This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothéque et des archives de
['Union internationale des télécommunications (UIT) a partir d'un document papier original des collections
de ce service.

Esta version electronica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unidn
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

o34 Aail) 4y 5 KIY) (PDF) gl n sead rasally i sucall o)yl a8 il giaall 5 8 alad¥] dsall VLU (ITU)
D& (e 4855 A8) 5 dlial (ania (3511 38 giall b and KA il giadll

SR TR (PDFRRAS) BRI (ITU) B TR ANRS 58 =R A7 Tz Ak i 4RSS Fl R it

Hacrosmumit snextponnsiii Bapuant (PDF) GBI OATOTOBIICH B OMOIHOTEUHO-aPXUBHOM CITy:KO€E
MeXayHapoJHOTO COI03a AIIEKTPOCBSI3H MyTEM CKaHHUPOBAHUSI HCXOIHOTO IOKYMEHTa B OyMaskHOU dopme 13
OubmoTedHo-apXuBHOH ciry’k061 MCD.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

(0]

VOLUME X - FASCICLE X.4

ANNEX F.2 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY assembly
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 198,9

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME X — FASCICLE X.4

&

ANNEX F.2 TO RECOMMENDATION Z.100:
SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY ASSEMBLY
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1989

ISBN 92-61-03781-X

© ITU

Printed in Switzerland

Volume I

FASCICLE 1.1

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume 11
FASCICLE 1I.1

FASCICLE 11.2

FASCICLE I1.3

FASCICLE 114

FASCICLE 11.5

FASCICLE 11.6

Volume III

FASCICLE III1

FASCICLE III1.2
FASCICLE 1II1.3
FASCICLE I11.4

FASCICLE 1IIL3

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

BLUE BOOK

Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

Index of Blue Book.

General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study Group II).

Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study Group II).

Telegraph and mobile services — Operations and quality of service. Recommenda-
tions F.1-F.140 (Study Group I).

Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study Group I).

Message handling and directory services — Operations and definition of service. Recom-
mendations F.400-F.422, F.500 (Study Group I).

General characteristics of international telephone connections and circuits. Recommenda-
tions G.101-G.181 (Study Groups XII and XV).

International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).
Transmission media — Characteristics. Recommendations G.601-G.654 (Study Group XV).

General aspects of digital transmission systems; terminal equipments. Recommenda-
tions G.700-G.772 (Study Groups XV and XVIII).

Digital networks, digital sections and digital line systems. Recommendations G.801-G.956
(Study Groups XV and XVIII).

\

II1

FASCICLE I11.6

FASCICLE II1.7

FASCICLE II1.8

FASCICLE II1.9

Volume IV

FASCICLE IV.1

FASCICLE 1V.2

FASCICLE 1V.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI.1

FASCICLE VI.2

FASCICLE VL3

FASCICLE VI.4

FASCICLE VLS

FASCICLE VI.6

FASCICLE V1.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI.10

1 AY

Line transmission of non-telephone signals. Transmission of sound-programme and televi-
sion signals. Series H and J Recommendations (Study Group XV).

Integrated Services Digital Network (ISDN) — General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) - Overall network aspects and functions,
ISDN user-network interfaces. Recommendations 1.310-1.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Internetwork interfaces and maintenance
principles. Recommendations 1.500-1.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

Maintenance of international telegraph, phototelegraph and leased circuits. Maintenance of
the international public telephone network. Maintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

Maintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and informa-
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).
Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).
Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations

Group XI).

Q.771-Q.795 (Study

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

FASCICLE VI.11

FASCICLE VI.12

FASCICLE VI.13

FASCICLE VI1.14

Volume VII

FASCICLE VII.1

FASCICLE VII.2

FASCICLE VIL3

FASCICLE VII.4

FASCICLE VIILS

FASCICLE VIIL.6

FASCICLE VIL7

Volume VIII

FASCICLE VIIIL1

FASCICLE VIII.2

FASCICLE VIIL3

FASCICLE VIIL.4

FASCICLE VIILS

FASCICLE VIIIL6

FASCICLE VIIL7

FASCICLE VIILS8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage-
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda-
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda-
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.1100-Q.1152 (Study

Group XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip-
ment. Series S Recommendations (Study Group IX).

Telegraphﬁswitching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII). :

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda-
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study

Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Model and nota-
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica-
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).
directory. Recommendations X.500-X.521 (Study

Data communication networks:

Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements of outside plant. Series L Recom-"
mendations (Study Group VI).

Volume X

FASCICLE X.1

FASCICLE X.2

FASCICLE X.3

FASCICLE X.4

FASCICLE X.5

FASCICLE X.6

FASCICLE X.7

VI

Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z.110 (Study Group X).

Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

Annex F.1 to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X). v '

Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
Group X).

CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

Man-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

CONTENTS OF FASCICLE X.4 OF THE BLUE BOOK

Annex F.2 to Recommendation Z.100

SDL Formal Definition. Static Semantics

REMARK

Due to the specialized nature of the SDL semantics, this Fascicle is published in English only.

REMARQUE

Etant donné la nature trés spéciale de la sémantique du LDS, ce fascicule est publié uniquement en anglais.

OBSERVACION

Debido a 1a naturaleza especializada de la semantica del LED, este fasciculo s6lo se publica en inglés.

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in Contri-
bution No. 1 to that Study Group. '

2 In this Fascicle, the expression ‘‘Administration” is used for shortness to indicate both a telecommunication
Administration and a recognized private operating agency.

Fascicle X.4 — Table of Contents VII

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Contents

1

2

Abstract Syntax Representing Concrete Syntax

1.1 Basic SDL e e
1.2 Structural Concepts« L e
1.3 Additional Concepts e
14 Data e e e e

Internal Domains

2.1 Description of Descriptordicto oo
2.2 Description of Quotdict e e
2.3 Other Domains e

Transformation of AS(into AS;

3.1 Main Functions e e
3.2 Replacing Definition References
3.3 Removal of Select Definitions e
3.4 Transformation of Déﬁnitions
3.4.1 Block Definitions L o
3.4.2 Channel Definitions B
3.4.3 Process Definitions P,
34.4 SignalDeﬁnitions...‘...............‘;
3.4.5 Procedure Definitions oo
346 Sort Genmerators. oo
3.4.7 Sort Definitions e
3.4.8 Timer Definitions e
3.4.9 Variable Definitions L oo
3.4.10 View Definitions e
3.4.11 Import Definitions e e
3.4.12 Signalroute Definitions . B
3.4.13 Signallist Definitions o
3.4.14 Connect Statements e

3.5 Transformation of Expressions . . . R
0 3.5.1 Identifiers L e e e e
3.5.2 Character Strings L. o e
35,3 Operators oo i e e e e
3.5.4 Conditional Expressions
3.5.5 Infix and Prefix operators

3.6 Visibility Handling o o
3.7 Transformation of Procedure- and Process Graph
3.7.1 Insertion of Terminatorsin Answers

Fascicle X.4 — Contents

16
11
12

20
21
28
30

3.7.2 Building of Labeldict e
3.7.3 Buildingof Statedict 0oL
3.7.4 Expansion of Asterisk Input, Asterisk Save and Implicit Transitions
3.7.5 [Expansion of Continuous Signals and Enabling Condition
3.7.6 Transformation of States and Input Nodes
3.7.7 Transformation of Transition Strings
3.7.8 Transformation of Action Statements.
3.8 Qeneml AS; Creating Functions
3.9 Expansion of SEIvices i i e e e
3.10 Creation of Implicit Channels and Signal Routes
3.10.1 Creation of Implicit Channels e e e e e e e e e
3.10.2 Creation of Implicit Signalroutes
3.10.3 Creation of Implicit Connect Statements
3.11 Utility Functions e
3.12 Generation of Auxiliary Information
3.13 Global Constant Mappings o v v v v v v i v it v
3.13.1 Relation between ASop names and AS; names
3.13.2 Relation between import/export names and implicit signal names . . .

3.14 Informal Functions e e e e

4 Deviations From Z.100

X Fascicle X.4 — Contents

FASCICLE X.4

Annex F.2 to Recommendation Z.100

SDL FORMAL DEFINITION
STATIC SEMANTICS

Introduction

This part of The Formal Definition defines the static properties of SDL. For a description of
the over-all structure of the Formal Definition and for an explanation of the notation used,
refer to Annex F.1: Introduction to the Formal Definition.

Annex F.2 defines the following:

e The well-formedness conditions which apply.
However, the well-formedness conditions which involve elaboration of equations are,
for convenience, deferred to the construction of Entity-dict in Annex F.3: Dynamic
Semantics (see the introduction to section 5 of Annex F.3). Even though the conditions
are placed in the Dynamic Semantics, the conditions are static properties and they are
therefore applied before any interpretation of SDL processes takes place.

Those well-formedness conditions are the following:

1.
2.

3.
4.

The check that the answers in a decision do not overlap.

The check that an enclosed scopeunit does not invalidate the properties of a sort
defined in the enclosing scopeunit.

The check that no literal equals the error term.
The check that the Boolean literals TRUE and FALSE denote difterent values.

o The relation between the concrete syntax and the abstract syntax as defined in Z.100
(referred to as AS;). AS; is not repeated in the Formal Definition. A summary can
be found in Annex B of Z.100.

In order to distinguish the AS, objects from other objects in the Meta-IV functions,

»_»

every AS; name is suffixed by a 7,”.
For example the definition of identifier as defined in §2.2.2 of Z.100 is

Identifier :: Qualifier Name

whereas the corresponding definition in the Formal Definition is taken as

Identifier; :: Qualifier; Name,

Fascicle X.4 — Rec. Z.100 — Annex F.2 1

1 Abstract Syntax Representing Concrete Syntax

In the following, the domain ASo which reflects the concrete syntax is defined. Although
AS, presents the concrete syntax on an abstract form, ASy does in some respect define the
language syntax on a “lower level” than the syntax rules found in Z.100. This is due to the
fact that the context sensitive information found in the syntax rules is not reflected in AS,
(for an explanation see section 3 of Annex F.1)

As opposed to in AS;, abbreviations for the domain names are used in ASq in order to
reduce problems of the limited physical line width. The annotations attached to the domain
definitions, define the full names, by using #talics letter style for the letters which also occur
in the abbreviations.

In order to distinguish the ASy objects from other objects in the Meta-IV functions, every

&

AS, domain is suffixed by a “g”.

Due to the fact that ASy is an Abstract Syntax derived from the textual grammar, the
following items are not covered by the Formal Definition:

e Lexical rules (including macros)
Most of these rules are defined formally in §2.2.1 of Z.100

o Syntax rules (ASo does not define where to place keywords and separators, it only
defines the objects a system definition consist of).
The syntax rules are defined formally in Z.100 in the subsections teztual grammar

e The relation between the textual grammar and the graphical grammar
In most cases this relation is straigth forward, i.e. <diagram> corresponds to <defi-
nition>, “is followed by” in the graphical grammar is literally “is followed by” in
the textual grammar etc.

The domains are specified in the same order as the corresponding syntax rules are defined
in Z.100, e.g. the first domain definition in ASq is Idy and the first BNF production in Z.100
is <identifier>

1.1 Basic SDL

1 Idy :t Qualifiery Nameg

2 Qualifierg = Qualifierelemy*

3 Qualifierelemyg = Scopeunity Nameg

4 Scopeunity = SYSTEM | BLOCK | PROCESS | SERVICE |
PROCEDURE | SUBSTRUCTURE | TYPE | SIGNAL

5 Nameg it Chart [EXCLAMATIONMARK]

e An Identifier consists of a Qualifier and a Name
o A Qualifier is a possible empty list of Qualifier elements.
e A Qualifier element is a scope unit type and a Name.

e A scope unit type is either the system, a block, a process, a service, a procedure, a
block/channel sub-structure, a partial data type definition or a signal refinement.

e A Name consists of a non-empty list of characters followed by an optional exclama-
tionmark.
For convenience, The Names in ASy covers a slightly different class of names than
defined by the BNF syntax rules in Z.100.
The following presumptions on AS, apply:

— The optional exclamation mark following the spelling (Chart) can be present
only where it is allowed syntactically according to the BNF rules.

2 Fascicle X.4 — Rec. Z.100 — Annex F.2

— The spelling is an uppercase sequence of characters which conforms to the lexical
. rules defined'in Z.100.

6 Stringg it Char*
e A character String consists of a possible empty list of characters.

7 Texty it Stringo

e Informal Tezt contains a character String. In expression context, informal Tezt cannot
be distinguished from String, Therefore, in ASo Tezt only occurs in Task as alternative
to assignment statements. :

8 Sysg ;i Sysdefy Remotedefy

e A System consists of a System definition and the Remote definitions.

1]

9 Remotedefy
10 Refdecly

Refdecly* .
Blockdefy | Prdefy | Servicedefy | Procdefy | Chansubdefy

e The Remote definitions is a list of Referenced declarations.

e A Referenced declaration is either a Block definition, a Process definition, a Service
definition, a Procedure definition, or a Channel substructure definition.

Also block sub-structures may be remote. However, as it is not possible to distinguish
syntactically between a remote block sub-structure and a remote channel sub-structure, the
channel sub-structure must be converted to a block sub-structure (see remove-references) if
the context shows that the remote definition actually is a block sub-structure.

11 Sysdefy 1 Sysnameg Sysdecly* [Tailnameg)
12 Sysnameg = Nameg
13 Sysdecly = Blockdefy | Blockrefy | Chandefy | Stgdefo |

Signallistdefy | Datadefy | Selecty
e A System definitioh consists of a System name, a list of System declarations and an
optional tailing name ending the System definition.
e A System name is a Name.

e A System declaration is either a Block definition, a Block reference, a Channel defini-
tion, a Signal definition, a Signal list definition, a Data definition or a Select definition.

14 Blockrefo 1 Blocknameg

15 Blockdefy i Blockidy Blockdecly* [Blocksubo) [Tailidg]

16 Blockidy = Idy

17 Tailidy = Idy '

18 Blockdecly = Sigdefo | Prdefy | Prrefy | Datadefy | Connecty |
Sigroutedefy | Signallistdefy | Selecty

19 Blocknameg = Nameg

e A Block reference contains a Block name.

Fascicle X.4 — Rec. Z..100 — Annex F.2 3

20
21
22

23
24

25
26
27
28
29
30
31

A Block definition contains a Block identifier, a list of Block declarations, an op-
tional Block substructure definition and an optional Tailing identifier ending the Block
definition.

Note that it is not possible to distinguish syntactically between Name and Identifier
in the concrete syntax. Consequently, ASgy contains Identifiers at those places where
both Names and Identifiers are allowed.

A Block identifier is an Identifier.
A Tailing tdentifier is an Identifier.

A Block declaration is either a Signal definition, a Process definition, a Process refe-
rence, a Data definition, a channel to signal route connection, a Signal route definition,
a Signal list definition or a Select.

A Block name is a Name.

Prrefy = Prnamey [Instancesy)
Prnameg = Namey
Prdef, :: Pridg [Instancesy) Parmg*
[Inputsety] Prdecly* Processbodyg [Tailido)
Pridy = Idy
Prdecly = Vardefy | Viewdefy | Datadefo | Sigdefo |

Signallistdefy | Importdefy | Procdefy |
Procrefy | Timerdefy | Selecty

Procrefy it Procnameg

Inputsety i [Signallisty)
Processbodyy = Bodyo | Decompositiong
Parmy i+ Varnamegd Sortidy
Instancesg ' i [Indtialy] [Mazimumg)
Initialy = Ezprg

Mazimumyg = Ezprg

A Process reference contains a Process name and an optional number of Instances
specification.

A Process Name is a Name.

A Process definition consists of a Process identifier, an optional number of Instances
specification, a list of process formal Parameters, an optional valid Input signal set, a
list of Process declarations, the process Body and an optional {ailing Identifier ending
the Process definition.

A Process identifier is an Identifier.

A Process declaration is either a variable definition, a View definition, a Data defini-
tion, a Signal definition, a Signal list definition, an Import definition, a Procedure
definition, a Procedure reference, a Timer definition or a Select.

A Procedure reference consists of a Procedure name.

A valid Input signal set contains a possibly empty (if nil) Signal list.

A Process body is either a graph Body or a service Decomposition.

A process formal Parameter consists of a list of Variable names and a Sort identifier.

The number of Instances specification consists of an optional Initial number and an
optional Mazimum number.

The Initial number is a simple Ezpression.

The: Mazimum number is a simple Ezpression.

Fascicle X.4 — Rec. Z.100 — Annex F.2

32
33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48
49

Procdefo it Procidy Procparmg* Procdecly* Bodyg [Tailido)

Procidy = Idy

Procdecly = Vardefy | Datadefy | Procdefy | Procrefy | Selecty
Procnameg = Nameg

Procparmg = Inoutparmg | Inparmg

Inoutparmy 2 Varnamegt Sortidy

Inparmg it Varnamegt Sortidy

A Procedure definition consists of a Procedure identifier, a list of Procedure formal
parameters, a list of Procedure declarations, a procedure Body and an optional Tatling
tdentifier ending the Procedure definition.

A Procedure tdentifier is an Identifier.

A Procedure declaration is either a variable definition, Data definition, a Procedure
definition, a Procedure reference or a Select.

A Procedure name is a Name.

A Procedure formal parameter is either a variable In/ Out parameter or a variable In
parameter.

An In/Out parameter consist of a list of Variable Names and a Sort identifier.

-An In parameter consist of a list of Variable Names and a Sort identifier.

Chandefy :: Channamey Chanpathg [Chanpathy] [Chansubg] [Tailnameg)
Chanpathg iz Origo Desty Signallisty

Channameg = Namey

Origo = Blockidy | ENV

Desty = Blockidy | ENV

Tailnamey = Namey

A Channel definition consists of a Channel name, one or two Channel communication
paths, an optional Channel substructure definition and an optional tailing name end-
ing the Channel definition. A Channel communication path consists of an Originating
endpoint, a Destination endpoint and a Signal list.

An Originating endpoint is either a Block identifier or the ENVIRONMENT.
A Destination endpoint is either a Block identifier or the ENVIRONMENT.

A Name which ends a definition is a Tailing name.

Sigroutedefy . Sigroutenamey Sigroutepathy [Sigroutepath)
Sigroutepathy 12 Origing Destinationg Signallisty

Origing = Idg | ENV

Destinationg = Idy | ENV

Sigroutenameg = Nameg

A Signal route definition contains a Signal route name and one or two Signal route
communication paths.

A Signal route communication paths contains an Originating process or service, a
Destination process or service and a Stgnal list.

An Originating process or service is either a identifier or the ENVIRONMENT.
A Destination process is either a Process identifier or the ENVIRONMENT.

A Signal route name is a Name.

Fascicle X.4 — Rec. Z.100 — Annex F.2 5

50 Connecty 2 Connectpointy Idy™
51 Connectpointy = (Ido | ENV)

e A connection contains a connection point and a list of Identifiers to which it is con-
nected. Note that Connecty both denotes channel endpoint connection, channel to
route connection, signal route connection and channel connection since these four kind
of connections are not distinguished syntactically if they occur in a select definition.

e A connection point is an Identifier or, in the case of a channel endpoint connection,

ENV.
52 Sigdefo i Sigelempt
53 Sigelemg 2 Signameg Sortidy* [Refinement)
54 Signameg = Nameg
55 Sortidy = Idy

e A Signal definition consists of a list of Signal elements.

e A Signal element consists of a Signal name, a list of Sort identifiers and an optional
Refinement part.

e A Signal name is a Name.

e A Sort identifier is an Identifier.

56 Signallistdefy i1 Signallistnameo Signallisty
57 Signallistnameg = Nameg

58 Signallisty = (Signallistidy | Sigido)™

59 Signallistidy i Idy

60 Sigidg = Idy

e A Signal list definition consists of a signal list name and a Signal list.

A Signal list name is a Name.
e A Signal list is a non-empty list of Signal list identifiers and Signal identifiers.
e A Signal list identifier contains an Identifier.

e A Signal identifier is an Identifier.

Note that, as a Signal list identifier is a tree, it is always possible to distinguish between
signal list identifiers and signal identifiers (as is also the case in the concrete syntax).

61 Vardefy :: [REVEALED] [EXPORTED] Vardefelemo™
62 Vardefelemq 2 Varnamep™ Sortidg [Valueo)
63 Varnameg = Namey

o A Variable definition consists of an optional REVEALED attribute, an optional EX-
PORTED attribute and a list of Variable definition elements.

e A Variable definition element consists of a list of Variable names, a Sort identifier
and an optional initial Value.

o A Variable name is a Name.

64 Viewdefy i Viewdefelemo™
65 Viewdefelemy 2 Varidyt Sortidy
66 Varidy = Idy

6 Fascicle X.4 — Rec. Z.100 — Annex F.2

e A View definition consists of a list of View definition elements.

o A View definition element consists of a list of view Variable identifiers and a Sort

67
68
69
70
71

72

3
74
75
76

7
78
79

identifier.

A Variable identifier is an Identifier.

Body, it Transitiony Statebodyg®

Statebodyg :t (Statenamelisty | Starredlisty) Statespeco* [Tailnames)
Statenamelisty ;1 Statenameg™

Statenameg = Nameg

Starredlisty :: [Statenamelisty)

A Body consists of the start Transition and a list of State bodys.

A State body contains a State name list or a Starred name list and followed by a list of
State stimulus specifications and an optional tailing name ending the State body.

A State name list consists of a list of State names.
A State name is a Name.

A Starred name list contains a possible empty (if nil) State name list.

Statespeco = Savespecy | Inputspecy | Contspecy | Priinputy
P putsp P

A State stimulus specification is either a Save specification, an Input specification, a
Continuous signal specification or a Priority input specification.

Savespecgy 2 Signallisty | Starredy

Inputspeco 2 (Starredy | Inputvarsy®) Enablingy Transitiong
Starredy = ()

Inputvarsgy i Sigidy [Varidg)*

A Save specification contains either a Signal list or an asterisk.

An Input specification contains either an asterisk (i.e. a tree Starred denoting the
asterisk) or a none-empty list of Input signal variables and followed by an enabling
condition and followed by a Transition.

Input signal variables contains a Signal identifier and a list of optional Variable identi-
fiers.

Transitiong it Actstmiy® [Termstmiy)
Actstmiy 2 [Labely] Acty
Labely = Nameg

A Transition contains a list of Action statements and an optional Terminator state-
ment.

If Termstmtis omitted, then the list of Actstmtis non-empty and if the list of Actstmt
is empty then Termstmt is present (it need not to be checked as it is a context free
concrete syntax rule).

e An Action statement contains an optional Label and an Action.

o A Labelis a Name.

Fascicle X.4 — Rec. Z.100 — Annex F.2 7

Acty = Taskg | Oulputy | Createg | Decisiong | Ezporty |
Optiong | Cally | Prioutputy | Seto | Resely

An Action is either a Task, an Oulput, a Create request, a Decision, an Ezport, a
transition Option, a procedure Call, a Priority output, a timer Set or a timer Reset.

81
82
83
84
85
86

87

88
89

90

91
92
93
94
95
96

Termstmiy i [Labely] Terminatorg

Terminatorg = Neztstateg | Joing | Stopo | Returng
Neztstateg i [Statenameg)

“Joing v Labely

Stopo = ()

Returng = ()

A Terminator statement contains an optional Label and a Terminator

A Terminator is either a Neztstate, a Join, a Stop or a Return.

A Neztstate contains an optional State name (nil if it is a dash nextstate).
A Join contains a Label

A Stop contains 'no additional information.

A Return contains no additional information.

Taskg i1 Assignsimityt | Texty™

A Task contains either a list of Assignment statements or a list of informal Texts.

Createg it Pridg Actparmlisty
Actparmlisty . = [Ezpro)*

A Create request contains a Process identifier and an Actual parameter list.

An Actual parameter list is a list of optional Ezpressions.

Cally :: Procidy Actparmlisty

A procedure Call contains a Procedure identifier and an Actual parameter list.

Outputy :: Outputsigy™ [Piezpro] Viag
Outputsigg it Sigidy Actparmlisty
Piexpry = Ezprg | Scopeezpry

Viae = Idy*

Scopeezpro it Scopeog Ezprg

Scopeg = Qualifiery

An Output contains a list of Output signals, an optional PId expression and a Via.
An Output signal consists of a Signal identifier and an Actual parameter list.
A PId expression is either an Ezpression or a scope ezpression.

A Viais a possible empty list of Identifiers.

Fascicle X.4 — Rec. Z.100 — Annex F.2

® scopeezpression has no corresponding construct in the concrete syntax. It is a utility

97
98
99
100

101
102
103

104
105
106

107
108

construct which is introduced in ASy in order to ease the transformation of services.

When services are transformed, they are merged into one ASo process graph. Except
for the transition containing output and decisions implied from enabling condition
and continuous signals, every transition in the resulting ASy process graph must be
transformed in the context of a certain service. The Scope in Scopeezpression is a
Qualifier which points out the service which “owns” the Ezpression occurring in the
decisions in enabling condition.

Scopeezprgs are generated during the expansion of enabling condition and continuous
signal.

Decisiong . Questiony Answery™t [Elseparto)
Questiong = Eazpry | Scopeezprg

Elseparty . [Transitiong]

Answenrg . Conditionlisty [Transitiong)

A Decision contains a Question, a none-empty list of Answers and an optional Else
part

A Question is either an Ezpression or a scopeezpr (explained above).
An Else part contains an optional Transition.

An Answer contains a Condition list and an optional Transition

Timerdef, i1 Timerelemy™t
Timerelemg i+ Timernameg Sortidy*
Timernameg = Nameg

A Timer definition consists of a list of Timer elements.
A Timer element contains a Timer name and a list of Sort identifiers.

A Timer name is a Name.

Resety :t Resetelemy™
Resetelemg it Timeridy Expro*
Timeridy = Idy

A timer Reset contains a list of timer Reset elements.

A timer Reset element contains a Timer identifier and a possible empty list of Ezpres-
sions.

A Timer identifier is an Identifier.

Sety 1w Setelemgt
Setelemgy v Ezprg Timeridy Expry*

A timer Set contains a list of timer Set elements.

A timer Set element contains a time expiration Ezpression, a Timer identifier and a
possible empty list of Ezpressions.

Fascicle X.4 — Rec. Z.100 — Annex F.2 9

1.2

(Lo 2 I)

o

S © o=

11

13
14

10

Structural Concepts

Blocksubg = Blocksubdefy | Blocksubrefo

Blocksubdefy it [Blocksubidy] Blocksubdeclyt [Tailidp)

Blocksubidy ‘= Idy

Blocksubdecly = Signallistdefy | Connecty | Blockdefy | Blockrefy |
Chandefy | Sigdefo | Datadefy | Selecty

Blocksubrefy , 2 Blocksubnamey

Blocksubnameg = Nameg

A Block substructure is either a Block substructure definition or a Block substructure
reference.

A Block substructure definition consists of a Block substructure tdentifier, a list of
Block substructure declarations and an optional tailing identifier ending the Block
substructure definition.

A Block substructure identifier is an Identifier.

A Block substructure declaration is either a Signal list definition, a Block sub-structure
Connection, a Block definition, a Block reference, a Channel definition, a Signal
definition, a Data definition or a Select.

A Block substructure reference contains a Block substructure name.

A Block substructure name is a Name.

Chansubg = Chansubdefy | Chansubrefy

Chansubdefy :: Chansubidy Chansubdeclyt [Tailidy)

Chansubidy = [Ido]

Chansubdecly = Chandefy | Blockdefo | Sigdefo | Blockrefy
Signallistdefo | Datadefy | Connecty | Selecty

Chansubrefy :: Chansubnameg

Chansubname, = Nameg

A Channel substructure is either a Channel substructure definition or a Channel
substructure reference.

A Channel substructure definition consists of a Channel substructure identifier, a list
of Channel substructure declarations and an optional Tailing identifier ending the
Channel substructure definition.

A Channel substructure identifier is an optional Identifier.

A Channel substructure declaration is either a Channel definition, a Block definition,
a Signal definition, a Block reference, a Signal list definition, a Data definition, a
channel endpoint connection or a Select.

A Channel substructure reference contains a Channel substructure name.

A Channel substructure name is a Name.

Refinement, i1 Subsignalyt
Subsignaly :: [REVERSE] Sigdefy

A Refinement part contains a list of Subsignal definitions.

A Subsignal definition contains a flag indicating whether the subsignal is leading in
the opposite direction and a Signal definition.

Fascicle X.4 — Rec. Z.100 — Annex F.2

1.3

1
2

Additional Concepts

Selecty it Ezprg Declyt

Decly = Blockdefy | Blockrefy | Chandefy | Sigdefy | Prdefy |
Prrefy | Procdefy | Procrefy | Servicedefy |
Servicerefo | Datadefy | Sigroutedefy | Signallistdefy |
Vardefy | Importdefy | Viewdefy | Timerdefy |
Connecly | Selecty

e A Select definition consists of an Ezpression and a list of Declarations.

e A Declaration is either a Block definition, a Block reference, a Channel definition, a

11
12

Stgnal definition a Process definition, a Process reference, a Procedure definition,
a Procedure reference, a Service definition, a Service reference, a Data definition,
a Signal route definition, a Signal list definition, a Variable definition, an Import
definition, a View definition,a Timer definition, a connection or a Select definition.

Optiong i Questiony Answere™ [Elseparty]

A transition Option contains a Question, a list of Answers and an optional Else part.

Decompositiong it Decompositiondecly
Decompositiondecly = Sigroutedefy | Connecty |

Servicedefy | Servicerefy | Selecty
A Decomposition contains a list of Decomposition declarations.

A Decomposition declaration is either a Signal route definition, a signal route con-
nection, a Service definition a Service reference or a Select definition.

Servicedefy 0 Servicetdy [Inpulsety] Servicedeck* Bodyo [Tailidg)

Servicedecly = Vardefy | Procdefy | Procrefy | Viewdefy | Importdefy |
Timerdefy | Datadefy | Selecty

Servicetdy = Idy .

Servicerefy ;v Servicenameg

Servicenamegy = Nameg

A Service definition consists of a Service identifier, an optional valid service input
signal set, a list of Service declarations, a service Body and an optional Tailing identifier
ending the Service definition.

A Service declaration is either a Variable definition, a procedure definition, a Proce-
dure reference, a View definition, an Import definition, a Timer definition, a Data
definition or a Select definition.

A Service identifier is an Identifier.
A Service reference contains a Service name.

A Service name is a Name.

Priinputy :: Inputvarsyt Transitiong
Prioutputy . Outputsiget
A Priority input consists of a list of signal input variables and a Transition.

A Priority output contains a list of Output signals.

Fascicle X.4 — Rec. Z.100 — Annex F.2 11

13
14
15

16

17
18
19

5
6
7

12

Contspeco 2 Ezpry Priorityy Transitiong
Priorityy = [Nameo)
Enablingy = [Ezpro]

A Continuous signal specification contains an Ezpression, a Priority and a Transition
Priority is an optional integer Name

Enabling is an optional Ezpression.

Ezporty » Varidgt

An FEzport contains a list of exported Variable identifiers.

Importdefy . Importelemyt
Importelemg i1 Varnamegt Sortidy
Importezpry it Varidy [Ezpro]

An Import definition contains a list of Import elements.
An Import element is a list of imported Variable names and a Sort identifier.

An Import ezpression contains an imported Variable identifier and an optional PId
FEzpression.

Data
Partialtypedef, it Sortnamey [Eztpropertiesy] Propertiesy
[Conditionlisty) [Tailnameg)
Sortnameg = Nameg

A Partial type definition consists of a Sort name, some optional Eztended properties,
some Properties, an optional range condition value list and an optional sort name
ending the definition.

Note that, as opposed to the syntax rule in Z.100, this definition also covers syntypes
where the partial type definition is implied (i.e. in the case where Conditionlisty is
different from nil).

A Sort name is a Name.

Propertiesg :: Literaly* Ope* Aziomy* Mappingaziomy® [Initialvalueg)

Properties consists of a list of Literal signatures, a list of Operator signatures, a list of
Agzioms, a list of literal Mapping azioms and an optional Initial (default) value.

Literaly = Nameg | Stringo | Nmclasso

A Literal signature is either a Name, a character String or a Nameclass.

Opo = Orderingo | Opspeco
Opspecy 1 Operatornamey Sortidyt Sortidy
Operatornamegy = Nameg | Quotedopo

Fascicle X.4 — Rec. Z.100 — Annex F.2

e An Operator signature is either Ordering or an Operator specification.

e An Operator specification consists of an Operator name, a list of argument Sort identi-

10

11
12

13

14

15

16

fiers and a result Sort identifier.

An Operator name is a Name or a Quoted operator.

Aziomg Ungquantequationg | Condequationy | Quantequationg
Ungquantequationg = Equationg | Termq ‘

An Aziomis either an Unquantified Equation or a Conditional equation or a Quantified
equation or a Term.

An Unguantified Equation is either an Equation or a Term.

Equationg it Termg Termg

An Equation consists of a left-hand Term and a right-hand Term.

Quantequationg :: Valuenamegt Sortidy Aziomyt
Valuenameg = Nameg

A Quantified equation consists of a list of Value names, a Sort identifier and a list of
Azioms.

A Value name is a Name.

Termo = Idy | Operatortermg | Condtermgy | Stringtermq
Monadtermg | Infiztermg | Errortermg | Spellingtermq

A Term is either an Identifier, an Operator term, a Conditional term, a character
String term, a Monadic term, an Infiz term, an Error term or a Spelling term.

Note that, in ASg, no distinction can be made between the various kinds of operators
in terms and expressions which only differs semantically. For example, (extended
composite term) and (extended ground term) as defined in §5.4 of Z.100, cannot be
distinguished syntactically (i.e. without binding names to definitions), which means
that they are covered by the same domain definition in AS,.

Operatortermgy i (Idy | Qualopy) Termo™

An Operator term consists of an Identifier or a Qualified operator and followed by a
list of argument Terms.

Condtermyg v Termg Termy Termg

A Conditional term consists of a condition Term, a consequence Term and an alter-
native Term.

Stringtermg :t Qualifierg Stringg

e A character String term consists of a Qualifier and a character string.

Fascicle X.4 — Rec. Z.100 — Annex F.2 13

17

Monadtermg 2 (NOT | MINUS) Termq

e A Monadic term consists of one of the operators “NOT” or “-” followed by an argument

18
19

20

Term

Infiztermg 2 Termo Infizope Termg

Infizope = IMPLY | OR | XOR | AND | IN |
MOD | REM | PLUS | MINUS | CONC |
MULT | DIV | Relopo

Relop, = NE|EQ|GT|LT|LE|GE

An Infiz term consists of two argument Terms and an Infiz operator.

An Infiz operator is either “=)”,“OR”,“XOR”,“AND” “IN”, “MOD”,“REM” “4”" “
» 4[], 9* “f or one of the Relational operators.

e A Relational operator is either “/=" ,“=" “>" “<” “<=" or “>=".

Note that the grouping of any sub-trees reflects the precedence rules as defined in §5.4.2.2
of Z.100.

21

22

23

24

25

26
27
28

14

Errortermy x ()

An Error term contains no additional information.

Condequationg :: Unquantequationgt Ungquantequationg

A Conditional equation consists of a list of restriction Unquantified Fquations and a
restricted Unquantified Equation.

Eztpropertiesy = Strucg | Inheritedy | Geninstlisty

Extended properties is either Structure properties, Inherited properties or Generator
instance list properties.

Syntypedefy :: Syntypenamey Parentidy [Initialvalueg)
[Conditionlist) [Tailnameo)
Syntypenameg = Nameg

A Syntype definition comnsists of a Syntype name, a Parent identifier, an optional Initial
value an optional range Condition list and a syntype name ending the definition.

A Syntype name is a Name.

Conditionlisty = Conditiong™
Conditiong :: [Valueg | Relopo] Valueg
Valuegy = Ezprg

A range Condition list is a list of range Conditions

A range Condition consists of an optional Value or Relational operator and followed
by a Value.

A Value is an Ezpression.

Fascicle X.4 — Rec. Z.100 — Annex F.2

29
30
31

32
33
34
35
36
37
38
39
40
41

42

43
44
45
46
47
48

Struco 2 Fieldspeco™
Fieldspeco 1 Fieldnamegt Sortidy
Fieldnameg = Nameg

Structure properties consists of a list of Field specifications.

A Field specification consists of a list of Field names and a Sort identifier.

A Field name is a Name

Inheritedy it Parentidy Literalrenamingy (ALL | Operatorrenamingo)
Parentidy = Idy

Literalrenaming, = Literalpairy*

Literalpairg 2 Newliteraly Oldliteraly

Newliteraly = Nameg | Stringo

Oldliteraly = Namey | Stringo

Operatorrenamingo = Operatorpaire*

Operatorpairg it Newoperatory Oldoperatory

Newoperatorg = [Operatornameg)

Oldoperatory = Operatornameg

Inherited properties consists of a Parent identifier, Literal renaming and inherited
operators which are either ALL operators or Operator renaming.

A Parent identifier is an Identifier.

Literal renaming is a list of Literal pairs.

A Literal pair consists of the New literal name and the Old (parent) Literal name.
The New literal name is either a Name or a character String.

The Old literal name is either a Name or a character String.

Operator renaming is a list of Operator pairs.

An Operator pair consists of the New operétor name and the Old operator name.
The New operator name is an Operator name if specified.

The Old (parent) operator name is an Operator name.

Sortgeneratory 1 Generatornameo Genparmgt
[Geninstlisty] Propertiesy [Tailnameq)
Generatornameg = Nameg
Genparmg = Sortparmy | Termparmyg | Litparmg | Opparmg
Sortparmg :: Namegt
Termparmg v Namegt
Litparmg 2 Nameot
Opparmyg ;2 Namegt

A Sort generator consists of a Generator name, a list of Generator formal parameters,
a possible empty Generator instance list, some Properties and a Sort generator Name
ending the definition.

A Generator name is a Name.

A Generator formal parameter is either a Sort parameter, a Term parameter, a Literal
parameter or an Operator parameter.

A Sort parameter consists of a list of Names.

Fascicle X.4 — Rec. Z.100 — Annex F.2 15

49
50
51
52

53
54

55
56
57
58
59
60
61
62
63

16

A Term parameter consists of a list of Names.
A Literal parameter consists of a list of Names.

An Operator parameter consists of a list of Names.

Geninstlisty i1 Geninstyt

Geninsty 1 Generatoridy Genactparmgy™®
Generatoridy = Idy

Genactparmyg = Termy | Quotedopy | Nmclassy

A Generator instance list consists of a list of Generator instances.

A Generator instance consists of a Generator identifier and a list of Generator actual
parameters. -

A Generator identifier is an Identifier.

A Generator actual parameter is a Term or an Quoted operator or a Name class.
Le. Sort identifiers and Operator names are Terms syntactically, like other kinds of
actual parameters. Quoted operators and Name class, on the other hand, cannot form
a Term on its own and are therefore specified explicit as alternatives in Genactparmg.

Synonymdefy :: Synonymnameg [Sortidg) [Initialvalueg)
Synonymnameg = Nameg

A Synonym definition consists of a Synonym name an optional Sort identifier and an
optional Initial (default) value.

A Synonym name is a Name.

Nmclassg :: Regularezpg

Regularezpo = Partregezpy | Orregezpo | Andregezpy
Orregezpo :: Regularexpy Partregezpo

Andregezpg :: Regularezpy Partregezpo

Partregezpo = Rngregezpo | Singregezpo | Parenregezpo
Rngregezpy i Stringy Stringo [Regezpezpo)
Singregezpo . Stringe [Regezpezpo]

Parenregezpy ' Regularezpy [Regezpezpo)

Regezpezpy = MULT | PLUS | Nameo

A Nameclass consists of a Regular expression.

A Regular ezpression is either a Partial regular ezpression or an infix Or regular
ezpression or an infix And regular ezpression.

An infix Or regular ezpression consists of a Regular ezpression and a Partial regular
ezpression.

An infix And regular ezpression consists of a Regular ezpression and a Partial regular
expression.

A Partial Regular ezpression is either a Range regular ezpression or a single regular
expression or a Parenthesis regular ezpression.

A Range regular ezpression consists of two character Strings and an optional repetition
regular ezpression Ezpression.

A Single regular ezpression consists of a character string and an optional repetition
regular ezpression Fzpression.

Fascicle X.4 — Rec. Z.100 — Annex F.2

64

65
66
67

68

69

70

71

72

73

74

A Parenthesis regular ezpression consists of a regular ezpression and an optional rep-
etition regular ezpression Ezpression.

113 31

A repetition regular ezpression Ezpression is either a or a “+” or Name.

Orderingo ()

Ordering contains no additional information.

Mappingaziom, :: Valuenamegt Sortidy Literalaziomo™
Literalaziomy = Aziomg | Mappingaziomq

Spellingtermyg 2 Idg

A Mapping aziom consists of a list of Value names, a Sort identifier and a list of Literal
arioms.

A Literal aziom is either an Aziom or a Mapping aziom.

A Spelling term contains an Identifier.

Eazprg = Idy | Stringtermg | Condezpry |
Operatorappy | Monadezpro | Infizezpry |
Impoperatorg | Selectezpry | Tupleezpro

An Ezpression is either an Identifier or a character String term or a Conditional
ezpression or an Operator application or a Monadic ezpression or an Infiz ezpression
or an Imperative operator or a field Select ezpression or a structure tuple expression.

Monadezpry 0 (NOT | MINUS) Ezpro

A Monadic Ezpression consists of one of the operators “NOT”,“-” and followed by an
argument Ezpression.

Infizexprg it Ezpro Infizopy Ezpre

An Infiz ezpression consists of two argument Fzpressions and an Infiz operator.

Selectexzpry :: Ezprg Nameo

A field Select ezpression consists of an Ezpression and a field Name.

Tupleezpry ' Qualifierg Ezpryt

A Tuple expression contains a Qualifier and a list of Ezpressions.

Condezpry it Eapry Ezpry Expry

A Conditional ezpression consists of a condition EFzpression, a consequence Ezpression
and an alternative Ezpression.

Datadefy = Partialtypedefy | Syntypedefy | Sortgeneratory | Synonymdefy

Fascicle X.4 — Rec. Z.100 — Annex F.2 17

75

76
77
78

79
80
81
82

83

84

85

86
87
88
89
90
91

18

A Data definition is either a Partial type definition, a Syntype definition, a Sort
generator or a Synonym definition.

Ezprlisty = FEzpry*

An Ezpression list is a list of Ezpressions.

Operatorappy 2 (Ezpry | Qualopy) Ezpriisty

Qualopo . Qualifiery Quotedopy

Quotedopo 2t Infizope | NOT

An Operator application contains an Ezpression or a Quelified operator and followed

by an Ezpression list. Ezpression in Operatorapp can be either an Identifier (denoting
an operator Identifier) or represent a (primary) as defined in §5.4.2.4 and §5.4.2.5 in
Z.100.

A Qualified operator contains a Qualifier and a Quoted operator.

A Quoted operator is an Infiz operator or “NOT”.

Assignstmiy :: Variabley Exzprg

Variableg = Varidy | Indezedvary | Fieldvarg
Indezedvary 2 Variabley Exprlisty

Fieldvary :: Variableg Nameg

An Assignment statement contains a Variable and an Ezpression.

A Variable is either a Variable identifier or an Indezed variable or a Field variable.

An Indezed variable consists of a Variable and an Ezpression list. Note that an Indezed
variable may denote a Field variable, e.g.

v(a) := ..
may (depending of the context) be another way of writing
via := ...

A Field variable consists of a Variable and a field Name.

Viewexzprg it Varidy Expro

A View expression consists of a view variable identifier and an Ezpression.

Initialvaluey = Fzprg

An Initial (default) Valueis an Ezpression.

Impoperatory = Importezpry | Viewezpry | Nowexzpry | Activeexpry |
Parentezpry | Offspringezpry | Senderezprg | Selfexprg

Nowezprg = ()

Selfexprg = ()

Parentezpro @ ()

Offspringezpro ()

Senderezpry {)

Activeezprg :: Timeridy Ezprlisty

Fascicle X.4 — Rec. Z.100 — Annex F.2

An Imperative operator is either an Import expression, a View ezpression, a Now
ezpression, a timer Active ezpression, a Parent ezpression, an Offspring ezpression, a

Sender expression or a Self ezpression.

‘The Now ezpression contains no additional information

The Self expression contains no additional information

The Parent expression contains no additional information
The Offspring ezpression contains no additional information
The Sender expression contains no additional information

The timer Active ezpression contains a timer :dentifier and an Ezpression list

Fascicle X.4 — Rec. Z.100 — Annex F.2

19

2 Internal Domains

The semantic domains define the domain of the composite object which holds some derived
(context) information (attributes) required during the transformation. There is a distinction
between the information attached to given entities, such as information about endpoints for
channels, sort for variables, sort list for signals etc., and “common” data such as information
about which scopeunit surrounds a definition list, collection of names for implicit variables
etc. The two kinds of information (Descriptordict and Quotdict) are assembled into one
object Dict such that only one extra formal parameter or one extra result is required for the
functions using it or generating it respectively.

1 Dict = Descriptordict U Quotdict

The Dict object when given as formal parameter is conventionally named dict and appearing
in the second argument list in the function headings.

In the following the two domains are described in detail.

20 Fascicle X.4 — Rec. Z.100 — Annex F.2

2.1 Description of Descriptordict

Descriptordict is a mapping of identifiers into their descriptors.

Qual = Descr
(Qualelem | Operatorqualelem | Importqualelem | Viewgualelem)*

1 Descriptordict
2 Qual

nou

Qual denotes the internal representation of ASy identifiers. In SDL, only ASp identifiers
within the same entity class are unique, so in order to incorporate all identifiers in the same
map, the entity class must be part of the map entries. Hence, Qual consist of a list of qualifier
elements, the final qualifier element in the list being the entity class and the entity name.
Operatorqualelem, Importqualelem and Viewqualelem are treated in a special way because
additional information are required in order to guarantee uniqueness for those entities.

example:

A block BL in a system SYS has a Qual in Descriptordict which is
((SYSTEM, mk-Nameo(“SYS", nil)), (BLOCK, mk-Nameo(“BL" , nil)))
A signal SIG in block BL has a Qual which is

((SYSTEM, mk-Nameg(“SYS", nil)), (BLOCK, mk-Nameo(“BL” , nil)), (SIGNAL, mk-Nameo(“SIG", nil)))

3 Qualelem = Kind (Nameg | Stringo)
4 Kind = Scopeunity | Entity
5 Entity = SIGNALROUTE | CHANNEL | SIGNALLIST |

GENERATOR | VALUE | LITERAL

OPERATOR ((Namey | Quotedopy) Sortqualt Sortqual)
IMPORT (Namey Sortqual)

VIEW Qual

6 Operatorqualelem
Importqualelem
8 Viewqualelem

-3

o

A Qualelem is a pair of type of Scopeunit and name. When it appears as the final Qualelem
in the list (in Qual) it denotes the entity class and entity name. A Kind which is an Entity
always denotes an entity class, i.e. it always appears as the final Qualelem in a Qual.
This is always the case with the special Qualelems Operatorqualelem,Importqualelem and
Viewqualelem. The entity class VALUE denotes variables, synonyms and value identifiers.

The information (i.e. Operatorqualelem) which makes an operator unique (within the “par-
tial data type” scopeunit) is the name (Nameg) or quoted operator (Quotedopy), the argu-
ment sorts (Sortqual®) and the result sort (Sortqual).

The information (i.e. Importqualelem) which makes an imported entity unique within a
scopeunit is the name (Nameg) of the imported entity together with its sort (Sortqual).

The information (i.e. Viewqualelem) which makes a viewed variable unique in a process
definition is the identifier (Qual) of the viewed variable.

9 Descr = SystemD | BlockD | ChannelD | SignalD |
TimerD | SignalrouteD | SignallistD | ProcedureD |
ProcessD | SortD | SyntypeD |
GeneratorD | SynD | VarD | ImportD |
ViewD | LiteralD | OperatorD | ValueidD |

Fascicle X.4 — Rec. Z.100 — Annex F.2 21

ServiceD | BlocksubD | ChannelsubD | ErrorD

A Descr in the Descriptordict is a descriptor of either a system (or the outermost level), a
block, a channel, a signal, a timer, a signal route, a signal list, a procedure, a process, a
sort, a syntype, a generator, a synonym, a variable, an import variable, a view variable, a
literal, an operator, an axiom variable (a value identifier), a service, a block substructure, a
channel substructure or a recursive descriptor.

The following Meta-IV assertion on the relation between Quals and their associated Descr
in Dict always applies:

is-consistent-Dict(dict) £ (2.1.1)
1 (Yqual € dom dict)
2 ((let (kind,) = qual[len qual] in
3 cases kind:
4 (SYSTEM
5 — is-SystemD(dict(qual)),
6 BLOCK
T — is-BlockD(dict(qual)),
8 CHANNEL
9 — is-ChannelD(dict(qual)),
10 SIGNAL
11 — is-SignalD(dict(qual)) V is- TimerD(dict(qual)),
12 SIGNALROUTE
13 - is-SignalrouteD(dict{qual)),
14 SIGNALLIST
15 — is-SignallistD(dict(qual)) V is-ErrorD(dict(qual)),
16 PROCEDURE
17 — i8-ProcedureD(dict(qual)),
18 PROCESS
19 — is-ProcessD(dict(qual)),
20 TYPE
21 ~ is-SortD(dict(qual)) V is-SyntypeD(dict(qual)),
22 VALUE :
23 — is-VarD(dict(qual)) V is-SynD(dict(qual)) v
24 is- ValueidD (dict{qual)) V is-ErrorD(dict(qual)),
25 GENERATOR
26 — is-GeneratorD(dict(qual)) V is-ErrorD(dict(qual)),
27 SUBSTRUCTURE
28 — is-BlocksubD(dict(qual)) V is-ChannelsubD(dict(qual)),
29 LITERAL
30 — is-LiteralD(dict(qual)),
31 . SERVICE
32 — is-ServiceD(dict(qual)),
33 OPERATOR
34 — is-OperatorD(dict(qual)),
35 IMPORT
36 — is-ImportD(dict(qual)),
37 VIEW
38 — is- ViewD(dict{qual)))))

type: Dict — Bool

The above function is specified for explanatory reasons only.

22 Fascicle X.4 — Rec. Z.100 — Annex F.2

10 SystemD = ()
11 BlocksubD ()

SystemD is a descriptor of the system level.

BlocksubD is a descriptor of a block substructure. These descriptors are only present because
the system level and block sub-structures are scopeunits defining entities, and therefore these
names ate used in the qualifiers in identifiers. (All fully specified qualifiers can be found in
the domain of Dict as scopeunits.)

12 ChannelsubD :t Blockqual

ChannelsubD is a descriptor of a channel substructure.

Blockqual In AS;, a channel substructure is represented as the block substructure
of a synthetic block definition. Blockqual represents the identifier of this
block substructure. Each time an ASg identifier referencing a channel
substructure in its qualifying part is used, the qualifier is modified in
accordance with Blockqual.

13 ServiceD :: Transitiony Statedict Labeldict Validinputset Priinputset
14 Priinputset = Signalqual-set

ServiceD Is a descriptor of an SDL service.

Transitiong Is the initial transition taken from Body of the Service definition.

Statedict, Labeldict Is Statedict and Labeldict for the service. (See the description of Quot-
dict).

Validinputset The complete valid input signal set for the service (including timers).

Pritnputset The set of priority input signals for the service.

t

15 BlockD :: Ezportchannels Importchannels Ezplicitroutes BlockconnectionD
16 Ezportchannels EzpimpchanD

17 Importchannels EzpimpchanD

18 EzpimpchanD NameclosureD w=*(Otherend Channameg)*

19 Otherend Blockqual | ENV

20 Ezplicitroutes Bool

21 BlockconnectionD Channelqual = Qual-set

22 Channelqual = Qual

nn

mnH

BlockD is a descriptor of a block.

Ezportchannels Contains information about the implicit channels leading to and from
the block because of export variables in the processes contained in the
block.

Importchannels Contains information of the implicit channels leading to and from the

block because of import variables in the processes contained in the
block. For the implicit channels contained in ¢mportchannels the in-
formation is deduced from Ezportchannels occurring in other block de-
scriptors.

EzpimpchanD Is a map of the import - export closures (see the domain definition of
NameclosureD) into the other endpoint of the channel (Otherend) and
the bidirectional channel which is attached to the closure. The first

Fascicle X.4 — Rec. Z.100 — Annex F.2 23

signal list in the channel contains the signal xtQUERY and the second
signal list in the channel contains the signal xtREPLY.

Ezplicitroutes True if explicit signal routes are specified for the block. Ezplicitroutes
is used for deriving the complete valid input signal set for the contained
processes.

BlockconnectionD Is the relation between the channels and the signal routes connected to
the channel. BlockconnectionD is used for replacing channel identifiers
by signal route identifiers in VIA constructs of the enclosed processes
and for replacing channel identifiers having a sub-structure by the ap-
propriate new channel identifiers in connections.

Channelqual Is the Qual of a channel.
23 ChannelD :: Endpoint Endpoint Signalqual-set Signalqual-set [Newchannels]
24 Endpoint = Blockqual | ENV
256 Signalqual = Qual
26 Blockqual = Qual

27 Newchannels

Endpoint Channameg Endpoint Channameg

ChannelD is a descriptor of a channel.

Endpoint Is an endpoint which is either a block identifier or the environment.

Signalqual-set Is the complete set of signal identifiers conveyed from Origin to Desti-
nation. In the case of a bidirectional channel, another set of signals is
present, denoting the signals conveyed from the second Endpoint block
to the first Endpoint block.

Newchannels If the channel contains a channel substructure, the channel is repre-
sented by two channels in AS;. Newchannels contains the names and
originating endpoints of those two channels and the information is used
when an old channel identifier is to be replaced by a new channel iden-
tifier in a VIA set.

28 SignalD ;1 Sortqual* Signalqual-set Signalqual-set
29 Sortqual = Qual

SignalD is a descriptor of a signal.

Sortqual® is the sorts of values conveyed by the signal.

Signalqual-set The two sets of sub-signals, the first one being the signals leading in
the same direction as the parent signal, and the second one being the
signals leading in the opposite direction.

30 TimerD :t Sortqual* Newqual

TimerD is a descriptor of a timer.

Sortqual* is the sorts of the values conveyed by the timer.

Newqual Denotes the identifier to be used for AS;. Its name in Newgqual has
changed if the timer is defined in a service.

24 Fascicle X.4 — Rec. Z.100 — Annex F.2

31 SignalrouteD it Originprocess Destinationprocess
Signalqual-set Signalqual-set

32 Originprocess = Processqual | ENV

33 Destinationprocess = Processqual | ENV

SignalrouteD is a descriptor of a signal route.

Originprocess Is the originating endpoint which is either a process identifier or the
environment.

Destinationprocess Is the terminating endpoint which is either a process identifier or the
environment.

Signalqual-set Is the set of signal identifiers conveyed from Origin to Destination. In
the case of a bidirectional signal route, another set of signals is present,
denoting the signals conveyed from Destination process to Origin pro-
cess.

34 SignallistD i Signallistov

A SignallistD is a descriptor of a signallist. It contains the list of ASq signal identifiers (and
signal list identifiers) attached to the signal list.

35 ProcedureD iz FormparmD* Newqual
36 FormparmD = InDescr | InoutDescr
37 InDescr :: Sortqual

38 InoutDescr :: Sortqual

39 Newgqual = Qual

ProcedureD is a descriptor of a procedure.

FormparmD* A list of special descriptors used when the procedure is invoked, to
check for sort compability of the actual parameters, i.e. the descriptors
contain the properties of the corresponding formal parameters.

InDescr An IN variable parameter.
InoutDescr An IN/OUT variable parameter.
Newgqual Denotes the identifier to be used in AS;. Its name in Newqual has

changed if the procedure is defined in a service.

40 ProcessD "t ParameterD* Validinputset Outputset ProcessconnectionD
41 Validinputset = Signalqual-set

42 Outputset Signalqual-set

43 ParameterD Sortqual

44 ProcessconnectionD Qual = Qual-set

ProcessD is a descriptor of a process.

ParameterD* A list of descriptors used when the process is created, to check for sort
compability of the actual parameters, i.e. the descriptors contain the
sorts of the corresponding formal parameters.

Signalqual-set The sets of valid input signals and valid output signals respectively (the
valid output signals are deduced from the process graph).

Fascicle X.4 — Rec. Z.100 — Annex F.2 25

ProcessconnectionD Is the relation between signal routes and service signal routes for the
process. If no service signal routes are specified then the map is empty.
It is used for checking of VIA in services.

45 SortD :: Equations; [Parentqual] [Ezpression;] Newqual
46 Parentqual = Sortqual

SortD is a descriptor of a partial type definition. (newtype).

Egquations, The AS; FEgquations, defined for the sort. These equations are used
when another sort inherits from this sort.

Parentqual The parent sort of the sort. If Parentqual is nil, the sort has no parent.
Parentqual is used for checking the recursiveness of sort definitions.

Ezpression, Is the optional AS; expression corresponding to the optional initial
variable value which can be specified in the partial sort definition.

Newqual Denotes the identifier to be used in AS;. Its name in Newgqual has
changed if the partial data type is defined in a service.

47 SyntypeD it Parentqual Newqual [Ezpression;] Range-condition;

SyntypeD is a descriptor of a syntype.

Parentqual Is the parent sort, i.e. if the parent specified in ASy is a syntype, it is
the parent of that syntype.

Newqual Denotes the identifier to be used in AS;. Its name in Newgqual has
changed if the syntype is defined in a service.

Ezpression, Is the optional AS; expression corresponding to the optional initial
variable value which can be specified in the syntype definition

Range-condition; Is the AS; range condition which is used for generating default assign-
ment for syntype variables.

48 (eneratorD 1 Genparmg™ Propertiesy

GeneratorD is a descriptor of a data sort generator.

Genparmgt The ASp list of formal parameters taken from the generator heading.
Propertiesy The ASy body of the generator.
49 SynD 2 Sortqual Ezpry

SynD is a descriptor of a synonym.

Sortqual The sort of the synonym. If the sort in ASy is absent, Sortqualis derived
from the sort of the expression contained in the synonym definition.
Ezpry The ASp synonym expression. '
50 VarD ‘ :: Sortgqual [REVEALED] [EXPORTED]

[Ezpression; | Newqual

VarD is a descriptor of a variable

26 Fascicle X.4 — Rec. Z.100 — Annex F.2

Sortqual The sort of the variable

REVEALED The optional REVEALED attribute as in ASy
EXPORTED The optional EXPORTED attribute as in ASq
[Ezpression | The AS; version of the optional initial expression specified when the

variable is defined

Newqual The Qual to be used in AS,. Its name in Newqual is different from the
original name if the variable is defined in a service.

51 ImportD it Sortqual
ImportD is a descriptor of an import variable, containing the sort of the import variable.

52 ViewD i Qual

ViewD is a descriptor of an view variable, containing the Qual of the corresponding revealed
variable.

53 LiteralD :t Result
54 Result = Sortqual

LiteralD is a descriptor of an literal containing the sort of the literal.

55 OperatorD it Sortqualt Result Newqual Ezplicit
56 Explicit = Bool '

OperatorD is a descriptor of an operator.

Sortqualt the list of sort identifiers corresponding to the operator arguments
Result the sort identifier corresponding to the result.
Newqual The unique operator identifier used in AS;
Ezplicit This flag is false if the operator is implicitly inherited from another sort.
57 ValueidD 2 Mapvalue Sortqual-set Ezplicit
58 Mapvalue = [Qudl]

ValueidD is a descriptor of an axiom variable (a value identifier).

Mapvalue If the identifier is introduced by literal quantification, the descriptor
contains the current literal value. In the quantified axioms, the value
identifier is replaced by this literal value.

Sortqual-set The set of sort Quals which at any specific time are legal for the value
identifier. If the value identifier is introduced by explicit quantification
then the set contains only one sort.

Ezplicit A flag indicating whether the value identifier is introduced by explicit
quantification.

Fascicle X.4 — Rec. Z.100 — Annex F.2 27

59 ErrorD

= ()

ErrorD is used for detecting recursive definitions of synonyms, signal lists and generators.
During evaluation of the definitions of these constructs, their descriptors are replaced by a
ErrorD such that any use inside their own definitions can be detected. It is also used for
masking out synonyms which cannot be used in simple expressions of select definitions.

2.2 Description of Quotdict

The following entries contain some auxiliary information which only for practical reasons (in
order to reduce the number of parameters and results of the Meta IV functions) are included

in the Dict domain.

1 Quotdict = SCOPEUNIT = Qual U
GLOBALNAMES = Globalnames U
LABELDICT = Labeldict U
STATEDICT = Statedict U
OUTSIGNALS = Signalqual-set U
DATATYPEDEF = Data-type-definition; U
SERVICES =(Statetuplemap Servicetuple) U
IMPLIED = NameclosureD-set U
IMPORTLIST =(Nameo Qual [Ezpro))*
2 Globalnames = Emptyqid Formuniquenm Formuniquenm
3 Labeldict = Labely = Transitiong
4 Statedict = Statenamey =(StateD | ContenablestateD)
5 StateD Speclist [Importstateinf]
6 Importstateinf = [Statenameg) [Graph-node; | Deciston-node;]
7 ContenablestateD Transitiong
8 Statetuplemap = Statenameyt = Statenameo
9 Servicetuple = Servicequal®
10 Speclist = Spec*
11 Spec = Qual Statespeco
12 Servicequal = Qual
13 Emptyqid = Quadl
14 Formuniquenm = Nameg

SCOPEUNIT

GLOBALNAMES

emptyqid

formuniquenm

LABELDICT

Contains the Qual denoting the current level, i.e.
identifier of the enclosing scopeunit.

Qual denotes the

Contains a descriptor Globalnames containing names of objects which
are required for the transformation of enabling condition and continuous
signal.

The signal which is send by processes to themselves in continuous
signals and enabling conditions. Declared in AS; at the system
level.

The names of the two variables used in continuous signals. The
first one is updated at each entry to a continuous signal state and
its new value is send with the emptygid signal thus forming a new
unique value each time. The second one holds the value received
by the emptyqid signal. Declared in AS; in every process.

Labeldict holds information of any labels (connector names) used in a
process, procedure or service body. It is constructed before the actual
transformation of the body takes place and it contains the Transitiongs
which follows given labels (in connectors).

28 Fascicle X.4 — Rec. Z.100 — Annex F.2

STATEDICT

Speclist

Qual

Statespeco

Importstateinf

OUTSIGNALS

DATATYPEDEF

SERVICES

IMPLIED

IMPORTLIST

Statedict contains the states of a body. The transformation of the states
is based on Statedict. If the state descriptor is a ContenablestateD
then it denotes a state which contains continuous signal or enabling
condition. Such states have no explicit representation in AS; (they are
represented by a number of synthetic states). The nextstate node is
replaced by the transition string leading to the synthetic states.

If the state descriptor is a StateD it denotes a state which has an AS;
representation. It contains:

A list of input descriptors for the state. Each input descriptor
(Spec) contains:

A Qualfier denoting the context in which the subsequent tran-
sition should be evaluated. As services are merged into a sin-
gle Statedict before the state bodies are transformed into AS;,
the Qual differs for the various Specs if the Statedict originated
from a service decomposition. In other cases Qual denotes the
identifier of the enclosing process or procedure.

The AS(input node.

If the state is an implicit state originating from an import ex-
pression then Importstateinf is present. It contains the name of
the previous state (Statenameg) such that nextstate nodes with a
dash following the import expression can be properly substituted.
If it is nil then the import expression originates from an initial
transition. It also contains the AS; node wherein the expression
containing the import expression occurred. If the expression con-
tained more than one import expression only one of the import
state descriptors contains such a node (the others are nil).

As opposed to normal states, Statedict descriptors for import states
are constructed while the states is transformed.

Contains a set of signal. It is used for deducing the output signals from
the process body.

Contains the AS; Data-type-definition; associated to every scope unit.
When a partial type definition is encounted, Data-type-definition; is
updated with the new sort, operators and equations.

This information is used during the transformation of a Statedict formed
from a service decomposition. All services are ordered in a tuple Ser-
vicetuple which in conjunction with Statetuplemap is used for associat-
ing unique AS; state names with the old state names occurring in the
various services.

A set of pairs of variable sort and implicit variable name, collected
during the transformation of a process definition. I.e. during transfor-
mation of axioms, the implicit quantification names are collected and
during the transformation of actions, the implicit import variable names
are collected. Note that the NameclosureD is not related conceptually
to the NameclosureD occurring in Ezportmap although they are the
same domain.

During transformation of an expression, information is collected about
the import expressions occurring in the expression. In the resulting
AS; expression, the import expression is replaced by a new implicit
name. After the transformation, a number of states (one for each im-
port expression) are generated (and added to Statedict). The transition
following a new state are generated from the action in which the expres-
sion was used, the implicit name (Nameg), the identifier of the import
variable (Qual) and the optional Pid expression used in the import ex-
pression (Ezpro). The length of the tuple denoted by IMPORTLIST
equals the number of import expressions occurring in the construct.

Fascicle X.4 — Rec. Z.100 — Annex F.2 29

2.3 Other Domains

1 Dech = Block-definition; | Channel-definition; |
Signal-definition; | Signal-route-definition; |
Procedure-definition; | Process-definition; |
Signal-route-definition; | Syn-type-definition |
Data-type-definition, | Variable-definition, |
View-definition; | Timer-definition;

2 Context = CONSTANT | AXIOMS | MAPPING | EXPRESSION

These domains (synonyms) are introduced in order to avoid cumbersome repetitions in the
function type specifications:

Decly A shorthand for denoting an AS; definition which many “definition
transforming” functions delivers as result.

Contezt A shorthand for denoting the possible contexts in which expressions are
transformed. The context can either be constant (as for instance in the
transformation of answers), axioms, the mapping section of the axioms
or any other case.

Qual
Qual

3 Processqual
4 Operatorqual

These domain names are used in some places for indicating that in the given context the
Qual (identifier) is of a specific type (i.e. process or operator).

5 Ezternal-Information = ..

Ezternal-Information contains the additional information required to give semantics to SDL.
This information is brought in from the outside and it is therefore given as parameter to
definition-of-SDL (together with the system definition and the predefined sorts). As SDL
does not define how the information is structured (say actual generic parameters), the Meta-
IV functions which uses Ezternal-Information are informally defined.

Ezxternal-Information contains the following.

e Information about actual generic parameters (the corresponding formal parameters
are the external synonyms and the informal texts in the option node).

e Information about actual subset parameters to indicate which consistent subset should
be selected, i.e. the set of Block-identifier;s is deduced from Ezternal-Information (see
definition-of-SDL and select-consistent-subset).

e Information about the indeterministic delay in channels (i.e. a “random” function).

e Information about the start time and the time unit (used in modelling absolute time).

6 Auziliary-Information = Time-information Term-Information Is-expiredF DelayF

7 Time-information = (Ground-term; — Ground-term;) Ground-term,;

8 Term-Information Sort-identifier; Literal-operator-identifiery
Literal-operator-identifier; Literal-operator-identifier;
Ground-term; Ground-term; — Bool

() = Bool

9 Is-ezpiredF
10 DelayF

Auziliary-Information contains some information which, apart from a System-definition,
and a consistent subset, is required for interpretation. Auziliary-Information is constructed

30 Fascicle X.4 — Rec. Z.100 — Annex F.2

in the Static Semantics and given as parameter to the system processor when it is started
{see the function definition-of-SDL). Auziliary-Information consist of

Time-information The function in Time-information is used in the Dynamic Semantics
for updating the current time. Given an AS, literal of the TIME sort it
returns another literal of the time sort. In addition, Time-information
contains the Ground-term; denoting the initial time which is defined
outside the SDL system (i.e. it is derived from Ezternal-Information).

Term-Information AS; contains no information about spelling of identifiers. However,
four AS; identifiers must be known (i.e. distinguished) in the Dynamic
Semantics. These identifiers are PID, NULL, TRUE and FALSE. Term-
information denotes these identifiers and they are constructed in the
Static Semantics.

Is-expiredF This function is constructed in the Static Semantics and used in the
Dynamic Semantics for testing on whether a given timer has expired.
Given two AS; literals of the time sort, true is returned if the value of
the first parameter is greater than or equal to the second parameter.

DelayF This function is used for modelling the indeterministic delay in channels
(see the path processor in Annex F.3). The function is derived from
Exzxternal-Information and it has an imperative nature implying that it
may depend on some external physical parameters.

Fascicle X.4 — Rec. Z.100 — Annex F.2 31

3 Transformation of AS; into AS;

3.1 Main Functions

This section contains the two functions:

definition-of-SDL

transform-system

definition-of -SDL(extparms, systemdef, predefsorts)

1

2 if as; = nil then
3 undefined

4 else

5

6

Which is the outermost function invoked from the outside. When given
an SDL system (in ASo form) as parameters it defines the semantics
(static and dynamic) of the system. It also forms the link between the
static- and dynamic semantics.

Which is the entry function for the static semantics. When given an
SDL system (in ASo form) as parameter, it returns a specification on
the SDL abstract syntax form (AS; form) if the AS, form is statically
correct (well-formed). :

2

(let (asy, auzinf) = transform-system(systemdef, predefsorts, extparms) in

(let subsetcut = select-consistent-subset(as,, extparms) in
start system(asy, subsetcut, auzinf)))

type: Ezternal-Information Sysy Datadefyt =

Objective

Parameters

eztparms
systemdef
predefsorts

Algorithm
Line 1
Line 2

Line 4
Line §
Line 6

Define the properties of SDL

Some Ezternal-Information (see section 2.3).
The AS,-tree representing the SDL system
The predefined data in ASq form.

Transform the system into the abstract syntax form (AS; form).

If static errors are found (i.e. if no AS; representation could be
derived) then the behavior is not defined

If no static errors are found then
Select the set of Block-identifier;s denoting the consistent subset

Create a system instance, i.e. create a Meta-IV process which
behaves like the underlying system.

32 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.1.1)

transform-system(genericsystem, predefdatasorts, extparms) 2

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

type:

Objective

(let mk;Syso(sysdef, refdeflist) = apply-generic-parameters(genericsystem, eztparms) in

let mk-Sysdefo(snm, decllist, tnm) = sysdef in
let (asoglobal, globalentities) = asy-global-entities() in
let as; datadef = mk-Data-type-definition, (name-to-name, (create-unique-name()), {}, {}, {}, {}) in
(trap exit with (nil, nil} in
(let d = [((SYSTEM, snm)) — mk-SystemD(),
SCOPEUNIT ~ ((SYSTEM, snm)),
GLOBALNAMES ~ globalentities,

DATATYPEDEF . as;datadef] in
let decllist’ = replace-references(decllist, refdeflist)({(SYSTEM, snm))) in

let predefdict be s.t. (, predefdict) = transform-decllist(predefdatasoris)(predefdict + d) in

let decllist’ = remove-select(decllist’, {})(predefdict) in
if (3fulldict € Dict)
((trap exit with false in

(let (dict) = transform-decllist(decllist” ™ (asoglobal) ™ predefdatasorts)(fulldict + d) in

fulldict = dict))) then
(et (asydcl, dict) bes.t. (asy del, dict) =
transform-decllist(decllist” ™ (asoglobal) ™ predefdatasorts)(dict + d) in
let as; = make-as, tree(SYSTEM, snm, as, dcl, nil, nil, nil)(dict) in
let auzinf = generate-auziliary-information(extparms)(dict) in
(tnm ¢ {snm, nil}

— exit(“§2.2.2: Ending name in system definition is different from defining name”),

—(3b € elems decllist’)(is-Blockdefo(b))
- exit(“§2.4.2: System definition must contain at least one block”),

T- ((131, auzinf)))

else

(nil, nil))))

Syso Datadefyt External-Information — [System-definition,| [Auziliary-Information]

Transform an SDL system in ASy form into the corresponding AS;

form.

Parameters

Result

genericsystem
predefdatasort

extparameters

A generic system definition
A list of predefined data also in ASg form
The external information (see section 2.3)

The AS; system definition and some information to be used in Annex

F.3. If the system definition is not well-formed, nil is returned for both
results

Algorithm

Line 1

Line 2
Line 3

Line §

Line 5§

Transform the generic system definition into a concrete system
definition by supplying an expression to every external synonym
defined in the system and by transforming every informal text in
the option answers into an ASy Conditionlisty. SDL does not define
how to make these transformations.

Let snm denote the system name, decllist denote the definition list
and tnm denote the tailing name

Construct the ASq definition and the Globalnames descriptor (see
Quotdict) corresponding to the global emptyq signal.

Construct the initial Data-type-definition; for the system scopeu-
nit. When through the definition list (line 17) it contains informa-
tion about all partial data types defined at the system level.

If transform-decllist or any of the other functions are trapped, the
specification is not well-formed.

Fascicle X.4 — Rec. Z.100 — Annex F.2 33

(3.1.2)

34

Line 6-9

Line 10

Line 11

Line 12

Line 13-16

Line 17

Line 19
Line 20

Line 21

Line 23
Line 25

Construct an initial Dict consisting of the system descriptor, the
SCOPEUNIT entry indicating the system level , the global names
and the current Data-type-definition;.

Insert all the remote definitions (refdeflist) in the definition list of
the system. The new definition list (decllist') contains no references

Transform the predefined data in order to construct the Dict con-
sisting of the predefined data sorts only. The result is only used
during the removal of SELECT statements (line 12), i.e. the pre-
defined sorts are elsewhere treated as ordinary definitions as shown
in line 17. It reads : Let predefdict) be such that one of the results
(the other result is the AS; definitions which are not used here)
of transforming the predefined sorts in the scope of predefdict (i.e.
with semantic information of all predefined sorts) is predefdict it-
self. Such a Dict do always exist as the predefined sorts are assumed
well-formed.

Remove all the SELECT statements from the system. Since option
nodes does not contain any definitions they can be removed “on
the fly” when appropriate.

If there exist a Dict (fulldict) such that transformation of decllist”
in the scope of fulldict can be made without causing any errors
(i-e. no application of exit in transform-decllist) and such that the
result is fulldict itself, then decllist’ is well-formed.

If so, then transform decllist’ in the scope of such a Dict. The other
result (as; dcl) is the set of AS, definitions. This way of using Dict
is essential in the modelling and the following should therefore be
noted:

e It is used in order to overcome the problem that names in SDL
may be referred before they are defined textually.

e The Meta-IV functions which transform definitions have the
full Dict available (all descriptors). For instance, transform-
blockdef returns a Block-definition, and a Dict descriptor for
the block, even though the block descriptor already is con-
tained in the Dict given as parameter to the function. The
Dict given as parameter is used for accessing properties of en-
tities used by the block, but the block descriptor itself in the
Dict parameter cannot be used (otherwise it cannot be guaran-
teed that a Dict solution exists for well-formed specifications,
which means that the Meta-IV specification might be invalid).

e During the transformation of the definitions the returned de-
scriptors are joined and eventually (when all definitions have
been transformed) the result of transform-decllist is the same
as the parameter.

e dictin line 17 is a Descriptordict only. There are no contribu-
tions from Quotdict in the resulting Dict.

e Line 11 and line 17 in transform-system are the only places
in the complete Formal Definition where the be such that
construct have been used in such a far-reaching way.

Construct the System-definition,

Generate the Auziliary-Information to be used during interpreta-
tion

If the tailing name is specified then it must be equal to the system
name.

There must be at least one block definition in the system.

Return the AS; representation of the system and the auxiliary
information

Fascicle X.4 — Rec. Z.100 — Annex F.2

aso-global-entities() £

1
2
3
4
5
6
7
8

type:

(let emptygnm = create-unique-name(),
formuniquel = create-unique-name(),
formunique2 = create-unique-name() in
let emptygqid = mk-Idy((), emptygnm) in
let globalnames = (emptyqid, formuniquel, formunique2) in

let intgid = mk-Ido((), mk-Nameo(“INTEGER”, nil)) in

let asodef = mk-Sigdefo((mk-Sigelemo(emptygnm, (intgid), nil))) in
(asodef, globalnames))

Objective

Algorithm

Line 1
Line 2-8

Line §
Line 5
Line 6
Line 7
Line 8

() — Sigdefy Globalnames

Construct a global ASy definition to be placed on the system level and
construct the Globalnames closure (see the definition of Quotdict) which
is of general use during the transformation. The ASq definition defines
the emptyq signal used in enabling condition and continuous signal

Create a unique name for the emptyq signal.

Create unique names for the two variables used in connection with
continuous signal. In every process, these two variables are defined.

Construct an ASy identifier for the emptyq signal.
Construct the Globalnames closure.

Construct an ASg identifier for the integer sort.
Construct the ASq definition for the emptyq signal.
Return the AS¢ definition and the Globalnames closure

3.2 Replacing Definition References

In this section, references are replaced by remote definitions. The entry function replace-
references takes as argument the definitions from the system level and a list of remote
definitions. The result is a definition list containing no references.

replace-references(deflist, remotelist)(scopeunit) 2

Q =3 O TV W

©

10
11
12
13
14
15
16
17

type:

if (Vi1, 12 € ind remotelist)

(11 #£i2A

cases (remotelist[i1], remotelist[i2]):

((mk-Blockdefo(mk-Ido(q1, nm1l),,,), mk-Blockdefo(mk-Ido(q2, nm2),,,)
(mk-Prdefo(mk-Ido(gl1, nml),,,,,,), mk-Prdefo(mk-Idy(¢2, nm2),,,,,,)
(mk-Procdefo(mk-Idy(g1, nml),,,,), mk-Procdefo{mk-Ido(g2, nm2),,,,)
(mk-Servicedefo(mk-Ido(gl, nml),,,,), mk-Servicedefo(mk-Idy(g2, nm2)
(mk- Chansubdefy(mk-Idy(ql, nml),,), mk- Chansubdefy(mk-Idy(¢2, nm2),,

)y
),
)
y1)
):»))

- nml=nm2D (ql # q2Aql # () A q2 # (),
T - true)) then

let (deflist’, remoteset) = remove-references(deflist, elems remotelist, false)(scopeunit) in
P

if remoteset = {} then

deflist'

else

exit(“§2.4.1: Remote definition is not referenced in the system definition”))

else

exit(“§2.4.1: Remote definitions are not unique”)

Objective

Declyt Decly* — Qual — Decly™

Replace all references in the system by remote definitions

Fascicle X.4 — Rec. Z.100 — Annex F.2 35

(3.1.3)

(3.2.1)

Parameters

deflist The list of definitions for the system level.

remotelist The list of remote definitions.
Result The definition list of the system level containing no references.
Algorithm

Line 1-10 For every two different remote block definitions, process definitions,

procedure definitions, service definitions or substructure definitions
it must hold that if they have the same name in their identifier then
their qualifiers must be distinct and non-empty.

Line 11-15 Replace the references by their definitions. The resulting list is
deflist’. No remote definitions may be left when all references have
been replaced.

36 Fascicle X.4 — Rec. Z.100 — Annex F.2

remove-references(dlist, remoteset, chansub)(unit) 2 (3.2.2)

1 ifdlist = () then

2 ((), remoteset)

3 else

4 (let match-id(nm, id) = s-Nameo(id) = nm A s-Qualifiero(id) € {(), unit} in

b cases hd dlist:

6 (mk-Blockrefo(name)

7 — if (Fblkdef € remoteset)(is-Blockdefy(blkdef) A match-id(name,s-Blockidg(blkdef))) then

8 (let blkdef € remoteset be s.t. is-Blockdefy(blkdef) A match-id(name, s-Blockidy(blkdef)) in

9 let mk-Blockdefy(bid, decll, sub, tid) = blkdef in
10 if tid ¢ {nil, bid} then
11 exit(“§2.4.1: Ending and starting identifier in the definition are different”)
12 else
13 (let blkdef' =
14 . mk-Blockdefy(mk-Idy((), name), decll, sub, mk-Idy({), name)) in
15 remove-references((blkdef') ™ tl dlist, remoteset \ {blkdef }, chansub)(unit)))
16 else
17 exit(“§2.4.1: No remote definition matches reference”),
18 mk-Prrefy(name, inst)
19 — if (prdef € remoteset)(is-Prdefy(prdef) A match-id(name, s-Pridy(prdef))) then
20 (let prdef € remoteset bes.t. is-Prdefo(prdef) A match-id(name, s-Prido(prdef)) in
21 let mk-Prdefo(pid, inst', b, d, e, f, tid) = prdef in
22 let inst' = select-remote-number-of -instances(inst, inst') in
23 if tid ¢ {nil, pid} then
24 exit(“§2.4.1: Ending and starting identifier in the definition are different”)
25 else
26 (let prdef' =
27 mk-Prdefy(mk-Idy((), name), inst”, b, d, e, f, mk-Idy((), name)) in
28 remove-references({prdef’) ™ tl dlist, remoteset \ {prdef}, chansub)(unit)))
29 else :
30 exit(“§2.4.1: No remote definition matches reference”),
31 mk-Procrefy(name)
32 — if (Iprocdef € remoteset)(is-Procdefo(procdef) A match-id(name, s-Procido(procdef))) then
33 (let procdef € remoteset be s.t. is-Procdefo(procdef) A match-id(name, s-Procidg(procdef)) in
34 let mk-Procdefy(pid, parm, decll, body, tid) = procdef in
35 if tid ¢ {nil, pid} then
36 exit("§2.4.1: Ending and starting identifier in the definition are different”)
37 else
38 (let procdef’ =
39 mk-Procdefo(mk-Idy({), name), parm, decll, body, mk-Idg((}, name)) in
40 remove-references({procdef') ™ tl dlist, remoteset \ {procdef}, chansub)(unit)))
41 else
42 exit(“§2.4.1: No remote definition matches reference”),
43 mk-Servicerefo(name)
44 — if (Jservicedef € remoteset)(is-Servicedefy(servicedef) A
45 match-id(name, s-Serviceidy(servicedef))) then
46 (let servicedef € remoteset bes.t. is-Servicedefy(servicedef) A
47 match-id(name, s-Serviceido(servicedef)) in
48 let mk-Servicedefy(sid, a, b, d, tid) = servicedef in
49 if tid ¢ {nil, sid} then
50 exit(“§2.4.1: Ending and starting identifier in the definition are different”)
51 else
52 (let servicedef’ =
53 mk-Servicedefo(mk-Ido((), name), a, b, d, mk-Idy((), name)) in
54 remove-references({servicedef') ™ tl dlist, remoteset \ {servicedef }, chansub)(unit)))
55 else
56 exit(“§2.4.1: No remote definition matches reference”),

Fascicle X.4 — Rec. Z.100 — Annex F.2 37

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

38

mk-Chansubrefo(name)
— if (3chansubdef € remoteset)(is-Chansubdefy(chansubdef) A
s-Chansubidg(chansubdef) # nil A
. match-id(name, s- Chansubidy(chansubdef))) then
(let chansubdef € remoteset be s.t. is- Chansubdefy(chansubdef) A
match-id(name, s-Chansubidy(chansubdef)) in
let mk-Chansubdefy(cid, decll, tid) = chansubdef in
if tid ¢ {nil, cid} then
exit(“§2.4.1: Ending and starting identifier in the definition are different”)
else
(let chansubdef’' =
mk-Chansubdefo (mk-Ido((), name), decll, mk-Idy({), name)) in
remove-references({chansubdef') 7™ tl dlist, remoteset \ {chansubdef }, true)(unit)))
else
exit(“§2.4.1: No remote definition matches reference”),
mk-Blocksubrefy(name)

— if (chansubdef € remoteset)(is-Chansubdefy(chansubdef) A
8-Chansubidg(chansubdef) # nil A
match-id(name, s-Chansubido(chansubdef))) then

(let chansubdef € remoteset bes.t. is- Chansubdefy(chansubdef) A
match-id(name, s-Chansubidy(chansubdef)) in
let mk-Chansubdefo(bid, decll, tid) = chansubdef in
if tid ¢ {nil, bid} then
exit(“§2.4.1: Ending and starting identifier in the definition are different”)
else
(let blksubdef' =
mk-Blocksubdefo(mk-Idy((), name), decll, mk-Ido((), name)) in
remove-references((blksubdef') ™ tl dlist, remoteset \ {chansubdef }, chansub)(unit)))
else
exit(“§2.4.1: No remote definition matches reference”),
mk-Decompositiong(list)
‘= (let (list', rrest) = remove-references(list, remoteset, false)(unit) in
(mk-Decompositiong(list'), rrest)),
mk-Blockdefo(mk-Idy(g, nm), decll, sub, tid)
— (let (decll', rrest) = remove-references(decll, remoteset, false)(unit ™ ((BLOCK, nm))) in
let (sub’, rrest’) =
if sub = nil
then (nil, rrest)
else remove-references(({sub), rrest, false)(unit ™ ((BLOCK, nm)})) in
let (drest’, rrest’") = remove-references(tl dlist, rrest’, chansub)(unit) in
((mk-Blockdefo(mk-Ido(gq, nm), decll’, sub’, tid)) ™ drest’, rrest’’)),
mk-Blocksubdefy(id, decll, tid)

- (let (, scnm) = unitlen unit] in

let mk-Ido(g, nm) = if i{d = nil then mk-Ido((), scnm) else id in

let unit’ = unit ™ ((SUBSTRUCTURE, nm)) in

let (decll’, rrest) = remove-references(decll, remoteset, false)(unit') in

(mk-Blocksubdefy(mk-Idy(g, nm), decll’, tid), rrest)),
mk-Chandefy(nm, a, b, sub, tnm)

— (let (sub’, rrest) =

if sub = nil
then (nil, remoteset)
else remove-references((sub), remoteset, chansub)(unit) in
let (drest’, rrest’) = remove-references(tl dlist, rrest, chansub)(unit) in
({(mk-Chandefy(nm, a, b, sub’, tnm)) ™ drest’, rrest’)),

Fascicle X.4 — Rec. Z.100 — Annex F.2

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

type:

mk-Chansubdefy(id, decll, tid)
— (let (, scnm) = unit[len unit] in

let mk-Ido(g, nm) = if id = nil then mk-Idy((), scnm) else id in

let unit’ = unit ™ ((SUBSTRUCTURE, nm)) in

let (decll', rrest) = remove-references(decll, remoteset, true)(unit’) in
(mk-Chansubdefy(mk-Idg(q, nm), decll’, tid), rrest)),

mk-Prdefo(mk-Idy(g, nm), a, b, d, decll, body, tid)
— (let (decll’, rrest) =

remove-references(decll, remoteset, false)(unit ™ ((PROCESS, nm))) in
let (body', rrest’) =
if is- Bodyo (body) then
(body, rrest)
else
remove-references({body), rrest, false)(unit ™ ((PROCESS, nm))) in
let (drest’, rrest"’) = remove-references(tl dlist, rrest', chansub)(unit) in
((mk-Prdefo(mk-Idy(q, nm), a, b, d, decll’, body', tid)} ™ drest’, rrest'’)),

mk-Procdefy(mk-Idy(q, nm), p, decll, body, tid)
— (let (decll’, rrest) =

remove-references(decll, remoteset, false)(unit ™ ((PROCEDURE, nm))) in
let (drest’, rrest’) = remove-references(tl dlist, rrest, chansub)(unit) in
({mk-Procdefo(mk-Ido(q, nm), p, decll’, body, tid)) ™ drest', rrest’)),

mk-Servicedefo(mk-Idg(g, nm), a, decll, body, tid)
— (let (decll’, rrest) =

remove-references(decll, remoteset, false)(unit ™ ((SERVICE, nm))) in
let (drest’, rrest’) = remove-references(tl dlist, rrest, chansub)(unit) in
((mk-Servicedefy(mk-Ido(g, nm), a, decll', body, tid)) ™ drest’, rrest')),

mk-Selecty(ezpr, decll)
— if is-wf-entities(decll, chansub)(unit) then

(et (decll’, rrest) = remove-references(decll, remoteset, chansub)(unit) in
let (drest’, rrest’) = remove-references(tl dlist, rrest, chansub)(unit) in
({(mk-Selecto(expr, decll’)) ™ drest’, rrest'))

else .
exit(“§4.3.3: The definitions in select are not allowed in that scopeunit”),

T — (let (drest, rrest) = remove-references(tl dlist, remoteset, chansub)(unit) in

((hd dlist) ™ drest, rrest))))

(Decly* | Blocksubdefy | Chansubdefo | Decompositiong) Refdecly* Bool — Qual —

(Declo* | Blocksubdefy | Chansubdefy | Decompositiong) Refdecly*

Objective

Parameters

dlist
remoteset

chansub

unit

Result

Algorithm

Line 1

Line 4

Replace every reference in a definition list by a remote definition.

The ASq definition list

The set of remote definitions.

Is true only if dlist denotes a definition list for a channel substruc-
ture. This parameter is used for checking of correct Connectps (see
is-wf-entities).

The context (represented by a qualifier) in which the definition list
occurs.

The ASp definition list containing no references, and the set of remote
definitions for which no reference has been found. removed.

When the definition set (dlist) is empty, return no definition and
the modified set of remote definitions. (remove-references recur-
sively returns the complete definition list)

Define a utility function which returns true if a nm (Namep) in a
reference matches an id (from a definition), i.e. if the name in id

Fascicle X.4 — Rec. Z.100 — Annex F.2 39

40

Line §
Line 6

Line 8
Line 10-11

Line 13

Line 15

Line 18-30

Line 31-42
Line §3-56
Line §7-71

Line 72-86

Line 87-89

Line 90
Line 91
Line 92
Line 96

Line 97

Line 98-103

Line 104-110
Line 111-116
Line 117-126

Line 127-131
Line 132-136
Line 137-141

Line 144

equals the Nameg in the reference and the qualifier either is empty
or equal to the scopeunit where the reference is placed.
Consider the first definition in the definition list.

If the definition is a block reference then there must exist a remote
block definition which have the same name in its identifier as the
block reference (checked by match-id, see line 4) and for which the
qualifier in its identifier either is empty or equal to the scopeunit
where the reference is placed.

Let blkdef denote that block definition.

The ending identifier in the remote block definition must either be
omitted or equal to the starting identifier.

Reconstruct the block definition with empty qualifiers in the start-
ing and ending identifiers

Add it to the list of definitions such that enclosed definitions in
the block are dealt with in the next recursion level and remove the
block definition from the set of remote definitions.

Same scheme as for referencing block definitions as shown above
except for line 22 where the Instancesy for the reference is compared
with Instancesy for the remote definition

Same scheme as for referencing block definitions as shown above.
Same scheme as for referencing block definitions as shown above.
Same scheme as for referencing block definitions as shown above.

In line 59, it is checked that a channel substructure identifier is
present if the channel substructure definition is remote.

Same scheme as for referencing block definitions as shown above,
except that block sub-structure definitions syntactically appears
as the more general channel sub-structure definitions so the block
sub-structure is converted.

If the definition is a decomposition then replace references in the
definition list contained in the decomposition.

If the definition is a block definition then
Remove references in the definition list contained in the block.
Remove references in the block sub-structure.

Remove references in the rest of the definition list which contained
the block definition and

Return the modified block definition concatenated with the other
modified definitions and return the modified remote definition list.

Remove references in a block sub-structure definition.
Remove references in a channel definition.
Remove references in a channel sub-structure definition.

Remove references in a process definition. If the process contains
a decomposition (tested on line 120) then also references in the
decomposition must be replaced.

Remove references in a procedure definition
Remove references in a service definition.

Remove references contained in a select definition and check that
every definition in the select is allowed in the enclosing scopeunit.

In other cases, the definition is returned unchanged.

Fascicle X.4 — Rec. Z.100 — Annex F.2

&

select-remote-number-of -instances(inst, reminst)

1 (inst = nil A reminst # nil

2 — reminst,

3 reminst = inst V reminst = nil

4 — inst, :

5 T - exit(“§2.4.4: Remote number of instances specification does not match process reference”))

type: [Instanceso] [Instancesy] — [Instanceso)

Objective Select the Instancesy for a process in the case where the process is
referenced.
Parameters
inst The Instancesy specified for the process reference.
reminst The Instancesy specified for the remote definition.
Algorithm
Line 1 If Instancesy is specified for the remote definition only then return

that Instancesy specification

Line 3 If Instancesy for the process reference equals Instancesy for the
remote definition or Instancesy is specified for the reference only
then return that Instanceso specification.

Line 5 Otherwise the Instancesy specification for the process is inconsis-
tent.

is-wf -entities(decllist, ischannelsub)(level) 2

1 if decllist = () then
2 true
3 else
4 (let (g,) = level[len level] in
5 is-wf -entities(tl decllist, ischannelsub)(level) A
6 cases hd decllist:
7 (mk-Blockdefy(,, ,),
8 mk-Chandefy(, ,,,)
9 - ¢ € {SYSTEM, SUBSTRUCTURE},
10 mk-Connecty(id,)
11 — g € {SUBSTRUCTURE, BLOCK} A (id = ENV D (¢ = SUBSTRUCTURE A ischannelsub)),
12 mk-Sigroutedefy(, ,),
13 mk-Prdefy(,,,,,,)
14 - ¢ = BLOCK,
15 mk-Signallistdefy(,),
16 mk-Sigdefo()
17 — ¢ ¢ {SERVICE, PROCEDURE},
18 mk-Procdefy(, ,,,),
19 mk-Vardefy(,)
20 — ¢ € {SERVICE, PROCESS, PROCEDURE},
21 mk-Importdefy(),
22 mk- Viewdefo(),
23 mk- Timerdefy()
24 — ¢ € {SERVICE, PROCESS},
25 T - true)) -

type: Decly* Bool — Qual — Bool
Objective Check that a definition list originating from a select definition is syn-

tactically allowed in a given context. However, decomposition is not
treated here.

Fascicle X.4 — Rec. Z.100 — Annex F.2 41

Parameters

decllist The definition list to be checked.
ischannelsub A flag which is true if decllist belongs to a channel sub-structure.
Result True if allowed
Algorithm
Line 1 When through then return true.
Line 4 Extract the scopeunit type (g) from the Qual denoting the current
scopeunit.
Line 5-25 The definition list is well-formed if the first definition is well-formed
(line 7-25) and the rest of the definition list is well-formed (line 5).
Line 7-8 If the first definition is a block definition or a channel definition

then the scopeunit of the context must be the system or a block
sub-structure or a channel sub-structure.

Line 10 If it is a connection then the scopeunit must either be a block
sub-structure a channel substructure or a block.

Line 12-13 If it is a signal route definition of a process definition then the
scopeunit must be a block.

Line 15-16 If it is a signal list definition or a signal definition then the scope-
unit must not be a service or a procedure.

Line 18-19 If it is a procedure definition or a variable definition then the scope-
unit must be either a service or a process or a procedure.

Line 21-23 If it is an import definition or a view definition or a timer definition
then the scopeunit must be a service or a process

3.3 Removal of Select Definitions

In this section, select definitions are evaluated. The entry function is remove-select applied
in transform-system. For each definition list the following steps are taken:

42

1.

Collect the names of the sorts which are defined in the definition list, including the
sorts defined in a contained select definition. Add the sorts to the sorts collected in
the surrounding scopeunit. This is necessary in order to trap the mess if predefined
sorts are redefined.

Collect all synonyms defined in the definition list or in definition lists of contained
select definitions. Put an ErrorD descriptor in Dict for these synonyms indicating
that they cannot be used yet. Those of these synonyms which are defined by using
any of the collected (visible) sorts or which have more than one definition (they are
also multiple defined if they are defined in different select definitions) are identified.
They cannot be used in select definitions at all since using them could result in different
results depending of the order of selection. Note that it is only during removal of select
definitions that these synonyms cannot be used. Afterward, they are not necessarily
multiple defined.

Remove the select definitions. Each time a select definition has been replaced by its
contained definition list, the descriptors for the synonyms in the definition list are
changed from an ErrorD to a SynD, except for those which are not allowed to be used.

When all select definitions have been removed, SynD descriptors are made for all
synonyms in the resulting definition list (also for the synonyms which previously could
not be used) and the sorts defined in the resulting definition list are collected.

Select definitions in enclosed scopeunits are removed using the updated dict and using
the collected sorts.

Fascicle X.4 — Rec. Z.100 — Annex F.2

As transition options do not contain any definitions, they can be evaluated while the state- -

body is transformed into AS;.

remove-select(decllist, sursorts)(dict)

1
2
3
4
5
6
7

2

(Yet sorts = sursorts U collect-sorts(decllist) in

let (allsyn, illsyn) = collect-illegal-synonyms(decllist, sorts) in

let dict' = {dict(SCOPEUNIT) ™ {(VALUE, nm)) — mk-ErrorD() | nm € allsyn] in
let decllist’ = remove-select-in-decllist(decllist, illsyn)(dict') in

let dict"” = repeat-collecting-synonyms(decllist’, {})(dict) in

let sorts’ = sursorts U collect-sorts(decllist’) in
(remove-select-in-enclosed-scopeunit(decllist[t), sorts')(dict”) | 1 < i < len decllist))

type: (Decly | Blocksubdefo | Decompositiong)* Nameg-set — Dict —
(Decly | Blocksubdefy | Decompositiong)*

Objective

Parameters

decllist

sursorts

dict

Result
Algorithm

Line 1

Line 2

Line 8

Line 4
Line 5

Line 6
Line 7

Expand the select definitions for a scopeunit and for all select definitions
in scopeunits contained in the definition list.

The

The definition list containing select definitions. Block sub-structure
and service decomposition are for convenience also considered as
definitions in this context.

The set of sorts (excluding the predefined) which potentially are
visible in the definition list (i.e. possibly depending on whether
they are selected by a contained select definition). This information
is required in order to achieve correct treatment in the case where
the predefined data are redefined.

The Dict, which only contains descriptors for the predefined sorts
and for the visible, but non-local, synonyms of the predefined sorts.

definition list where all select definitions have been expanded.

Collect the sorts which are defined in the definition list or are
defined in a select definition.

Let allsyn denote the synonyms which are defined in the definition
list or are defined in a contained select definition. Let illsyn (which
is a subset of allsyn) denote the synonyms which cannot be used
in removing of select definitions for this definition list.

Put an ErrorD descriptor in Dict to indicate that the locally defined
synonyms cannot be used yet.

Remove the select definitions.

Put a SynD descriptor in Dict for the synonyms in the resulting
definition list.

Collect the sorts again, this time using the resulting definition list.

Remove select definitions in contained scopeunits.

Fascicle X.4 — Rec. Z.100 — Annex F.2 43

(3.3.1)

remove-select -in-decllist(decllist, illsyn)(dict) 2

1 (let dict' = repeat-collecting-synonyms(decllist, illsyn)(dict) in
2 if (3d € elems decllist)(is-Selecty(d)) then
3 (if (3d € elems decllist)(is-Selecty(d) A is-wf-simple-expr(s-Expro(d)){dict’)) then
4 (let d € elems decllist bes.t. is-Selecio(d) A is-wf-simple-expr(s-Ezpro(d))(dict’) in
5 let mk-Selecto(expr, decllist’) = d in
6 let selected = eval-simple-expr(ezpr, “BOOLEAN")(dict’) in
7 let decllist” = (d' € elems decllist | d' # d) in
8 if selected then
9 remove-select-in-decllist(decllist’ ™ decllist”, illsyn)(dict)
10 else
11 remove-select-in-decllist(decllist”, illsyn)(dict))
12 else
13 exit(“§4.3.2: Simple expression is not of a predefined sort or contains undefined identifiers”))
14 else
15 decllist)
type: (Decly | Blocksubdefy | Decompositiong)* Nameg-set — Dict —
(Decly | Blocksubdefy | Decompositiong)*
Objective Remove the select definitions for a definition list.
Parameters
decllist The definition list containing select definitions
tllsyn The synonyms which cannot be used in simple expressions of select
definitions.
dict The Dict, which only contains descriptors for the predefined sorts
and for the visible synonyms (SynD or ErrorD).
Result The definition list where all select definitions have been removed.
Algorithm
Line 1 Update dict with descriptors for the synonyms (of the predefined
sorts) which are defined in the definition list (but not contained in
a select definition)
Line 2 If there (still) exist a select definition in the definition list then
Line 3 If the expression in the select definition is well-formed then
Line 4 Let d denote that select definition
Line 6 Evaluate the simple expression in d.
Line 7 Construct a definition list where d has been removed.
Line 8 If the definitions in the select definition is selected then
Line 9 Continue removing select definitions where the definition list is
extended to include the definitions from the select definition.
Line 11 If the select definition is not selected, then continue with the defi-
nition list where the select definition has been removed
Line 15 If all select definitions in the definition list have been removed then

eval-simple-expr(ezpr, sort)(dict)

return the definition list.

2

1 (let predefqual = get-predef-sort(sort)(dict) in
2 let (asitree,,) = transform-expr(ezpr, CONSTANT, {predefqual})(dict) in
3 eval-expr(as,tree, sort)(dict))

type: Ezpro Chart — Dict — (Intg | Bool)
Objective Evaluate a simple expression
44 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.3.2)

(3.3.3)

Parameters

expr
sort

Result

Algorithm

Line 1
Line 2

Line 3

The ASq .simple expression

The spelling of the sort of the expression. The sort is either
“Boolean” or “Integer”.

The Meta-IV types Intg if the SDL sort is “Integer” and the Meta-IV
domain Bool if the SDL sort is “Boolean”.

Construct the Qual of the sort

Transform the expression into AS; notifying that the expression is
(must be) a constant (ground) expression and that the expression
is (must be) of the specified sort.

Evaluate the AS, expression (this function is not formally defined)

repeat-collecting-synonyms(decllist, illsyn)(dict) 2

1 (let dict' = collect-synonyms(decllist, illsyn)(dict) in
2 if dict’ = dict then dict’ else repeat-collecting-synonyms(decllist, illsyn)(dict’))

type: Decly* Namey-set — Dict — Dict

Objective

Parameters

decllist
lsyn

Result
Algorithm

Line 1

Line 2
Line 2

Collect descriptors for all the well-formed synonyms (i.e. for the syn-
onyms which at this stage do not depend on a synonym defined in a
select definition).

The definition list to be inspected

The synonyms from decllist which cannot be used, i.e. their ErrorD
descriptor should not be changed into a SynD descriptor.

The Dict updated with descriptors for the well-formed synonyms

Collect descriptors for the well-formed synonyms in the definition
list decllist by going through the list.
If no more synonym can be changed in dict’ then return dict else

Go through the list one more time. As synonyms may be mutually
dependent more synonym definitions may now be well-formed (in
the context of dict').

Fascicle X.4 — Rec. Z.100 — Annex F.2 45

(3.3.4)

collect-synonyms(decllist, illsyn)(dict) =

Ja\

1 if decllist = () then
2 dict
3 else
4 (ifis-Synonymdefy(hd decllist) then
5 (let mk-Synonymdefy(nm, sort, ezpr) = hd decllist in
6 let qualset = {qual € dom dict | is-SortD(dict(qual))} in
7 let sortset =
8 if sort = nil then
9 qualset
10 else
11 (trap exit with {} in
12 {get-parent(get-visible-qual(sort, TYPE)(dict))(dict)}) in
13 let synqual = dict(SCOPEUNIT) ™ ((VALUE, nm)) in
14 let (asytree, gset,) =
15 if sortset = {} then
16 (nil, {})
17 else
18 (trap exit with (nil, {},)in
19 transform-ezpr(ezpr, CONSTANT, sortset)(dict + [synqual — mk-ErrorD()])) in
20 if asytree = nil V card gset # 1V nm € illsyn then
21 collect-synonyms(tl decllist, illsyn)(dict)
22 else
23 (let sortqual € gset in
24 let d = [synqual — mk-SynD(sortqual, ezpr)] in
25 collect-synonyms(tl decllist, illsyn)(dict + d)))
26 else
27 collect-synonyms(tl decllist, illsyn)(dict))

type: Decly* Nameg-set — Dict — Dict

Objective Go through a definition list and collect descriptors for all the well-
formed synonyms
Parameters
decllist The definition list containing synonym definitions
illsyn The synonyms from decllist which cannot be used, i.e. their ErrorD
descriptor should not be changed into a SynD descriptor.
dict The Dict which contains descriptors for the predefined sorts and
for the visible synonyms.
Result A Dict which is updated with SynD descriptors for the well-formed
synonyms. .
Algorithm
Line 1 When through then return the (updated) Dict.
Line 4§ If the next definition in the list is a synonym definition then.
Line 6 Extract the Quals (identifiers) of the predefined sorts from dict.
Line 7-12 If a sort is specified in the synonym definition then the set of legal
sorts for the expression contains only that sort (if the specified sort
is not well-formed then the set is empty), otherwise the set of legal
sorts include all the predefined sorts.
Line 13 Let synqual denote the Qual of the synonym.
Line 14-19 Try to transform the expression into AS;. If it fails it is either a

46

static error (will be caught later) or the expression contains syn-
onyms which have not been considered yet (they might be defined
in a select definition or defined in t1 decllist).

Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.3.5)

Line 20 If it failsi.e. if the AS; expression as, tree is not present or the sort
of the expression is indeterminable (the cardinality of the returned
set of sorts is different from 1) or if the synonym is one of those
which cannot be used then continue with the rest of the definition

list else

Line 23 Let the sort of the expression be denoted by sortqual.

Line 24-25 Update dict with the synonym descriptor and go through the rest
of the definition list.

Line 27 If the first definition in the definition list is not a synonym definition

then continue with the rest of the list.
[]

is-wf-simple-ezpr(ezpr)(dict) 2 (3.3.6)
1 (let boolqual = get-predef-sort("BOOLEAN")(dict) in
2 trap exit with false in
3 (let (,,) =transform-ezpr(ezpr, CONSTANT, {boolgqual})(dict) in
4 true))

type: Ezpro — Dict — Bool

Objective Check whether a simple boolean expression is well-formed. If it is not
well-formed, it may be because it is defined in terms of synonyms which
have not been incorporated in dict yet.

Parameters
expr The ASy expression to be checked
Result True if well-formed
Algorithm
Line 1 Extract the Qual (identifier) of the boolean sort. The set of legal
sorts for the expression only includes that sort. -
Line 2-3 If the transformation function is trapped, then false is returned
otherwise
Line 4 True is returned

Fascicle X.4 — Rec. Z.100 — Annex F.2 47

remove-select-in-enclosed-scopeunit(decl, sorts)(dict) £ - (8.3.7)

1 (let level = dict(SCOPEUNIT) in

2 cases decl:

3 (mk-Blockdefo(mk-Idy(g, nm), decll, blksubd, tid)

4 - (let dict' = dict + [SCOPEUNIT — level ™ ((BLOCK, nm))] in
5 (tet (decll’, blksub') =

6 if blksub = nil then

7 (remove-select(decll, sorts)(dict’), nil)

8

else

9 (let dlist = remove-select(decll ™ (blksub), sorts)(dict’) in
10 let i bes.t. is-Blocksubdefy(dlist[t]) in
11 ((dlist[n] | 1 < n <lendlist A n # i), dlist[i])) in
12 mk-Blockdefo(mk-Idy(g, nm), decll’, blksub’, tid))),
13 mk-Servicedefo(mk-Idy(gq, nm), sigl, decll, body, tid)
14 — (let dict' = dict + [SCOPEUNIT ~— level ™ ((SERVICE, nm))] in
15 let decll’ = remove-select(decll, sorts)(dict') in
16 mk-Servicedefy(mk-Idy(q, nm), sigl, decll’, body, tid)),
17 mk-Chandefo(nm, pl, p2, chansub, tnm)
18 — if chansub = nil then
19 decl
20 else
21 (let mk-Chansubdefy(id, decll, tid) = chansub in
22 let nm' = if id = nil then nm else s-Nameo(id) in
23 let dict' = dict + [SCOPEUNIT — level ™ ((SUBSTRUCTURE, nm'))] in
24 let decll’ = remove-select(decll, sorts)(dict’) in
25 mk-Chandefy(nm, pl, p2, mk-Chansubdefy(id, decll’, tid), tnm)),
26 mk-Prdefo(mk-Ido(g, nm), inst, parm, inpset, decll, body, tid)
27 — (let dict' = dict + [SCOPEUNIT + level ™ ((PROCESS, nm))] in
28 let (decll’, body') =
29 if is-Bodyo(body) then
30 (remove-select(decll, sorts)(dict'), body)
31 else '
32 (let dlist = remove-select(decll ™ (body), sorts)(dict’) in
33 let i bes.t. is-Decompositiong(dlist[i]) in
34 ((dlist[n] | 1 < n <lendlist A n # 1), dlist[i])) in
35 mk-Prdefo(mk-Idy(g, nm), inst, parm, inpset, decll’, body’, tid)),
36 mk-Blocksubdefy(id, decll, tid)
37 — (let (, nm) = level[len level] in
38 let nm' = if id = nil then nm else s-Nameo(id) in
39 let dict’ = dict + [SCOPEUNIT — level ™ ((SUBSTRUCTURE, nm'))] in
40 let decll’ = remove-select(decll, sorts)(dict’) in
41 mk-Blocksubdefy(id, decll’, tid)),
42 mk-Decompositiong(decll)
43 — (let decll' = remove-select(decll, sorts)(dict) in
44 if (Vd € elems decll’)(is-Sigroutedefo(d) v
45 (is-Connecty(d) A is-Idy(s-Connectpointy(d))) v
46 is-Servicedefo(d)) then
47 mk-Decompositiong(decll’)
48 else
49 exit(“§4.3.3: The selected definition is not allowed in that scopeunit”)),

50 T - decl))

type: (Decly | Blocksubdefy | Decompositiong) Nameg-set — Dict — (Decly | Blocksubdefy | Decompositiong)

Objective Remove select definitions in an enclosed scopeunit.
Parameters
decl A definition which may be a scopeunit.

48 Fascicle X.4 — Rec. Z.100 — Annex F.2

sorts The sorts visible (excluding the predefined).

Result A definition wherein select definitions have been removed.
Algorithm

Line 1 Denote the context (in which the definition occurs) by level.

Line 3-12 If the definition is a block definition then remove the select def-

initions in the definition list of the block (line 7). If the block
contains a sub-structure then it is also considered as a definition.
The select definitions are removed in the context of the block, i.e.
SCOPEUNIT is Dict is updated to denote the block.

Line 13-41 Do the same for the other alternative scopeunits as done in the
case where the definition is a block definition.
Line 42-49 If the definition is a decomposition (which may contain select defi-

nitions although it is not a scopeunit) then check that the resulting
definition list (after removal of select definitions}), only contains ser-
vice signal route definitions, service signal route connections and
service definition. The connectpointy in a service signal route con-
nection must not be ENV (this case is not checked syntactically if
the connection is contained in a select definition).

collect-illegal-synonyms(decllist, sorts) = (3.3.8)

1 (if decllist = () then
2 ({h{D
3 else
4 (let (restsyn, restillsyn) = collect-illegal-synonyms(tl decllist, sorts) in
5 let (synset, illsynset) =
6 cases hd decllist:
7 (mk-Synonymdefo(nm, sort,)
8 - if (sort # nil A s-Nameg(sort) € sorts A s-Qualifiero(sort) # ((SYSTEM,))) then
9 ({nm}, {nm})

10 else

11 ({nm}, {}),

12 mk-Selecty(, dlist)

13 — collect-illegal-synonyms(dlist, sorts),

14 T-{}L{})in

15 (restsyn U synset, restillsyn U illsynset U (restsyn N synset))))

type: Decly* Nameg-set — Nameg-set Nameg-set

Objective Collect the synonyms which (potentially) are defined in a definition
list and identify those of these synonyms which cannot be used in any
simple expressions of select definitions.

Parameters

decllist The definition list

sorts The sorts which (potentially) are defined in the definition list.
Result The set of potentially defined synonyms and the synonyms which cannot

be used.

Algorithm

Line 1 When through the definition list, return empty sets.

Line 4 Collect the synonym sets for the rest of the definition list.

Line 5 Let synset denote the synonyms defined in this definition and let

illsynset denote those of these which cannot be used.

Fascicle X.4 — Rec. Z.100 — Annex F.2 49

Line 7-11

Line 12

Line 15

collect-sorts(decllist) 2

If the definition is a synonym definition then the synonym name
is synset and the name cannot be used if the sort name is one
of the visible sorts and the qualifier does not denote the system
level. Note that the Dict do only contain the descriptors for the
predefined sorts. This check is therefore only of importance if a
predefined sort has been redefined.

If the definition is a select definition then collect the synonym sets
for the contained definitions.

The resulting set of defined synonym names is the names for the
rest of definitions joined with the names for this definition. The
resulting set of non-usable synonyms is the non-usable synonyms
for the rest of definitions joined with the names for this definition
joined with the names both defined in the rest of definition and in
this definition.

(if decllist = () then

{}

else

(collect-sorts(tl decllist) U
cases hd decllist:

mk-Partialtypedefy(nm,, ,,)

- {nm},

mk-Selecty(,
— collect-sorts(dlist),

1
1 T-{H)

1
2
3
4
5
6 (mk-Syntypedefo(nm, ,,,),
7
8
9
0
1

dlist)

type: Decly* — Nameg-set

Objective Collect the sort names for the sorts which potentially are defined in a
definition list
Parameters
decllist The definition list
Result The set of potentially defined sort names (whether they actually are
defined depends on select definitions).
Algorithm
Line 1 When through the definition list, return the empty set.
Line 6-7 If the definition is a partial type definition or a syntype definition
then extract the sort name.
Line 9 If the definition is a select definition then collect the potentially

defined sort names in the contained definition list.

50 - Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.3.9)

3.4 Transformation of Definitions
transform-decllist(decllist)(dict) 2

{0

else

else

© O 3D G b W=

(if decllist = () then

(et (as;del, d) = transform-decl(hd decllist)(dict) in
let (as; dcll, d') = transform-decllist(tl decllist)(dict) in
if domd Ndomd' # {} then

exit(“§2.2.2: Two definitions in the same scopeunit and same entity class define the same name”)

(asydcl U asydcll, d + d')))

type: Declp* — Dict — Decl;-set Dict

Objective
Parameters

Result

Algorithm

Line 4
Line §
Line 6

Line 9

Transform a list of AS¢ definitions into a set of AS; definitions.
An AS, definition list.

The AS; definitions and the Dict contributions from the ASq definition
list. Note that it is not the entire dict which is returned, as opposed to
the expression and graph transforming functions. This means that no
returned descriptor (except for ValueidD which is used strictly local in
axioms and generator parameters and ErrorD which is used locally to
trap recursive definitions) influence the content of dict. The equivalence
between the returned descriptors and dict is fulfilled by the be such
that construct in the function transform-system as mentioned earlier.

Transform the first definition in the definition list.

Transform the rest of the definitions.

The pair of name and entity class (reflected in the Qual) of the first
definition must be disjoint from the pairs representing the rest of
the definitions ‘

Return the Dict contributions and the AS; definitions.

Fascicle X.4 — Rec. Z.100 — Annex F.2 51

(3.4.1)

transform-decl(decl)(dict) 2 (3.4.2)

1 (cases decl:

2 (mk-Blockdefy(,,)

3 — transform-blockdef (decl)(dict),

4 mk-Chandefo(,,,,) .
5 — transform-channeldef (decl)(dict),
6 mk'PrdefO(, 1919 r)

7 — transform-processdef (decl)(dict),
8 mk-Sigdefy()

9 — transform-signaldef (decl)(dict),
10 mk-Procdefy(,,,,)
11 — transform-proceduredef(decl)(dict),
12 mk-Partialtypedefo(,,, ,)
13 — transform-partial-typedef (decl)(dict),
14 mk-Syntypedefo(,,,,)
15 — transform-syntype(decl)(dict),
16 mk-Sortgeneratoro(, , ,,)
17 — transform-sortgenerator(decl)(dict),
18 mk-Synonymdefy(, ,)
19 - transform-synonymdef (decl)(dict),
20 mk- Vardefy(, ,)
21 - transform-vardef (decl)(dict),
22 mk- Viewdefy()
23 — transform-viewdef (decl)(dict),
24 mk-Importdefy()
25 — transform-importdef (decl)(dict),
26 mk-Sigroutedefo(, ,)
27 — if is-BlockD(dict(dict(LEVEL)))
28 then transform-signalroutedef (decl)(dict)
29 else transform-servicesigroutedef (decl)(dict),
30 mk-Signallistdefo(,)
31 — transform-signallistdef (decl)(dict),
32 mk-Timerdefy() :
33 = transform-timerdef (decl)(dict),
34 mk-Servicedefo(,,,,)
35 — build-service-descriptor(decl)(dict),

36 T ({10

type: Decly — Dict — Decly-set Dict

Objective Transform an ASq definition into an AS; definition.
Result See transform-decllist.
Algorithm Transform either
Line 2 A block definition or
Line § A channel definition or
Line 6 A process definition or
Line 8 A signal definition or
Line 10 A procedure definition or
Line 12 A partial data type definition or
Line 14 A syn type definition or
Line 16 A sort generator or
Line 18 A synonym definition or
Line 20 A variable definition or
Line 22 A view definition or
Line 24 An import definition or

52 Fascicle X.4 — Rec. Z.100 — Annex F.2

Line 26-29 A signal route definition or a service signal route depending on the
enclosing scopeunit or

Line 30 A signal list definition or

Line 32 A timer definition or

Line 29 A service signal route definition or

Line 34 A service definition

Line 19 Nothing, as the other kind of definitions (i.e. connects) are handled
elsewhere.

Fascicle X.4 — Rec. Z.100 — Annex F.2 53

3.4.1

Block Definitions

transform-blockdef (mk-Blockdefy(bid, decllist, subdef, tid))(dict) 2 (3.4.1.1)

(let mk-Idy(q, bnm) = bid in
let bqual = dict(SCOPEUNIT) ™ ((BLOCK, bnm)) in
let dict’ = dict + [SCOPEUNIT — bqual] +

{DATATYPEDEF initialdatadef(dict)] in

let (chandefl, routedefl, connects, exp, imp) =

implicit-channels-and-signal-routes(decllist)(dict') in

1
2
3
4
5 let explicit = (Id € elems decllist)(is-Sigroutedefy(d)) in
6
7
8

let (outerchannels, cdi) = transform-decllist(chandefl)(dict) in
9 let (asydcl, di) = transform-decllist(decllist ™ routedefl)(dict') in
10 let (asyconnect, connectmap) = transform-block-connect(decllist, {},[])(dict’) in
11 if ((3¢ € elems decllist)(is-Prdefo(i)) V subdef # nil) A ¢ = () A tid € {bid, nil} then

12 if subdef = nil then
13 (let descr = [bqual — mk-BlockD(ezp, imp, explicit, connectmap)] in
14 let as; block = make-as; tree(BLOCK, bnm, as;decl ™ as, connect, nil, nil, nil)(dict) in
15 (outerchannels U {as; block}, descr + di + edi))
16 else
17 (let mk-Blocksubdefo(subid, subdecll, tailid) = subdef in
18 let mk-Idg(q', bnm') = if subid = nil then mk-Idy((), bnm) else subid in
19 let chansubqual = dict(SCOPEUNIT) ™ ((SUBSTRUCTURE, bnm')) in
20 let subqual = if chansubqual € dom dict then
21 chansubqual
22 else
23 bqual ~ ((SUBSTRUCTURE, bnm')) in
24 let dict’” = [SCOPEUNIT ~ subqual,
25 DATATYPEDEF ~ initialdatadef(dict')] in
26 let (as, subdcl, subdi) = transform-decllist(subdecll)(dict') in
27 let as, connect’ = transform-substructure-connect(subdecll ™ connects, {}, [|)(dict") in
28 let as,tree = make-asy tree(SUBSTRUCTURE, bnm/,
29 as; subdcl U asy connect’, nil, nil, nil)(subdi) in
30 let as; block’ = make-as; tree(BLOCK, bnm, as; dcl, as; tree, nil, nil)(dict) in
31 let descr = [bqual — mk-BlockD(exp, imp, explicit, connectmap)] +
32 (if chansubqual € dom dict then [] else [subqual — mk-BlocksubD()]) in
33 (¢' # ()
34 — exit(“§2.4.1: Defining names may only be qualified in remote definitions”),
35 tailid ¢ {nil, subid}
36 — exit(“§2.2.2: Ending name in block sub-structure definition is different from defining name”),
37 —(3d € elems subdecll)(is-Blockdefo(d))
38 — exit(“§3.2.2: Block sub-structure does not contain a block definition”),
39 T — (outerchannels U {as; block'}, descr + di + subdi + cdi)))
40 else
41 (—(3¢ € elems decllist)(is-Prdefo(i) V subdef # nil)
42 — exit(“§2.4.3: Block must contain either one or more processes or a sub-structure definition”),
43 g # ()
44 — exit("§2.4.1: Defining names may only be qualified in remote definitions”),
45 T - exit("“§2.2.2: Ending name in block definition is different from defining name”)))
type: Blockdefy — Dict — Decly -set Dict
Objective Transform an ASg block definition into an AS; block definition.
Parameters The ASp block definition containing
bid The unqualified block identifier
decllist Its definition list
subdef Its optional sub-structure
tid Its optional ending identifier
54 Fascicle X.4 — Rec. Z.100 — Annex F.2

Result
Algorithm

Line 2-3

Line §

Line 6

Line 8
Line 9

Line 10

Line 11

Line 12-15

Line 17
line 18

Line 19-20
Line 24
Line 26
Line 27
Line 28
Line 30
Line 31-32
Line 33

Line 35

- Line 37
Line 39

Line §1

Line 33
Line 45

See transform-decllist.

Construct the Qual denoting the block identifier (bgual) and update
the Dict entry SCOPEUNIT to denote the context of the block.
Construct the initial Datae-type-definition; for the block.

Let ezplicit be true if explicit signal routes are specified for the
block. .

Create the implicit ASg channel definitions implied by export and
import from and to the block, and also the EzpimpchanD maps (see
the domain definition of EzpimpchanD) which is used to interface
the channel definitions to the sub-structure and to the surround-
ings.

Transform the implicit channel definitions into AS;.

Transform the contained definition list, with the dict entry SCOPE-
UNIT updated to denote the block.

Transform the channel to signal route connections in the block.
Also return the BlockconnectionD for the block.

If the sub-structure is omitted then there must exist at least one
process definition in the block. The block identifier must not be
qualified and if the ending identifier is specified then it must be
equal to the block identifier.

If the block does not contain a block sub-structure then return the
AS; definition of the implicit channels (outerchannels) and of the

block (as,block) and Dict contributions for the implicit channels
(cdi), the block (descr), and the contained definitions. (di)

Decompose the block sub-structure.

If the block sub-structure name is omitted then it is the same as
the block name. Let bnm' denote the block sub-structure name

Let subqual denote the Qual of the sub-structure. If the block
sub-structure is derived from a channel sub-structure then subqual
denotes the Qual of the channel sub-structure.

Update SCOPEUNIT and DATATYPEDEF as in line 3.

Transform the definition list of the sub-structure.

Create the AS; definition of the block (as; block),

Create the AS; connections from the ASo connections in subdecll.
The AS; definition of the block sub-structure (as;tree),

The Dict entry for the block (bgqual) and unless the sub-structure
denotes a channel sub-structure then also the Dict entry for the
block sub-structure (subgual).

The block sub-structure name (identifier) must not be qualified (as
it is not a remote definition).

If the tailingid is specified, it must be the same as the sub-structure
identifier (subid).

The sub-structure must contain at least one block definition.
Return the AS; definitions as in line 15 and Dict contributions
for the implicit channels (cds), for the block and the sub-structure
(descr), and the contained definitions in the block (di) and the
definitions contained in the sub-structure (subdi).

There must exist at least one process definition in the block unless
a sub-structure is specified and

The block identifier must not be qualified and

If the ending name is specified then it must be equal to the block
name

Fascicle X.4 — Rec. Z.100 — Annex F.2 55

initialdatadef (dict) 2 (3.4.1.2)

1 (let mk-Data-type-definitiony (unm,,,,) = dict(DATATYPEDEF),

2 qual = dict(SCOPEUNIT) ™ ((TYPE, unm)) in

3 let typeid = make-as; -identifier(qual)(dict) in

4 mk-Data-type-definition, (create-unique-name(), {typeid}, {}, {}, {}))

type: Dict — Data-type-definition;

Objective Construct the AS; data type definition for a scopeunit where the identi-
fier, representing the data type definition of the surrounding scopeunit,
is included in the type union. Literals, operators and equations are
added to the data type definition during the transformation of the par-
tial data type definitions in the scopeunit

Algorithm
Line 1 Extract the AS, data type definition of the surrounding scopeunit.
Line 2 Construct the Qual of the type identifier of the surrounding scope-
unit.
Line 3 Construct the AS; identifier of the type.
Line 4 Return a new data type definition which has a unique name and

where the type identifier of the surrounding scopeunit is included
in the type union and which contains no literals, operators or equa-
tions

56 Fascicle X.4 — Rec. Z.100 — Annex F.2

3.4.2 Channel Definitions

transform-channeldef (mk-Chandefy (cnm, chanpath, ochanpath, csub, tnm))(dict) 2

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

(let mk-Chanpathg(ori, dest, siglist) = chanpath in
let orid = get-visible-qual(ori, BLOCK)(dict),
destid = get-visible-qual(dest, BLOCK)(dict),
sigidset = transform-signallist(siglist)(dict),
sigidset’ =
if ochanpath = nil then
{}
else
(let mk-Chanpatho(orig’, dest’, osiglist) = ochanpath in
let orid’ = get-visible-qual(orig’, BLOCK)(dict),
destid' = get-visible-qual(dest’, BLOCK)(dict) in
if orid = destid' A destid = orid’' then
transform-signallist (osiglist)(dict)
else

(3.4.2.1)

exit(“§2.5: Second path in channel definition must denote reverse direction of first path”)) in

if orid = destid then
exit(“§2.5: Endpoints of channel must be different”)
else
(let asyorid = if ori = ENV then ENVIRONMENT else make-as; -identifier(orid)(dict),
asy destid = if dest = ENV then
ENVIRONMENT
else
make-as; -identifier(destid)(dict),
asy sigs = make-as, idset(sigidset)(dict),
as; sigs’ = make-as; idset(sigidset’)(dict),
cqual = dict(SCOPEUNIT) ™ ((CHANNEL, cnm)) in
(—is-local(orid)(dict) V —is-local(destid)(dict)
— exit(“§2.5: Endpoint of channel is defined in another scopeunit than the channel”),
tnm ¢ {cnm, nil}
— exit("§2.2.2: Ending name in channel definition is different from defining name”),
csub # nil
- transform-channel-sub(csub, cnm, sigidset, sigidset’, orid, destid)(dict),
T — (let descr = [cqual — mk-ChannelD(orid, destid, sigidset, sigidset’, nil)] in
let pathl = mk- Channel-path, (as, orid, as; destid, as, sigs),
path2 = if as; sigs’ = {} then
nil
else
mk-Channel-path, (as, destid, as; orid, as; sigs’) in
({mk-Channel-definition, (name-to-name; (cnm), pathl, path2)}, descr)))))

type: Chandefy — Dict — Decly -set Dict

Objective Transform a channel definition into AS;
Result The AS; channel definition and a dict contribution containing the chan-
nel descriptor and a channel sub-structure descriptor (if present)
Parameters The ASq channel definition containing
cnm The channel name
chanpath The first path
ochanpath The second optional channel path
csub The optional channel sub-structure
tnm The name ending the definition
Algorithm
Line 1 Decompose the first path

Fascicle X.4 — Rec. Z.100 — Annex F.2 57

transform-channel-sub(csub, nm, sigset, osigset, endpointl, endpoint2)(dict)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

58

line 2-15

line 9-15

line 16

line 19-25

line 26

line 27-28

line 29

line 31

Line 33

Make the Qual of the origination block (orid), the destination block
(destid), the signals (sigidset) and the signals in the reverse direc-
tion (sigidset’).

_ If the channel is bidirectional then the originating endpoint of one

Line 34-35

Line 39

of the directions must be the same as the terminating endpoint of
the other direction.

The originating block must not be the same as the destination
block.

Make the Identifierys of the origination block (as; orid), the desti-
nation block (as;destid), the signals (as; sigidset) and the signals
in the reverse direction (as; sigidset’).

Update SCOPEUNIT to denote the channel identifier.

The originating block and the destination block must be defined
at the same level as where the channel is defined and

The name ending the channel definition must be equal to the chan-
nel name if specified

If a channel sub-structure is present then transform the channel
sub-structure else

Construct the Dict contribution for the channel.
Construct the two AS; paths.
Return the AS; channel definition and its Dict contribution.

2

(let mk-Chansubdefo(subid, decllist, tailid) = csub in S

let mk-Idy(q, nm’) = if subid = nil then mk-Idy((), nm) else subid in

let mk-Idy(qtail, nmtail) = if tailid = nil then mk-Idy(gq, nm') else tailid in

if ¢ # () V gtail # () then :
exit(“§2.4.1: Defining names may only be qualified in remote definitions”)

else

if nmtail # nm' then

exit(“§2.2.2: Ending name in channel sub-structure definition is different from defining name”)

else

(et level = dict(SCOPEUNIT) in

let newbnm = create-unique-name() in

let newbqual = level ™ ((BLOCK, newbnm)) in
let newcl = create-unique-name(),

newc2 = create-unique-name() in

let pathl = mk-Chanpathg(aso-id(endpointl), aso-id(newbqual), (aso-id(q) | g € sigset)),

opathl =
if osigset

={}

then nil

else mk-Chanpathg(aso-id(newbqual), aso-id(endpointl), (aso-id(q) | ¢ € osigset))
path2 = mk-Chanpathy(ase-1d(newbgual), aso-id(endpoint2), (aso-id(q) | ¢ € sigset)

={}

opath2 =
if osigset

then nil

else mk-Chanpathe(aso-id(endpoint2), aso-id(newbqual), (aso-id(q) | ¢ € osigset)) in

let chandef1 = mk-Chandefo(newcl, pathl, opathl, nil, newcl),
chandef 2 = mk- Chandefy(newc2, path2, opath2, nil, newc2) in
let substructurequal = level ™ ((SUBSTRUCTURE, nm’)) in

let dict’ = dict + [SCOPEUNIT — substructurequal] in

let decllist’ = replace-connects{decllist, newcl, endpointl, newc2, endpoint2)(dict') in

let newchannels = (endpointl, newcl, endpoint2, newc2) in
let blockdef =

mk-Blockdefy(mk-Idy((), newbnm), (), mk-Blocksubdefo(mk-Idy((), nm'), decllist’, nil), nil) in
let channelqual = level ™ ((CHANNEL, nm)) in

let di = [channelqual

Fascicle X.4 — Rec. Z.100 — Annex F.2

)

(3.4.2.2)

~ mk-ChannelD(endpointl, endpoint2, sigset, osigset, newchannels),

35 substructurequal — mk-ChannelsubD(newbqual)] in
36 let (asy declset, dict') = transform-decllist({chandef 1, chandef2, blockdef))(dict) in
37 (asy declset, dict’ + di)))

type: Chansubdefy Namey Signalqual-set Signalqual-set Endpoint Endpoint —
Dict — Decl,-set Dict

Objective Transform a channel sub-structure definition into two channel defini-
tions and a block definition

Parameters
csub The ASo channel sub-structure definition
nm The name of the enclosing channel definition
siglist The signals conveyed by the enclosing channel.
osiglist The optional signals leading in the opposite direction.
endpointl The block from which siglist is sent.
endpoint2 The block to which siglist is sent. The osiglist signals are sent from
endpoint?2 to endpoint].
Result See transform-decllist
Algorithm
Line 1 Let subid denote the channel sub-structure identifier, decllist the
definition list enclosed in the sub-structure and tailid the identifier
ending the sub-structure definition
Line 2 If no identifier (name) is specified for the sub-structure, the name
of the surrounding channel is inherited.
Line 3 Let gtail denote the qualifier in the tailing identifier (subid) and let
nmtail denote the name in the tailing identifier
Line 4 The name of the sub-structure must not be qualified (as it is not a
remote definition) and the identifier ending the definition must be
equal to the identifier starting the definition if specified
Line 7 The tailing name must be equal to the channel substructure name
Line 10 Let level denote the Qual of the block where the channel is defined
Line 11 Create a distinct new name for the block to be constructed
Line 12 Construct the Dict entry for the block to be constructed
Line 13-14 Create distinct new names for the two channels to be constructed
Line 15-16 Construct the paths for the first of the two new channels
Line 20-21 Construct the paths for the second of the two new channels
Line 25-26 Construct the two new ASg channels
Line 29 Replace the channel endpoint connections (Connectys) by block
sub-structure connections (Conneclps) in the definition list of the
channel sub-structure
Line 31 Construct the new block. It has an empty definition list and a
block sub-structure containing the modified definition list
Line 34 Let di denote the Dict consisting of the descriptor for the enclosing
channel and the descriptor for the channel sub-structure.
Line 36 Transform the two constructed channel definitions and the block
definition into AS;
Line 37 Return the three AS; definitions and the Dict which includes the

descriptors for the three definitions, descriptors for the contained
definitions, descriptor for the enclosing channel and descriptor for
the channel sub-structure.

Fascicle X.4 — Rec. Z.100 — Annex F.2 59

replace-connects(decllist, newcl, endpointl, newc2, endpoint2)(dict) 2

1 (let conset = {d € elems decllist | is-Connecto(d)} in
2 if card conset = 2 then
3 (let {mk-Connecty(blkidl, clistl), mk-Connecty(blkid2, clist2)} = conset in
4 let bquall = get-visible-qual(blkid1, BLOCK)(dict),
5 bqual2 = get-visible-qual(blkid2, BLOCK)(dict) in
6 if {bquall, bqual2} = {endpointl, endpoint2} then
7 (let (c1, c2) = if bquall = endpointl then (newcl, newc2) else (newc2, newcl) in
8 let decllist’ = (decllist[i] | ¢ € ind decllist A —is-Connecty(decllist[:])) in
9 decllist’ ™
10 (mk-Connecto(mk-Ido({), c1), clistl),
11 mk-Connecto(mk-Idy((), c2), clist2)))
12 else
13 exit(“§3.2.3: The block identifiers in the connects do not denote channel endpoints”))
14 else
15 exit(“§3.2.3: There must be exactly two channel endpoint connects”))
type: Decly* Channamey Endpoint Channamey Endpoint — Dict — Declp™
Objective Change a channel sub-structure definition list to a block sub-structure
definition list such that the list contains channel connections instead of
channel endpoint connections.
Parameters

decllist The definition list to be changed

newcl,newc2 The names of the two synthetic channels which replaces the channel
containing a channel sub-structure.

endpointl,

endpoint? The endpoints of the channel containing a channel sub-structure.
newcl is connected to endpoint! and newc2 is connected to newc2.

Result The new definition list to be enclosed by a synthetic block sub-structure.
Algorithm

Line 1 Extract the channel endpoint connections from the definition list.

Line 2 and 13 There must be exactly two such channel endpoint connections.

Line 3 Decompose the set containing the two channel endpoint connec-
tions

Line §-5 Construct the Quals of the block identifiers mentioned in the two
channel endpoint connections

Line 6 These two block identifiers must be the same block identifiers as
mentioned in the channel definition.

Line 7 "~ Let c1 denote the name of the channel to which clist! correspond
and let c2 denote the name of the channel to which clist2 corre-
spond

Line 8 Construct the definition list where the two channel endpoint con-
nections have been removed and

- Line 9-11 Return this list concatenated with two synthetic channel connec-
tions
60 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.2.3)

3.4.3 Process Definitions

transform-processdef (mk-Prdefo(pid, ins, pl, sigl, decll, body, tid))(dict) 2

1 (let mk-Idy(g, name) = pid in
2 let mk-Instancesy(ini, mazi) = if ins = nil then mk-Instanceso(nil, nil) else ins in
3 let ini’ = if ini = nil then 1 else eval-simple-expr(ini, “INTEGER")(dict),
4 maz' = if mazi = nil then infinite else eval-simple-expr(mazi, "INTEGER")(dict) in
5 (¢#()
6 — exit(“§2.4.1: Defining names may only be qualified in remote definitions”),
7T tid ¢ {pid,nil}
8 — exit(“§2.2.2: Ending name in process definition is different from defining name”),
9 4ni’ > maz'
10 — exit(“§2.2.3: Initial number is greater than maximum number of instances”),
11 i’ <0
12 — exit(“§2.2.3: Initial number of instances is less than zero”),
13 maz’ =0
14 — exit(“§2.2.3: Maximum number of instances equals zero”"),
15 T - (let d = [IMPLIED ~{}
16 OUTSIGNALS ~ {},
17 SCOPEUNIT +~ dict(SCOPEUNIT) ™ ((PROCESS, name)),
18 DATATYPEDEF - initialdatadef(dict)] in
19 let (as; list, pd, dict') = transform-processparm(pl)(dict + d),
20 sigset = transform-validinputset(sigl)(dict + d),
21 (asy declset, ddict) = transform-decllist(decll)(dict + d) in
22 if dom dict’ N dom ddict # {} then
23 exit(“§2.2.2: Names of formal parameters must be distinct from variable names”)
24 else
25 (let (servicedeclsety, as; body, bdict, connectmap) =
26 transform-process-body(body)(dict + d),
27 outsigs = bdict(OUTSIGNALS),
28 number = mk-Number-of -instances, (ini', maz') in
29 if (3¢1, g2 € outsigs U sigset)(len g1 > len g2 A (q1[i] | 1 < ¢ < len ¢2) = ¢2) then
30 exit(“§3.3: Process uses signals on different refinement levels of the same signal”)
31 else
32 (let (asy declset’, vdict) = make-implicit-vardecl(bdict),
33 as;totset = asy declset U as; declset’ U servicedeclsety,
34 asy tree =
35 make-as; tree(PROCESS, name, as; totset, number, as; list, as; body)(ddict) in
36 let delem = [d(SCOPEUNIT) — mk-ProcessD(pd, sigset, outsigs, connectmap)] +
37 dict' + ddict + vdict in
38 ({asitree}, delem))))))
type: Prdefo — Dict — Process-definition; -set Dict
Objective Transform a process definition into AS;
Parameters The ASy process definition containing
pid The process identifier
ins The ”number of instances” construct
pl The formal parameter list
sigl The valid input signal set
decll The contained definition list
body The process state body
tid The tailing identifier
Result See transform-decllist
Algorithm
Line 1 Let name denote the process name

Fascicle X.4 — Rec. Z.100 — Annex F.2 61

(3.4.3.1)

62

Line 2

Line 3-4

Line 5
Line 7
Line 9

Line 11
Line 13
Line 15-16

Line 17-18

Line 19
Line 20
Line 21
Line 22

Line 25

Line 29-30

Line 32
Line 33-38

If the "number of instances” construct is omitted it is the same as
omitting the initial number of instances and omitting the maximum
number of instances

If the initial number of instances is unspecified, it is equal to 1.
If the maximum number of instances is unspecified, an infinite
number of instances is allowed. The predefined constant infinite
denotes an “unlimited” number (see also annex F.1 section 5.8). If
one of the expressions are specified, it is evaluated and it must be
of the predefined data sort INTEGER, i.e. the integer Qual (iqual)
is given as parameter to eval-simple-ezpr as the only valid sort in
the set of sorts.

The name (identifier) of the process must not be qualified (as it
is not a remote definition)

The identifier ending the process definition (tid), must be equal to
the process name (identifier) if specified

The maximum number of instances must be greater than or equal
to the initial number of instances

The initial number of instances must not be less than zero

The maximum number of instances must not be zero

Initiate the IMPLIED entry to contain no implicit variables and
initiate OUTSIGNALS to contain no output signals. The two sets
are filled during the transformation of the process body.

Update SCOPEUNIT to indicate the process level and construct
the initial Data-type-definition, for the process.

Transform the process formal parameters.

Extract the complete valid input signal set.

Transform the contained definitions

The names of the formal parameters must be different from the
variable and synonym names defined in the process (i.e. they must
have distinct Quals)

Transform the process body and return the list of AS; definitions
from the contained services (if any), the AS; process graph, a
Dict wherein only the IMPLIED entry and the OUTSIGNALS entry
is used and the relation between signal routes and service signal
routes (connectmap is empty if no services are present in the pro-
cess).

There must not exist two output signals where the first one is
defined in the second one. The same must hold for input signals
Construct the implicit AS; variable definitions.

Return the AS; process definition (as;tree), and the Dict contribu-
tion consisting of the process descriptor (delem), the formal param-
eter descriptors (dict’), and the descriptors of the entities defined
inside the process (ddict).

Fascicle X.4 — Rec. Z.100 — Annex F.2

transform-validi.nputset(sigset)(dict)

2

1 (let qual = dict(SCOPEUNIT) in
2 let mk-BlockD(,, explicit,) = dict(get-sur(process-level(qual))) in
3 let routesigset =
4 if —ezplicit then
5 {}
6 else
7 {squal | (3mk-SignalrouteD(pl, p2, 51, s2) € rng dict)
8 ({p1 = qual A squal € s2) v (p2 = qual A squal € s1))} in
9 let squalset =
10 if sigset = nil then
11 {3
12 else
13 (let mk-Inputsety(sigl) = sigset in
14 if sigl = nil then {} else transform-signallist(sigl)(dict)) in
15 let implicit =
16 if is-ServiceD(dict(qual)) then
17 {3
18 else
19 (let (ezpimpinput,) = import-ezport-signals(dict) in
20 ezpimpinput) in
21 let timers = {tqual € dom dict | is- TimerD(dict(tqual)) A is-local(tqual)(dict)} in
22 let locals = {tqual € dom dict | is-SignalD(dict(tqual)) A is-local(tqual)(dict)} in
23 if squalset N timers = {} A locals C squalset then
24 routesigset U squalset U implicit U timers
25 else
26 exit(“§2.5.2: Valid input signal must contain all local signals and no timers”))
type: [Signallisty] — Dict — Signalqual-set
Objective Extract the complete valid input signal set for a process or for a service
Parameters
sigset The optional list of ASy signal identifiers
Algorithm

Line 1 Let qual denote the Qual of the service or process

Line 2 ezplicit is true if explicit signal routes are specified for the sur-
rounding block.

Line 3-8 Let routeset denote the signals contained in a signal route (implicit
or explicit) leading to the process or service. The set is empty if
no explicit signal routes are specified for the surrounding block.

Line 9-14 Let squalset denote the signals contained in the valid input signal
set construct for the process or service

Line 15-19 Unless the scopeunit is a service extract the Quals of the implicit
signals leading to the scopeunit.

Line 21 Let timers denote the timer signals defined in the process or service

Line 22 Let locals denote the signals defined in the process or service

Line 23 The valid input signal set for the process or service must not include
any timers and it must contain all locally defined signals.

Line 24 The complete valid input signal set consist of the signals in the

signal routes, the signals in the valid input signal set construct,
the implicit signals and the timers.

Fascicle X.4 — Rec. Z.100 — Annex F.2 63

(3.4.3.2)

transform-processparm(pl)(dict) 2

Ja

1 (if pl = () then
2 (0, (h0)
3 else
4 (let mk-Parmo(nml, tid) = hd pl in
5 let (asylist, tp’, d') = transform-processparm(tl pl)(dict) in
6 let aspvardef = mk- Vardefelemg(nml, tid, nil) in
7 let (,d) = transform-vardef(mk- Vardefy(nil, nil, (asovardef}))(dict) in
8 let tq = get-visible-qual(tid, TYPE)(dict) in
9 let tq' = get-parent(tg)(dict) in
10 let tgl = (t¢’ |1 < ¢ <lemnnml) in
11 let as;id = make-as,-identifier(tq')(dict) in
12 let as;nml = (name-to-name, (nml[i]) | 1 < i <lennml) in
13 if card elems as; nml # len as; nml then
14 exit(“§2.2.2: Two definitions in the same scopeunit use the same name”)
15 else
16 (let asitree = mk-Process-formal-parameter;{asynml, as;id) in
17 ({asitree) ™ asylist, tql ™ tp', d + d'))))

type: Parmy* — Dict — Process-formal-parameter;* Sortqual* Dict

Objective

Parameters
pl

Result

Algorithm

Line 1
Line §

Line §
Line 6

Line 7
Line §
Line 9
Line 10

Line 11

Line 12
Line 13
Line 16

Line 17

Transform a list of formal process parameters into AS;

The list of formal ASy process parameters.

The AS; formal parameters, the corresponding sort list which is used
for checking of actual parameters in the create request node, and the
Dict contribution containing the descriptors of the formal parameters.

The function traverse recursively through the list of formal parameters.

When through, return empty lists and the empty map

Let nml denote the name list of the first element in the list and let
tid denote their sort

Transform the rest of the formal parameters

Construct an ASp variable definition for the parameters in hand
and

Transform this variable definition.
Construct the Qual of the variable sort
Extract the parent in the case of a syntype

Construct the list (#ql) of sort Quals corresponding to the variable
list.

Construct the AS; identifier (as;id) of the parent partial type (tg')
for the sort of the variable list (nml)

transform the name list to an AS; name list

The names in the list must be distinct

Construct the AS; formal parameter definition for the parameters
in hand (nml).

Return the AS; formal parameter definition together with the rest
of the formal parameters, return the associated sort list and return
their Dict contributions

64 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.3.3)

3.4.4 Signal Definitions

transform-signaldef (mk-Sigdefy(elemlist))(dict) 2

(let mk-Sigelemo(nm, tidl, refinement) = hd elemlist in
let dlev = dict + [SCOPEUNIT — dict(SCOPEUNIT) ™ {(SIGNAL, nm))] in
let (as; refinement, subsigl, subsig2, d) =

(let mk-Refinementy(subsiglist) = refinement in
let (asy set, s1, 82, d') = transform-refinement(subsiglist)(dlev) in

1

2

3

4 if refinement = nil then
5 (uil, {}, {},)

6 else

7

8

9

mk-Signal-refinement, (as; set), s1,52,d')) in
'

10 let quall = (get-visible-qual(tidl[i], TYPE)(dict) | 1 < ¢ < len tidl) in

11 let d' = [dict(SCOPEUNIT) ™ ((SIGNAL, nm)) — mk-SignalD(quall, subsigl, subsig2)]in

12 let (asyset’,d") =
13 if tl elemlist =

14 then ({},[)

15 else transform-signaldef (mk-Sigdefo(tl elemlist))(dict) in

16 ifdomd' Ndomd"” # {} then

17 exit(“§2.2.2: Two definitions in the same scopeunit use the same name”)

18 else

19 (let asyidlist = (make-as, -identifier(quall[z])(dict) | ¢ € ind quall) in

20 let astree = mk-Signal-definition, (name-to-namey (nm), as; idlist, as, refinement) in
21 ({astree} U asyset’, d + d' + d")))

0

type: Sigdefo — Dict — Signal-definition, -set Dict

Objective Transform a signal definition into AS;

Parameters The

composite ASq signal definition introducing a list (elemlist) of ele-

mentary signal definitions.

Result See transform-decllist
Algorithm
Line 1 Decompose the first signal definition in the composite ASq signal

Line 2
Line 3-9

Line 10
Line 11
Line 12-15

Line 16
Line 19
Line 20-21

definition

Update level to indicate the signal structure.

Transform the refinement part of the signal definition and return
the contained AS; definitions (as, refinement), the sub-signals lead-
ing in the same direction as the signal being defined (subsig1), the
sub-signals leading in the opposite direction of the signal being de-
fined (subsig2) and the Dict contribution from the new definitions
(d).

Construct the sort Quals from the specified ASg sort identifier list
Construct the Dict contribution of the signal.

Transform the rest of the signal definitions in the composite signal

definition.
No two signals in the composite definition may have the same name
Construct the AS; sort identifier list.

Return the set of AS; signal definitions and the Dict contributions
from the signals.

Fascicle X.4 — Rec. Z.100 — Annex F.2 65

(3.4.4.1)

transform-refinement(decllist)(dict) 2

A

(3.4.4.2)

1 (if decllist = () then
2 (D
3 else
4 (let (asy declrest, siglrest, sig2rest, drest) = transform-refinement(tl decllist){dict) in
5 let mk-Subsignaly(reverse, sigdef) = hd decllist in
6 let (as; decl, d) = transform-signaldef (sigdef)(dict) in
7 if dom d N dom drest # {} then
8 exit(“§2.2.2: Two definitions in the same scopeunit and same entity class define the same name”)
9 else
10 (let asitot = asy declrest U {mk-Subsignal-definition, (reverse, decl) | decl € as, decl} in
11 if reverse = nil then
12 (asy tot, siglrest U dom d, sig2rest, d + drest)
13 else
14 (asytot, siglrest, sig2rest + dom d, d + drest))))
type: Subsignalp* — Dict — Subsignal-definition, -set Signalqual-set Signalqual-set Dict
Objective Transform the sub-signals in a signal refinement into AS; subsignal
definitions.
Parameters
decllist The list of ASo subsignal definitions
Result A set of AS; subsignal definitions, the set of signal Quals containing
the signals leading in the same direction as the parent signal, the set of
signal Quals containing the signals leading in the opposite direction as
the parent signal (these two sets are in the function transform-signaldef
put into the descriptor for the parent signal) and the Dict contribution
for the sub-signals.
Algorithm
Line 1 When through then return no contributions.
Line 4 Transform the rest of the sub-signals.
Line 5 Decompose the first subsignal in the list.
Line 6 Transform the subsignal as if it was an ordinary signal.
Line 7 Check that the subsignal definitions are unique.
Line 10 Construct the set of AS; subsignal definitions from the AS; signal
definitions and
Line 11-14 Return this set and if REVERSE was specified then add the signal

Quals (taken from the domain of d) to the first Signalqual set,
otherwise add them to the second Signalqual set. Also return the
dict contributions for the sub-signals (d) and the contribution for
the rest of the sub-signals (drest).

3.4.5 Procedure Definitions

transform-proceduredef (mk-Procdefy(pid, pl, decll, body, tid))(dict) 2

1
2
3
4
5
6
7
8

66

(let mk-Idy(gq, name) = pid in
if ¢ = () A tid € {pid, nil} then
(let name’ = if is-ServiceD(dict(dict(SCOPEUNIT))) then

create-unique-name()
else
name in

let nqual = dict(SCOPEUNIT) ~ ((PROCEDURE, name’)) in
let d = [SCOPEUNIT ~ dict(SCOPEUNIT) ~ ((PROCEDURE, name)),

Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.5.1)

9 DATATYPEDEF ~ tnitialdatadef (dict)] in

10 let (as list, pd, dict') = transform-procedureparml(pl)(dict + d),

11 (asy declset, ddict) = transform-decllist(decll)(dict + d),

12 (mk-Procedure-graph, (sta, stateset), bdict) = transform-body(body)(dict + d) in

13 if dom dict’ N dom ddict # {} then

14 exit(“§2.2.2: Names of formal parameters must be distinct from variable names”)

15 else

16 if (3squal € dom dict)(is-ServiceD(dict(squal)) A

17 get-sur(squal) = process-or-service-level(dict(SCOPEUNIT))) A
18 stateset # {}

19 then exit(“§4.10.2: Procedure in decomposition or service has states or import expressions”)
20 else (let as;tree =

21 make-asytree(PROCEDURE, name’, as; declset,

22 as, list, mk-Procedure-graph, (sta, stateset), nil)(ddict) in

23 let delem = [d(SCOPEUNIT) — mk-ProcedureD(pd, nqual)] + dict’ + ddict in
24 ({asytree}, delem + bdict)))

25 else

26 (¢#()

27 — exit(“§2.4.1: Defining names may only be qualified in remote definitions”),

28 T — exit("§2.2.2: Ending name in procedure definition is differént from defining name”)))

type: Procdefy — Dict — Procedure-definition, -set Dict

Objective Transform a procedure definition into AS;
Parameters The procedure definition containing
pid The procedure identifier (must contain a name only)
pl The list of formal parameters
decll The list of definitions
body The state body
tid The identifier (name) ending the definition
Result An AS, definition set consisting of one definition only and the dict
contributions for the procedure and for the contained definitions
Algorithm
Line 1 Let name denote the procedure name
Line 2 The procedure name (identifier) must not be qualified (as it is not
a remote definition) and the name (identifier) ending the procedure
definition must be equal to the procedure name if specified.
Line 3 Construct a unique name for the procedure definition if it occurs
in a service.
Line 7 Construct the variable Qual to be used in AS,
Line 8-9 Update SCOPEUNIT to denote the procedure scopeunit and con-
struct the initial Data-type-definition; for the procedure.
Line 10 Transform the formal procedure parameters in order to obtain the
AS; parameters (as;list), their sort descriptors (to be used when
the procedure is invoked), and their Dict contributions.
Line 11 Transform the contained definitions
Line 12 Transform the procedure body and return the AS; procedure graph
and a Dict wherein only the IMPLIED entry and the OUTSIGNALS
entry are used.
Line 13 No formal parameter may have the same name as a variable or
synonym defined in the procedure
Line 16-19 If a procedure containing states or imports is defined in a process
or in a procedure in a process then the process must not contain
services.

Fascicle X.4 — Rec. Z.100 — Annex F.2 - 67

Line 20-24 Return the AS; procedure definition (asitree) and a Dict contri-

bution consisting of the procedure descriptor the formal parameter
descriptors, and the descriptors of the entities defined in the pro-
cedure (bdict).

transform-procedureparml(pl)(dict) 2
1 (if pl = () then
2 (0D
3 else
4 (let (asyelems, tpelems, delems) =
5 cases hd pl:
6 {(mk-Inoutparmo(varlist, tid)
7 — transform-varparm(true, varlist, tid)(dict),
8 mk-Inparmg(varlist, tid)
9 — transform-varparm(false, varlist, tid)(dict)) in
10 let (asy list, tplist, d) = transform-procedureparml(tl pl)(dict) in
11 if dom delems Ndom d # {} then
12 exit(“§2.2.2: Two definitions in the same scopeunit use the same name”)
13 else ’
14 (asyelems ™ as; list, tpelems ™ tplist, delems + d)))

type: Procparmy* — Dict — Procedure-forinal-parameter* FormparmD* Dict

Objective

Parameters
pl

Result

Algorithm

Line 1
Line {-9

Line 10
Line 11
Line 14

Transform a list of formal procedure parameters into AS;

The list of formal ASy parameters.

The AS; Formal parameters, the descriptors (FormparmD*) which are
put into the ProcedureD descriptor and used for type checking of the
actual parameters and finally the Dict contributions for the parameters.

When through, return empty lists and the empty Dict

Transform the first parameter which is either an INOUT variable
parameter (line 6) or an IN variable parameter (line 8).

Transform the rest of the formal parameter list
The names introduced in pl must be distinct

Return the objects composed of the first formal parameter and the
rest.

68 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.5.2)

transform-varparm(isout, varlist, tid)(dict) £ (3.4.5.3)
1 if card elems varlist # len varlist then
2 exit(“§2.2.2: Two definitions in the same scopeunit use the same name”)
3 else
4 (let tqual = get-visible-qual(tid, TYPE)(dict) in
5 let tqual' = get-parent(tqual)(dict) in
6 let as, varlist = (name-to-name; (varlist[t]) | 1 < i < len varlist) in
7 let as;tree = if isout then
8 mk-Inout-parameter (as; varlist, make-as, ~identifier(tqual)(dict))
9 else
10 mk-In-parameter; (as; varlist, make-as, -identifier(tqual)(dict)),
11 parmdescrlist = if isout then
12 (mk-InoutDescr(tqual) | 1 < i < len varlist)
13 else
14 (mk-InDescr(tqual’) | 1 < i < len varlist) in
15 let nmlist =
16 (if is-ServiceD(dict(dict(SCOPEUNIT)))
17 then create-unique-name()
18 else varlist[i] | 1 < i < len varlist),
19 newquallist = (dict(SCOPEUNIT) ™ ((VALUE, nmlist[d])) | 1 < ¢ < len varlist) in
20 let vquall = (dict(SCOPEUNIT) ™ ((VALUE, varlist[i])) | 1 < ¢ < len varlist),
21 delem = [vquall[i] — mk-VarD(tqual, nil, nil, nil, newquallist[i]) | 1 < i < len varlist] in
22 ({asy tree), parmdescrlist, delem))
type: Bool Namey* Idy — Dict — Procedure-formal-parameter;™ FormparmD* Dict
Objective Transform a formal parameter into AS;
Parameters
isout True if the formal parameter is an INOUT parameter.
varlist The names of the formal parameters
tid Their sort.
Result See transform-procedureparml
Algorithm
Line 1 The names in the formal parameters must be distinct
Line 4 Extract the Qual of the parameter sort.
Line § Extract the parent partial type of the sort.
Line 6 Transform the name list into AS; names
Line 7-10 Construct the AS; formal parameter.
Line 11-14 Construct the actual parameter sort descriptor.
Line 21 Construct the dict contribution for the formal parameter. The

contained descriptors are VarD descriptors, (like for ordinary vari-
able) since formal variable parameters acts as ordinary variables
with respect to the static properties.

Fascicle X.4 — Rec. Z.100 — Annex F.2 69

3.4.6 Sort Generators

transform-sortgenerator (mk-Sortgeneratoro(nm, parml, geninstl, prop, tnm))(dict)

1
2
3
4
5
6
7

type:

2

(if tnm € {nm, nil} A gen-formparm-unique(parml, {nm},{},{}) then
(let gqual = dict(SCOPEUNIT) ™ ((GENERATOR, nm)) in

let prop' = transform-geninst(nm, geninstl, prop)(dict + [gqual — mk-ErrorD()]) in

let descr = mk-GeneratorD(parml, prop') in
({}: lgqual 1 descr]))

else

exit(“§6.4.1.12: Ending name in generator definition is different from defining name”))

Objective

Parameters

nm
parml
geninstl
prop
tnm

Result

Algorithm

Line 1

Line 2
Line 3

Line §-7

Sortgeneratorg — Dict — Decl, -set Dict

Construct the Dict contribution corresponding to a data sort generator.
No AS; objects are returned.

An AS, data sort generator containing

The generator name

The formal parameters

A list of contained generator instantiations
The normal properties

The name ending the definition

For convenience the function returns a set of AS; definitions though
the list is always empty (see transform-decllist). Also returned is the
Dict contribution of the data sort generator.

The name ending the definition must be equal to the generator
name if specified and the formal parameters within the various
parameter classes must be unique.

Construct the Qual for the generator.

Transform the generator instantiations contained in the generator
definition. The generator qual (gqual) is denoted by a ErrorD such
that recursion can be detected.

Return the Dict contribution containing the generator formal pa-
rameters (parml), and the generator body (prop). Well-formedness
is applied to the body after it is replaced by the generator instance
construct (not at this place.)

gen-formparm-unique(parml, sset, lset, oset) 2

1
2
3
4
5
6
7
8

9
10
11
12
13
14

type:

70

if parml = () then

true
else

cases hd parml:

(mk-Sortparmo(nmlist)
— card elems nmlist = len nmlist A elems nmlist N sset = {} A

gen-formparm-unique(tl parml, sset U elems nmlist, lset, oset),

mk- Termparmo(nmlist),
mk-Litparmg(nmlist)
— card elems nmlist = len nmlist A elems nmlist N lset = {} A

gen-formparm-unique(tl parml, sset, Iset U elems nmlist, oset),

mk- Opparmg(nmlist)
— card elems nmlist = len nmlist A elems nmlist N oset = {} A

gen-formparm-unique(tl parml, sset, lset, oset U elems nmlist))

Genparmg Nameg-set Nameg-set Nameg-set* — Bool

Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.6.1)

(3.4.6.2)

Objective Check that the formal parameters for a generator are unique.

Parameters

parml The formal parameters

sset,lset,oset The set of sort parameters, literal or term parameters and op-
erator parameters respectively considered so far (the function is
recursive).

Result true if success
Algorithm

Line 5-7 For a sort parameter, the contained names must be unique and
none of the names may occur in another sort parameter and the
rest of formal generator parameters must also be unique.

Line 8-11 For a term parameter or a literal parameter, the contained names
must be unique and none of the names may occur in another term
or literal parameter and the rest of formal generator parameters
must also be unique.

Line 12-14 For an operator parameter, the contained names must be unique

and none of the names may occur in another operator parameter
and the rest of formal generator parameters must also be unique.

3.4.7 Sort Definitions

transform-partial-typedef (mk- Partialtypedefo(nm, extprop, prop, vlist, tnm))(dict) =

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

type:

2

(if tnm € {nm, nil} then

(let tqual = dict(SCOPEUNIT) ™ ((TYPE, nm)) in
let (implicitdecl, delem) = make-implicit-sigdecls(tqual)(dict) in

if (3opqual € dom dict)((is-OperatorD(dict(opqual)) V is-LiteralD(dict(opqual))) A

s-Result(dict(opqual)) = tqual A
get-sur(get-sur(opqual)) = dict(SCOPEUNIT)) then
if vlist = nil then
(let dict’ = cases extprop:
(nil
— transform-sortdef (nm, prop, nil)(dict),
mk-Struco()
— transform-struc(nm, extprop, prop)(dict),
mk-Inheritedo(, ,) 4
- transform-inherited(nm, eztprop, prop)(dict),
mk- Geninstlisty(instl)
— (let prop’ = transform-geninst(nm, instl, prop)(dict) in
transform-sortdef (nm, prop’, nil)(dict))) in
(emplicitdecl, dict’))
else
(let unm = create-unique-name() in
let (,dnew) =

transform-partial-typedef (mk-Partialtypedefo(unm, eztprop, prop, nil, unm))(dict),

id = mk-Idy(dict(SCOPEUNIT), unm) in
let (asy syn, dsyn) =
transform-syntype(mk-Syntypedefy(nm, id, vlist, nil, tnm))(dict) in
(¢mplicitdecl U as; syn, delem + dnew + dsyn))
else
exit(“§5.2.1: There exist no operators which returns a value of that sort”))
else

exit(“§5.2.1: Ending name in partial type definition is different from defining name”))

Partialtypedefo — Dict — Decl, -set Dict

Fascicle X.4 — Rec. Z.100 — Annex F.2 71

(3.4.7.1)

Objective Transform a partial data type definition into AS;

Parameters The data sort definition containing

nm The sort name

extprop The extended properties

prop The properties (literals, operators, equations etc.)

vlist A value list in the case of a syntype

tnm The name ending the definition

Result See transform-decllist
Algorithm

Line 1 - The name ending the data sort definition must be equal to the data
sort name if specified.

Line 2 Construct the Qual representing the sort identifier.

Line 3 Construct the AS; definitions which defines the implicit signals
attached to all the IMPORT - EXPORT variables of the sort being
defined.

Line 4 There must exist an operator or literal which

Line § . has this sort as result sort and which

Line 6 is defined in the surrounding scopeunit

Line 7 If the CONSTANTS construct is omitted then it is a real sort
definition

Line 8 Construct the Dict contribution containing the sort descriptor,

the operator and literal descriptors and the updated Data-type-
definition;. The ASy sort definition is either

Line 9 A (simple) sort definition (with no extended properties).

Line 11 A struct definition or

Line 13 A sort which is based on inheritance or

Line 15 A (sequence of) generator instance(s). In this case, the instances

are expanded (line 15) before they are transformed in the ordinary
way (line 17)

Line 20-26 If CONSTANTS is specified then it is a syntype definition which
means that ‘

Line 20 A unique implicit sort name is generated and

Line 21 The Partialtypedefy without any CONSTANTS and with that new
name is transformed and

Line 24 The Syntypedefy, with CONSTANTS (vallist) and the implicit sort

as parent is transformed

make-implicit-sigdecls(tqual)(dict) 2

1 (let gset = {(tq,) € dom dict | tg = tqual} in
2 transform-decllist({make-implicit-decl(tqual, dict(t)) | t € gset})(dict))

type: Sortqual — Dict — Decly-set Dict

Objective Construct the AS; signal definitions attached to all the NameclosureDs
which contains the sort tqual (see the definition of Ezportmap).
Algorithm
Line 1 Construct the set of those NameclosureDs of which the Sortqual
equals tqual and
Line 2 Construct the list of ASq definitions constructed by joining the lists

of definitions attached to every element in the set and transform
this list into AS;.

72 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.7.2)

make-implicit-decl(tqual, mk-SignalnamesD(, zgnm, zrnm)) 2 (3.4.7.3)
1 (let asptid = asp-id(tqual) in
2 mk-Sigdefo((mk-Sigelemg(zgnm, (), nil),
3 mk-Sigelemqo(zrnm, (asotid), nil))))

type: Sortqual SignalnamesD — Sigdefy

Objective Construct the AS, signal definitions attached to EXPORT - IMPORT
of a certain name and a certain sort. (tqual).

Algorithm

line 1 Construct the ASp identifier of the sort carried by the xtREPLY

signal

Line 2-3 Construct the signal definition containing

Line 2 The xtQUERY signal and

Line 3 The xtREPLY signal.
transform-inherited(nm, mk-Inheritedy(pid, lrenam, ops), prop)(dict) 2 (3.4.7.4)

1 (let pgual = get-inherited-parent(get-visible-qual(pid, TYPE)(dict))(dict) in

2 if is-recursive-sort(pqual, {})(dict) then

3 exit(“§5.4.1.11: Sort is based on itself”)

4 else

5 (let pqual’ = s-Newqual(dict(pqual)) in

6 let sortdict = transform-sortdef (nm, prop, pqual)(dict) in

7 let typedef = sortdict(DATATYPEDEF) in

8 let mk-Data-type-definition; (typename, union, sorts, sigs, eqs) = typedef in

9 let iqual bes.t. iqual € dom sortdict A is-SortD(sortdict(iqual)) in
10 let mk-SortD(egs’, pg, ezp, nqual) = sortdict(iqual) in
11 let (litmap, litd) = transform-literal-renaming(Irenam, iqual, pqual)(dict) in
12 let concazioms; = make-as, -concazioms(dom litd)(dict) in
13 let (opmap, opd, opset) = transform-operator-renaming(ops, iqual, pqual)(dict) in
14 if dom sortdict N dom litd N dom opd # {} then '
15 exit(“§5.2.2: Operator or literal both defined explicit and by inheritance”)
16 else
17 (let inhaz = extract-inherited-azioms(litmap, opmap, nqual, pgual')(dict) in
18 let tid; = make-as; -identifier(nqual)(dict) in
19 let litsig = {mk-Literal-signature; (nmy, iid,) | mk-Identifier; (, nm;) € rng litmap} in
20 let datatypedef’ =
21 mk-Data-type-definition, (typename, union, sorts,
22 sigs U litsig U opset, egs U inhaz U concazioms;) in
23 let sortdescr = mk-SortD(egs’ U inhaz U concazioms:, pq, exp1, nqual) in
24 (sortdict + litd + opd + [iqual ~ sortdescr,
25 DATATYPEDEF — datatypedef']))))

type: Nameg Inheritedy Propertiesy — Dict — Dict

Objective Transform a partial type definition which is based on inheriting.
Parameters

nm The name of the sort being defined

Inherited The ASp inherit construct

prop The ASq properties defined in the ADDING construct.
Result The Dict where the DATATYPEDEF entry has been updated to include

the sort being defined and where descriptors for the sort and operators
has been added.

Fascicle X.4 — Rec. Z.100 — Annex F.2 73

Algorithm

Line 1
Line 2-3
Line §
Line 6

Line 8
Line 9-10

Line 11

Line 12

Line 13

Line 14-15

Line 17

Line 18
Line 19
Line 20-23

Line 24

is-recursive-sort(qual, gset)(dict)

Extract the Qual denoting the sort identifier of the parent.
The sort must not inherit from itself
Extract the unique Qual of the parent

Update the DATATYPEDEF entry with the sort being defined and
with its ADDING properties.

Decompose the updated Data-type-definition; .

Extract the (just added) Qual of the sort being defined and decom-
pose it.

Transform the literal renaming part into a map litmap and con-
struct descriptors for the literal names introduced in the literal
renaming.

Construct the axioms implied from any character string literals
introduced in the literal renaming.

Transform the operator renaming part into a map opmap and con-
struct descriptors for the new operator names (opd) and construct
the AS; signatures for the operators (opset). This function also
deals with the operators which are implicitly inherited (the invisi-
ble operators)

all operators and literals defined in the adding part sortdict and the
operators (opd) and literals (litd) defined in the inheritance part
must have different signatures.

Extract all the axioms using the operators which are implicitly
inherited.

Construct the AS; identifier of the sort being defined.

Construct the AS; signatures of the renamed literals.

Include the properties from the inheritance part in the Data-type-
definition and in the descriptor for the sort.

Return the Dict contribution from the adding part (sortdict), for
the renamed literals (litd), for the renamed operators (opd), for the
sort descriptor and the updated Data-type-definition;

2

(if qual € gset then

true
else

cases dict(qual):

— if pa = nil then false else is-recursive-sort(pa, gset U {qual})(dict),
mk-SyntypeD(pa,,,)
— ts-recursive-sort(pa, gset U {qual})(dict)))

1
2
3
4
5 (mk-SortD(, pa,,)
6
7
8

type: Sortqual Sortqual-set — Dict — Bool

Objective

Parameters

qual
qset

Result

Check that a syntype or an inheriting sort is not based on itself. The
function traverse recursively through the dict until a partial type de-
scriptor is found which is not based in inheritance. (IL.e. until the false
condition applies).

Denotes the sort in hand

Denotes the set of sorts which already have been referred. When
the function initially is applied, this set is empty.

True if the sort is recursively defined.

74 Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.7.5)

Algorithm

Line 1
Line 5-6

Line 7

transform-literal-renaming(lrenam, qual, pqual)(dict) =

TE B W DN

If the sort in hand (qual) already has been referred then true else

if the sort in hand is a partial type having no parent then the sort
is not recursively defined, otherwise add the partial type to the
sortset and proceed with its parent.

Add the syntype in hand to the sortset and proceed with its parent.

A

(let plitset = {lq € dom dict | is-LiteralD(dict(lg)) A s-Sortqual(dict(lg)) = pqual} in

let defaultmap = [qual — qual | qual € plitset] in

let litmap = defaultmap + build-literal-renaming(lrenam, qual, pqual, plitset) in
([make-as, -identifier(lg)(dict) — make-as; -identifier(litmap(lq))(dict) | lg € dom litmap)],
{lg — mk-LiteralD(qual) | lg € rng litmap]))

type: Literalrenamingy Sortqual Sortqual — Dict —
(Literal-operator-identifiery = Literal-operator-identifiery) Dict

Objective

Parameters

lrenam
qual
pqual

Result

Algorithm
Line 1
Line 2

Line 3
Line §

Line 5

Construct a map from parent literals into new literals to be used when
the inherited axioms are to be extracted (in eztract-inherited-azioms)
and construct Dict descriptors for the new literals

The ASy literal renaming
The Qual of the sort being defined
The Qual of the sort on which the inheritance is based.

The constructed map and the Dict contribution containiﬂg the literal
descriptors

Extract from Dict, the set of literals defined for the parent sort.
Construct the default map, i.e. the corelation which applies for the
literals which are not mentioned in the renaming part.

Construct literal renaming map (where the contained literals are
Quals) by overwriting the default map.

Return the literal renaming map after having converted the Quals
to AS, identifiers and return

The literal descriptors (LiteralDs) which all contain the Qual of
their sort

Fascicle X.4 — Rec. Z.100 — Annex F.2 75

(3.4.7.6) ,

build-literal-renaming(lrenam, qual, pqual, plitset) =

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

type:

Ja\

if Irenam = () then

(

else
(let mk-Literalpaire(nlit, olit) = hd lrenam in
let nqual = qual ™ ((LITERAL, nlit)),
oqual = pqual ™ ((LITERAL, olit)) in
if oqual € plitset then
(let restmap = build-literal-renaming(tl lrenam, qual, pqual, plitset) in
if nqual € rng restmap then
exit(“§5.4.1.11: Literal defined twice in renaming”)
else
if oqual € dom restmap then
exit(“§5.4.1.11: Literal renamed twice”)

else

else

restmap + [oqual — nqual])

exit(“§5.4.1.11: Literal in literal renaming is not defined in the parent sort”))

Objective

Parameters

lrenam

qual

pqual

plitset

Result
Algorithm

76

Line

Line §

Line
Line
Line

Line

Line

9-12

15

Literalrenamingy Sortqual Sortqual Qual-set — (Qual = Qual)

Construct from the AS; renaming part a map from parent Quals into
Quals of the new literal names.

The

The AS, literal renaming
The Qual of the sort being defined
The Qual of the sort on which the inheritance is based

The set of Quals containing all the literals defined for the parent.

sort

constructed literal map

When through then return nothing (the function is recursive).
Decompose the next pair of literal names in the literal renaming.
Construct the Quals of the new literal name (nqual) and of the
parent (old) literal name (oqual).

The right-hand literal in Literalpairg must be a literal of the parent
sort,

Construct the map for the rest of the literal renaming.

If the lefthand literal (line 9) or the right-hand literal (line 12) is
in the map for the rest of the literal renaming then it is mentioned
twice in the literal renaming

Else return the literal map for the rest of the literal renaming where
this contribution has been added

Fascicle X.4 — Rec. Z.100 — Annex F.2

(3.4.7.7)

transform-operator-renaming(oprenam, iqual, pqual)(dict) 2

A

(let opset = {qual € dom dict | is-OperatorD(dict(qual)) A

(let mk-OperatorD(argl, res,) = dict(qual) in
pqual € elems argl V pqual = res)} in

let ezplicitset = {qual € opset | s-Explicit(dict(qual))} in

(3.4.7.8)

let oprenam’ = if oprenam = ALL then (mk-Operatorpaire(nil, nm) | nm € allnameset) else oprenam in

let (opmap, opd) = build-operator-renaming(oprenam’, iqual, pqual, explicitset)(dict) in

1
2
3
4
5 let allnameset = {name | (Iq € explicitset)((, (name,,)) = g(leng])} in
6
7
8

let (opmap’, opd') = build-implicit-operators(iqual, pqual, opset \ exzplicitset)(dict) in
9 let (gmap, opdict) = (opmap + opmap’, opd + opd’') in

10 let idmap = [make-as; -identifier(qual)(dict) — make-as, -identifier(gmap(qual))(dict) |

11

qual

€ dom gmap] in

12 let as;typing = {make-as, -typing(op)(dict) | op € dom opdict} in
13 (idmap, opdict, as, typing))

type: (ALL | Operatorrenamingo) Sortqual Sortqual — Dict —
(Operator-identifier; = Operator-identifier;) Dict Operator-signature; -set

Objective

Parameters

oprenam
tqual
pqual

Result
Algorithm

Line 1

Line 4
Line 5
Line 6
Line 7
Line 8
Line 9

Line 10
Line 12

Line 13

Construct from the AS; operator renaming part a map from parent
operator identifiers into operator identifiers of the sort being defined.

The

map includes the identifiers of the operators which are implicitly

inherited (an operator is implicitly inherited if it includes the parent

sort

The

in its signature)

The ASy operator renaming
The Qual of the sort being defined
The Qual of the parent

constructed operator map

Construct the set of operator Quals from Dict for which it holds
that the parent Qual (pqual) occur in the argument sort list (argl)
or is the result of the operator.

Construct the subset of opset which contains those operators which
are explicitly defined (or inherited).

Construct the set of operator names for the explicit defined oper-
ators.

If ALL is specified then let oprenam’ denote the Operatorrenaming,
which includes all explicit operators else let oprenam’ be oprenam.
Construct the operator Qual map and the Dict descriptors for the
explicit operators.

Construct the operator Qual map and the Dict descriptors for the
implicit operators.

The complete operator Qual map is gmap and the complete Dict
contribution is opdict.

Convert the operator Qual map to an operator identifier map.
For each operator in the Dict contribution, construct the AS; op-
erator signature.

Return the operator identifier map, the Dict contributions and the
AS; signatures of the operators

Fascicle X.4 — Rec. Z.100 — Annex F.2 77

make-as, -typing(qual)(dict) 2 (3.4.7.9)

(let mk-OperatorD(sl, res, qual’,) = dict(qual) in

let (,(nm,,)) = qual[len qual’] in

let sy = (make-as; -identifier(sl[¢])(dict) | 1 < ¢ <len sl),
res; = make-as; -identifier(res)(dict) in

mk-Operator-signature; (name-to-name; (nm), sy, res;))

T W=

type: OperatorD — Dict — Operator-signature;

Objective From an operator Qual construct the AS; signature of the operator
Parameters
qual The operator Qual
Result The constructed operator signature
Algorithm
Line 1 Decompose the operator descriptor. qual' denotes the Newgqual

containing the name to be used in AS;

Line 2 Extract the operator name by decomposing the last element in
the Qual. For an operator, the last element always is an Opera-
torqualelem (see the domain).

Line 3 Construct the AS; identifiers list denoting the argument sorts.
Line 4 Construct the AS; identifier denoting the result sort.
Line § Return the composed operator signature
build-operator-renaming(renlist, qual, pqual, opset)(dict) 2 (3.4.7.10)
1 (if renlist = () then
2 (1.0)
3 else
4 (let mk-Operatorpairg(nop, oop) = hd renlist in
5 let oset = {oqual € opset | (let (, (nm,,)) = oqual[len ogual] in
6 get-sur(oqual) = pqual A
7 nm = oop)} in
8 if oset = {} V (is-Nameg(oop) A (let mk-Nameg(, exzc) = oop in
9 ezc # nil)) then
10 if oset = {} then
11 exit(“§5.4.1.11: Operator in operator renaming is not defined in the parent sort”)
12 else
13 exit(“§5.4.1.11: Operator with an exclamation is mentioned in an operator renaming”)
14 else
15 (let (maprest, drest) =
16 build-operator-renaming(tl renlist, qual, pqual, opset \ oset)(dict) in
17 let (map, d) = rename-operator(qual, pqual, oset, nop)(dict) in
18 if dom d N dom drest = {} then
19 (map + maprest, d + drest)
20 else
21 exit(“§5.4.1.11: Operator renamed twice”"))))

type: Operatorrenamingg Sortqual Sortqual Qual-set — Dict — (Qual = Qual) Dict

Objective From an operator renaming, construct a map from parent operator
Quals into operator Quals of the sort being defined. Also construct the
Dict contributions for the new operators

Parameters

renlist The ASp operator renaming list

78 Fascicle X.4 — Rec. Z.100 — Annex F.2

qual The Qual of the sort being defined

pqual The Qual of the parent sort

opset The set containing all Quals of the explicitly defined operators
Result The constructed operator Qual map and the Dict contributions
Algorithm

Line 1 When through, return nothing (the function is recursive).

Line 4 Decompose the next rename pair in the rename list.

Line § Extract the set of operator Quals for which the surrounding scope-

unit of the place where it is defined is the parent Qual and the
name part is equal to the parent operator name mentioned in the

renaming.
Line 8-11 There must exist at least one Qual in the set.
Line 8-13 The parent operator name must not contain an exclamation mark.
Line 15 Construct the operator map and the Dict contributions for the rest
of the renaming list.
Line 17 Rename the operator in hand. map denotes the contributions to
the operator map and d denotes the contribution to the Dict.
Line 18-19 If the Quals of the operator name in hand (there may be several

Quals for the operator name because the parent operator name
mentioned in the operator renaming may denote several (over-
loaded) operators) are not in the Dict contributions for the rest
of the renaming list then return the operator map contributions
for the operator name in hand (map) and for the rest of the list
and return the corresponding Dict contributions

rename-operator(iqual, pqual, oset, nop)(dict) £ (3.4.7.11)

1 if oset = {} then
2 (0,0)
3 else
4 (let qual € oset in
5 let (, (nm,,)) = qual(len qual] in
6 let mk-OperatorD(arglist, result,,) = dict(qual) in
7 let arglist’ = (if get-parent(arglist[i])(dict) = pqual then iqual else arglist[i] | 1 < i < len arglist) in
8 let parglist = (get-parent(arglist’(i])(dict) | 1 < ¢ < len arglist’) in
9 let result’ = if get-parent(result)(dict) = pqual then igqual else result in
10 let presult = get-parent(result’)(dict) in
11 let (maprest, drest) = rename-operator(iqual, pqual, oset \ {qual}, nop)(dict) in

12 if result = result’ A arglist = arglist’ then

13 (maprest, drest)

14 else

15 (let nm' = if nop = nil then nm else nop in

16 let newnm = create-unique-name() in

17 let opqual = iqual ™ ((OPERATOR, (nm’, parglist, presult))) in

18 let newqual = iqual ™ ((OPERATOR, (newnm, parglist, presult))) in

19 (maprest + [iqual — newqual], drest + [opqual — mk-OperatorD(arglist', result’, newqual, true)])))

type: Sortqual Sortqual Qual-set Newoperatoro — Dict — (Qual = Qual) Dict

Objective Construct a map from parent operator Quals into operator Quals for
a given operator name. Also construct the Dict contributions for the
operators denoted to the name

Parameters
tqual The Qual of the inheriting sort
pqual The Qual of the parent sort

Fascicle X.4 — Rec. Z.100 — Annex F.2 79

oset

nop

Result
Algorithm

build-implicit-operators(iqual, pqual, opset)(dict)

Line 1
Line §-5

Line 6
Line 7

Line 8

Line 9-10
Line 11
Line 12-13

Line 15

Line 16

Line 17
Line 18
Line 19

if opset = {} then

The set of operator Quals defined in the parent sort and having
the name mentioned in the operator renaming

The new operator name

The constructed map and the corresponding Dict contributions

When through then return nothing (the function is recursive).
Take the next operator Qual in the set and extract the operator
name.

Decompose the operator descriptor for the parent operator in hand
Replace every occurrence of the parent sort in the argument sort
list for the operator in hand by the inheriting sort. Note that
the function get-parent has nothing to do with the parent of the
inheriting sort. get-parent replaces any syntypes by its (parent)
sort.

Remove any syntypes from the argument list. This nominal list is
used in the Qual for the operator.

Do the same for the result sort.

Go through the rest of the set of parent operator Quals.

If the parent Qualis not used in the argument list or in the result
of the operator then return the map and the Dict contributions for
the rest of the list else

If a new operator name is not specified in the Operatorpaire then
the inherited operator has the same name as the parent operator.

Construct a unique name to be used in the Newgqual for the operator
(see the definition of OperatorD).

Construct the Qual to be used as the Dict entry for the operator.
Construct the Newgqual for the operator.

Return the operator Qual map for the rest of the operators and for
the operator in hand and return the Dict for the contributions

2

(let qual € opset in

let (, (,arglist, result)) = qual(len qual] in
let arglist’ = (if get-parent(arglist[i])(dict) = pqual then iqual else arglist[i] | 1 < ¢ < len arglist) in
let result’ = if get-parent(result)(dict) = pqual then iqual else result in

let (restmap, drest) = build-implicit-operators(iqual, pqual, opset \ {qual})(dict) in

if arglist = arglist' A result = result’ then
(restmap, drest)

(let newnm = create-unique-name() in
let opqual = iqual ™ ((OPERATOR, (newnm, arglist’, result’))) in

(3.4.7.12)

(restmap + [qual — opqual], drest + [opqual — mk-OperatorD(arglist’, result’, opqual, false)])))

1
2 0D
3 else
4
5
6
7
8
9
10
11 else
12
13
14
type:
Objective
Parameters
iqual

80

Sortqual Sortqual Qual-set — Dict — (Qual = Qual) Dict

Construct a map from parent operator Quals into operator Quals for
the implicit operators. Also comstruct the Dict contributions for the
operators.

The Qual of the inheriting sort

Fascicle X.4 — Rec. Z.100 — Annex F.2

pqual The Qual of the parent sort

oset The set of operator Quals using the parent sort
Result The constructed map and the corresponding Dict contributions
Algorithm

Line 1 When through, return nothing (the function is recursive).

Line § "~ Take an operator Qual in the set and extract the argument sort

list and the result sort.

Line 6-7 Construct the argument sort list where every occurrence of the
parent sort is replaced by the inheriting sort (igual) and do the
same for the result sort.

Line 8 Construct the Qual map and the Dict contributions for the rest of
the operators in opset.
Line 9-10 If pqual is not used in the signature then return the constructed
objects.
Line 12-13 Create a new unique name for the implicit operator and construct
" the Qual containing this name.
Line 14 Return the Qual map and the Dict contributions for the rest of the

operators in opset and return the map contribution for the operator
and its Dict contribution

extract-inherited-azioms(litmap, opmap, qual, pqual)(dict) 2

1 (let qualset = all-visible-sorts(dict) \ {qual} in

2 let id; = make-as;-identifier(qual)(dict) in

3 let pid, = make-as,-identifier(pqual)(dict) in

4 let azset = union {s-Equations,(dict(qual)) | qual € qualset} in

5 let azset’ = {convert-aziom(aziom, litmap, opmap, idy, pidy) | aziom € azset} in
6 azset'\ azset)

type: (Literal-operator-identifier; = Literal-operator-identifier;)
(Operator-identifier; = Operator-identifier;) Sortqual Sortqual —
Dict — Equations;

Objective Extract all the inherited axioms, that is, all the axioms which uses
any of the operators or literals which includes the parent sort in the
signature

Parameters

litmap A map from parent literal identifiers into literal identifiers defined
for an inheriting sort
opmap A map from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort
qual The Qual of the inheriting sort
pqual The Qual of the parent sort
Result The set of equations using any of the parent operators/literals, where

the parent operators/literals identifiers have been replaced by the op-
erator/literal identifier of the inheriting sort

Algorithm
Line 1 Construct the set of sort Quals which are visible in the enclosing
scopeunit. Exclude the inheriting sort from the set.)
Line 2-3 Construct the AS; identifiers of the inheriting sort and the parent
sort respectively.
Line 4 Construct the set which is the union of the set of equations defined

in the various (visible) sorts.

Fascicle X.4 — Rec. Z.100 — Annex F.2 81

(3.4.7.13)

Line 5 Construct the set consisting of all the equations defined in a visible
sort and such that each equation is converted to include the new
operators/literals instead of the parent operators/literals.

Line 6 Return this set, but exclude those equations which has not changed

convert-aziom(aziom, lmap, omap, id, pid) 2 (3.4.7.14)

cases aziom:
(mk-Unguantified-equation (t1, t2)
— mk- Unquantified-equation, (convert-term(t1, Imap, omap), convert-term(t2, Imap, omap)),
mk-Quantified-equations, (nms, sort, eqs)
— mk-Quantified-equations, (nms, if sort = pid then id else sort,
{convert-aziom(eq, Imap, omap, id, pid) | eq € egs}),
mk-Conditional-equation, (egs, eq)
- mk-Conditional -equation ({ convert-aziom(a, Imap, omap, id, pid) | a € egs},
convert-aziom(eq, Imap, omap, id, pid)),

O © 00 I D U W

—

T — aziom)

type: FEquation, (Literal-operator-identifier; = Literal-operator-identifiery)
(Operator-identifier; = Operator-identifier,) Sort-identifiery Sort-identifiery — Equation;

Objective Modify an inherited axioms to include the operators and literals defined
by an inheriting sort
Parameters

aziom The axiom to be modified

Imap A map from parent literal identifiers into literal identifiers defined
for an inheriting sort

omap A map from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort

id The AS; identifier of the inheriting sort

pid The AS; identifier of the parent sort

Result The modified axiom (equation)
Algorithm

Line 2 If the equation is a simple unquantified equation then convert the
lefthand side term (¢1) and the right-hand side term (£2).

Line {-6 If the equation is a quantified equation then replace the sort in
the quantification if it is the parent sort and convert the equations
contained in the quantified equation.

Line 7-9 If the equation is a conditional equation then convert the restriction
(line 8) and convert the restricted equations (line 9).

Line 10 Informal text is left unchanged

82 Fascicle X.4 — Rec. Z.100 — Annex F.2

convert-term(term, Imap, omap) 2

1 ifis-Error-term;(term) then
2 term
3 else
4 (let t = cases term:
5 (mk-Ground-term;(te) - te,
6 mk-Composite-term; (te) — te) in
7 let t' = cases t:
8 (mk-Identifier; (,)
9 — ifis-Ground-term;(term) A t € dom Imap then lmap(t) else ¢,
10 mk-Conditional-termy (11, t2, t3)
11 . — mk- Conditional-term (convert-term(t1, lmap, omap),
12 convert-term(t2, Imap, omap),
13 convert-term(t3, lmap, omap)),
14 T - (let (opid, arglist) = t in
15 let arglist’ = (convert-term(arglist[i], Imap, omap) | 1 < i < len arglist) in
16 if opid € dom omap then :
17 (omap(opid), arglist’)
18 else
19 (opid, arglist'))) in
20 if is- Ground-term; (term) then
21 mk-Ground-term; (t')
22 else
23 mk-Composite-termy(t'))

type: Termy (Literal-operator-identifier; = Literal-operator-identifier;)
(Operator-identifier, = Operator-identifier,) — Termy

Objective Modify an term to include the operators and literals defined by an
inheriting sort
Parameters
term The term to be modified
lmap A map from parent literal identifiers into literal identifiers defined
for an inheriting sort
omap A map from parent operator identifiers into operator identifiers
defined (implicit or explicit) for an inheriting sort
Result The modified Term
Algorithm
Line 1 If it is the error term then do nothing
Line 4-6 Decompose the term. The replacement takes place regardless of
whether it is a ground or a composite term.
Line 7 If the term contains an identifier and the term is a ground term

then the identifier denotes a literal and it is replaced if it is in the
literal map.

Line 10-13 If the term contains a conditional term then convert the boolean
term, the “then” term and the ”else” term.

Line 14-19 If the term is an operator application then

Line 14 Decompose the operator application.

‘Line 15 Convert the argument terms.

Line 16-19 If the operator identifier is in the operator map then fetch the

new inherited operator identifier from the map (omap) else do not
change the operator identifier. Compose the operator application
again.

Line 20-23 Compose the term again (reverse of line 4-6)

Fascicle X.4 — Rec. Z.100 — Annex F.2 83

(3.4.7.15)

transform-geninst(nm, instlist, adding)(dict) =

PN

(if instlist = () then

adding
else

let mk-Propertieso(lit, op, az, ma, init) = transform-geninst(nm, tl instlist, adding)(dict) in

let tqual = get-visible-qual(id, GENERATOR)(dict) in
let mk-Idy(, genname) = id in
let mk-GeneratorD(fparm, prop) = dict(tqual) in

1
2
3
4 (let mk-Geninsty(id, parm) = hd instlist in
5
6
7
8

(3.4.7.16)

9 if len fparm # len parm then
10 exit(“§5.4.1.12.2: Lengths of actual and formal parameter lists in generator must be the same”)
11 else
12 (let (tm, litm, opm, constm) = collect-genparms(fparm, parm) in
13 let tm' = tm + [genname — mk-Idy({), nm)] in
14 let mk-Propertieso(lit’, op', az’, ma', init') = prop in
15 let lit" = (insert-genparms(lit'[:])(tm', litm, opm, constm) | 1 < i < len lit'),
16 op" = (insert-genparms(op'[i])(tm/, litm, opm, constm) | 1 < i < len op'),
17 az’ = (insert-genparms(az'[i])(tm’, litm, opm, constm) | 1 < i < len az'),
18 ma' = (insert-genparms(ma'[i])(tm’', litm, opm, constm) | 1 < i <lenma') in
19 if init # nil A init’ # nil then
20 exit(“§5.5.3.3: More than one default assignment”)
21 else
22 (let snit" = if init = nil then init’ else init in
23 mk-Propertieso(lit ™ lit", op ™ op”, az ™ az”, ma ™ ma’", init")))))

type: Nameg Geninsty Propertiess — Dict — Propertieso

Objective

Parameters

nm

instlist

adding

Result

Algorithm

Line 1
Line §
Line 5
Line 6-7

Line 8
Line 9-10

Line 12

Line 13

Transform a series of generator instances into ASo Propertiesg.

The name of the ASq sort definition containing the generator in-
stance.

The ASq generator instance list.
The additional properties specified in the ADDING construct.

ASy Propertiesy to be transformed into AS; in the function transform-
partial-typedef

When the generator instance list is empty then return the ADDING
properties (the function is recursive).

Decompose the next generator instance in the list.

Transform the rest of the generator instances and return the prop-
erties where the properties of the generators in the rest of the list
have been added.

Construct the Qual of the generator identifier and decompose the
generator identifier.

Decompose the generator descriptor.

The length of the generator actual parameter list must be equal to
the length of the generator formal parameter list.

Construct four maps which contains the correlation between the
formal and actual parameters. ¢m contains the correlation between
formal and actual sort parameters, litm between formal and actual
literal parameters, opm between formal and actual operator param-
eters and constm between formal and actual constant parameters.
Regard the generator name as a formal parameter and include it
in the sort map.

84 Fascicle X.4 — Rec. Z.100 — Annex F.2

Line 15-18 . Replace every formal parameter in the generator body by the cor-

responding actual parameter i.e. replace the formal parameters in
the literal signature (line 15), operator signature (line 16) equa-
tions (line 17) and mapping part of the equations (line 18).

Line 19 If this generator instance contains a default assignment then the

other generator instances or the ADDING properties must not con-
tain a default assignment.

Line 23 Compose the properties from the properties from this generator

instance joined with the properties from the other instances.

insert-genparms(node)(tmap, Imap, omap, constmap) 2 (3.4.7.17)
1 cases node:
2 (mk-Opspeco(nm, sortl, sort)
3 — mk-Opspecy(insert-parm(nm, omap), (insert-parm(sortl[i], tmap) | 1 < i < len sortl),
4 insert-parm(sort, tmap)),
5 mk-Equationg(t1, t2)
6 — mk-Equationg (insert-genparms(t1)(tmap, lmap, omap, constmap),
7 insert-genparms(t2)(tmap, Imap, omap, constmap)),
8 mk-Condequationg(egl, eq)
9 — mk-Condequationg((insert-genparms(egl[i])(tmap, Imap, omap, constmap) | 1 < i < lenegl),
10 insert-genparms(eq)(tmap, Imap, omap, constmap)),
11 mk-Mappingaziomg(vl, sid, al)
12 — mk-Mappingaziomg(vl, insert-parm(sid, tmap),
13 (insert-genparms(al[i])(tmap, Imap, omap, constmap) | 1 < ¢ < len al)),
14 mk-Quantequationg(vl, sid, al)
15 - mk-Quantequationg(vl, insert-parm(sid, tmap),
16 (insert-genparms{al[i])(tmap, Imap, omap, constmap) | 1 < i < len al}),
17 mk-Nameo(,)
18 — tnsert-parm(node, Imap),
19 mk-Ido(,)
20 - insert-parm(node, Imap + constmap),
21 mk-Operatortermo(z, tli)
22 — mk-Operatortermg(insert-parm(z, omap),
23 (insert-genparms(tli[i])(tmap, Imap, omap, constmap) | 1 < i < len tli)),
24 mk-Condtermg(el, 2, e3)
25 — mk-Condtermg(insert-genparms(el)(tmap, Imap, omap, constmap),
26 insert-genparms(e2)(tmap, Imap, omap, constmap),
27 insert-genparms(e3)(tmap, Imap, omap, constmap)),
28 mk-Monadtermg(op, €)
29 - mk-Monadtermg(op, insert-genparms(e)(tmap, lmap, omap, constmap)),
30 mk-Infiztermq(el, op, €2)
31 — mk-Infiztermg(insert-genparms(el)(¢map, lmap, omap, constmap),
32 op, insert-genparms(e2)(tmap, Imap, omap, constmap)),
33 mk-Spellingtermg(z)
34 — mk-Spellingtermg(insert-parm(z, lmap)),
35 T - node)

type: (Literaly | Opo | Aziomy | Mappingaziomg) — (Namey =1dy) (Nameg = Literaly)

(Nameg =(Nameo | Quotedop)) (Nameo = Termg) — (Literaly | Opo | Aziomg | Mappingaziomg)

Objective Replace formal generator parameters by actual generator parameters

in the body of a generator

Parameters
node An object occurring in the body of the generator. The function
recursively traverses through the sub-trees of node
tmap The map from formal sort parameters into actual type parameters

Fascicle X.4 — Rec. Z.100 — Annex F.2 85

Imap
omap

constmap

Result
Algorithm

86

Line 2-4

Line 5-7
Line 8-10

Line 11-13
Line 14-16
Line 17
Line 19
Line 21-23
Line 24-27

Line 28-32
Line 33
Line 35

The

The map from formal literal parameters into actual literal param-
eters

The map from formal operator parameters into actual operator
parameters

The map from formal constant parameters into actual constant
parameters

node where the formal parameters have been replaced

In an operator signature, consider the operator name (nm), the
argument sort list (sortl) and the result sort (sort).

In an equation, consider the two terms ¢1 and t2.
In a conditional equation, consider the restriction (¢1) and the
restricted equations (¢2).

In a mapping equation, consider the sort identifier (sid) and the
contained equations (al).

In a quantified equation, consider the sort identifier (sid) and the
contained equations (al).

If the node is a Literaly Nameo, consider it using the literal map.

If the node is an identifier (occurring in an equation) then con-
sider it using the literal map and the constant map (literal formal
parameters may also be used in equations).

In an operator application, consider the operator identifier (z) and
the argument terms (). '

In a conditional term, consider the boolean term (el) the "then”
term (e2) and the “else” term (e3)

in a monadic term or a dyadic term, consider the contained term(s).
In a spelling term, consider the contained identifier.

Other kinds of nodes cannot or must not contain any formal pa-
rameters

Fascicle X.4 — Rec. Z.100 — Annex F.2

1>

insert-parm(z, map) (3.4.7.18)

1 cases z:

2 (mk-Idy(gq, nm)

3 — if nm € dom map then

4 if ¢ = {) then

5 cases map(nm):

6 (mk-Nameg(,)

7 — mk-Idy((), map(nm)),
8 mk-Quotedopy()

9 — mk-Qualopo((), map(nm)),
10 mk-Nmclasso()
11 — exit(“§5.4.1.12: Name class cannot be used in equations”),
12 mk-Stringo()
13 — mk-Stringtermg((), map(nm)),
14 T — map(nm))
15 else
16 exit(“§5.4.1.12: Generator formal name is qualified”)
17 else
18 z,
19 mk-Nameo(,)
20 — if 2 € dom map then
21 cases map(z):
22 (mk-Nameg(,),
23 mk-Nmclasso(),
24 mk-String()
25 — map(z),
26 mk- Quotedopo()
27 — map(z),
28 T — exit("§5.4.1.12: Generator constant parameter used in literal signature”))
29 else
30 z,

type: (Ido | Nameg | Quotedopy) (Nameg =(Termg | Literaly | Quotedopy)) —
(Termg | Literaly | Quotedopo)

Objective Test whether an identifier or a name is a formal generator parameter
and if so, replace it by the corresponding actual parameter
Parameters
z The identifier or name to be tested upon. In order to simplify the

applying function insert-genparms, z may also be an Quotedopg in
which case z is returned unchanged.
map A map containing the association between formal parameters and
actual parameters for a certain parameter class depending on the
context in which tnsert-parm is applied. The class is either type
formal parameters, operator formal parameters or the composition
of literal and constant formal parameters.

Result The corresponding actual parameter if z is a formal parameter, other-
wise
Algorithm
Line 2 If the object in hand is an identifier and the name part it is in the

map (map) then the identifier denotes a formal parameter in which
case it must not be qualified (line 4 and line 16).

Line 6 If the actual parameter is a name (i.e. a literal or operator name)
then return it enclosed in an identifier (because it is used in apply-
ing context).

Fascicle X.4 — Rec. Z.100 — Annex F.2 87

88

Line 8

Line 10
Line 12

Line 14
Line 18
Line 19
Line 22-24
Line 26
Line 28

Line 30

If the actual parameter is a quoted operator then return it enclosed
in an operator identifier (Qualopo)

A nameclass cannot be used in applying context.

If the actual parameter is a character string then return it enclosed
in a string literal identifier. (Stringterms).

Otherwise the actual parameter is a term in which case the term
is return. '

If the identifier is not a formal parameter then return the identifier
unchanged.

If the object in hand is a name and it is in the map then it is a
formal parameter used in defining context.

If the actual parameter is a name or a name class or a character
string then it is returned.

If the actual parameter is a quoted infix operator then the con-
tained infix operator is returned.

In other cases, the actual parameter denotes a term which is not
an allowed parameter in defining context.

If the name is not a formal parameter then return the name un-
changed

Fascicle X.4 — Rec. Z.100 — Annex F.2

collect-genparms(fparm, parm) 2 : (3.4.7.19)

1 (if fparm = () then
2 (00,00
3 else :
4 (et (trest, litrest, oprest, constrest) = collect-genparms(tl fparm, tl parm) in
5 let ezclamation =
6 if is-Ido(hd parm) then
7 (let mk-Nameg(, ezc) = s-Nameg(hd parm) in
8 exc # nil)
9 else
10 false in
11 cases hd fparm:
12 (mk-Sortparmo(nm)
13 — ifis-Idg(hd parm) A —exclamation then
14 (trest + [nm — hd parm], litrest, oprest, constrest)
15 else N
16 exit(“§5.4.1.12.2: TYPE actual generator parameter must be a identifier”),
17 mk-Opparmg(nm) '
18 — if (is-Idy(hd parm) A s-Qualifierg(hd parm) = ()) then
19 (trest, litrest, oprest + [nm +— s-Nameg(hd parm)], constrest)
20 else
21 if is-Quotedopg(hd parm) then
22 (trest, litrest, oprest + [nm +— hd parm)], constrest)
23 else
24 exit(“§56.4.1.12.2: OPERATOR actual generator parameter must be an operator signature”),
25 mk-Litparmg(nm) :
26 — cases hd parm:
27 (mk-Stringe(str)
28 — (trest, litrest + [nm +— str], oprest, constrest),
29 mk-Idy(g, nam)
30 - if ¢ = () A ~exclamation then
31 (trest, litrest + [nm > nam), oprest, constrest)
32 else
33 exit(“§6.4.1.12.2: LITERAL actual generator parameter must be a literal signature”),
34 mk-Nmeclasso()
35 — (trest, litrest + [nm +— hd parm], oprest, constrest),
36 T — exit(“§5.4.1.12.2: LITERAL actual generator parameter must be a literal signature”)),
37 mk- Termparmg(nm)
38 — ifis-Nmeclasso(hd parm) V is- Quotedopg(hd parm) V ezclamation then
39 exit("“§6.4.1.12.2: CONSTANT actual generator parameter must be a term”)
40 else
41 (trest, litrest, oprest, constrest + [nm +— hd parm]))))

type: Genparmg* Genactparmg — (Nameo =1dy) (Nameg = Literaly)
(Nameg =(Namegy | Quotedopy)) (Namey = Termq)

Objective Construct four maps which associate the four kinds of formal param-
eters to the corresponding actual parameters for a generator instance.
Prior to the application of this function, it is checked that the two lists
have the same length

Parameters
frarm The list of generator formal parameters
parm The list of generator actual parameters
Algorithm
Line 1 When through the formal parameter list return the empty maps

(the function is recursive).

Fascicle X.4 — Rec. Z.100 — Annex F.2 . 89

transform-syntype(mk-Syntypedefo(nm, pid, initial, vallist, tnm))(dict) =

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Line 4 Construct the maps for the rest (all but the first) of the formal
parameters.

Line 5-10 Let ezclamation be true if the actual parameter is an Idy where
the Namep has an exclamationmark.

Line 12-16 If the formal parameter is a sort parameter then the actual pa-
rameter must be an identifier without any exclamationmark. The
association between the formal name and the identifier is added to
the sort map.

Line 17-24 If the formal parameter is an operator parameter then the actual
parameter must be an unqualified identifier (i.e. a name) or a
quoted infix operator

Line 19 and Line 22 The association between the formal name and the actual name
respectively actual infix operator is added to the operator map.

Line 25 If the formal parameter is a literal parameter then the actual pa-
rameter must be an unqualified identifier or an unqualified string
or a name class.

Line 27 and Line 34 The association between the formal name and the actual name or
string or nameclass is added to the literal map.

Line 37-41 If the formal parameter is a constant parameter then the actual

’ parameter must be a term (i.e. not a name class or a quoted infix
operator) and if the term is an Idy then it must not contain an
exclamationmark.

Line 41 The association between the formal name and the term is added
to the constant map

A

(let tq = get-visible-qual(pid, TYPE)(dict) in
if is-recursive-sort(tq, {})(dict) then
exit(“§5.4.1.9: Syntype is based on itself")
else
if tnm ¢ {nm, nil} then
exit(“§5.4.1.9: Ending name in syntype definition is different from defining name”)
else
(let tqual = get-parent(tg)(dict) in
let initial; = cases dict(tq):
(mk-SortD(,, init,)
— tnit,
mk-SyntypeD(,, init,)
- tnit) in
let ezpr, = if initial = nil then
initialy
else
(let (asitree,,) =
transform-ezpr(initial, CONSTANT, {tqual})(dict) in
asy tree) in
let (,as valset) = transform-valueset({tqual}, vallist)(dict) in
let as;id = make-as; -identifier (tqual)(dict) in
let nm' = ifis-ServiceD(dict(dict(SCOPEUNIT))) then
create-unique-name()
else
nm in
let as; del = mk-Syn-type-definition; (name-to-name; (nm'), asyid, asy valset) in
let synqual = dict(SCOPEUNIT) ™ ((TYPE, nm')) in

(3.4.7.20)

let d = [dict(SCOPEUNIT) ™ ((TYPE, nm)) — mk-SyntypeD(tq, synqual, expry, as; valset)] in

({as det}, d))))

type: Syntypedefy — Dict — Syn-type-definition; -set Dict

90

Fascicle X.4 — Rec. Z.100 — Annex F.2

Objective Transform a syntype definition into AS;

Parameters A syntype definition containing:
nm The name of the syntype.
pid The parent sort identifier.
initial The initial value for variables of the syntype.
vallist The allowed value set for variables of the sort.
tnm The name ending the definition
Result See transform-decllist
Algorithm
Line 1 Extract the Qual for the specified parent sort.
Line 2 The parent sort must not be based on this syntype
Line 5 The tailing name must be equal to the syntype name is specified
Line 8 Extract the partial type of the specified parent sort.
Line 9 Let initial; denote the initial expression of pid.
Line 14-19 Construct the AS; version of the initial expression. If it is omitted
then the initial expression of pid is used.
Line 20 Transform the value set
Line 22 If the syntype definition occurs in a service then create a new name
for the syntype
Line 27 Construct the Qual to be used when deriving the AS; identifier of
the syntype (at the places where the syntype is used).
Line 28-29 Return the AS; syntype definition (as; dcl) and the Dict contribu-

transform-valueset(tqualset, valset)(dict)

(if valset = () then

tion containing the syntype descriptor (d).

2

(let boolq = get-predef-sort(“BOOLEAN")(dict) in

let org = boolg

™ ((OPERATOR, (OR, (boolg, boolg), boolq)}) in

(tqualset, mk-Range-condition, (make-as, -identifier (orq)(dict), {})))

(let mk-Conditiong(cr, ezpr) = hd valset in’

1
2
3
4
5 else
6
7
8
9

let (tset, asyrange) = transform-valuerange(tqualset, cr, expr)(dict) in
let (trest, mk-Range-condition (orid, condset)) = transform-valueset(tset, tl valset)(dict) in
(trest, mk-Range-condition, (orid, {as, range} U condset))))

type: Sortqual-set Conditiong* — Dict — Sortqual-set Range-conditiony

Objective Transform a value set into AS;.
Parameters
tqualset A set of possible (legal) sorts.
valset The list of value ranges. When the value set occurs in a syntype def-
inition the tqualset contains the parent of the syntype only. When
the value set occurs in a decision answer the tqualset contains some
subset (also depending of other answers) of the possible sorts for
the question expression.
Result The set of possible (legal) sorts after having dealt with the value set,

i.e. the resulting set is a subset of fqualset. Also the AS; value set is
returned (Range-Ezpressions*).

Fascicle X.4 — Rec. Z.100 — Annex F.2 91

(3.4.7.21)

Algorithm

transform-valuerange(tqualset, cr, expr)(dict)

1
2
3
4
b
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Line 1-4 When through all the elements in the value set then return the

set of possible sorts and an empty Range-condition; containing the
AS, identifier of the boolean OR operator.

Line 6 Take the first element in the set (list) which consists of an optional
operator or an optional expression (cr) followed by an expression
(expr).

Line 7-9 Transform a value range and use the resulting (possibly restricted)

sort set (iset) during the transformation of the rest of the value
set.

2

(let bg = get-predef-sort(“BOOLEAN")(dict) in
let ¢»' = if cr = nil then EQ else cr in
let isrel = cr' € {NE,EQ, GT,LT,LE,GE} in
let cr' = if isrel then cr’ else LE in
let tqualset’ =
if isrel then
tqualset
else
(let (,tgset,) = transform-expr(cr, CONSTANT, {bg})(dict) in
tgset N tqualset) in
let opgset =
{opqual € all-visible-operators({), cr", dict(SCOPEUNIT))(dict) |
is-OperatorD(dict(opqual)) A
(et (, (,argl, res)) = opqual[len opqual] in
lenargl = 2 A
res = bg A argl[1] = argl[2] A elems argl C tqualset’)} in
if opgset = {} then
exit(“§5.4.1.9.1: Ordering operator is not defined for the sort of the range condition”)
else :
(let tset = tqualset’ N {sq € dom dict | is-SortD(dict(sq)) A

(3.4.7.22)

(3q € opgset)((OPERATOR, (cr”, (sq, 3q), bg)) = ¢{len ¢])} in

if card iset > 1 then
(tset, nil)
else
(et (asytree,,) = transform-expr(expr, CONSTANT, tset)(dict) in
let sort € tset in
let opqual = sort ™ ((OPERATOR, (cr”, (sort, sort), bg))) in
if isrel then
(tset, mk-Open-range, (make-as, -identifier(opqual)(dict), as; tree))
else :
(let (asytree’,,) = transform-expr(cr, CONSTANT, tset)(dict) in
let 71 = mk-Open-range, (make-as, -identifier(opgual)(dict), as tree'),
72 = mk-Open-range; (make-as; -identifier (opqual)(dict), as; tree) in
let andg = bg ™ ((OPERATOR, (AND, (sort, sort), {bg}))) in
(tset, mk-Closed-range, (make-as; -identifier(andq)(dict), r1, r2))))))

type: Sortqual-set [Ezprg | Relope] Ezpro — Dict — Sortqual-set [Condition-item]

Objective Transform an ASo Conditiong into an AS; Condition-item;
Parameters
tqualset The set of legal sorts prior to transformation of the value range
cr The relational operator or first expression occurring in the value
range
ezpr The (second) expression of the value range

92

Fascicle X.4 — Rec. Z.100 — Annex F.2

Result The set of legal sorts after the transformation of the value range and the
constructed AS; Condition;. The sort set is used in the transformation
of decision actions where this function is applied twice. First time in
order to derive the sort and the second time in order to transform the
value range

Algorithm ‘

Line 1 Construct the Qual of the boolean sort.

Line 2 If neither a relational operator nor an expression is specified in the
value range then the equality operator applies.

Line 4 If cris an expression then the less-equal operator (LE) is used as
relational operator.

Line 5-10 If cr is an expression then the set of legal sorts (fqualset) is re-
stricted by the legal sorts for that expression.

Line 11-16 Construct the Qual set of legal relational operators such that the
length of the argument list is equal to 2 and the result sort is
boolean and the two arguments are of the same sort and that sort
is one of the legal sorts in the context where the value range is used
(if there is more than one element in the set then the operator name
(er) is overloaded).

Line 17-18 If no such operators exits then it is an error.

Line 20-21 Construct a new set of legal sorts by restricting the old set of legal
sorts (iqualset’) to contain only those sorts which can be used on
the operators in opgset.

Line 22-23 If there is more than one element in the restricted set of sorts then
the value range is (still) ambiguous and no value range is returned
(nil is returned).

Line 25 Evaluate the expression again. This time, set contains exactly one
sort and therefore an AS; expression is returned (if it is otherwise
well-formed).

Line 26 Denote the sort in tset by sort.

Line 27 Construct the Qual of the operator used.

Line 28-29 If cr denotes a relational operator then return the set containing
the sort and the Condition-item; which is an Open-range;.

Line 31 If cris an expression then transform the expression (again).

Line 32-33 Construct the two Open-range;s which together with the AND
operator constitutes the Closed-range;.

Line 34 Construct the qual of the AND operator and

Line 35 Return the resulting set of sorts (containing one element) and the

transform-synonymdef (mk-Synonymdefo(nm, tid, expr))(dict)

Closed-range; containing the AS; identifier of the AND operator
and the two Closed-range;s.

2

(let squal = dict(SCOPEUNIT) ™ ((VALUE, nm)) in
let sortset = if tid = nil then

all-visible-sorts(dict)
else

{get-parent(get-visible-qual(tid, TYPE)(dict))(dict)} in

if card tpset = 1 then
(let tp € Qual bes.t. ip € tpset in
([squal — mk-SynD(tp, expr)]))

else

1
2
3
4
5
6 let (,tpset,) = transform-expr(expr, CONSTANT, sortset)(dict + [squal — mk-ErrorD()]) in
7
8
9
0
1

exit(“§5.4.1.13: Sort of synonym cannot be uniquely determined”))

type: Synonymdefo — Dict — Dict

Fascicle X.4 — Rec. Z.100 — Annex F.2 93

(3.4.7.23)

Objective

Parameters

nm
tid
expr

Result
Algorithm

Line 1
Line 2-5

Line 6

Line 7

" Line 8-9

Transform a synonym definition into AS;

An ASj synonym definition containing

The synonym name
The optional sort identifier
The ground expression

See transform-decllist

Construct the Qual denoting the synonym.

The sort of the synonym must be found in the set of sorts which
are visible to the synonym definition if the sort identifier (tid) is
absent ,otherwise the sort of the synonym is ¢id.

Transform the expression contained in the synonym definition and
return the subset of sorts (¢pset) which matches both the synonym
sort. The resulting AS; expression is not used. As the synonym
identifier must not be used in exzpr squal denotes a ErrorD during
evaluation of the expression.

Only one sort is allowed to match the sort of the synonym and the
sort of the expression.

Construct the Dict contribution containing the synonym descrip-
tor.

3.4.7.1 Partial type Definitions

transform-sortdef (nm, prop, parent)(dict)

1
2
3
4
5
6
7
8

type:

94

(let nm' = ifis-ServiceD(dict(dict(SCOPEUNIT))) then create-unique-name() else nm in

2

let newqual = dict(SCOPEUNIT) ™ ((TYPE, nm')) in
let descr = dict(SCOPEUNIT) ™ ((TYPE, nm)) in
let dict’' = dict + [SCOPEUNIT — descr] in
let prop’ = transform-nameclass(prop) in
let prop” = add-ordering(prop', descr)(dict) in
let mk-Propertieso(lit, oplist, azioms, mapping, term) = prop" in
let (eqop, eqaz) = add-equality(descr)(dict) in
let (expry,,) = transform-expr(term, CONSTANT, {descr})(dict) in
if card elems lit # len lit then
exit("“§5.2.2: Literal defined twice in a partial type definition”)

else

(let litd = [descr ™ ((LITERAL, nm)) + mk-LiteralD(descr) | nm € elems lit],

(asi0p, opd) = transform-typing(oplist ™ eqop)(dict’),
asyaz = transform-azioms(azioms ™ eqaz, AXIOMS)(dict’),
asy mapping = transform-azioms(mapping, MAPPING)(dict') in

let sortid = make-as; -identifier(newqual)(dict) in
let as, litset = {mk-Literal-signature, (nm, sortid) | nm € card lit} in
let concazioms; = make-as; -concazioms(dom litd)(dict) in

let typedef = dict(DATATYPEDEF) in

let mk-Data-type-definition; (typename, union, sorts, sigs, eqs U concazioms;) = typedef in

(3.4.7.1.1)

let datatypedef’' = mk-Data-type-definition; (typename, union, sorts U {name-to-name, (nm’)},
Y,

s1gs U as; op U asy litset,

eqs U asy az U as; mapping U concazioms;) in

let sortdescr = mk-SortD(as;az U asy mapping, parent, expry, newqual) in
(litd + opd + [descr ~ sortdescr,

DATATYPEDEF datatypedef'])))

Nameg Propertieso [Sortqual] — Dict — Dict

Fascicle X.4 — Rec. Z.100 — Annex F.2

Objective

Parameters

nm

prop
parent

Result

Algorithm

Line 1-2

Line 3-4

Line 5
Line 6
Line 7
Line 8

Line 9
Line 10

Line 13
Line 14

Line 15

Line 17

Line 18
Line 19

Line 21
Line 22-23

Line 25
Line 26

Transform the Propertiesy of a sort definition and add the resulting AS,

~ properties to the Data-type-definition; contained in the DATATYPE-

DEF entry in the Dict and also add the descriptors for the literals, for
the operators and for the sort to Dict

The ASo name of the sort being defined

The ASy properties to be transformed

The Qual of the parent sort in the case where the properties orig-
inated from the inheriting sort i.e. parent denotes the identifier of

the sort from which this sort inherits. It is put in the descriptor
for the sort descriptor SortD (see the definition of SortD).

The Dict updated with the AS; properties and updated with the various
descriptors

Construct a Qual to be used when constructing the AS; name. If
the sort is defined in a service a new unique name is used in the
Qual ’

Update SCOPEUNIT indicating that the properties are evaluated in
the context of the sort nm and update Dict to include information
of the new scopeunit. ‘

Modify the properties such that all the name classes in the literal
definition are expanded to a sequence of literals.

Modify the properties such that any ORDERING in the operator
signatures are replaced by the operator signatures and equations
reflecting the ordering properties.

Decompose the Propertiesy.

Construct the ASy operators and equations reflecting the equality
properties.

Transform the DEFAULT expression in the sort definition into AS;
Number of distinct literal names in the literal signature must be
equal to the length of the literal signature list.

Construct the descriptors for all the literals in the literal signature.
Construct the AS; Operator-signature;s (as,op) and operator de-
scriptors for the operators in the operator signatures and for the
equality operators.

Construct the AS; equations from the AS, equations (axioms)
which are the equations specified in the properties joined with the
equality equations.

Construct the equations corresponding to the MAP part of the ASy
properties.

Construct the AS; literal signatures.

Construct the AS; equations implied from any defined character
string literal (the implicit concatenation equations).

Extract and decompose the current Data-type-definition;.
Construct a new Data-type-definition which is the old one updated
to include the constructed AS; properties.

Construct the descriptor for the sort.

Return the Dict containing the descriptors for the literals, the de-
scriptors for the operators, the descriptor for the sort and the mod-
ified Data-type-definition,

Fascicle X.4 — Rec. Z.100 — Annex F.2 95

transform-nameclass(mk-Propertiesy(litlist, 0, a, m, t)) 2 (3.4.7.1.2)

1 if (Ut € elems litlist)(is-Nmclassp(lit)) then
2 (let ¢ € ind litlist be s.t. is-Nmclasso(litlist[i]) in
3 let mk-Nmclassy(regezpr) = litlist[1] in
4 let stringset = {str € Char* | is-in-regular-ezpr(str, regezpr)} in
5 let nameset = form-names-and-strings(stringset) in
6 let namelist bes.t. card elems namelist = card nameset A
7 len namelist = card nameset A
8 (Vi1, ¢2 € ind namelist)
9 (namelist[il] < nameli