-operator-renaming , 73, 77
transform-operatorexpr , 135, 142, 143
transform-operatorterm , 135, 144
transform-option , 198, 220
transform-output , 198, 207
transform-output-elems , 206, 207, 208
transform-partial-typedef , 52, 71
transform-pid-build-in , 149, 153
transform-prioutput , 198, 200
transform-proceduredef , 52, 00
transform-procedureparml , 67, 08
transform-process-body , 61, 1 0 1

transform-processdef , 52, 01
transform-processparm , 61, 04
transform-qual-operator , 143, 144, 146,

147
transform-quantequation , 101, 104
transform-refinement , 65, 00
transform-reset , 198, 203
transform-reset-elems , 203
transform-restrictions , 105
transform-selectexpr , 143, 149, 152
transform-servicesigroutedef , 52, 241
transform-set ,1 9 8 , 204
transform-set-elems , 204, 205
transform-signaldef , 52, 05, 6 6

transform-signallist , 57, 63 ,122,123, 124,
177, 189, 241

transform-signallistdef , 52, 123
transform-signalroutedef , 52, 122

transform-sortdef , 71, 73, 94, 112
transform-sortgenerator , 52, 70
transform-spelling , 135, 148
transform-statelist , 162, 188, 235
transform-statespecl , 188, 189
transform-stmtlist , 198, 199
transform-stringexpr , 135, 142, 148
transform-struc , 71, 112
transform-sub structure-connect , 54, 128
transform-synonymdef , 52, 93
transform-syntype , 52, 71, 90
transform-system 32, 33
transform-term , 103, 134
transform-timerdef , 52, 110
transform-transition , 162, 192, 195, 199

203, 205, 208, 212, 214, 217, 219
220, 235

transform-tupleexpr , 149, 153
transform-typing , 94, 111
transform-validinputset , 61, 03, 233
transform-valuerange , 91, 92
transform-valueset , 90, 91, 218, 219
transform-vardef , 52, 64, 110, 117, 118

229
transform-varparm , 6 8 , 09
transform-via , 208, 2 1 0

transform-view , 119, 120
transform-viewdef , 52, 119
transform-viewexpr , 149, 151

p ro c e s s o r system A n n e x F .3 , 32

272 F ascicle X .4 — F u n ction In d ex

Q uotation Index

ALL 15, 77
AND 14, 92, 107, 109, 222
AXIOMS 30, 94, 135, 147, 154, 155, 228

BLOCK 2 , 2 1 , 2 2 , 38, 41, 48, 54, 57, 58,
60, 223, 226

CHANNEL 21, 22, 57, 58, 126, 128, 129,
210, 225

CONC 14, 228
CONSTANT 30, 44, 46, 47, 90, 92, 93, 94,

117, 139, 140, 220

DATATYPEDEF 28, 33, 54, 56, 61, 67, 73,
94, 226

DIV 14

ENV 5, 6 , 23, 24, 25, 41, 57, 1 2 2 , 125, 127,
128, 130, 132, 158, 229, 242, 252,
255, 256

ENVIRONMENT 57, 122
EQ 14, 92, 107, 109, 184, 222
EXCLAMATION 113, 114, 115, 145, 152,

153, 201
EXCLAMATIONMARK 2
EXPORT 160
EXPORTED 6 , 26, 158, 246
EXPRESSION 30, 139, 149, 151, 152, 160,

200, 203, 205, 208, 212, 215, 217

GE 14, 92, 109, 1 1 0 , 2 2 2 , 260
GENERATOR 21, 2 2 , 70, 84
GLOBALNAMES 28, 33, 157, 181, 229
GT 14, 92, 109, 110, 222

IMPLIED 28, 61, 150, 229, 231
IMPLY 14, 107, 109
IMPORT 21, 22, 121, 150, 157
IMPORTLIST 28, 150, 199, 203, 205, 208,

212, 214, 217, 231
IN 14

LABELDICT 28, 162, 191, 195, 235
LE 14, 92, 109, 1 1 0 , 2 2 2

LEVEL 52
LITERAL 21, 22, 76, 94, 156, 228, 259
LT 14, 92, 109, 1 1 0 , 222

MAPPING 30, 94, 106, 135, 147, 148, 154,
155

MINUS 14, 17
MOD 14
MULT 14, 16, 98, 99, 1 0 0

NE 14, 92, 107, 2 2 2

NOT 14, 17, 18, 107, 109

OPERATOR 21, 22, 79, 80, 91, 92, 111,
144, 259

OR 14, 91, 109, 2 2 2

OUTSIGNALS 28, 61, 208

PLUS 14, 16, 99, 100, 183, 259
PROCEDURE 2, 22, 39, 41, 6 6 , 67, 214,

223, 226, 257
PROCESS 2 , 2 2 , 39, 41, 48, 61, 122, 212,

223, 226

REM 14
REVEALED 6 , 26, 1 2 0

REVERSE 10

SCOPEUNIT 28, 33, 43, 46, 48, 54, 56, 57,
58, 61, 63, 65, 6 6 , 67, 69, 70, 71,
90, 92, 93, 94, 102, 104, 106, 111,
112, 116, 117, 120, 121, 122, 123,
125, 126, 128, 129, 132, 133, 135,
137, 139, 140, 141, 143, 144, 150,
151, 155, 157, 158, 159, 162, 163,
175, 177, 178, 184, 185, 189, 190,
191, 195, 196, 197, 208, 210, 212,
224, 227, 231, 233, 234, 235, 239,
240, 241, 244, 245, 246, 247, 248,
249, 251, 252, 253, 256

SERVICE 2, 2 2 , 39, 41, 48, 233, 241, 257
SERVICES 28, 195, 196, 197, 235, 238
SIGNAL 2 , 2 1 , 22, 65, 116, 152, 157, 158,

159, 160, 203, 205, 223, 231
SIGNALLIST 2 1 , 2 2 , 123, 124
SIGNALROUTE 2 1 , 2 2 , 1 2 2 , 125, 126, 132,

133, 210, 241, 251
STATEDICT 28, 162, 188, 195, 231, 235
SUBSTRUCTURE 2 , 22, 38, 39, 41, 48, 54,

58, 223, 226
SYSTEM 2, 2 1 , 2 2 , 33, 41, 49, 223, 226

TYPE 2 , 22, 46, 56, 64, 65, 69, 71, 73, 90,
93, 94, 104, 106, 111, 114, 115,
116, 119, 121, 223, 256

VALUE 21, 2 2 , 43, 46, 69, 93, 104, 106,
117, 120, 137, 139, 140, 141, 148,
150, 151, 158

VIEW 2 1 , 2 2 , 1 2 0 , 151

XOR 14

F ascicle X .4 - Q u o ta tio n In d e x 273

Error M essages

§2.10 .2 : VIA illegal outside services when service signal routes defined 210
§2.2 .2 : Character string is not of appropriate sort 142
§2.2 .2 : Conditional expression does not m atch the context 154
§2.2.2: Ending nam e in block definition is different from defining name 54
§2.2.2: Ending nam e in block sub-structure definition is different from defining name 54
§2.2.2: Ending nam e in channel definition is different from defining name 57
§2.2.2: Ending nam e in channel sub-structure definition is different from defining name 58
§2.2.2: Ending name in procedure definition is different from defining name 67
§2.2.2: Ending nam e in process definition is different from defining name 61
§2.2.2: Ending nam e in service definition is different from defining name 233
§2.2.2: Ending name in system definition is different from defining name 33
§2.2.2: Identifier is not visible 158
§2.2.2: Local synonym or variable is not of right sort 139
§2.2.2: M ultiple appearence of operator definition 111
§2.2 .2 : Names of formal param eters m ust be distinct from variable names 61, 67
§2.2 .2 : No appropriate sort exist for decision action 218
§2.2.2: No im port variable m atches the context 150
§2.2.2: No sort can be used for value identifier 137
§2.2.2: No synonym, variable or literal matches the sort of the context 139
§2.2.2: One and only one revealed variable m ust m atch the view expression 151
§2.2.2: One and only one variable m ust m atch the context 160
§2.2.2: Ordering operators are m ultiple defined 108
§2.2.2: Result sort of operator is illegal for the context 147
§2.2.2: Several variables and synonyms are possible for the context 139
§2.2.2: Signal identifier denotes more than one (sub) signal 159
§2.2.2: Synonym or generator or signal list is recursive defined 158
§2 .2 .2 : The operator term cannot be used in this context 143, 144
§2.2.2: Two definitions in the same scopeunit and same entity class define the same nam e 51, 6 6

§2.2.2: Two definitions in the same scopeunit use the same name 64, 65, 6 8 , 69, 117, 119, 121
§2.2.3: Initial num ber is greater than m aximum number of instances 61
§2.2.3: Initial num ber of instances is less than zero 61
§2.2.3: M aximum number of instances equals zero 61
§2.4.1: Defining names may only be qualified in remote definitions 54, 58, 61, 67, 233
§2.4.1: Ending and starting identifier in the definition are different 37, 38
§2.4.1: No rem ote definition matches reference 37, 38
§2.4.1: Rem ote definition is not referenced in the system definition 35
§2.4.1: Rem ote definitions are not unique 35
§2.4.2: System definition m ust contain a t least one block 33
§2.4.3: Block m ust contain either one or more processes or a sub-structure definition 54
§2.4.4: Rem ote num ber of instances specification does not m atch process reference 41
§2.4.5: Variable in procedure (or service) cannot be EX PO RTED or REVEALED 117
§2.5.2: The endpoints of the signal route are not different 122
§2.5.2: The endpoints of the signal route are not locally defined 122
§2.5 .2 : The second path m ust denote reverse direction of the first path 122
§2.5.2: Valid input signal m ust contain all local signals and no tim ers 63
§2.5.2: Valid input signal set m ust be specified when no signal routes are specified 249
§2.5.3: Channel to signal route connection appears twice 125
§2.5.3: Channel to signal route connection is not well-formed 126
§2.5.3: No connection for channel connected to block 125
§2.5.3: Signal route does not appear in exactly one connect 125
§2.5.3: Signal route mentioned in more than one connection 125
§2.5.5: Signal identifiers in signal list are not distinct 124
§2.5: Endpoint of channel is defined in another scopeunit than the channel 57
§2.5: Endpoints of channel m ust be different 57
§2.5: Second path in channel definition m ust denote reverse direction of first path 57
§2.6 .1 .2 : No unique corresponding revealed variable of th a t sort 120

274 F ascicle X .4 — E rror M essages

§2.6.3: Ending name of sta te m ust be the same as starting name 172
§2.6.3: Ending state name is not allowed in asterisk sta te 172
§2.6.3: Signals in state are not disjoint 177, 178
§2.6.3: Signals in sta te node are not well-formed 175
§2.6.3: S tate names in sta te m ust be distinct 173
§2.6.4: Wrong num ber of param eters in input node 192
§2.6.6: Labels are not distinct 170
§2 .6 .7 .1 : Term inator missing in transition 166, 168
§2.6 .7 .2 .1 : Name in nextstate m ust denote a defined sta te 195, 196, 197, 238
§2.6 .7 .2 .2 : Label in jo in is not defined 195
§2.7.2: A ctual param eter length m ust be equal to formal param eter list length 212
§2.7.2: Created process m ust be defined in the same block 2 1 2

§2.7.3: A ctual IN /O U T param eter must be a variable identifier 216
§2.7.3: Length of procedure param eter list must equals the length of formal param eter list 214
§2.7.3: Same sort m ust be specified for formal and actual IN /O U T param eter 216
§2.7.4: Channel in VIA set is not connected to block 211
§2.7.4: Identifier in ou tput action must denote a signal 208
§2.7.4: If signal routes are specified then channels cannot be m entioned in VIA 211
§2.7.4: Illegal VIA set 210
§2.7.4: Not the right number of argum ents to ou tput action 208
§2.7.4: Signal cannot be conveyed by channel in VIA set 211
§2.7.4: Signal in ou tpu t has no possible receiver 210
§2.7.4: Signal route or channel specified twice in VIA set 210
§2.8: Identifier in reset action is not a tim er 203
§2.8: Identifier in set action is not a tim er 205
§2.8: Identifier in tim er active expression does not denote a tim er 152
§2 .8 : Illegal tim er active expression 152
§2.8: Param eter list length in reset action m ust equal the length specified in the definition 203
§2 .8 : Param eter list length in set action m ust equals the length specified in the definition 205

§3.2.2: Block sub-structure does not contain a block definition 54
§3.2.2: Channel connection appears twice 128
§3.2.2: Channel connection is not well-formed 129
§3.2.2: No connection for channel connected to block substructure 128
§3.2.2: Sub-channel does not appear in exactly one connect 128
§3.2.2: Sub-channel mentioned in more than one connection 128
§3.2.3: The block identifiers in the connects do not denote channel endpoints 60
§3.2.3: There m ust be exactly two channel endpoint connects 60
§3.3: Process uses signals on different refinement levels of the same signal 61

§4.10.1: Service signal route identifier occurs twice in service signal route connection 133
§4.10.1: Signals in service signal routes must be the same as for the connected signal route 133
§4.10.1: The endpoints in the directions of a bidirectional signal route m ust m atch 241
§4.10.1: The endpoints of service signal route m ust be different 241
§4.10.2: All service signal routes must be mentioned in a connect 132
§4.10.2: Illegal service signal route connection 132
§4.10.2: Missing signal route connection in process 132
§4.10.2: More than one service contains an initial transition string 238
§4.10.2: No service signal routes are connected to signal route in VIA 210
§4.10.2: Procedure in decomposition or service has states or im port expressions 67
§4.10.2: Process contains both service definitions and tim er definitions 116
§4.10.2: Service signals not well-formed 161
§4.10: A decomposition m ust contain a t least one service definition 235
§4.10: Illegal use of high priority signal 208
§4.11: Only one continuous signal may be specified if the priority is om itted 182
§4.11: Several continuous signals with the same priority 185
§4.2.3: The two term s in equation must be of the same sort 103

Fascicle X .4 — Error M essages 275

§4.3.2: Simple expression is not of a predefined sort or contains undefined identifiers 44
§4.3.3: The definitions in select are not allowed in th a t scopeunit 39
§4.3.3: The selected definition is not allowed in th a t scopeunit 48
§4.3.4: More than one option answer m atches the question 221
§4.3.4: No option answer matches the option question 221
§4.4: Illegal asterisk state 173
§4.7: S tate has more than one asterisk input or save 177, 178
§4.9: Dash nextstate in in itial transition 195

§5.2.1: Ending nam e in partial type definition is different from defining name 71
§5.2.1: Sort in d a ta type definition have no values 226
§5.2.1: There exist no operators which returns a value of th a t sort 71
§5.2.2: Literal defined twice in a partial type definition 94
§5.2.2: O perator or literal both defined explicit and by inheritance 73
§5.2.3: Inconsistent use of im plicitly quantified value name 141
§5.2.3: Value identifier m ust not be qualified 141
§5.2: Length of param eter list is not correct for an operator 147
§5 .4 .1 .10 : Two structure fields have the same name 113
§5 .4 .1 .11 : Literal defined twice in renam ing 76
§5 .4 .1 .11 : Literal in literal renam ing is not defined in the parent sort 76
§ 5 .4 .1 .11 : Literal renam ed twice 76
§ 5 .4 .1 .11 : O perator in operator renam ing is not defined in the parent sort 78
§ 5 .4 .1 .11 : O perator renam ed twice 78
§5.4 .1 ;11: O perator w ith an exclam ation is mentioned in an operator renaming 78
§5 .4 .1 .11 : Sort is based on itself 73
§5 .4 .1 .12 .2 : CONSTANT actual generator param eter m ust be a term 89
§5 .4 .1 .12 .2 : LITERAL actual generator param eter m ust be a literal signature 89
§5 .4 .1 .12 .2 : Lengths of actual and formal param eter lists in generator m ust be the same 84
§5 .4 .1 .12 .2 : O PER A TO R actual generator param eter m ust be an operator signature 89
§ 5 .4 .1 .12 .2 : T Y P E actual generator param eter m ust be a identifier 89
§5 .4 .1 .12 : Ending name in generator definition is different from defining name 70
§5 .4 .1 .12 : G enerator constant param eter used in literal signature 87
§5 .4 .1 .12 : G enerator formal name is qualified 87
§5 .4 .1 .12 : Name class cannot be used in equations 87
§5 .4 .1 .13 : Sort of synonym cannot be uniquely determ ined 93
§5 .4 .1 .14 : Length of character strings in regular interval is not equal to one 98
§5 .4 .1 .14 : R epetition name in name class m ust denote a natural number 98, 99, 100
§5 .4 .1 .15 : Illegal use of the SPELLING operator 148
§5 .4 .1 .7 : Error term is part of restriction 105
§5.4 .1 .7 : Error term is used in a composite term 135
§ 5 .4 .1 .9 .1 : Ordering operator is not defined for the sort of the range condition 92
§5 .4 .1 .9 : Ending nam e in syntype definition is different from defining name 90
§5 .4 .1 .9 : Syntype is based on itself 90
§5 .4 .1 .9 : Syntype is defined in term s of itself 256, 258
§5 .5 .3 .3 : More than one default assignment 84
§5.5.3: None or m ultiple expansions of modify assignment 201
§5 .5 .4 .1 : NOW expression m ust be used where TIM E values are allowed 151
§5.5 .4 .3 : PID expression is used in wrong context 153
§5.5.4: Im perative operator cannot be used in constant expression 149

276 F ascicle X .4 — E rror M essages

ISBN 92-61 -03781 -X

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)
	CONTENTS OF FASCICLE X.4 OF THE BLUE BOOK
	Contents
	Introduction
	1. Abstract Syntax Representing Concrete Syntax
	2. Internal Domains
	3. Transformation of ASo into AS1
	4. Deviations from Z.100

