

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library & Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del Servicio de Biblioteca y Archivos de la UIT.

(ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلاً

此电子版(PDF版本)由国际电信联盟(ITU)图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе Международного союза электросвязи путем сканирования исходного документа в бумажной форме из библиотечно-архивной службы МСЭ.

INTERNATIONAL TELECOMMUNICATION UNION

CCITT THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME X - FASCICLE X.4

ANNEX F.2 TO RECOMMENDATION Z.100: SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY ASSEMBLY MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1989

INTERNATIONAL TELECOMMUNICATION UNION

BLUE BOOK

VOLUME X - FASCICLE X.4

ANNEX F.2 TO RECOMMENDATION Z.100: SDL FORMAL DEFINITION

STATIC SEMANTICS

IXTH PLENARY ASSEMBLY MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1989

ISBN 92-61-03781-X

1

Printed in Switzerland

CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

BLUE BOOK

•

į

Volume I	
FASCICLE I.1	- Minutes and reports of the Plenary Assembly.
	List of Study Groups and Questions under study.
FASCICLE I.2	- Opinions and Resolutions.
	Recommendations on the organization and working procedures of CCITT (Series A).
FASCICLE I.3	- Terms and definitions. Abbreviations and acronyms. Recommendations on means of expression (Series B) and General telecommunications statistics (Series C).
FASCICLE I.4	- Index of Blue Book.
Volume II	
FASCICLE II.1	- General tariff principles - Charging and accounting in international telecommunications services. Series D Recommendations (Study Group III).
FASCICLE II.2	 Telephone network and ISDN – Operation, numbering, routing and mobile service. Recommendations E.100-E.333 (Study Group II).
FASCICLE II.3	 Telephone network and ISDN – Quality of service, network management and traffic engineering. Recommendations E.401-E.880 (Study Group II).
FASCICLE II.4	- Telegraph and mobile services - Operations and quality of service. Recommenda- tions F.1-F.140 (Study Group I).
FASCICLE II.5	 Telematic, data transmission and teleconference services – Operations and quality of service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study Group I).
FASCICLE II.6	 Message handling and directory services – Operations and definition of service. Recommendations F.400-F.422, F.500 (Study Group I).
Volume III	
volume III	
FASCICLE III.1	- General characteristics of international telephone connections and circuits. Recommenda- tions G.101-G.181 (Study Groups XII and XV).
FASCICLE III.2	- International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).
FASCICLE III.3	- Transmission media - Characteristics. Recommendations G.601-G.654 (Study Group XV).
FASCICLE III.4	- General aspects of digital transmission systems; terminal equipments. Recommenda- tions G.700-G.772 (Study Groups XV and XVIII).
FASCICLE III.5	 Digital networks, digital sections and digital line systems. Recommendations G.801-G.956 (Study Groups XV and XVIII).

ì

FASCICLE III.6	- Line transmission of non-telephone signals. Transmission of sound-programme and televi- sion signals. Series H and J Recommendations (Study Group XV).
FASCICLE III.7	 Integrated Services Digital Network (ISDN) – General structure and service capabilities. Recommendations I.110-I.257 (Study Group XVIII).
FASCICLE III.8	 Integrated Services Digital Network (ISDN) – Overall network aspects and functions, ISDN user-network interfaces. Recommendations I.310-I.470 (Study Group XVIII).
FASCICLE III.9	 Integrated Services Digital Network (ISDN) – Internetwork interfaces and maintenance principles. Recommendations I.500-I.605 (Study Group XVIII).
Volume IV	
FASCICLE IV.1	- General maintenance principles: maintenance of international transmission systems and telephone circuits. Recommendations M.10-M.782 (Study Group IV).
FASCICLE IV.2	- Maintenance of international telegraph, phototelegraph and leased circuits. Maintenance of the international public telephone network. Maintenance of maritime satellite and data transmission systems. Recommendations M.800-M.1375 (Study Group IV).
FASCICLE IV.3	- Maintenance of international sound-programme and television transmission circuits. Series N Recommendations (Study Group IV).
FASCICLE IV.4	- Specifications for measuring equipment. Series O Recommendations (Study Group IV).
Volume V	- Telephone transmission quality. Series P Recommendations (Study Group XII).
** 1 ***	
volume vl	
FASCICLE VI.1	- General Recommendations on telephone switching and signalling. Functions and informa- tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>his</i> (Study Group XI).
FASCICLE VI.1	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>bis</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI).
FASCICLE VI.1 FASCICLE VI.2 FASCICLE VI.3	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>his</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI).
FASCICLE VI.1 FASCICLE VI.2 FASCICLE VI.3 FASCICLE VI.4	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>bis</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI).
FASCICLE VI.1 FASCICLE VI.2 FASCICLE VI.3 FASCICLE VI.4 FASCICLE VI.5	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI). Digital local, transit, combined and international exchanges in integrated digital networks and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study Group XI).
FASCICLE VI.2 FASCICLE VI.2 FASCICLE VI.3 FASCICLE VI.4 FASCICLE VI.5 FASCICLE VI.6	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>bis</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI). Digital local, transit, combined and international exchanges in integrated digital networks and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study Group XI). Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).
FASCICLE VI.2 FASCICLE VI.2 FASCICLE VI.3 FASCICLE VI.4 FASCICLE VI.5 FASCICLE VI.6 FASCICLE VI.7	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI). Digital local, transit, combined and international exchanges in integrated digital networks and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study Group XI). Interworking of signalling Systems No. 7. Recommendations Q.700-Q.716 (Study Group XI).
VolumeVIFASCICLEVI.1FASCICLEVI.2FASCICLEVI.3FASCICLEVI.4FASCICLEVI.5FASCICLEVI.6FASCICLEVI.7FASCICLEVI.8	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>bis</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI). Digital local, transit, combined and international exchanges in integrated digital networks and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study Group XI). Interworking of signalling Systems No. 7. Recommendations Q.700-Q.716 (Study Group XI). Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study Group XI).
VolumeVIFASCICLEVI.1FASCICLEVI.2FASCICLEVI.3FASCICLEVI.4FASCICLEVI.5FASCICLEVI.6FASCICLEVI.7FASCICLEVI.8FASCICLEVI.9	 General Recommendations on telephone switching and signalling. Functions and information flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 <i>bis</i> (Study Group XI). Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study Group XI). Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study Group XI). Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study Group XI). Digital local, transit, combined and international exchanges in integrated digital networks and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study Group XI). Interworking of signalling Systems No. 7. Recommendations Q.700-Q.716 (Study Group XI). Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study Group XI). Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study Group XI).

·

- FASCICLE VI.11 Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network management. Recommendations Q.930-Q.940 (Study Group XI).
- FASCICLE VI.12 Public land mobile network. Interworking with ISDN and PSTN. Recommendations Q.1000-Q.1032 (Study Group XI).
- FASCICLE VI.13 Public land mobile network. Mobile application part and interfaces. Recommendations Q.1051-Q.1063 (Study Group XI).
- FASCICLE VI.14 Interworking with satellite mobile systems. Recommendations Q.1100-Q.1152 (Study Group XI).
 - Volume VII
- FASCICLE VII.1 Telegraph transmission. Series R Recommendations. Telegraph services terminal equipment. Series S Recommendations (Study Group IX).
- FASCICLE VII.2 Telegraph³switching. Series U Recommendations (Study Group IX).
- FASCICLE VII.3 Terminal equipment and protocols for telematic services. Recommendations T.0-T.63 (Study Group VIII).
- FASCICLE VII.4 Conformance testing procedures for the Teletex Recommendations. Recommendation T.64 (Study Group VIII).
- FASCICLE VII.5 Terminal equipment and protocols for telematic services. Recommendations T.65-T.101, T.150-T.390 (Study Group VIII).
- FASCICLE VII.6 Terminal equipment and protocols for telematic services. Recommendations T.400-T.418 (Study Group VIII).
- FASCICLE VII.7 Terminal equipment and protocols for telematic services. Recommendations T.431-T.564 (Study Group VIII).

Volume VIII

- FASCICLE VIII.1 Data communication over the telephone network. Series V Recommendations (Study Group XVII).
- FASCICLE VIII.2 Data communication networks: services and facilities, interfaces. Recommendations X.1-X.32 (Study Group VII).
- FASCICLE VIII.3 Data communication networks: transmission, signalling and switching, network aspects, maintenance and administrative arrangements. Recommendations X.40-X.181 (Study Group VII).
- FASCICLE VIII.4 Data communication networks: Open Systems Interconnection (OSI) Model and notation, service definition. Recommendations X.200-X.219 (Study Group VII).
- FASCICLE VIII.5 Data communication networks: Open Systems Interconnection (OSI) Protocol specifications, conformance testing. Recommendations X.220-X.290 (Study Group VII).
- FASCICLE VIII.6 Data communication networks: interworking between networks, mobile data transmission systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).
- FASCICLE VIII.7 Data communication networks: message handling systems. Recommendations X.400-X.420 (Study Group VII).
- FASCICLE VIII.8 Data communication networks: directory. Recommendations X.500-X.521 (Study Group VII).
 - Volume IX Protection against interference. Series K Recommendations (Study Group V). Construction, installation and protection of cable and other elements of outside plant. Series L Recommendations (Study Group VI).

V

Volume X

FASCICLE X.1	 Functional Specification and Description Language (SDL). Criteria for using Formal Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E, Recommendation Z.110 (Study Group X).
FASCICLE X.2	- Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).
FASCICLE X.3	 Annex F.1 to Recommendation Z.100: SDL formal definition. Introduction (Study Group X).
FASCICLE X.4	- Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study Group X).
FASCICLE X.5	 Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study Group X).
FASCICLE X.6	- CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).
FASCICLE X.7	- Man-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

,

.

CONTENTS OF FASCICLE X.4 OF THE BLUE BOOK

Annex F.2 to Recommendation Z.100

REMARK

Due to the specialized nature of the SDL semantics, this Fascicle is published in English only.

REMARQUE

Etant donné la nature très spéciale de la sémantique du LDS, ce fascicule est publié uniquement en anglais.

OBSERVACIÓN

Debido a la naturaleza especializada de la semántica del LED, este fascículo sólo se publica en inglés.

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression "Administration" is used for shortness to indicate both a telecommunication Administration and a recognized private operating agency.

2.

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Contents

1	Abs	stract Syntax Representing Concrete Syntax	2
	1.1	Basic SDL	2
	1.2	Structural Concepts	10°
	1.3	Additional Concepts	11
	1.4	Data	12
2	Inte	ernal Domains	20
	2 .1	Description of Descriptordict	21
	2.2	Description of Quotdict	28
	2.3	Other Domains	30
3	Tra	ansformation of AS_0 into AS_1	32
	3 .1	Main Functions	32
	3.2	Replacing Definition References	35
	3.3	Removal of Select Definitions	42
	3.4	Transformation of Definitions	51
		3.4.1 Block Definitions	54
		3.4.2 Channel Definitions	57
		3.4.3 Process Definitions	61
		3.4.4 Signal Definitions	65
		3.4.5 Procedure Definitions	66
		3.4.6 Sort Generators	70
		3.4.7 Sort Definitions	71
		3.4.8 Timer Definitions	116
		3.4.9 Variable Definitions	116
		3.4.10 View Definitions	119
		3.4.11 Import Definitions	121
		3.4.12 Signalroute Definitions	122
		3.4.13 Signallist Definitions	123
		3.4.14 Connect Statements	125
	3.5	Transformation of Expressions	134
		3.5.1 Identifiers	137
		3.5.2 Character Strings	142
		3.5.3 Operators	142
		3.5.4 Conditional Expressions	154
		3.5.5 Infix and Prefix operators	155
	3.6	Visibility Handling	155
	3.7	Transformation of Procedure- and Process Graph	161
		3.7.1 Insertion of Terminators in Answers	165

Dev	iations	5 From Z.100	262
3.14	Inform	al Functions	261
	3.13.2	Relation between import/export names and implicit signal names	260
	3.13.1	Relation between AS_0 names and AS_1 names $\ldots \ldots \ldots \ldots \ldots$	260
3.13	Global	Constant Mappings	260
3.12	Genera	ation of Auxiliary Information	258
3.11	Utility	Functions	2 56
	3.10.3	Creation of Implicit Connect Statements	253
	3.10.2	Creation of Implicit Signalroutes	249
	3.10.1	Creation of Implicit Channels	244
3 .10	Creatio	on of Implicit Channels and Signal Routes	241
3.9	Expan	sion of Services	233
3.8	Genera	l AS ₁ Creating Functions	223
	3.7.8	Transformation of Action Statements	198
	3.7.7	Transformation of Transition Strings	195
	3 .7.6	Transformation of States and Input Nodes	188
	3.7.5	Expansion of Continuous Signals and Enabling Condition	180
	3.7.4	Expansion of Asterisk Input, Asterisk Save and Implicit Transitions .	174
	3.7.3	Building of Statedict	1 72
	3.7.2	Building of Labeldict	169
	 3.8 3.9 3.10 3.11 3.12 3.13 3.14 Dev 	3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.6 3.7.7 3.7.8 3.8 Genera 3.9 Expans 3.10 Creation 3.10.1 3.10.2 3.10.3 3.11 Utility 3.12 Genera 3.13 Global 3.13.1 3.13.2 3.14 Inform	3.7.2 Building of Labeldict 3.7.3 Building of Statedict 3.7.4 Expansion of Asterisk Input, Asterisk Save and Implicit Transitions 3.7.4 Expansion of Continuous Signals and Enabling Condition 3.7.5 Expansion of Continuous Signals and Enabling Condition 3.7.6 Transformation of States and Input Nodes 3.7.7 Transformation of Transition Strings 3.7.8 Transformation of Action Statements 3.7.8 Transformation of Action Statements 3.7.8 Transformation of Action Statements 3.7.9 Expansion of Services 3.10 Creation of Implicit Channels and Signal Routes 3.10.1 Creation of Implicit Channels 3.10.2 Creation of Implicit Signalroutes 3.10.3 Creation of Implicit Connect Statements 3.10.4 Creation of Auxiliary Information 3.11 Utility Functions 3.13 Global Constant Mappings 3.13.1 Relation between AS ₀ names and AS ₁ names 3.13.2 Relation between import/export names and implicit signal names 3.14 Informal Functions

.

FASCICLE X.4

Annex F.2 to Recommendation Z.100

SDL FORMAL DEFINITION STATIC SEMANTICS

Introduction

This part of The Formal Definition defines the static properties of SDL. For a description of the over-all structure of the Formal Definition and for an explanation of the notation used, refer to Annex F.1: Introduction to the Formal Definition.

Annex F.2 defines the following:

• The well-formedness conditions which apply.

However, the well-formedness conditions which involve elaboration of equations are, for convenience, deferred to the construction of *Entity-dict* in Annex F.3: Dynamic Semantics (see the introduction to section 5 of Annex F.3). Even though the conditions are placed in the Dynamic Semantics, the conditions are static properties and they are therefore applied before any interpretation of SDL processes takes place.

Those well-formedness conditions are the following:

- 1. The check that the answers in a decision do not overlap.
- 2. The check that an enclosed scopeunit does not invalidate the properties of a sort defined in the enclosing scopeunit.
- 3. The check that no literal equals the error term.
- 4. The check that the Boolean literals TRUE and FALSE denote different values.
- The relation between the concrete syntax and the abstract syntax as defined in Z.100 (referred to as AS_1). AS_1 is not repeated in the Formal Definition. A summary can be found in Annex B of Z.100.

In order to distinguish the AS₁ objects from other objects in the Meta-IV functions, every AS₁ name is suffixed by a " $_1$ ".

For example the definition of *identifier* as defined in §2.2.2 of Z.100 is

Identifier :: Qualifier Name

whereas the corresponding definition in the Formal Definition is taken as

Identifier₁ :: Qualifier₁ Name₁

1 Abstract Syntax Representing Concrete Syntax

In the following, the domain AS_0 which reflects the concrete syntax is defined. Although AS_0 presents the concrete syntax on an abstract form, AS_0 does in some respect define the language syntax on a "lower level" than the syntax rules found in Z.100. This is due to the fact that the context sensitive information found in the syntax rules is not reflected in AS_0 (for an explanation see section 3 of Annex F.1)

As opposed to in AS_1 , abbreviations for the domain names are used in AS_0 in order to reduce problems of the limited physical line width. The annotations attached to the domain definitions, define the full names, by using *italics* letter style for the letters which also occur in the abbreviations.

In order to distinguish the AS_0 objects from other objects in the Meta-IV functions, every AS_0 domain is suffixed by a " $_0$ ".

Due to the fact that AS_0 is an Abstract Syntax derived from the textual grammar, the following items are not covered by the Formal Definition:

- Lexical rules (including macros) Most of these rules are defined formally in §2.2.1 of Z.100
- Syntax rules (AS₀ does not define where to place keywords and separators, it only defines the objects a system definition consist of). The syntax rules are defined formally in Z.100 in the subsections *textual grammar*
- The relation between the textual grammar and the graphical grammar In most cases this relation is straigth forward, i.e. <diagram> corresponds to <definition>, "is followed by" in the graphical grammar is literally "is followed by" in the textual grammar etc.

The domains are specified in the same order as the corresponding syntax rules are defined in Z.100, e.g. the first domain definition in AS_0 is Id_0 and the first BNF production in Z.100 is <identifier>

1.1 Basic SDL

1	Ido	::	Qualifier ₀ Name ₀
2	Qualifier ₀	=	$Qualifierelem_0^*$
3	$Qualifierelem_0$	=	Scopeunit ₀ Name ₀
4	Scopeunit ₀	=	SYSTEM BLOCK PROCESS SERVICE
			PROCEDURE SUBSTRUCTURE TYPE SIGNAL
5	Name ₀	::	Char ⁺ [EXCLAMATIONMARK]

- An Identifier consists of a Qualifier and a Name
- A Qualifier is a possible empty list of Qualifier elements.
- A Qualifier element is a scope unit type and a Name.
- A scope unit type is either the system, a block, a process, a service, a procedure, a block/channel sub-structure, a partial data type definition or a signal refinement.
- A Name consists of a non-empty list of characters followed by an optional exclamationmark.

For convenience, The Names in AS_0 covers a slightly different class of names than defined by the BNF syntax rules in Z.100.

The following presumptions on AS_0 apply:

- The optional exclamation mark following the spelling $(Char^+)$ can be present only where it is allowed syntactically according to the BNF rules.

- The spelling is an uppercase sequence of characters which conforms to the lexical

- rules defined in Z.100.
- 6 String₀ :: Char*

• A character String consists of a possible empty list of characters.

- 7 Texto :: Stringo
- Informal Text contains a character String. In expression context, informal Text cannot be distinguished from String, Therefore, in AS_0 Text only occurs in Task as alternative to assignment statements.
- 8 Sys₀ :: Sysdef₀ Remotedef₀
- A System consists of a System definition and the Remote definitions.
- 9 Remotedef₀ = $Refdecl_0^*$ 10 $Refdecl_0$ = $Blockdef_0 | Prdef_0 | Servicedef_0 | Procdef_0 | Chansubdef_0$
 - The Remote definitions is a list of Referenced declarations.
 - A Referenced declaration is either a Block definition, a Process definition, a Service definition, a Procedure definition, or a Channel substructure definition.

Also block sub-structures may be remote. However, as it is not possible to distinguish syntactically between a remote block sub-structure and a remote channel sub-structure, the channel sub-structure must be converted to a block sub-structure (see *remove-references*) if the context shows that the remote definition actually is a block sub-structure.

11	Sysdef ₀	::	Sysname ₀ Sysdecl ₀ * [Tailname ₀]
12	$Sysname_0$	=	$Name_0$
13	Sysdecl ₀	=	Blockdef ₀ Blockref ₀ Chandef ₀ Sigdef ₀
			Signallistdef ₀ Datadef ₀ Select ₀

- A System definition consists of a System name, a list of System declarations and an optional tailing name ending the System definition.
- A System name is a Name.
- A System declaration is either a Block definition, a Block reference, a Channel definition, a Signal definition, a Signal list definition, a Data definition or a Select definition.

14	Blockref ₀	::	Blockname ₀
15	Blockdef ₀	::	Blockid ₀ Blockdecl ₀ [*] [Blocksub ₀] [Tailid ₀]
16	Blockid ₀	=	Id_0
17	Tailido	=	Id ₀
18	Blockdeclo	=	Sigdef ₀ Prdef ₀ Prref ₀ Datadef ₀ Connect ₀ Sigroutedef ₀ Signallistdef ₀ Select ₀
19	$Blockname_0$	=	Name ₀

• A Block reference contains a Block name.

• A Block definition contains a Block identifier, a list of Block declarations, an optional Block substructure definition and an optional Tailing identifier ending the Block definition.

Note that it is not possible to distinguish syntactically between Name and Identifier in the concrete syntax. Consequently, AS_0 contains Identifiers at those places where both Names and Identifiers are allowed.

- A Block identifier is an Identifier.
- A Tailing identifier is an Identifier.
- A Block declaration is either a Signal definition, a Process definition, a Process reference, a Data definition, a channel to signal route connection, a Signal route definition, a Signal list definition or a Select.

• A Block name is a Name.

21 $Prname_0$ $= Name_0$ 22 $Prdef_0$ $:: Prid_0 [Instances_0] Parm_0^*$ $[Inputset_0] Prdecl_0^* Processbody_0 [Tailid_0]23Prid_0= Id_024Prdecl_0= Vardef_0 Viewdef_0 Datadef_0 Sigdef_0 Signallistdef_0 Importdef_0 Procef_0 Procref_0 Timerdef_0 Select_025Procref_0:: Procname_026Inputset_0:: [Signallist_0]27Processbody_0= Body_0 Decomposition_028Parm_0:: Varname_0^+ Sortid_029Instances_0:: [Initial_0] [Maximum_0]30Initial_0= Expr_031Maximum_0= Expr_0$	20	Prref ₀	::	Prname ₀ [Instances ₀]
 22 Prdef₀ 23 Prid₀ 24 Prdecl₀ 25 Procref₀ 26 Inputset₀ 27 Processbody₀ 28 Parm₀ 29 Instances₀ 29 Instances₀ 20 Initial₀ 21 Maximum₀ 22 Pride (Instances₀) Parm₀* [Inputset₀] Prdecl₀* Processbody₀ [Tailid₀] 25 Procref₀ 26 Inputset₀ 27 Processbody₀ 28 Parm₀ 29 Instances₀ 20 Initial₀ 21 Maximum₀ 22 Expr₀ 	21	Prname ₀	=	Nameo
$\begin{bmatrix} Inputset_0 \end{bmatrix} Prdecl_0^* Processbody_0 [Tailid_0] \\ = Id_0 \\ = Vardef_0 Viewdef_0 Datadef_0 Sigdef_0 \\ Signallistdef_0 Importdef_0 Procdef_0 \\ Procref_0 Timerdef_0 Select_0 \\ = Procref_0 \\ = Procrame_0 \\ = Signallist_0] \\ = Processbody_0 \\ = Body_0 Decomposition_0 \\ = Body_0 Decomposition_0 \\ = Sortid_0 \\ = Inputance_0^+ Sortid_0 \\ = Inputance_0^+ Sortid_0 \\ = Expr_0 \\$	22	Prdef ₀	::	Prid ₀ [Instances ₀] Parm ₀ *
 23 Prido = Ido 24 Prdeclo = Vardefo Viewdefo Datadefo Sigdefo Signallistdefo Importdefo Procdefo Procrefo Timerdefo Selecto 25 Procrefo ::: Procnameo 26 Inputseto ::: [Signallisto] 27 Processbodyo ::: [Signallisto] 28 Parmo ::: Varnameo⁺ Sortido 29 Instanceso ::: [Initialo] [Maximumo] 30 Initialo := Expro 31 Maximumo := Expro 				[Inputset ₀] Prdecl ₀ * Processbody ₀ [Tailid ₀]
24Prdeclo=Vardefo Viewdefo Datadefo Sigdefo Signallistdefo Importdefo Procdefo Procrefo Timerdefo Selecto25Procrefo::Procnameo26Inputseto::[Signallisto]]27Processbodyo=Bodyo Decompositiono28Parmo::Varnameo+ Sortido29Instanceso::[Initialo] [Maximumo]30Initialo=Expro31Maximumo=Expro	23	Prid ₀	=	Ido
$\begin{array}{rcl} Signallistdef_0 \mid Importdef_0 \mid Procdef_0 \mid \\ Procref_0 \mid Timerdef_0 \mid Select_0 \\ \hline \\ 25 Procref_0 & :: Procname_0 \\ \hline \\ 26 Inputset_0 & :: [Signallist_0] \\ \hline \\ 27 Processbody_0 & = Body_0 \mid Decomposition_0 \\ \hline \\ 28 Parm_0 & :: Varname_0^+ Sortid_0 \\ \hline \\ 29 Instances_0 & :: [Initial_0] [Maximum_0] \\ \hline \\ 30 Initial_0 & = Expr_0 \\ \hline \\ 31 Maximum_0 & = Expr_0 \\ \hline \end{array}$	24	Prdeclo	=	Vardef ₀ Viewdef ₀ Datadef ₀ Sigdef ₀
Procref0 Timerdef0 Select025Procref0:: Procname026Inputset0:: [Signallist0]27Processbody0 $= Body0 Decomposition028Parm0:: Varname0^+ Sortid029Instances0:: [Initial0] [Maximum0]30Initial0= Expr031Maximum0= Expr0$				Signallistdef ₀ Importdef ₀ Procdef ₀
25Procref0::Procname026Inputset0::[Signallist0]27Processbody0=Body0 Decomposition028Parm0::Varname0+ Sortid029Instances0::[Initial0] [Maximum0]30Initial0=Expr031Maximum0=Expr0				Procref ₀ Timerdef ₀ Select ₀
26Inputset_0::[Signallist_0]27Processbody_0=Body_0 Decomposition_028Parm_0::Varname_0^+ Sortid_029Instances_0::[Initial_0] [Maximum_0]30Initial_0=Expr_031Maximum_0=Expr_0	25	Procref ₀	::	Procname ₀
27Processbody0=Body0 Decomposition028Parm0::Varname0+ Sortid029Instances0::[Initial0] [Maximum0]30Initial0=Expr031Maximum0=Expr0	26	Inputset ₀	::	[Signallist ₀]
28 Parmo :: Varnameo ⁺ Sortido 29 Instanceso :: [Initialo] [Maximumo] 30 Initialo = Expro 31 Maximumo = Expro	27	Processbody ₀	=	$Body_0 \mid Decomposition_0$
29Instances_0:: [Initial_0] [Maximum_0]30Initial_0= Expr_031Maximum_0= Expr_0	28	Parm ₀	::	Varname ₀ + Sortid ₀
$\begin{array}{llllllllllllllllllllllllllllllllllll$	29	Instances ₀	::	[Initial ₀] [Maximum ₀]
$31 Maximum_0 \qquad \qquad = Expr_0$	30	Initialo	=	Expro
	31	$Maximum_0$	=	Expr ₀

- A Process reference contains a Process name and an optional number of Instances specification.
- A Process Name is a Name.
- A Process definition consists of a Process identifier, an optional number of Instances specification, a list of process formal Parameters, an optional valid Input signal set, a list of Process declarations, the process Body and an optional tailing Identifier ending the Process definition.
- A Process identifier is an Identifier.
- A Process declaration is either a variable definition, a View definition, a Data definition, a Signal definition, a Signal list definition, an Import definition, a Procedure definition, a Procedure reference, a Timer definition or a Select.
- A Procedure reference consists of a Procedure name.
- A valid Input signal set contains a possibly empty (if nil) Signal list.
- A Process body is either a graph Body or a service Decomposition.
- A process formal Parameter consists of a list of Variable names and a Sort identifier.
- The number of *Instances* specification consists of an optional *Initial* number and an optional *Maximum* number.
- The Initial number is a simple Expression.
- The Maximum number is a simple Expression.

Fascicle X.4 – Rec. Z.100 – Annex F.2

- 32Procdef0::Procid0Procdecl0*Body0 [Tailid0]33Procid0=Id034Procdecl0=Vardef0 | Datadef0 | Procdef0 | Procref0 | Select035Procname0=Name0
- $36 \quad Procparm_0 =$
- 37 Inoutparm₀
- = Inoutparm₀ | Inparm₀ :: Varname₀⁺ Sortid₀
- 38 Inparmo :: Varnameo⁺ Sortido
 - A Procedure definition consists of a Procedure identifier, a list of Procedure formal parameters, a list of Procedure declarations, a procedure Body and an optional Tailing identifier ending the Procedure definition.
 - A Procedure identifier is an Identifier.
 - A Procedure declaration is either a variable definition, Data definition, a Procedure definition, a Procedure reference or a Select.
 - A Procedure name is a Name.
 - A Procedure formal parameter is either a variable In/Out parameter or a variable In parameter.
 - An In/Out parameter consist of a list of Variable Names and a Sort identifier.
 - An In parameter consist of a list of Variable Names and a Sort identifier.

39	Chandef ₀	::	Channame ₀ Chanpath ₀ [Chanpath ₀] [Chansub ₀] [Tailname ₀]
40	Chanpath ₀	::	Origo Desto Signallisto
41	Channame ₀	=	Name ₀
42	Orig ₀	=	Blockido ENV
43	Dest ₀	=	Blockido ENV
44	$Tailname_0$	=	Nameo

- A Channel definition consists of a Channel name, one or two Channel communication paths, an optional Channel substructure definition and an optional tailing name ending the Channel definition. A Channel communication path consists of an Originating endpoint, a Destination endpoint and a Signal list.
- An Originating endpoint is either a Block identifier or the ENVIRONMENT.
- A Destination endpoint is either a Block identifier or the ENVIRONMENT.
- A Name which ends a definition is a Tailing name.

45	$Sigroutedef_0$:: Sigroutename ₀ Sigroutepath ₀ [Sigroutepath ₀)]
46	$Sigroute path_0$:: Origino Destinationo Signallisto	
47	Origin ₀	$= Id_0 ENV$	
48	$Destination_0$	$= Id_0 ENV$	
49	$Sigroutename_0$	$= Name_0$	
		4	

- A Signal route definition contains a Signal route name and one or two Signal route communication paths.
- A Signal route communication paths contains an Originating process or service, a Destination process or service and a Signal list.
- An Originating process or service is either a identifier or the ENVIRONMENT.
- A Destination process is either a Process identifier or the ENVIRONMENT.
- A Signal route name is a Name.

- :: Connectpoint₀ Id₀⁺ 50 Connect₀
- 51 Connectpoint₀
- $= (Id_0 | ENV)$
- A connection contains a connection point and a list of Identifiers to which it is connected. Note that Connecto both denotes channel endpoint connection, channel to route connection, signal route connection and channel connection since these four kind of connections are not distinguished syntactically if they occur in a select definition.
- A connection point is an Identifier or, in the case of a channel endpoint connection, ENV.

52	Sigdef ₀	:: $Sigelem_0^+$
53	$Sigelem_0$:: Signame ₀ Sortid ₀ * [Refinement ₀]
54	$Signame_0$	$= Name_0$
55	Sortid ₀	$= Id_0$

- A Signal definition consists of a list of Signal elements.
- A Signal element consists of a Signal name, a list of Sort identifiers and an optional Refinement part.
- A Signal name is a Name.
- A Sort identifier is an Identifier.

56	$Signallist def_0$:: Signallistname ₀ Signallist ₀
57	$Signallistname_0$	$= Name_0$
58	$Signallist_0$	$= (Signallistid_0 Sigid_0)^+$
59	$Signallistid_0$:: Id ₀
60	Sigid ₀	$= Id_0$

- A Signal list definition consists of a signal list name and a Signal list.
- A Signal list name is a Name.
- A Signal list is a non-empty list of Signal list identifiers and Signal identifiers.
- A Signal list identifier contains an Identifier.
- A Signal identifier is an Identifier.

Note that, as a Signal list identifier is a tree, it is always possible to distinguish between signal list identifiers and signal identifiers (as is also the case in the concrete syntax).

- :: [REVEALED] [EXPORTED] Vardefelem₀+ 61 Vardef₀ :: Varname₀⁺ Sortid₀ [Value₀] 62 Vardefelem₀ $= Name_0$ 63 Varnamen
 - A Variable definition consists of an optional REVEALED attribute, an optional EX-PORTED attribute and a list of Variable definition elements.
 - A Variable definition element consists of a list of Variable names, a Sort identifier and an optional initial Value.
 - A Variable name is a Name.

64	Viewdef ₀	$:: Viewdefelem_0^+$
65	$Viewdefelem_0$:: Varid ₀ + Sortid ₀
66	Varido	$= Id_0$

- A View definition consists of a list of View definition elements.
- A View definition element consists of a list of view Variable identifiers and a Sort identifier.
- A Variable identifier is an Identifier.
- 67 Bodyn :: Transition₀ Statebody₀* 68 Statebody
 - :: (Statenamelist₀ | Starredlist₀) Statespec₀* [Tailname₀]
- 69 Statenamelisto
- :: $Statename_0^+$
- 70 Statename₀ $= Name_0$
- 71 Starredlisto $:: [Statenamelist_0]$
 - A Body consists of the start Transition and a list of State bodys.
 - A State body contains a State name list or a Starred name list and followed by a list of State stimulus specifications and an optional tailing name ending the State body.
 - A State name list consists of a list of State names.
 - A State name is a Name.
 - A Starred name list contains a possible empty (if nil) State name list.
- 72 Statespec₀

= Savespec₀ | Inputspec₀ | Contspec₀ | Priinput₀

• A State stimulus specification is either a Save specification, an Input specification, a Continuous signal specification or a Priority input specification.

73	Savespec ₀	::	Signallist ₀ Starred ₀
74	Inputspec ₀	::	(Starred ₀ Inputvars ₀ ⁺) Enabling ₀ Transition ₀
75	Starred ₀	::	()
76	Inputvars ₀	::	$Sigid_0 [Varid_0]^*$

- A Save specification contains either a Signal list or an asterisk.
- An Input specification contains either an asterisk (i.e. a tree Starred denoting the asterisk) or a none-empty list of Input signal variables and followed by an enabling condition and followed by a Transition.
- Input signal variables contains a Signal identifier and a list of optional Variable identifiers.

77	$Transition_0$. :	:	Actstmt ₀ * [Termstmt ₀]
78	Actstmt ₀	:	:	[Label ₀] Act ₀
79	Labelo	=	=	$Name_0$

• A Transition contains a list of Action statements and an optional Terminator statement.

If Termstmt is omitted, then the list of Actstmt is non-empty and if the list of Actstmt is empty then Termstmt is present (it need not to be checked as it is a context free concrete syntax rule).

- An Action statement contains an optional Label and an Action.
- A Label is a Name.

= Task₀ | Output₀ | Create₀ | Decision₀ | Export₀ | Option₀ | Call₀ | Prioutput₀ | Set₀ | Reset₀

• An Action is either a Task, an Output, a Create request, a Decision, an Export, a transition Option, a procedure Call, a Priority output, a timer Set or a timer Reset.

81	Termstmt ₀	:: [Labelo] Terminatoro
82	$Terminator_0$	= Nextstate ₀ Join ₀ Stop ₀ Return ₀
83	$Next state_0$:: [Statename ₀]
84	Joino	:: Labelo
85	Stop ₀	:: ()
86	Return ₀	# ()

• A Terminator statement contains an optional Label and a Terminator

- A Terminator is either a Nextstate, a Join, a Stop or a Return.
- A Nextstate contains an optional State name (nil if it is a dash nextstate).
- A Join contains a Label
- A Stop contains no additional information.
- A Return contains no additional information.
- 87 $Task_0$:: $Assignstmt_0^+ | Text_0^+$
 - A Task contains either a list of Assignment statements or a list of informal Texts.

88	$Create_0$::	Prid ₀ Actparmlist ₀
89	$Act parm list_0$. :	=	$[Expr_0]^*$

- A Create request contains a Process identifier and an Actual parameter list.
- An Actual parameter list is a list of optional Expressions.

90 Callo :: Procido Actparmlisto

• A procedure Call contains a Procedure identifier and an Actual parameter list.

91	Output ₀	:: $Outputsig_0^+$ [Piexpro] Via ₀
92	$Outputsig_0$:: Sigido Actparmlisto
93	Piexpr ₀	$= Expr_0 Scopeexpr_0$
94	Via ₀	$= Id_0^*$
95	$Scopeexpr_0$:: Scope ₀ Expr ₀
96	$Scope_0$	$= Qualifier_0$

- An Output contains a list of Output signals, an optional PId expression and a Via.
- An Output signal consists of a Signal identifier and an Actual parameter list.
- A PId expression is either an Expression or a scope expression.
- A Via is a possible empty list of Identifiers.

Fascicle X.4 – Rec. Z.100 – Annex F.2

80 Acto

• scopeexpression has no corresponding construct in the concrete syntax. It is a utility construct which is introduced in AS_0 in order to ease the transformation of services.

When services are transformed, they are merged into one AS_0 process graph. Except for the transition containing output and decisions implied from enabling condition and continuous signals, every transition in the resulting AS_0 process graph must be transformed in the context of a certain service. The *Scope* in *Scopeexpression* is a *Qualifier* which points out the service which "owns" the *Expression* occurring in the decisions in enabling condition.

 $Scopeexpr_0s$ are generated during the expansion of enabling condition and continuous signal.

 $= Expr_0 | Scopeexpr_0$

- 97 Decision₀ :: Question₀ Answer₀⁺ [Elsepart₀]
- 98 Question
- 99 Elseparto :: [Transition]

100 Answero :: Conditionlisto [Transitiono]

- A Decision contains a Question, a none-empty list of Answers and an optional Else part
- A Question is either an Expression or a scopeexpr (explained above).
- An Else part contains an optional Transition.
- An Answer contains a Condition list and an optional Transition
- 101 $Timerdef_0$:: $Timerelem_0^+$ 102 $Timerelem_0$:: $Timername_0$ Sortido*103 $Timername_0$ = $Name_0$
 - A Timer definition consists of a list of Timer elements.
 - A Timer element contains a Timer name and a list of Sort identifiers.
 - A Timer name is a Name.

104	Reset ₀	::	$Resetelem_0^+$
105	$Resetelem_0$::	Timerid ₀ Expr ₀ *
106	Timerid ₀	=	Id ₀

- A timer Reset contains a list of timer Reset elements.
- A timer Reset element contains a Timer identifier and a possible empty list of Expressions.
- A Timer identifier is an Identifier.

107	Set ₀	::	$Setelem_0^+$
108	Setelem ₀	::	Expro Timerido Expro*

- A timer Set contains a list of timer Set elements.
- A timer Set element contains a time expiration Expression, a Timer identifier and a possible empty list of Expressions.

1.2 Structural Concepts

- 1 Blocksub = Blocksubdef₀ | Blocksubref₀ :: [Blocksubid₀] Blocksubdecl₀+ [Tailid₀] Blocksubdef 2 3 Blocksubid₀ $= Id_0$ $Blocksubdecl_0$ Signallistdef₀ | Connect₀ | Blockdef₀ | Blockref₀ | 4 Chandef₀ | Sigdef₀ | Datadef₀ | Select₀ $Blocksubname_0$ $Blocksubref_0$ 5 :: $= Name_0$ $Blocksubname_0$ 6
- A Block substructure is either a Block substructure definition or a Block substructure reference.
- A Block substructure definition consists of a Block substructure identifier, a list of Block substructure declarations and an optional tailing identifier ending the Block substructure definition.
- A Block substructure identifier is an Identifier.
- A Block substructure declaration is either a Signal list definition, a Block sub-structure Connection, a Block definition, a Block reference, a Channel definition, a Signal definition, a Data definition or a Select.
- A Block substructure reference contains a Block substructure name.
- A Block substructure name is a Name.

7	Chansub ₀	=	Chansubdef ₀ Chansubref ₀
8	Chansubdef ₀	::	Chansubid ₀ Chansubdecl ₀ ⁺ [Tailid ₀]
9	Chansubid ₀	=	[<i>Id</i> ₀]
10	Chansubdecl ₀	=	Chandef ₀ Blockdef ₀ Sigdef ₀ Blockref ₀ Signallistdef ₀ Datadef ₀ Connect ₀ Select ₀
11	$Chansubref_0$::	Chansubname ₀
12	$Chansubname_0$	=	Nameo

- A Channel substructure is either a Channel substructure definition or a Channel substructure reference.
- A Channel substructure definition consists of a Channel substructure identifier, a list of Channel substructure declarations and an optional Tailing identifier ending the Channel substructure definition.
- A Channel substructure identifier is an optional Identifier.
- A Channel substructure declaration is either a Channel definition, a Block definition, a Signal definition, a Block reference, a Signal list definition, a Data definition, a channel endpoint connection or a Select.
- A Channel substructure reference contains a Channel substructure name.
- A Channel substructure name is a Name.

13	$Refinement_0$	$:: Subsignal_0^+$
14	$Subsignal_0$:: [REVERSE] Sigdef ₀

- A Refinement part contains a list of Subsignal definitions.
- A Subsignal definition contains a flag indicating whether the subsignal is leading in the opposite direction and a Signal definition.

1.3 Additional Concepts

:: Expro Declo¹
= Blockdef₀ | Blockref₀ | Chandef₀ | Sigdef₀ | Prdef₀ | Prref₀ | Procdef₀ | Procref₀ | Servicedef₀ | Serviceref₀ | Datadef₀ | Sigroutedef₀ | Signallistdef₀ | Vardef₀ | Importdef₀ | Viewdef₀ | Timerdef₀ | Connect₀ | Select₀

- A Select definition consists of an Expression and a list of Declarations.
- A Declaration is either a Block definition, a Block reference, a Channel definition, a Signal definition a Process definition, a Process reference, a Procedure definition, a Procedure reference, a Service definition, a Service reference, a Data definition, a Signal route definition, a Signal list definition, a Variable definition, an Import definition, a View definition, a Timer definition, a connection or a Select definition.
- 3 Option₀ :: Question₀ Answer₀⁺ [Elsepart₀]
- A transition Option contains a Question, a list of Answers and an optional Else part.

4	$Decomposition_0$:: .	$Decomposition decl_0^+$
5	$Decomposition decl_0$	= 2	Sigroutedef ₀ Connect ₀
			Servicedef ₀ Serviceref ₀ Select ₀

- A Decomposition contains a list of Decomposition declarations.
- A Decomposition declaration is either a Signal route definition, a signal route connection, a Service definition a Service reference or a Select definition.

6 7	Servicedef ₀ Servicedecl ₀	:: =	Serviceid ₀ [Inputset ₀] Servicedecl ₀ * Body ₀ [Tailid ₀] Vardef ₀ Procdef ₀ Procref ₀ Viewdef ₀ Importdef ₀ Timerdef ₀ Datadef ₀ Select ₀
8	Serviceid ₀	=	Ido
9	Serviceref ₀	::	Servicename ₀
10	Servicename ₀	=	Name ₀

- A Service definition consists of a Service identifier, an optional valid service input signal set, a list of Service declarations, a service Body and an optional Tailing identifier ending the Service definition.
- A Service declaration is either a Variable definition, a procedure definition, a Procedure reference, a View definition, an Import definition, a Timer definition, a Data definition or a Select definition.
- A Service identifier is an Identifier.
- A Service reference contains a Service name.
- A Service name is a Name.
- 11Priinputo::Inputvarso+Transitiono12Prioutputo::Outputsigo+
 - A Priority input consists of a list of signal input variables and a Transition.
 - A Priority output contains a list of Output signals.

13 $Contspec_0$

- :: Expro Priority Transition
- 14 Priority₀ $= [Name_0]$ $= [Expr_0]$
- Enabling 15
 - A Continuous signal specification contains an Expression, a Priority and a Transition
 - Priority is an optional integer Name
 - Enabling is an optional Expression.
- :: Varido+ 16 Exporto
 - An Export contains a list of exported Variable identifiers.
- :: $Importelem_0^+$ 17 Import defa
- :: Varname₀+ Sortid₀ 18 $Importelem_0$
- 19 Importexpr₀ :: $Varid_0 [Expr_0]$
 - An Import definition contains a list of Import elements.
 - An Import element is a list of imported Variable names and a Sort identifier.
 - An Import expression contains an imported Variable identifier and an optional PId Expression.

1.4 Data

2

 $Partial type def_0$ 1

 $Sortname_0$

:: Sortname₀ [Extproperties₀] Properties₀ [Conditionlist₀] [Tailname₀] $= Name_0$

• A Partial type definition consists of a Sort name, some optional Extended properties, some Properties, an optional range condition value list and an optional sort name ending the definition.

Note that, as opposed to the syntax rule in Z.100, this definition also covers syntypes where the partial type definition is implied (i.e. in the case where Conditionlist₀ is different from nil).

- A Sort name is a Name.
- 3 Properties₀

:: $Literal_0^* Op_0^* Axiom_0^* Mappingaxiom_0^* [Initialvalue_0]$

- Properties consists of a list of Literal signatures, a list of Operator signatures, a list of Axioms, a list of literal Mapping axioms and an optional Initial (default) value.
- 4 Literal $= Name_0 | String_0 | Nmclass_0$
- A Literal signature is either a Name, a character String or a Nameclass.
- Op_0 5 $= Ordering_0 | Opspec_0$:: Operatorname₀ Sortid₀⁺ Sortid₀ 6 Opspec₀ 7 $Operatorname_0$ = Name₀ | Quotedop₀

- An Operator signature is either Ordering or an Operator specification.
- An Operator specification consists of an Operator name, a list of argument Sort identifiers and a result Sort identifier.
- An Operator name is a Name or a Quoted operator.
- 8 Axiom₀ = Unquantequation₀ | Condequation₀ | Quantequation₀ 9 Unquantequation₀ = Equation₀ | Term₀
- An Axiom is either an Unquantified Equation or a Conditional equation or a Quantified equation or a Term.
- An Unquantified Equation is either an Equation or a Term.
- 10 Equation₀ :: Term₀ Term₀
 - An Equation consists of a left-hand Term and a right-hand Term.
- 11Quantequation:: $Valuename_0^+ Sortid_0 Axiom_0^+$ 12 $Valuename_0$ = $Name_0$
 - A Quantified equation consists of a list of Value names, a Sort identifier and a list of Axioms.
 - A Value name is a Name.
- 13 Term₀

= Id₀ | Operatorterm₀ | Condterm₀ | Stringterm₀ Monadterm₀ | Infixterm₀ | Errorterm₀ | Spellingterm₀

- A Term is either an Identifier, an Operator term, a Conditional term, a character String term, a Monadic term, an Infix term, an Error term or a Spelling term. Note that, in AS_0 , no distinction can be made between the various kinds of operators in terms and expressions which only differs semantically. For example, (extended composite term) and (extended ground term) as defined in §5.4 of Z.100, cannot be distinguished syntactically (i.e. without binding names to definitions), which means that they are covered by the same domain definition in AS_0 .
- 14 $Operatorterm_0$:: $(Id_0 | Qualop_0) Term_0^+$
- An Operator term consists of an Identifier or a Qualified operator and followed by a list of argument Terms.
- 15 Condterm₀

:: Term₀ Term₀ Term₀

- A Conditional term consists of a condition Term, a consequence Term and an alternative Term.
- 16 Stringterm₀

- :: Qualifier₀ String₀
- A character String term consists of a Qualifier and a character string.

17 Monadterm₀

:: (NOT | MINUS) Termo

• A Monadic term consists of one of the operators "NOT" or "-" followed by an argument Term

18	$Infixterm_0$:: Termo Infixopo Termo
19	Infixop ₀	= IMPLY OR XOR AND IN
		MOD REM PLUS MINUS CONC
		MULT DIV Relop ₀
2 0	$Relop_0$	= NE EQ GT LT LE GE

- An Infix term consists of two argument Terms and an Infix operator.
- An Infix operator is either "=>","OR","XOR","AND","IN", "MOD","REM","+","-","//","*","/ or one of the *Relational operators*.
- A Relational operator is either "/=", "=", ">", "<", "<=" or ">=".

Note that the grouping of any sub-trees reflects the precedence rules as defined in §5.4.2.2 of Z.100.

- 21 $Errorterm_0$:: ()
 - An Error term contains no additional information.
- 22 Condequation₀ :: $Unquantequation_0^+$ Unquantequation₀
 - A Conditional equation consists of a list of restriction Unquantified Equations and a restricted Unquantified Equation.
- 23 $Ext properties_0$ = $Struc_0 | Inherited_0 | Geninstlist_0$
 - Extended properties is either Structure properties, Inherited properties or Generator instance list properties.

24	Syntypedef ₀	::	Syntypename ₀ Parentid ₀ [Initialvalue ₀]
			[Conditionlist ₀] [Tailname ₀]
25	$Syntypename_0$	=	Name ₀

- A Syntype definition consists of a Syntype name, a Parent identifier, an optional Initial value an optional range Condition list and a syntype name ending the definition.
- A Syntype name is a Name.

26	$Conditionlist_0$	=	$Condition_0^+$
27	Condition ₀	::	[Value ₀ Relop ₀] Value ₀
28	Value ₀	=	$Expr_0$

- A range Condition list is a list of range Conditions
- A range *Condition* consists of an optional *Value* or *Relational operator* and followed by a *Value*.
- A Value is an Expression.

14 Fascicle X.4 – Rec. Z.100 – Annex F.2

29 Struc₀

- $:: Fieldspec_0^+$
- 30 Fieldspec₀ :: Fieldname₀⁺ Sortid₀
- $31 \quad Fieldname_0 \qquad \qquad = Name_0$
 - Structure properties consists of a list of Field specifications.
 - A Field specification consists of a list of Field names and a Sort identifier.
 - A Field name is a Name
- 32 Inherited₀ :: Parentid₀ Literalrenaming₀ (ALL | Operatorrenaming₀) 33 Parentido $= Id_0$ 34 Literalrenaming₀ = $Literalpair_0^*$ 35 Literalpair₀ :: Newliteral₀ Oldliteral₀ 36 Newliteral₀ $= Name_0 | String_0$ 37 Oldliteral₀ $= Name_0 | String_0$ 38 Operatorrenaming₀ $= Operator pair_0^*$ 39 Operatorpair₀ :: Newoperator₀ Oldoperator₀ 40 Newoperator₀ $= [Operatorname_0]$ 41 $Oldoperator_0$ $= Operatorname_0$
 - Inherited properties consists of a Parent identifier, Literal renaming and inherited operators which are either ALL operators or Operator renaming.
 - A Parent identifier is an Identifier.
 - Literal renaming is a list of Literal pairs.
 - A Literal pair consists of the New literal name and the Old (parent) Literal name.
 - The New literal name is either a Name or a character String.
 - The Old literal name is either a Name or a character String.
 - Operator renaming is a list of Operator pairs.
 - An Operator pair consists of the New operator name and the Old operator name.
 - The New operator name is an Operator name if specified.
 - The Old (parent) operator name is an Operator name.

42	$Sortgenerator_0$::	Generatorname ₀ Genparm ₀ +
	č		[Geninstlist ₀] Properties ₀ [Tailname ₀]
43	$Generatorname_0$	=	Name ₀
44	Genparm ₀	=	Sortparm ₀ Termparm ₀ Litparm ₀ Opparm ₀
45	Sortparm ₀	::	$Name_0^+$
46	Termparm ₀	::	$Name_0^+$
47	Litparm ₀	::	$Name_0^+$
48	Opparm ₀	::	$Name_0^+$

- A Sort generator consists of a Generator name, a list of Generator formal parameters, a possible empty Generator instance list, some Properties and a Sort generator Name ending the definition.
- A Generator name is a Name.
- A Generator formal parameter is either a Sort parameter, a Term parameter, a Literal parameter or an Operator parameter.
- A Sort parameter consists of a list of Names.

- A Term parameter consists of a list of Names.
- A Literal parameter consists of a list of Names.
- An Operator parameter consists of a list of Names.

49	$Geninstlist_0$	$:: Geninst_0^+$	
50	$Geninst_0$:: Generatorid ₀ Genactparm ₀ +	
51	Generatorid ₀	$= Id_0$	
52	$Genact parm_0$	$= Term_0 \mid Quotedop_0 \mid Nmclass$	<i></i>

- A Generator instance list consists of a list of Generator instances.
- A Generator instance consists of a Generator identifier and a list of Generator actual parameters.
- A Generator identifier is an Identifier.
- A Generator actual parameter is a Term or an Quoted operator or a Name class. I.e. Sort identifiers and Operator names are Terms syntactically, like other kinds of actual parameters. Quoted operators and Name class, on the other hand, cannot form a Term on its own and are therefore specified explicit as alternatives in Genactparm₀.

53	Synonymdef ₀	::	Synonymname ₀ [Sortid ₀] [Initialvalue ₀]
54	Synonymname ₀	=	$Name_0$

- A Synonym definition consists of a Synonym name an optional Sort identifier and an optional Initial (default) value.
- A Synonym name is a Name.

55	$Nmclass_0$::	$Regularexp_0$
56	$Regularexp_0$	=	Partregexp ₀ Orregexp ₀ Andregexp ₀
57	$Orregexp_0$::	Regularexp ₀ Partregexp ₀
58	$Andregexp_0$::	Regularexp ₀ Partregexp ₀
59	$Partregexp_0$	=	Rngregexp0 Singregexp0 Parenregexp0
60	$Rngregexp_0$::	String ₀ String ₀ [Regexpexp ₀]
61	$Singregexp_0$::	$String_0 [Regexpexp_0]$
62	$Parenregexp_0$::	$Regularexp_0 [Regexpexp_0]$
63	Regexpexp ₀	=	MULT PLUS Nameo

- A Name class consists of a Regular expression.
- A Regular expression is either a Partial regular expression or an infix Or regular expression or an infix And regular expression.
- An infix Or regular expression consists of a Regular expression and a Partial regular expression.
- An infix And regular expression consists of a Regular expression and a Partial regular expression.
- A Partial Regular expression is either a Range regular expression or a single regular expression or a Parenthesis regular expression.
- A Range regular expression consists of two character Strings and an optional repetition regular expression Expression.
- A Single regular expression consists of a character string and an optional repetition regular expression Expression.

- A Parenthesis regular expression consists of a regular expression and an optional repetition regular expression.
- A repetition regular expression Expression is either a "*" or a "+" or Name.
- $64 \quad Ordering_0 \qquad \qquad :: ()$
 - Ordering contains no additional information.
- 65 $Mappingaxiom_0$:: $Valuename_0^+ Sortid_0 Literalaxiom_0^+$ 66 $Literalaxiom_0$ $= Axiom_0 \mid Mappingaxiom_0$
- 67 Spellingterm₀ :: Id₀
- A Mapping axiom consists of a list of Value names, a Sort identifier and a list of Literal axioms.
- A Literal axiom is either an Axiom or a Mapping axiom.
- A Spelling term contains an Identifier.
- $68 \quad Expr_0$

= Id₀ | Stringterm₀ | Condexpr₀ | Operatorapp₀ | Monadexpr₀ | Infixexpr₀ | Impoperator₀ | Selectexpr₀ | Tupleexpr₀

- An Expression is either an Identifier or a character String term or a Conditional expression or an Operator application or a Monadic expression or an Infix expression or an Imperative operator or a field Select expression or a structure tuple expression.
- 69 $Monadexpr_0$:: (NOT | MINUS) $Expr_0$
 - A Monadic Expression consists of one of the operators "NOT", "-" and followed by an argument Expression.
- 70 Infixexpro :: Expro Infixopo Expro
 - An Infix expression consists of two argument Expressions and an Infix operator.
- 71 Selectexpr₀ :: Expr₀ Name₀
 - A field Select expression consists of an Expression and a field Name.
- 72 $Tupleexpr_0$:: $Qualifier_0 Expr_0^+$
 - A Tuple expression contains a Qualifier and a list of Expressions.
- 73 Condexpr₀ :: Expr₀ Expr₀ Expr₀
 - A Conditional expression consists of a condition Expression, a consequence Expression and an alternative Expression.
- 74 Datadef₀ = Partialtypedef₀ | Syntypedef₀ | Sortgenerator₀ | Synonymdef₀

Fascicle X.4 – Rec. Z.100 – Annex F.2 17

- A Data definition is either a Partial type definition, a Syntype definition, a Sort generator or a Synonym definition.
- 75 $Exprlist_0 = Expr_0^*$
- An Expression list is a list of Expressions.

6 Operatorapp ₀	$:: (Expr_0)$	Qualop ₀)	$Exprlist_0$
----------------------------	---------------	-----------------------	--------------

77 Qualop₀

:: Qualifier₀ Quotedop₀

- 78 Quotedop₀ :: Infixop₀ | NOT
 - An Operator application contains an Expression or a Qualified operator and followed by an Expression list. Expression in Operatorapp can be either an Identifier (denoting an operator Identifier) or represent a (primary) as defined in §5.4.2.4 and §5.4.2.5 in Z.100.
 - A Qualified operator contains a Qualifier and a Quoted operator.
 - A Quoted operator is an Infix operator or "NOT".
- 79Assignstmt0::Variable0 Expr080Variable0=Varid0 | Indexedvar0 | Fieldvar081Indexedvar0::Variable0 Exprlist082Fieldvar0::Variable0 Name0
 - An Assignment statement contains a Variable and an Expression.
 - A Variable is either a Variable identifier or an Indexed variable or a Field variable.
 - An Indexed variable consists of a Variable and an Expression list. Note that an Indexed variable may denote a Field variable, e.g.

v(a) := ...

may (depending of the context) be another way of writing

v!a := ...

- A Field variable consists of a Variable and a field Name.
- 83 Viewexpro :: Varido Expro
 - A View expression consists of a view variable identifier and an Expression.
- 84 $Initialvalue_0 = Expr_0$
- An Initial (default) Value is an Expression.

85	Impoperator ₀	Ξ	Importexpro Viewexpro Nowexpro Activeexpro
			Parentexpro Offspringexpro Senderexpro Selfexpro
86	Nowexpr ₀	::	()
87	$Selfexpr_0$::	()
88	Parentexpr ₀	::	()
89	$Offspringexpr_0$::	()
90	Senderexpr ₀	::	()
91	$Active expr_0$::	Timerido Exprlisto

- An Imperative operator is either an Import expression, a View expression, a Now expression, a timer Active expression, a Parent expression, an Offspring expression, a Sender expression or a Self expression.
- The Now expression contains no additional information
- The Self expression contains no additional information
- The Parent expression contains no additional information
- The Offspring expression contains no additional information
- The Sender expression contains no additional information
- The timer Active expression contains a timer identifier and an Expression list

2 Internal Domains

The semantic domains define the domain of the composite object which holds some derived (context) information (attributes) required during the transformation. There is a distinction between the information attached to given entities, such as information about endpoints for channels, sort for variables, sort list for signals etc., and "common" data such as information about which scopeunit surrounds a definition list, collection of names for implicit variables etc. The two kinds of information (*Descriptordict* and *Quotdict*) are assembled into one object *Dict* such that only one extra formal parameter or one extra result is required for the functions using it or generating it respectively.

1 Dict $= Descriptordict \cup Quotdict$

The *Dict* object when given as formal parameter is conventionally named *dict* and appearing in the second argument list in the function headings.

In the following the two domains are described in detail.

2.1 Description of Descriptordict

Descriptordict is a mapping of identifiers into their descriptors.

1	Descriptordict	=	$Qual \equiv Descr$
2	Qual	=	(Qualelem Operatorgualelem Importgualelem Viewgualelem)+

Qual denotes the internal representation of AS_0 identifiers. In SDL, only AS_0 identifiers within the same entity class are unique, so in order to incorporate all identifiers in the same map, the entity class must be part of the map entries. Hence, Qual consist of a list of qualifier elements, the final qualifier element in the list being the entity class and the entity name. Operatorqualelem, Importqualelem and Viewqualelem are treated in a special way because additional information are required in order to guarantee uniqueness for those entities.

example:

A block BL in a system SYS has a Qual in Descriptordict which is

((SYSTEM, mk-Name₀("SYS", nil)), (BLOCK, mk-Name₀("BL", nil)))

A signal SIG in block BL has a Qual which is

((SYSTEM, mk-Name₀("SYS", nil)), (BLOCK, mk-Name₀("BL", nil)), (SIGNAL, mk-Name₀("SIG", nil)))

3	Qualelem		Kind (Name ₀ String ₀)
4	Kind	=	Scopeunito Entity
5	Entity	==	SIGNALROUTE CHANNEL SIGNALLIST
			GENERATOR VALUE LITERAL
6	Operator qualelem	=	OPERATOR ((Name ₀ Quotedop ₀) Sortqual ⁺ Sortqual)
7	Importqual elem	=	IMPORT (Name ₀ Sortqual)
8	View qualelem	=	VIEW Qual

A Qualelem is a pair of type of Scopeunit and name. When it appears as the final Qualelem in the list (in Qual) it denotes the entity class and entity name. A Kind which is an Entity always denotes an entity class, i.e. it always appears as the final Qualelem in a Qual. This is always the case with the special Qualelems Operatorqualelem, Importqualelem and Viewqualelem. The entity class VALUE denotes variables, synonyms and value identifiers.

The information (i.e. *Operatorqualelem*) which makes an operator unique (within the "partial data type" scopeunit) is the name $(Name_0)$ or quoted operator $(Quotedop_0)$, the argument sorts $(Sortqual^+)$ and the result sort (Sortqual).

The information (i.e. Importqualelem) which makes an imported entity unique within a scope unit is the name $(Name_0)$ of the imported entity together with its sort (Sortqual).

The information (i.e. *Viewqualelem*) which makes a viewed variable unique in a process definition is the identifier (*Qual*) of the viewed variable.

9 Descr = SystemD | BlockD | ChannelD | SignalD | TimerD | SignalrouteD | SignallistD | ProcedureD | ProcessD | SortD | SyntypeD | GeneratorD | SynD | VarD | ImportD | ViewD | LiteralD | OperatorD | ValueidD |

A Descr in the Descriptordict is a descriptor of either a system (or the outermost level), a block, a channel, a signal, a timer, a signal route, a signal list, a procedure, a process, a sort, a syntype, a generator, a synonym, a variable, an import variable, a view variable, a literal, an operator, an axiom variable (a value identifier), a service, a block substructure, a channel substructure or a recursive descriptor.

The following Meta-IV assertion on the relation between Quals and their associated Descr in Dict always applies:

```
is-consistent-Dict(dict) \triangleq
```

```
(\forall qual \in \mathbf{dom} \ dict)
 1
 2
      ((let (kind,) = qual[len qual]) in
 3
         cases kind:
 4
          (SYSTEM
 5
              \rightarrow is-SystemD(dict(qual)),
 6
           BLOCK
 7
              \rightarrow is-BlockD(dict(qual)),
 8
           CHANNEL
 9
              \rightarrow is-ChannelD(dict(qual)),
10
           SIGNAL
              \rightarrow is-SignalD(dict(qual)) \lor is-TimerD(dict(qual)),
11
12
           SIGNALROUTE
13
              \rightarrow is-SignalrouteD(dict(qual)),
14
           SIGNALLIST
15
              \rightarrow is-SignallistD(dict(qual)) \lor is-ErrorD(dict(qual)),
16
           PROCEDURE
17
              \rightarrow is-ProcedureD(dict(qual)),
18
           PROCESS
19
              \rightarrow is-ProcessD(dict(qual)),
20
           TYPE
21
             \rightarrow is-SortD(dict(qual)) \lor is-SyntypeD(dict(qual)),
22
           VALUE
23
             \rightarrow is-VarD(dict(qual)) \lor is-SynD(dict(qual)) \lor
24
                is-ValueidD(dict(qual)) \lor is-ErrorD(dict(qual)),
25
           GENERATOR
26
              \rightarrow is-GeneratorD(dict(qual)) \lor is-ErrorD(dict(qual)),
27
           SUBSTRUCTURE
28
              \rightarrow is-BlocksubD(dict(qual)) \lor is-ChannelsubD(dict(qual)),
29
           LITERAL
30
              \rightarrow is-LiteralD(dict(qual)),
31
           SERVICE
32
              \rightarrow is-ServiceD(dict(qual)),
33
           OPERATOR
34
              \rightarrow is-OperatorD(dict(qual)),
35
           IMPORT
             \rightarrow is-ImportD(dict(qual)),
36
37
           VIEW
38
             \rightarrow is-ViewD(dict(qual)))))
```

 $\mathbf{type}: \quad Dict \to Bool$

22

The above function is specified for explanatory reasons only.

(2.1.1)

10	System D	:: ()
11	BlocksubD	:: ()

SystemD is a descriptor of the system level.

BlocksubD is a descriptor of a block substructure. These descriptors are only present because the system level and block sub-structures are scopeunits defining entities, and therefore these names are used in the qualifiers in identifiers. (All fully specified qualifiers can be found in the domain of *Dict* as scopeunits.)

12	ChannelsubD	::	Blockqual
		••	

ChannelsubD is a descriptor of a channel substructure.

Blockqual In AS₁, a channel substructure is represented as the block substructure of a synthetic block definition. Blockqual represents the identifier of this block substructure. Each time an AS₀ identifier referencing a channel substructure in its qualifying part is used, the qualifier is modified in accordance with Blockqual.

13	ServiceD	::	Transition ₀ Statedict Labeldict	Valid input set	Priinputset
14	Priinputset	=	Signal qual-set		

ServiceD Is a descriptor of an SDL service.

$Transition_0$	Is the initial transition taken from Body of the Service definition.
Statedict, Labeldict	Is Statedict and Labeldict for the service. (See the description of Quot- dict).
Validin putset	The complete valid input signal set for the service (including timers).
Priinputset	The set of priority input signals for the service.

15	BlockD	::	Exportchannels Importchannels Explicitroutes BlockconnectionD
16	Export channels	=	ExpimpchanD
17	Import channels	=	ExpimpchanD
18	ExpimpchanD	=	Nameclosure $D \implies (Otherend Channame_0)^*$
19	Otherend	=	$Blockqual \mid ENV$
20	Explicit routes	=	Bool
21	Block connection D	=	Channelqual \Rightarrow Qual-set
22	Channel qual	=	Qual

BlockD is a descriptor of a block.

Exportchannels	Contains information about the implicit channels leading to and from the block because of export variables in the processes contained in the block.					
Importchannels	Contains information of the implicit channels leading to and from the block because of import variables in the processes contained in the block. For the implicit channels contained in <i>importchannels</i> the information is deduced from <i>Exportchannels</i> occurring in other block descriptors.					
ExpimpchanD	Is a map of the import - export closures (see the domain definition of <i>NameclosureD</i>) into the other endpoint of the channel (<i>Otherend</i>) and the bidirectional channel which is attached to the closure. The first					
		signal list in the channel contains the signal xtQUERY and the second signal list in the channel contains the signal xtREPLY. True if explicit signal routes are specified for the block. <i>Explicitroutes</i> is used for deriving the complete valid input signal set for the contained processes.				
--------------------	-------------	--	--	--	--	--
Expl	icitroutes					
Block connection D		Is the relation between the channels and the signal routes connected to the channel. <i>BlockconnectionD</i> is used for replacing channel identifiers by signal route identifiers in VIA constructs of the enclosed processes and for replacing channel identifiers having a sub-structure by the ap- propriate new channel identifiers in connections.				
Char	ınelqual	Is the Qual of a channel.				
23	ChannelD	:: Endpoint Endpoint Signalqual-set Signalqual-set [Newchannels]				
24	Endpoint	= Blockqual ENV				
25	Signalqual	= Qual				
26	Blockqual	= Qual				
27	Newchannels	= Endpoint Channame ₀ Endpoint Channame ₀				

ChannelD is a descriptor of a channel.

Endpoint	Is an endpoint which is either a block identifier or the environment.				
Signalqual-set	Is the complete set of signal identifiers conveyed from Origin to Desti- nation. In the case of a bidirectional channel, another set of signals is present, denoting the signals conveyed from the second Endpoint block to the first Endpoint block.				
Newchannels	If the channel contains a channel substructure, the channel is repre- sented by two channels in AS_1 . Newchannels contains the names and originating endpoints of those two channels and the information is used when an old channel identifier is to be replaced by a new channel iden- tifier in a VIA set.				
28 SignalD 29 Sortqual	:: Sortqual* Signalqual-set Signalqual-set = Qual				

SignalD is a descriptor of a signal.

Sortqual*	is the sorts of values conveyed by the signal.	
Signalqual-set	The two sets of sub-signals, the first one being the signals leading in the same direction as the parent signal, and the second one being the signals leading in the opposite direction.	
30 TimerD	:: Sortqual* Newqual	

TimerD is a descriptor of a timer.

Sortqual* is the sorts of the values conveyed by the timer.

Newqual Denotes the identifier to be used for AS_1 . Its name in Newqual has changed if the timer is defined in a service.

24 Fascicle X.4 – Rec. Z.100 – Annex F.2

31	Signal route D	::	Originprocess Destinationprocess
	•		Signalqual-set Signalqual-set
32	Originprocess	=	Processqual ENV
33	Destination process	=	Processqual ENV

SignalrouteD is a descriptor of a signal route.

Originprocess	Is the originating endpoint which is either a process identifier or the environment.
Destinationprocess	Is the terminating endpoint which is either a process identifier or the environment.
Signalqual-set	Is the set of signal identifiers conveyed from Origin to Destination. In the case of a bidirectional signal route, another set of signals is present, denoting the signals conveyed from Destination process to Origin pro- cess.

34 SignallistD :: Signallist₀

A SignallistD is a descriptor of a signallist. It contains the list of AS_0 signal identifiers (and signal list identifiers) attached to the signal list.

35	ProcedureD	::	FormparmD [*] Newqual
3 6	Form parm D	=	InDescr InoutDescr
37	InDescr	• •	Sortqual
38	InoutDescr	::	Sortqual
39	Newqual	=	Qual

ProcedureD is a descriptor of a procedure.

FormparmD^{*} A list of special descriptors used when the procedure is invoked, to check for sort compability of the actual parameters, i.e. the descriptors contain the properties of the corresponding formal parameters.

InDescr	An IN variable parameter.
InoutDescr	An IN/OUT variable parameter.
Newqual	Denotes the identifier to be used in AS_1 . Its name in <i>Newqual</i> has changed if the procedure is defined in a service.

40	ProcessD	::	ParameterD* Validinputset Outputset ProcessconnectionD
41	Valid inputs et	=	Signalqual-set
42	Outputset	=	Signal qual-set
43	ParameterD	=	Sortqual
44	Process connection D	=	$Qual \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

ProcessD is a descriptor of a process.

ParameterD*	A list of descriptors used when the process is created, to check for sort compability of the actual parameters, i.e. the descriptors contain the sorts of the corresponding formal parameters.
Signalqual-set	The sets of valid input signals and valid output signals respectively (the valid output signals are deduced from the process graph).

 $\mathbf{25}$

ProcessconnectionD Is the relation between signal routes and service signal routes for the process. If no service signal routes are specified then the map is empty. It is used for checking of VIA in services.

45	SortD	::	Equations ₁ [Parentqual] [Expression ₁] Newqual
46	Parentqual	=	Sortqual

SortD is a descriptor of a partial type definition. (newtype).

$Equations_1$	The AS_1 Equations ₁ defined for the sort. These equations are used when another sort inherits from this sort.
Parentqual	The parent sort of the sort. If <i>Parentqual</i> is nil , the sort has no parent. <i>Parentqual</i> is used for checking the recursiveness of sort definitions.
$Expression_1$	Is the optional AS_1 expression corresponding to the optional initial variable value which can be specified in the partial sort definition.
Newqual	Denotes the identifier to be used in AS_1 . Its name in <i>Newqual</i> has changed if the partial data type is defined in a service.
47 SyntypeD	:: Parentqual Newqual [Expression1] Range-condition1

SyntypeD is a descriptor of a syntype.

Parentqual	Is the parent sort, i.e. if the parent specified in AS_0 is a syntype, it is the parent of that syntype.
Newqual	Denotes the identifier to be used in AS_1 . Its name in Newqual has changed if the syntype is defined in a service.
$Expression_1$	Is the optional AS_1 expression corresponding to the optional initial variable value which can be specified in the syntype definition
$Range$ -condition $_1$	Is the AS_1 range condition which is used for generating default assignment for syntype variables.

48 Generator D :: Genparm₀⁺ Properties₀

GeneratorD is a descriptor of a data sort generator.

$Genparm_0^+$	The AS_0 list of formal parameters taken from the generator heading.
$Properties_0$	The AS_0 body of the generator.

49 SynD :: Sortqual Expro

SynD is a descriptor of a synonym.

Sortqual	The sort of the synonym. If the sort in AS_0 is absent, Sortqual is derived
-	from the sort of the expression contained in the synonym definition.
$Expr_0$	The AS_0 synonym expression.

50 VarD :: Sortqual [REVEALED] [EXPORTED] [Expression_1] Newqual

VarD is a descriptor of a variable

26 Fascicle X.4 – Rec. Z.100 – Annex F.2

Sortqual	The sort of the variable
REVEALED	The optional REVEALED attribute as in AS_0
EXPORTED	The optional EXPORTED attribute as in AS_0
$[Expression_1]$	The \mathbf{AS}_1 version of the optional initial expression specified when the variable is defined
Newqual	The Qual to be used in AS_1 . Its name in Newqual is different from the original name if the variable is defined in a service.
51 ImportD	:: Sortqual

ImportD is a descriptor of an import variable, containing the sort of the import variable.

52 ViewD :: Qual

ViewD is a descriptor of an view variable, containing the Qual of the corresponding revealed variable.

.

53	LiteralD	::	Result
54	Result		Sortqual

LiteralD is a descriptor of an literal containing the sort of the literal.

55	OperatorD	::	Sortqual ⁺	Result	Newqual	Explicit
56	Explicit	=	Bool			

OperatorD is a descriptor of an operator.

Sortqual ⁺	the list of sort identifiers corresponding to the operator arguments
Result	the sort identifier corresponding to the result.
Newqual	The unique operator identifier used in AS ₁
Explicit	This flag is false if the operator is implicitly inherited from another sort.
57 ValueidD	:: Mapvalue Sortqual-set Explicit

58 Mapvalue = [Qual]

ValueidD is a descriptor of an axiom variable (a value identifier).

Mapvalue	If the identifier is introduced by literal quantification, the descriptor contains the current literal value. In the quantified axioms, the value identifier is replaced by this literal value.
Sortqual-set	The set of sort <i>Quals</i> which at any specific time are legal for the value identifier. If the value identifier is introduced by explicit quantification then the set contains only one sort.
Explicit	A flag indicating whether the value identifier is introduced by explicit quantification.

59 ErrorD :: ()

ErrorD is used for detecting recursive definitions of synonyms, signal lists and generators. During evaluation of the definitions of these constructs, their descriptors are replaced by a *ErrorD* such that any use inside their own definitions can be detected. It is also used for masking out synonyms which cannot be used in simple expressions of select definitions.

2.2 Description of Quotdict

The following entries contain some auxiliary information which only for practical reasons (in order to reduce the number of parameters and results of the Meta IV functions) are included in the *Dict* domain.

1	Quotdict	= SCOPEUNIT $\Rightarrow Qual \cup$ GLOBALNAMES $\Rightarrow Globalnames \cup$ LABELDICT $\Rightarrow Labeldict \cup$ STATEDICT $\Rightarrow Statedict \cup$ OUTSIGNALS $\Rightarrow Signalqual$ -set \cup
		DATATYPEDEF \implies Data-type-definition ₁ \cup SEDVICES \implies (Statetype on Serviceture)
		SERVICES $= (StateLuptemap ServiceLupte) \cup$
		$[MPORTLIST \Rightarrow (Name_o Oual [Ernr_o])^*$
2	Globalnames	= Emptygid Formuniquenm Formuniquenm
3	Labeldict	$= Labelo \implies Transition_0$
4	Statedict	= $Statename_0 \implies (StateD \mid ContenablestateD)$
5	StateD	:: Speclist [Importstateinf]
6	Import state in	$= [Statename_0] [Graph-node_1 Decision-node_1]$
7	Contenablesta	eD :: Transition ₀
8	State tup lemap	= $Statename_0^+ \implies Statename_0$
9	Servicetuple	= Servicequal*
10	Speclist	$= Spec^*$
11	Spec	= Qual Statespec ₀
12	Service qual	= Qual
13	Empty qid	= Qual
14	Formuniquent	$n = Name_0$
sco	PEUNIT	Contains the Qual denoting the current level, i.e. Qual denotes the
		identifier of the enclosing scopeunit.
GLO	BALNAMES	Contains a descriptor <i>Globalnames</i> containing names of objects which are required for the transformation of enabling condition and continuous signal.
	emptyqid	The signal which is send by processes to themselves in continuous signals and enabling conditions. Declared in AS_1 at the system level.
	formuniquenm	The names of the two variables used in continuous signals. The first one is updated at each entry to a continuous signal state and its new value is send with the <i>emptyqid</i> signal thus forming a new

LABELDICT Labeldict holds information of any labels (connector names) used in a process, procedure or service body. It is constructed before the actual transformation of the body takes place and it contains the Transition₀s which follows given labels (in connectors).

unique value each time. The second one holds the value received

by the *emptyqid* signal. Declared in AS_1 in every process.

STATEDICT	Statedict contains the states of a body. The transformation of the state is based on Statedict. If the state descriptor is a Contenablestate then it denotes a state which contains continuous signal or enablin condition. Such states have no explicit representation in AS_1 (they are represented by a number of synthetic states). The nextstate node replaced by the transition string leading to the synthetic states.					
	If the state descriptor is a <i>StateD</i> it denotes a state which has an AS_1 representation. It contains:					
Speclist	A list of input descriptors for the state. Each input descriptor (<i>Spec</i>) contains:					
Qual Statespeco	A Qualifier denoting the context in which the subsequent tran- sition should be evaluated. As services are merged into a sin- gle Statedict before the state bodies are transformed into AS_1 , the Qual differs for the various Specs if the Statedict originated from a service decomposition. In other cases Qual denotes the identifier of the enclosing process or procedure. The AS_0 input node.					
Importstateinf	If the state is an implicit state originating from an import expression then Importstate inf is present. It contains the name of the previous state (Statename ₀) such that nextstate nodes with a dash following the import expression can be properly substituted. If it is nil then the import expression originates from an initial transition. It also contains the AS ₁ node wherein the expression containing the import expression occurred. If the expression contained more than one import expression only one of the import state descriptors contains such a node (the others are nil). As opposed to normal states, Statedict descriptors for import states are constructed while the states is transformed.					
OUTSIGNALS	Contains a set of signal. It is used for deducing the output signals from the process body.					
DATATYPEDEF	Contains the AS_1 Data-type-definition ₁ associated to every scope unit. When a partial type definition is encounted, Data-type-definition ₁ is updated with the new sort, operators and equations.					
SERVICES	This information is used during the transformation of a <i>Statedict</i> formed from a service decomposition. All services are ordered in a tuple <i>Ser-</i> <i>vicetuple</i> which in conjunction with <i>Statetuplemap</i> is used for associat- ing unique AS_1 state names with the old state names occurring in the various services.					
IMPLIED	A set of pairs of variable sort and implicit variable name, collected during the transformation of a process definition. I.e. during transfor- mation of axioms, the implicit quantification names are collected and during the transformation of actions, the implicit import variable names are collected. Note that the NameclosureD is not related conceptually to the NameclosureD occurring in Exportmap although they are the same domain.					
IMPORTLIST	same domain. During transformation of an expression, information is collected about the import expressions occurring in the expression. In the resultin AS_1 expression, the import expression is replaced by a new implice name. After the transformation, a number of states (one for each in port expression) are generated (and added to <i>Statedict</i>). The transition following a new state are generated from the action in which the expres- sion was used, the implicit name (<i>Name</i> ₀), the identifier of the import variable (Qual) and the optional Pid expression used in the import ex- pression (<i>Expr</i> ₀). The length of the tuple denoted by IMPORTLIS equals the number of import expressions occurring in the construct.					

29

ندر ندر

.

2.3 Other Domains

1	$Decl_1$	=	Block-definition1 Channel-definition1
			Signal-definition ₁ Signal-route-definition ₁
			Procedure-definition1 Process-definition1
			Signal-route-definition ₁ Syn-type-definition ₁
			$Data-type-definition_1 \mid Variable-definition_1 \mid$
			View-definition ₁ $Timer$ -definition ₁
2	Context	=	CONSTANT AXIOMS MAPPING EXPRESSION

These domains (synonyms) are introduced in order to avoid cumbersome repetitions in the function type specifications:

Decl ₁	A shorthand	for	denoting	an	AS_1	definition	which	many	"definition
	transforming"	' fun	ctions de	live	rs as	result.			

- Context A shorthand for denoting the possible contexts in which expressions are transformed. The context can either be constant (as for instance in the transformation of answers), axioms, the mapping section of the axioms or any other case.
 - 3 Processqual = Qual 4 Operatorgual = Qual

These domain names are used in some places for indicating that in the given context the *Qual* (identifier) is of a specific type (i.e. process or operator).

5 External-Information = ...

External-Information contains the additional information required to give semantics to SDL. This information is brought in from the outside and it is therefore given as parameter to *definition-of-SDL* (together with the system definition and the predefined sorts). As SDL does not define how the information is structured (say actual generic parameters), the Meta-IV functions which uses *External-Information* are informally defined.

External-Information contains the following.

- Information about actual generic parameters (the corresponding formal parameters are the external synonyms and the informal texts in the option node).
- Information about actual subset parameters to indicate which consistent subset should be selected, i.e. the set of *Block-identifier*₁s is deduced from *External-Information* (see *definition-of-SDL* and *select-consistent-subset*).
- Information about the indeterministic delay in channels (i.e. a "random" function).
- Information about the start time and the time unit (used in modelling absolute time).

6	Auxiliary - Information	=	Time-information Term-Information Is-expiredF DelayF
7	Time - information	=	$(Ground-term_1 \rightarrow Ground-term_1) Ground-term_1$
8	Term - Information	=	Sort-identifier ₁ Literal-operator-identifier ₁
			Literal-operator-identifier ₁ $Literal$ -operator-identifier ₁
9	Is-expiredF	=	$Ground$ -term ₁ $Ground$ -term ₁ \rightarrow $Bool$
10	DelayF	=	$() \Rightarrow Bool$

Auxiliary-Information contains some information which, apart from a $System-definition_1$ and a consistent subset, is required for interpretation. Auxiliary-Information is constructed

30 Fascicle X.4 – Rec. Z.100 – Annex F.2

in the Static Semantics and given as parameter to the system processor when it is started (see the function definition-of-SDL). Auxiliary-Information consist of

Time-information The function in Time-information is used in the Dynamic Semantics for updating the current time. Given an AS_1 literal of the TIME sort it returns another literal of the time sort. In addition, Time-information contains the Ground-term₁ denoting the initial time which is defined outside the SDL system (i.e. it is derived from External-Information).

Term-Information AS₁ contains no information about spelling of identifiers. However, four AS₁ identifiers must be known (i.e. distinguished) in the Dynamic Semantics. These identifiers are PID, NULL, TRUE and FALSE. Terminformation denotes these identifiers and they are constructed in the Static Semantics.

Is-expiredF This function is constructed in the Static Semantics and used in the Dynamic Semantics for testing on whether a given timer has expired. Given two AS₁ literals of the time sort, **true** is returned if the value of the first parameter is greater than or equal to the second parameter.

DelayF

This function is used for modelling the indeterministic delay in channels (see the *path* processor in Annex F.3). The function is derived from *External-Information* and it has an imperative nature implying that it may depend on some external physical parameters.

3 Transformation of AS₀ into AS₁

3.1 Main Functions

This section contains the two functions:

definition-of-SDL	Which is the outermost function invoked from the outside. When given an SDL system (in AS_0 form) as parameters it defines the semantics (static and dynamic) of the system. It also forms the link between the static- and dynamic semantics.
transform-system	Which is the entry function for the static semantics. When given an SDL system (in AS_0 form) as parameter, it returns a specification on the SDL abstract syntax form (AS_1 form) if the AS_0 form is statically correct (well-formed).

definition - of -SDL(extparms, systemdef, predefsorts) \triangleq

```
1 (let (as_1, auxinf) = transform-system(systemdef, predefsorts, extparms) in
```

- 2 if $as_1 = nil$ then
- 3 undefined
- 4 else
- 5 (let $subsetcut = select-consistent-subset(as_1, extparms)$ in
- 6 **start** system(as₁, subsetcut, auxinf)))

type: External-Information Sys₀ Datadef₀⁺ \Rightarrow

Objective Define the properties of SDL

Parameters

extparms	Some External-Information (see section 2.3).
systemdef	The AS ₀ -tree representing the SDL system
predefsorts	The predefined data in AS ₀ form.

Algorithm

Line 1	Transform the system into the abstract syntax form $(AS_1 \text{ form})$.
Line 2	If static errors are found (i.e. if no AS_1 representation could be derived) then the behavior is not defined
Line 4	If no static errors are found then
Line 5	Select the set of Block-identifier1s denoting the consistent subset
Line 6	Create a system instance, i.e. create a Meta-IV process which behaves like the underlying system.

(3.1.1)

transform-system(genericsystem, predefdatasorts, extparms) \triangleq

(let mk-Sys₀(sysdef, refdeflist) = apply-generic-parameters(genericsystem, extparms) in 2 let mk-Sysdef₀(snm, decllist, tnm) = sysdef in 3 let $(as_0 global, global entities) = as_0 - global - entities()$ in 4 let $as_1 datadef = mk-Data-type-definition_1(name-to-name_1(create-unique-name()), {}, {}, {}, {}, {})$ in (trap exit with (nil, nil) in 5 6 $(let d = [\langle (SYSTEM, snm) \rangle \mapsto mk-SystemD(),$ 7 SCOPEUNIT $\mapsto \langle (\mathsf{SYSTEM}, snm) \rangle,$ 8 **GLOBALNAMES** \mapsto globalentities, 9 DATATYPEDEF $\mapsto as_1 datadef$ in 10 let decllist' = replace-references(decllist, refdeflist)(((SYSTEM, snm))) in let predefdict be s.t. (, predefdict) = transform-decllist(predefdatasorts)(predefdict + d) in 11 let $decllist'' = remove-select(decllist', {})(predefdict)$ in 1**2** 13 if $(\exists fulldict \in Dict)$ 14 ((trap exit with false in $(let (dict) = transform-decllist(decllist'' \frown (as_0 global) \frown predefdatasorts)(fulldict + d)$ in 15 16 fulldict = dict)) then 17 $(let (as_1 dcl, dict) be s.t. (as_1 dcl, dict) =$ transform-decllist(decllist'' $\land \langle as_0 global \rangle \land predefdatasorts)(dict + d)$ in 18 let $as_1 = make-as_1 tree(SYSTEM, snm, as_1 dcl, nil, nil, nil)(dict)$ in 19 let auxinf = generate-auxiliary-information(extparms)(dict) in 20 21 $(tnm \notin \{snm, nil\}$ \rightarrow exit("§2.2.2: Ending name in system definition is different from defining name"), 22 $\neg (\exists b \in elems \ decllist')(is - Blockdef_0(b))$ 23 24 → exit("§2.4.2: System definition must contain at least one block"), 25 $T \rightarrow (as_1, auxinf)))$ 26 else 27 (nil, nil))))

type: Sys_0 Datadef₀⁺ External-Information \rightarrow [System-definition₁] [Auxiliary-Information]

Objective	Transform	an	\mathbf{SDL}	system	in	$\mathbf{AS_0}$	\mathbf{form}	into	\mathbf{the}	corresponding	AS_1
	form.										

Parameters

1

genericsystem	A generic system definition
predefdatasort	A list of predefined data also in AS_0 form
ext parameters	The external information (see section 2.3)

Result The AS₁ system definition and some information to be used in Annex F.3. If the system definition is not well-formed, nil is returned for both results

Algorithm

Line 1	Transform the generic system definition into a concrete system definition by supplying an expression to every external synonym defined in the system and by transforming every informal text in the option answers into an AS_0 Conditionlist ₀ . SDL does not define how to make these transformations.
Line 2	Let <i>snm</i> denote the system name, <i>decllist</i> denote the definition list and <i>tnm</i> denote the tailing name
Line 3	Construct the AS_0 definition and the <i>Globalnames</i> descriptor (see <i>Quotdict</i>) corresponding to the global emptyq signal.
Line 4	Construct the initial $Data-type-definition_1$ for the system scopeunit. When through the definition list (line 17) it contains information about all partial data types defined at the system level.
Line 5	If <i>transform-decllist</i> or any of the other functions are trapped, the specification is not well-formed.

Line 6-9	Construct an initial Dict consisting of the system descriptor, the
	SCOPEUNIT entry indicating the system level, the global names
	and the current $Data$ -type-definition ₁ .

Line 10 Insert all the remote definitions (refdeflist) in the definition list of the system. The new definition list (decllist') contains no references

- Line 11 Transform the predefined data in order to construct the Dict consisting of the predefined data sorts only. The result is only used during the removal of SELECT statements (line 12), i.e. the predefined sorts are elsewhere treated as ordinary definitions as shown in line 17. It reads : Let predefdict) be such that one of the results (the other result is the AS₁ definitions which are not used here) of transforming the predefined sorts in the scope of predefdict (i.e. with semantic information of all predefined sorts) is predefdict itself. Such a Dict do always exist as the predefined sorts are assumed well-formed.
- Line 12 Remove all the SELECT statements from the system. Since option nodes does not contain any definitions they can be removed "on the fly" when appropriate.
- Line 13-16 If there exist a Dict (fulldict) such that transformation of decllist" in the scope of fulldict can be made without causing any errors (i.e. no application of exit in transform-decllist) and such that the result is fulldict itself, then decllist" is well-formed.
- Line 17 If so, then transform decllist'' in the scope of such a Dict. The other result $(as_1 dcl)$ is the set of AS₁ definitions. This way of using Dict is essential in the modelling and the following should therefore be noted:
 - It is used in order to overcome the problem that names in SDL may be referred before they are defined textually.
 - The Meta-IV functions which transform definitions have the full *Dict* available (all descriptors). For instance, *transformblockdef* returns a *Block-definition*₁ and a *Dict* descriptor for the block, even though the block descriptor already is contained in the *Dict* given as parameter to the function. The *Dict* given as parameter is used for accessing properties of entities used by the block, but the block descriptor itself in the *Dict* parameter cannot be used (otherwise it cannot be guaranteed that a *Dict* solution exists for well-formed specifications, which means that the Meta-IV specification might be invalid).
 - During the transformation of the definitions the returned descriptors are joined and eventually (when all definitions have been transformed) the result of *transform-decllist* is the same as the parameter.
 - dict in line 17 is a Descriptordict only. There are no contributions from Quotdict in the resulting Dict.
 - Line 11 and line 17 in *transform-system* are the only places in the complete Formal Definition where the **be such that** construct have been used in such a far-reaching way.
- Line 19 Construct the System-definition₁
- Line 20 Generate the Auxiliary-Information to be used during interpretation
- Line 21 If the tailing name is specified then it must be equal to the system name.
- Line 23 There must be at least one block definition in the system.
- Line 25 Return the AS_1 representation of the system and the auxiliary information

 as_0 -global-entities() \triangleq

- 1 (let emptyqnm = create-unique-name()),
- 2 formunique1 = create-unique-name(),
- 3 formunique2 = create-unique-name() in
- 4 let $emptyqid = mk-Id_0(\langle \rangle, emptyqnm)$ in
- 5 let globalnames = (emptyqid, formunique1, formunique2) in
- 6 let $intgid = mk Id_0(\langle \rangle, mk Name_0("INTEGER", nil))$ in
- 7 let $as_0 def = \mathbf{mk} \cdot Sigdef_0(\langle \mathbf{mk} \cdot Sigelem_0(emptyqnm, \langle intgid \rangle, \mathbf{nil}) \rangle)$ in
- 8 $(as_0 def, globalnames))$

type: () \rightarrow Sigdef₀ Globalnames

Objective

Construct a global AS_0 definition to be placed on the system level and construct the *Globalnames* closure (see the definition of *Quotdict*) which is of general use during the transformation. The AS_0 definition defines the emptyq signal used in enabling condition and continuous signal

Algorithm

Line 1	Create a unique name for the emptyq signal.
Line 2-3	Create unique names for the two variables used in connection with continuous signal. In every process, these two variables are defined.
Line 4	Construct an AS_0 identifier for the emptyq signal.
Line 5	Construct the Globalnames closure.
Line 6	Construct an AS_0 identifier for the integer sort.
Line 7	Construct the AS_0 definition for the emptyq signal.
Line 8	Return the AS ₀ definition and the Globalnames closure

3.2 **Replacing Definition References**

In this section, references are replaced by remote definitions. The entry function *replace-references* takes as argument the definitions from the system level and a list of remote definitions. The result is a definition list containing no references.

```
replace-references(deflist, remotelist)(scopeunit) \triangleq
```

```
1
      if (\forall i1, i2 \in ind remotelist)
 2
           (i1 \neq i2 \land
 3
             cases (remotelist[i1], remotelist[i2]):
 4
              ((\mathbf{mk}-Blockdef_0(\mathbf{mk}-Id_0(q1, nm1), , ), \mathbf{mk}-Blockdef_0(\mathbf{mk}-Id_0(q2, nm2), , ))),
 5
               (mk-Prdef_0(mk-Id_0(q1, nm1), ..., .), mk-Prdef_0(mk-Id_0(q2, nm2), ..., .)),
               (\mathbf{mk}-Procdef_0(\mathbf{mk}-Id_0(q1,nm1),,,,),\mathbf{mk}-Procdef_0(\mathbf{mk}-Id_0(q2,nm2),,,,)),
 6
 7
               (\mathbf{mk}\text{-}Servicedef_0(\mathbf{mk}\text{-}Id_0(q1, nm1), , , , ), \mathbf{mk}\text{-}Servicedef_0(\mathbf{mk}\text{-}Id_0(q2, nm2), , , , )),
 8
               (\mathbf{mk}-Chansubdef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q1, nm1), ), \mathbf{mk}-Chansubdef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q2, nm2), ))
                  \rightarrow nm1 = nm2 \supset (q1 \neq q2 \land q1 \neq \langle \rangle \land q2 \neq \langle \rangle),
 9
10
               T \rightarrow true) then
         (let (deflist', remoteset) = remove-references(deflist, elems remotelist, false)(scopeunit) in
11
12
           if remoteset = \{\} then
13
              deflist'
14
             else
15
              exit("§2.4.1: Remote definition is not referenced in the system definition"))
16
         else
17
         exit("§2.4.1: Remote definitions are not unique")
```

type: $Decl_0^+ Decl_0^* \rightarrow Qual \rightarrow Decl_0^+$

Objective Replace all references in the system by remote definitions

35

(3.2.1)

Parameters

deflist remotelist	The list of definitions for the system level. The list of remote definitions.				
Result	The definition list of the system level containing no references.				
Algorithm					
Line 1-10	For every two different remote block definitions, process definitions, procedure definitions, service definitions or substructure definitions it must hold that if they have the same name in their identifier then their qualifiers must be distinct and non-empty.				
Line 11-15	Replace the references by their definitions. The resulting list is $deflist'$. No remote definitions may be left when all references have been replaced.				

 $remove-references(dlist, remoteset, chansub)(unit) \triangleq$

1	if $dlist = \langle \rangle$ then
2	$(\langle\rangle, remoteset)$
3	else
4	(let match-id(nm, id) = s-Name ₀ (id) = nm \land s-Qualifier ₀ (id) $\in \{\langle\rangle, unit\}$ in
5	cases hd dlist:
6	$(\mathbf{mk}-Blockref_0(name))$
7	\rightarrow if $(\exists blkdef \in remoteset)$ (is-Blockdef ₀ (blkdef) \land match-id(name, s-Blockid ₀ (blkdef))) then
8	(let $blkdef \in remoteset$ be s.t. is- $Blockdef_0(blkdef) \land match \cdot id(name, s - Blockid_0(blkdef))$ in
9	let mk -Blockdef ₀ (bid, decll, sub, tid) = blkdef in
10	if $tid \notin \{nil, bid\}$ then
11	exit("§2.4.1: Ending and starting identifier in the definition are different")
12	else
13	$(let \ blkdef' =$
14	mk -Blockdef ₀ (mk -Id ₀ ($\langle \rangle$, name), decll, sub, mk -Id ₀ ($\langle \rangle$, name)) in
15	$remove-references(\langle blkdef' \rangle \frown tl dlist, remoteset \setminus \{blkdef\}, chansub)(unit)))$
16	else
17	exit("§2.4.1: No remote definition matches reference"),
18	mk-Prref ₀ (name, inst)
19	$\rightarrow \mathbf{if} (\exists prdef \in remoteset) (\mathbf{is} \textit{-} Prdef_0(prdef) \land match \textit{-} id(name, \mathbf{s} \textit{-} Prid_0(prdef))) \mathbf{then}$
20	$(\texttt{let} \ prdef \in remoteset \ \texttt{be s.t. is} \ Prdef_0(prdef) \land match \ id(name, \texttt{s} \ Prid_0(prdef))) \ \texttt{in}$
21	let mk -Prdef ₀ (pid, inst', b, d, e, f, tid) = prdef in
22	let $inst'' = select$ -remote-number-of-instances $(inst, inst')$ in
23	if $tid \notin \{nil, pid\}$ then
24	exit("§2.4.1: Ending and starting identifier in the definition are different")
25	else
26	$(let \ prdef' =$
27	$\mathbf{mk} ext{-}Prdef_0(\mathbf{mk} ext{-}Id_0(\langle angle, name), inst'', b, d, e, f, \mathbf{mk} ext{-}Id_0(\langle angle, name))$ in
28	$remove$ -references $(\langle prdef' angle \frown {tl}\ dlist,\ remoteset \setminus \{prdef\},\ chansub)(unit)))$
29	else
30	exit("§2.4.1: No remote definition matches reference"),
31	mk-Procref ₀ (name)
32	$\rightarrow \mathbf{if} (\exists procdef \in remoteset) (\mathbf{is} \cdot Procdef_0(procdef) \land match \cdot id(name, \mathbf{s} \cdot Procid_0(procdef))) \mathbf{then}$
33	(let procdef \in remoteset be s.t. is $Procdef_0(procdef) \land match \cdot id(name, s \cdot Procid_0(procdef))$ in
34	let mk-Procdef ₀ (pid, parm, decll, body, tid) = procdef in
35	if $tid \notin \{nil, pid\}$ then
36	exit("§2.4.1: Ending and starting identifier in the definition are different")
37	else
38	(let procdef' =
39	\mathbf{mk} -Procdef ₀ (\mathbf{mk} -Id ₀ ($\langle \rangle, name$), parm, decll, body, \mathbf{mk} -Id ₀ ($\langle \rangle, name$)) in
40	remove-references((procaef)) ' i alist, remoteset \ {procaef}, chansub)(unit)))
41	else $\frac{1}{2}$
42	exit($\frac{3}{2}$.4.1: No remote definition matches reference),
40	mk-Servicerejo(name)
44	\rightarrow II (\exists serviceaef \in remoteset)(Is-Serviceaef ₀ (serviceaef)) \land
40 16	(let conviced of C non-start has the Serviced of (conviced of))) then
40	(let serviceaej \in remoteset be s.t. is-Serviceaej ₀ (serviceaej)/(
41	match-ra(name, s-Serviceid_(serviceid=)) in let rely Serviceid_(serviceid=) = convicted fin
40	let Int . Service $\operatorname{aej}_0(\operatorname{sia}, a, b, a, \operatorname{iia}) = \operatorname{service} \operatorname{aej}_1$ in if aej_1 and then
49 50	If $ta \notin \{111, sta\}$ then out: ("\$2.4.1. Ending and starting identifies in the definition are different")
5U 51	exit(32.4.1: Ending and starting identifier in the definition are different)
52	(let conviced of -
52 53	(net serviceue) - me Serviceue) - me Serviceue (me Id. (/\ name)) a h d me Id. (/\ name)) in
5J	$\lim_{n \to n} \frac{1}{n} = \frac{1}{n} $
07 55	ennove-rejerences((serviceaej / Gaussi, remoteset (serviceaej), chansab)(ana)))
50	ense omit ("\$2.4.1; No remote definition metabor reference")
90	exit (32.4.1. No remote demition matches reference),

57	mk-Chansubref ₀ (name)
58	\rightarrow if $(\exists chansubdef \in remoteset)$ (is-Chansubdef ₀ (chansubdef) \land
59	s-Chansubid_0(chansubdef) \neq nil \land
60	$match-id(name, s-Chansubid_0(chansubdef)))$ then
61	(let chansubdef \in remoteset be s.t. is-Chansubdef ₀ (chansubdef) \land
62	$match-id(name, s-Chansubid_0(chansubdef))$ in
63	let mk-Chansubdef ₀ (cid, decll, tid) = chansubdef in
64	if $tid \notin \{nil, cid\}$ then
65	exit("§2.4.1: Ending and starting identifier in the definition are different")
66	else
67	(let chansubdef' =
68	\mathbf{mk} -Chansubdeta(\mathbf{mk} -Ido((), name), decll, \mathbf{mk} -Ido((), name)) in
69	remove-references((chansubdef') \sim t] dlist remoteset \ {chansubdef}. true)(unit)))
70	
71	exit ("82 A 1: No remote definition matches reference")
72	mk_Rlockeybref.(name)
72	$\frac{\mathbf{i} \mathbf{f}}{\mathbf{f}} = \frac{1}{2} \frac{\mathbf{f}}{\mathbf{h}} \frac{\mathbf{f}}{\mathbf{h}} \frac{\mathbf{h}}{\mathbf{h}} \frac{\mathbf{h}}{\mathbf{h}}$
74	\rightarrow II (\exists chansaode) \in remoteset)(IS-Chansabde)(chansabde) \uparrow
(4 7r	$\mathbf{s} \cdot Chansuoid_0(chansuodef) \neq \mathbf{n} \mathbf{i} \wedge \mathbf{n}$
15	match-ia(name, s-Chansuoia ₀ (chansuoiaef))) then
10	(let chansubalef \in remoteset be s.t. is-chansubalef ₀ (chansubalef) /
11	$match-ia(name, s-Chansuola_0(chansuolaef))$ in
78	let mk-Chansubdef ₀ (bid, decil, tid) = chansubdef in
79	if $tid \notin \{nil, 0id\}$ then
80	exit("§2.4.1: Ending and starting identifier in the definition are different")
81	eise
82	(let blksubdef' =
83	\mathbf{mk} -Blocksubdef ₀ (\mathbf{mk} -Id ₀ ($\langle \rangle$, name), decll, \mathbf{mk} -Id ₀ ($\langle \rangle$, name)) in
84	$remove-references((blksubdef') \frown tl dlist, remoteset \setminus {chansubdef}, chansub)(unit)))$
85	else
86	exit("§2.4.1: No remote definition matches reference"),
87	\mathbf{mk} -Decomposition ₀ (list)
88	\rightarrow (let (list', rrest) = remove-references(list, remoteset, false)(unit) in
89	$(\mathbf{mk}$ -Decomposition ₀ (list'), rrest)),
90	\mathbf{mk} -Blockdef ₀ (\mathbf{mk} -Id ₀ (q, nm), decll, sub, tid)
91	$\rightarrow (\mathbf{let} \ (\mathbf{decll'}, \mathbf{rrest}) = \mathbf{remove} \cdot \mathbf{references} (\mathbf{decll}, \mathbf{remoteset}, \mathbf{false}) (\mathbf{unit} \frown ((BLOCK, \mathbf{nm}))) \mathbf{in}$
92	let (sub', rrest') =
93	if $sub = nil$
94	then (nil, <i>rrest</i>)
95	else remove-references((sub) , rrest, false)($unit \frown ((BLOCK, nm))$) in
96	let (drest', rrest") = remove-references(tl dlist, rrest', chansub)(unit) in
97	$((\mathbf{mk}-Blockdef_0(\mathbf{mk}-Id_0(q,nm), decll', sub', tid)) \frown drest', rrest'')),$
98	\mathbf{mk} -Blocksubdef ₀ (id, decll, tid)
99	\rightarrow (let (, scnm) = unit[len unit] in
100	let $mk-Id_0(q, nm) = if id = nil then mk-Id_0(\langle \rangle, scnm) else id in$
101	let $unit' = unit \frown \langle (SUBSTRUCTURE, nm) \rangle$ in
102	let (decll', rrest) = remove-references(decll, remoteset, false)(unit') in
103	$(\mathbf{mk}\text{-}Blocksubdef_0(\mathbf{mk}\text{-}Id_0(q, nm), decll', tid), rrest)),$
104	\mathbf{mk} -Chande $f_0(nm, a, b, sub, tnm)$
105	\rightarrow (let (sub', rrest) =
106	if $sub = nil$
107	then (nil, remoteset)
108	else remove-references $(\langle sub angle, remoteset, chansub)(unit)$ in
109	let (drest', rrest') = remove-references(tl dlist, rrest, chansub)(unit) in
110	$(\langle \mathbf{mk}\text{-}Chandef_0(nm, a, b, sub', tnm) \rangle \frown drest', rrest')),$

.

111 :	\mathbf{mk} -Chansubdef_0(id, decll, tid)
112	$\rightarrow (\mathbf{let} \ (, scnm) = unit[\mathbf{len} \ unit] \mathbf{in}$
113	let $mk-Id_0(q, nm) = if id = nil then mk-Id_0(\langle \rangle, scnm)$ else id in
114	let $unit' = unit \frown \langle (SUBSTRUCTURE, nm) \rangle$ in
115	let (decll', rrest) = remove-references(decll, remoteset, true)(unit') in
116	$(\mathbf{mk}$ -Chansubdef ₀ $(\mathbf{mk}$ -Id ₀ $(q, nm), decll', tid), rrest)),$
117	\mathbf{mk} -Prdef ₀ (\mathbf{mk} -Id ₀ (q, nm), $a, b, d, decll, body, tid$)
118	\rightarrow (let (decll', rrest) =
119	$remove-references(decll, remoteset, false)(unit \frown \langle (PROCESS, nm) angle)$ in
120	let (body', rrest') =
121	if is- $Body_0(body)$ then
122	(body, rrest)
123	else
124	$remove$ - $references(\langle body angle, rrest, \mathbf{false})(unit \frown \langle (PROCESS, nm) angle)$ in
125	<pre>let (drest', rrest'') = remove-references(tl dlist, rrest', chansub)(unit) in</pre>
126	$(\langle \mathbf{mk}\text{-}Prdef_0(\mathbf{mk}\text{-}Id_0(q,nm), a, b, d, decll', body', tid) angle \frown drest', rrest'')),$
127 1	\mathbf{mk} -Procdef ₀ (\mathbf{mk} -Id ₀ (q, nm), $p, decll, body, tid$)
128	\rightarrow (let (decll', rrest) =
129	$remove-references(decll, remoteset, false)(unit \frown \langle (PROCEDURE, nm) angle)$ in
130	<pre>let (drest', rrest') = remove-references(tl dlist, rrest, chansub)(unit) in</pre>
131	$(\langle \mathbf{mk}\text{-}Procdef_0(\mathbf{mk}\text{-}Id_0(q,nm), p, decll', body, tid) angle \frown drest', rrest')),$
132 1	\mathbf{mk} -Servicedef ₀ (\mathbf{mk} -Id ₀ (q, nm), $a, decll, body, tid$)
133	\rightarrow (let (decll', rrest) =
134	$remove-references(decll, remoteset, {f false})(unit \frown \langle ({\sf SERVICE}, nm) angle) {f in}$
135	let (drest', rrest') = remove-references(tl dlist, rrest, chansub)(unit) in
136	$(\langle \mathbf{mk}\text{-}Servicedef_0(\mathbf{mk}\text{-}Id_0(q,nm),a,decll',body,tid) \rangle \frown drest',rrest')),$
137 1	\mathbf{mk} -Select ₀ (expr, decll)
138	\rightarrow if is-wf-entities(decll, chansub)(unit) then
139	(let (decll', rrest) = remove-references(decll, remoteset, chansub)(unit) in
140	let (drest', rrest') = remove-references(tl dlist, rrest, chansub)(unit) in
141	$(\langle \mathbf{mk}\text{-}Select_0(\textit{expr},\textit{decll'}) \rangle \frown \textit{drest'},\textit{rrest'}))$
142	else
143	exit("§4.3.3: The definitions in select are not allowed in that scopeunit"),
144	$\Gamma \rightarrow (\text{let } (drest, rrest) = remove-references(tl dlist, remoteset, chansub)(unit) in$
145	((hd dlist) ~ drest, rrest))))
type : (<i>D</i> - (<i>D</i> -	$ecl_0^* \mid Blocksubdef_0 \mid Chansubdef_0 \mid Decomposition_0) Refdecl_0^* Bool \rightarrow Qual \rightarrow ecl_0^* \mid Blocksubdef_0 \mid Chansubdef_0 \mid Decomposition_0) Refdecl_0^*$
Objective	Replace every reference in a definition list by a remote definition.
Parameter	
i urumerer	
dlist	The AS ₀ definition list
remote	set The set of remote definitions.
chansu	b Is true only if <i>dlist</i> denotes a definition list for a channel substruc-
0.000.000	ture. This parameter is used for checking of correct <i>Connectos</i> (see
	is-mf-entities).
unit	The context (represented by a qualifier) in which the definition list
unn	occurs.
Result	The AS_0 definition list containing no references, and the set of remote definitions for which no reference has been found. removed.
Algorithm	ı
Time 1	When the definition set (dist) is empty return no definition and
Line I	the modified set of remote definitions (namous references recur
	sively returns the complete definition list)
T ' '	Sivery results and complete definition fist) $D_{i} f_{i} = m^{2} (M_{i} + M_{i})$
Line 4	Define a utility function which returns true if a $nm (Name_0)$ in a
	reference matches an <i>ia</i> (from a definition), i.e. if the name in <i>ia</i>

e

.

	equals the $Name_0$ in the reference and the qualifier either is empty
	or equal to the scopeunit where the reference is placed.
Line 5	Consider the first definition in the definition list.
Line 6	If the definition is a block reference then there must exist a remote block definition which have the same name in its identifier as the block reference (checked by <i>match-id</i> , see line 4) and for which the qualifier in its identifier either is empty or equal to the scopeunit where the reference is placed.
Line 8	Let blkdef denote that block definition.
Line 10-11	The ending identifier in the remote block definition must either be omitted or equal to the starting identifier.
Line 13	Reconstruct the block definition with empty qualifiers in the start- ing and ending identifiers
Line 15	Add it to the list of definitions such that enclosed definitions in the block are dealt with in the next recursion level and remove the block definition from the set of remote definitions.
Line 18-30	Same scheme as for referencing block definitions as shown above except for line 22 where the <i>Instances</i> ₀ for the reference is compared with <i>Instances</i> ₀ for the remote definition
Line 31-42	Same scheme as for referencing block definitions as shown above.
Line 43-56	Same scheme as for referencing block definitions as shown above.
Line 57-71	Same scheme as for referencing block definitions as shown above. In line 59, it is checked that a channel substructure identifier is present if the channel substructure definition is remote.
Line 72-86	Same scheme as for referencing block definitions as shown above, except that block sub-structure definitions syntactically appears as the more general channel sub-structure definitions so the block sub-structure is converted.
Line 87-89	If the definition is a decomposition then replace references in the definition list contained in the decomposition.
Line 90	If the definition is a block definition then
Line 91	Remove references in the definition list contained in the block.
Line 92	Remove references in the block sub-structure.
Line 96	Remove references in the rest of the definition list which contained the block definition and
Line 97	Return the modified block definition concatenated with the other modified definitions and return the modified remote definition list.
Line 98-103	Remove references in a block sub-structure definition.
Line 104-110	Remove references in a channel definition.
Line 111-116	Remove references in a channel sub-structure definition.
Line 117-126	Remove references in a process definition. If the process contains a decomposition (tested on line 120) then also references in the decomposition must be replaced.
Line 127-131	Remove references in a procedure definition
Line 132-136	Remove references in a service definition.
Line 137-141	Remove references contained in a select definition and check that every definition in the select is allowed in the enclosing scopeunit.
Line 144	In other cases, the definition is returned unchanged.

select-remote-number-of-instances(inst, reminst) \triangleq

 $(inst = nil \land reminst \neq nil)$ 1 2 \rightarrow reminst, 3 $reminst = inst \lor reminst = nil$ 4 \rightarrow inst. 5 $T \rightarrow exit("$ 2.4.4: Remote number of instances specification does not match process reference")) **type**: $[Instances_0]$ $[Instances_0] \rightarrow [Instances_0]$ **Objective** Select the $Instances_0$ for a process in the case where the process is referenced. Parameters The Instances₀ specified for the process reference. inst

reminst The	Instances ₀	specified	for	the	remote	definition.
-------------	------------------------	-----------	-----	-----	--------	-------------

Algorithm

Line 1	If $Instances_0$ is specified for the remote definition only then return that $Instances_0$ specification
Line 3	If $Instances_0$ for the process reference equals $Instances_0$ for the remote definition or $Instances_0$ is specified for the reference only then return that $Instances_0$ specification.
Line 5	Otherwise the $Instances_0$ specification for the process is inconsistent.

is-wf-entities(decllist, ischannelsub)(level) \triangleq

1 if $decllist = \langle \rangle$ then 2 true 3 else 4 (let (q,) = level[len level] in5 is-wf-entities(tl decllist, ischannelsub)(level) \land 6 cases hd decllist: 7 $(\mathbf{mk}$ -Blockdef₀(,,,),8 \mathbf{mk} -Chandef₀(, , , ,) $\rightarrow q \in \{\text{SYSTEM}, \text{SUBSTRUCTURE}\},\$ 9 10 mk-Connect₀(id,) $\rightarrow q \in \{\text{SUBSTRUCTURE}, \text{BLOCK}\} \land (id = \text{ENV} \supset (q = \text{SUBSTRUCTURE} \land ischannelsub)),$ 11 mk-Sigroutedef₀(,,), 12 13 \mathbf{mk} -Prdef₀(, , , , ,) $\rightarrow q = BLOCK,$ 14 15 mk-Signallistdef₀(,), 16 **mk**-Sigdef₀() $\rightarrow q \notin \{$ SERVICE, PROCEDURE $\},$ 1718 \mathbf{mk} -Procdef₀(, , , ,), 19 \mathbf{mk} -Varde $f_0(,,)$ $\rightarrow q \in \{$ SERVICE, PROCESS, PROCEDURE $\},$ 20 21 mk-Import def₀(), 22 mk-Viewdef₀(), **mk**-Timerdef₀() 23 $\rightarrow q \in \{\text{SERVICE}, \text{PROCESS}\},\$ 24 25 $T \rightarrow true))$

type: $Decl_0^* Bool \rightarrow Qual \rightarrow Bool$

Objective

Check that a definition list originating from a select definition is syntactically allowed in a given context. However, decomposition is not treated here. (3.2.4)

Parameters

decllist ischannelsub	The definition list to be checked. A flag which is true if <i>decllist</i> belongs to a channel sub-structure.
Result	True if allowed
Algorithm	
Line 1	When through then return true.
Line 4	Extract the scopeunit type (q) from the Qual denoting the current scopeunit.
Line 5-25	The definition list is well-formed if the first definition is well-formed (line 7-25) and the rest of the definition list is well-formed (line 5).
Line 7-8	If the first definition is a block definition or a channel definition then the scopeunit of the context must be the system or a block sub-structure or a channel sub-structure.
Line 10	If it is a connection then the scopeunit must either be a block sub-structure a channel substructure or a block.
Line 12-13	If it is a signal route definition of a process definition then the scopeunit must be a block.
Line 15-16	If it is a signal list definition or a signal definition then the scope- unit must not be a service or a procedure.
Line 18-19	If it is a procedure definition or a variable definition then the scope- unit must be either a service or a process or a procedure.
Line 21-23	If it is an import definition or a view definition or a timer definition then the scopeunit must be a service or a process

Removal of Select Definitions 3.3

In this section, select definitions are evaluated. The entry function is remove-select applied in transform-system. For each definition list the following steps are taken:

- 1. Collect the names of the sorts which are defined in the definition list, including the sorts defined in a contained select definition. Add the sorts to the sorts collected in the surrounding scopeunit. This is necessary in order to trap the mess if predefined sorts are redefined.
- 2. Collect all synonyms defined in the definition list or in definition lists of contained select definitions. Put an ErrorD descriptor in Dict for these synonyms indicating that they cannot be used yet. Those of these synonyms which are defined by using any of the collected (visible) sorts or which have more than one definition (they are also multiple defined if they are defined in different select definitions) are identified. They cannot be used in select definitions at all since using them could result in different results depending of the order of selection. Note that it is only during removal of select definitions that these synonyms cannot be used. Afterward, they are not necessarily multiple defined.
- 3. Remove the select definitions. Each time a select definition has been replaced by its contained definition list, the descriptors for the synonyms in the definition list are changed from an ErrorD to a SynD, except for those which are not allowed to be used.
- 4. When all select definitions have been removed, SynD descriptors are made for all synonyms in the resulting definition list (also for the synonyms which previously could not be used) and the sorts defined in the resulting definition list are collected.
- 5. Select definitions in enclosed scopeunits are removed using the updated dict and using the collected sorts.

As transition options do not contain any definitions, they can be evaluated while the statebody is transformed into AS_1 .

 $remove-select(decllist, sursorts)(dict) \triangleq$

- (let sorts = sursorts \cup collect-sorts(decllist) in 1
- 2 let (allsyn, illsyn) = collect-illegal-synonyms(decllist, sorts) in
- 3 let $dict' = [dict(SCOPEUNIT) \frown \langle (VALUE, nm) \rangle \mapsto mk-ErrorD() \mid nm \in allsyn]$ in
- 4 let decllist' = remove-select-in-decllist(decllist, illsyn)(dict') in
- let $dict'' = repeat-collecting-synonyms(decllist', {})(dict)$ in 5
- let sorts' = sursorts \cup collect-sorts(decllist') in 6
- $(remove-select-in-enclosed-scopeunit(decllist[i], sorts')(dict'') | 1 \le i \le len decllist))$ 7

```
type: (Decl_0 \mid Blocksubdef_0 \mid Decomposition_0)^* Name<sub>0</sub>-set \rightarrow Dict \rightarrow
            (Decl_0 \mid Blocksubdef_0 \mid Decomposition_0)^*
```

Objective Expand the select definitions for a scopeunit and for all select definitions in scopeunits contained in the definition list.

Parameters

decllist	The definition list containing select definitions. Block sub-structure and service decomposition are for convenience also considered as definitions in this context.
sursorts	The set of sorts (excluding the predefined) which potentially are visible in the definition list (i.e. possibly depending on whether they are selected by a contained select definition). This information is required in order to achieve correct treatment in the case where the predefined data are redefined.
dict	The <i>Dict</i> , which only contains descriptors for the predefined sorts and for the visible, but non-local, synonyms of the predefined sorts.
Result	The definition list where all select definitions have been expanded.
Algorithm	
Line 1	Collect the sorts which are defined in the definition list or are defined in a select definition.
Line 2	Let allsyn denote the synonyms which are defined in the definition list or are defined in a contained select definition. Let illsyn (which is a subset of allsyn) denote the synonyms which cannot be used in removing of select definitions for this definition list.
Line 3	Put an <i>ErrorD</i> descriptor in <i>Dict</i> to indicate that the locally defined synonyms cannot be used yet.
Line 4	Remove the select definitions.
Line 5	Put a SynD descriptor in <i>Dict</i> for the synonyms in the resulting definition list.
Line 6	Collect the sorts again, this time using the resulting definition list.
Line 7	Remove select definitions in contained scopeunits.

(3.3.1)

1	(let $dict' = repeat$ -	collecting-synonyms(decllist, illsyn)(dict) in		
2	2 if $(\exists d \in \text{elems } decllist)(\text{is-}Select_0(d))$ then			
3	$(\textbf{if} \ (\exists d \in \textbf{elems} \ decllist)(\textbf{is}\textit{-Select}_0(d) \land \textit{is-wf-simple-expr}(\textbf{s}\textit{-Expr}_0(d))(\textit{dict'})) \textbf{ then}$			
4	$(\texttt{let } d \in \texttt{elems } \textit{decllist } \texttt{be s.t. is} \textit{-Select}_0(d) \land \textit{is-wf-simple-expr}(\texttt{s}\textit{-}\textit{Expr}_0(d))(\textit{dict'}) \texttt{ in }$			
5	5 let mk -Select ₀ (expr, decllist') = d in			
6	3 let $selected = eval-simple-expr(expr, "BOOLEAN")(dict')$ in			
7	7 let $decllist'' = \langle d' \in elems \ decllist \mid d' \neq d \rangle$ in			
8	if selected t	\mathbf{aen}		
9	remove-se	elect-in-declist(declist' (* declist'', illsyn)(dict)		
10	else			
11	nemove-se	nect-m-aecilisi (aecilisi , ilisyn)(aici))		
12	erse	Simple expression is not of a predefined sort or contains undefined identifiers"))		
14	else			
15	decllist)			
	,			
type	: (Decl ₀ Blocksu	$bdef_0 \mid Decomposition_0)^* Name_0$ -set $\rightarrow Dict \rightarrow$		
	(Decl ₀ Blocksu	$bdef_0 \mid Decomposition_0)^*$		
Obje	ctive Ren	nove the select definitions for a definition list.		
Para	meters			
a	lecllist	The definition list containing select definitions		
i	llsyn	The synonyms which cannot be used in simple expressions of select definitions.		
C	lict	The Dict, which only contains descriptors for the predefined sorts		
		and for the visible synonyms (SynD or ErrorD).		
Resu	lt The	definition list where all select definitions have been removed.		
Algo	rithm			
1	line 1	Update <i>dict</i> with descriptors for the synonyms (of the predefined		
-		sorts) which are defined in the definition list (but not contained in		
		a select definition)		
1	Line 2	If there (still) exist a select definition in the definition list then		
1	Line 3	If the expression in the select definition is well-formed then		
1	line 4	Let d denote that select definition		
1	Line 6	Evaluate the simple expression in d .		
1	Line 7	Construct a definition list where d has been removed.		
1	Line 8	If the definitions in the select definition is selected then		
1	Line 9	Continue removing select definitions where the definition list is		
-		extended to include the definitions from the select definition.		
1	Line 11	If the select definition is not selected, then continue with the defi-		
-		nition list where the select definition has been removed		
1	Line 15	If all select definitions in the definition list have been removed then		
-		return the definition list.		

 $eval-simple-expr(expr, sort)(dict) \triangleq$

1 (let predefqual = get-predef-sort(sort)(dict) in

2 let $(as_1 tree, ,) = transform-expr(expr, CONSTANT, {predefqual})(dict)$ in

3 $eval-expr(as_1 tree, sort)(dict))$

type: $Expr_0$ $Char^+ \rightarrow Dict \rightarrow (Intg | Bool)$

Objective Evaluate a simple expression

44 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.3.3)

Parameters

expr	The AS_0 simple expression
sort	The spelling of the sort of the expression. The sort is either "Boolean" or "Integer".
Result	The Meta-IV types <i>Intg</i> if the SDL sort is "Integer" and the Meta-IV domain <i>Bool</i> if the SDL sort is "Boolean".
Algorithm	
Line 1	Construct the Qual of the sort
Line 2	Transform the expression into AS_1 notifying that the expression is (must be) a constant (ground) expression and that the expression is (must be) of the specified sort.
Line 3	Evaluate the AS_1 expression (this function is not formally defined)

 $repeat-collecting-synonyms(decllist, illsyn)(dict) \triangleq$

1 (let dict' = collect-synonyms(decllist, illsyn)(dict) in

2 if dict' = dict then dict' else repeat-collecting-synonyms(decllist, illsyn)(dict'))

 $\mathbf{type}: \quad Decl_0^* \ Name_0\text{-set} \rightarrow Dict \rightarrow Dict$

Objective	Collect descriptors for all the well-formed synonyms (i.e. for the syn-
	onyms which at this stage do not depend on a synonym defined in a
	select definition).

Parameters

decllist	The definition list to be inspected		
illsyn	The synonyms from $decllist$ which cannot be used, i.e. their $ErrorD$ descriptor should not be changed into a $SynD$ descriptor.		
Result	The Dict updated with descriptors for the well-formed synonyms		
Algorithm			
Line 1	Collect descriptors for the well-formed synonyms in the definition list <i>decllist</i> by going through the list.		
Line 2	If no more synonym can be changed in <i>dict'</i> then return <i>dict</i> else		
Line 2	Go through the list one more time. As synonyms may be mutually dependent more synonym definitions may now be well-formed (in the context of <i>dict'</i>).		

45

(3.3.4)

1	if $decllist = \langle$) then	
2	dict		
3	else		
4	(if is-Synonymdef ₀ (hd declist) then		
5	5 (let mk-Synonymdef_0(nm, sort, expr) = hd declist in 6 let evelet = $\{\text{curl} \in \text{chem} \text{ dist} \mid \text{is } \text{Cart} D(\text{ dist}(\text{curl}))\}$		
10 · 17	let qual	$set = \{qual \in dom aict \mid is - SortD(aict(qual))\}$ in	
(let sort	set =	
o Q	11 30	rr – nn then	
10	yı Ala		
11	(t	ran exit with {} in	
12	. (trap exit with {} in { det_nament(act_nighte_anal(cont_TVPF)(dist))(dist)};		
13	let synd	$mul = dict(SCOPEUNIT) \curvearrowright ((VALUE, nm))$ in	
14	let $(as_1$	tree, qset,) =	
15	if sc	$rtset = \{\}$ then	
16	(n	il, {},)	
17	els	e	
18	(t	rap exit with (nil, {},) in	
19	t	$ransform$ - $expr(expr, CONSTANT, sortset)(dict + [syngual \mapsto mk-ErrorD()]))$ in	
20	if $as_1 tree tree tree tree tree tree tree tre$	$ee = nil \lor card qset \neq 1 \lor nm \in illsyn then$	
21	collec	t-synonyms(tl aecllist, illsyn)(act)	
22	else	ontourl C and in	
23	let	$l = [sungual \mapsto mk_s Sun D(sortgual error)]$ in	
25	colle	$c = [synquar + mk^{-}synD(sortquar, cop)]$	
26	else	······································	
27	collect-s	ynonyms(tl decllist, illsyn)(dict))	
type	· Decl.* No	$m_{e_{-}set} \rightarrow Dict \rightarrow Dict$	
o pe	. 2000 110		
Obje	ective	Go through a definition list and collect descriptors for all the well- formed synonyms	
Para	meters		
	lecllist	The definition list containing synonym definitions	
	11 ann	The synonyms from <i>decliet</i> which cannot be used i.e. their ErrorD	
Ċ		descriptor should not be changed into a SynD descriptor.	
(lict	The Dict which contains descriptors for the predefined sorts and	
		for the visible synonyms.	
Roge	1+	A Dict which is undeted with SunD descriptors for the well-formed	
LUSI		synonyms.	
Algo	rithm		
ļ	Line 1	When through then return the (updated) Dict.	
j.	Line 4	If the next definition in the list is a synonym definition then	
	Line 6	Extract the Quals (identifiers) of the predefined sorts from dict.	
-	Line 7-19	If a sort is specified in the synonym definition then the set of legal	
1	<i>Suite</i> 7-12	sorts for the expression contains only that sort (if the specified sort is not well-formed then the set is empty), otherwise the set of legal sorts include all the predefined sorts.	
,	Line 13	Let synqual denote the Qual of the synonym.	
Ĺ	Line 14-19	Try to transform the expression into AS_1 . If it fails it is either a static error (will be caught later) or the expression contains sym-	

Try to transform the expression into AS_1 . If it fails it is either a static error (will be caught later) or the expression contains synonyms which have not been considered yet (they might be defined in a select definition or defined in tl decllist).

Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 20	If it fails i.e. if the AS_1 expression as_1 tree is not present or the sort of the expression is indeterminable (the cardinality of the returned set of sorts is different from 1) or if the synonym is one of those which cannot be used then continue with the rest of the definition list else
Line 23	Let the sort of the expression be denoted by sortqual.
Line 24-25	Update <i>dict</i> with the synonym descriptor and go through the rest of the definition list.
Line 27	If the first definition in the definition list is not a synonym definition then continue with the rest of the list.
	•

 $is-wf-simple-expr(expr)(dict) \triangleq$

- 1 (let boolqual = get-predef-sort("BOOLEAN")(dict) in
- 2 trap exit with false in
- 3 (let (,,) = transform-expr(expr, CONSTANT, {boolqual})(dict) in
- 4 true))

type: $Expr_0 \rightarrow Dict \rightarrow Bool$

Objective Check whether a simple boolean expression is well-formed. If it is not well-formed, it may be because it is defined in terms of synonyms which have not been incorporated in *dict* yet.

Parameters

expr	The AS_0 expression to be checked True if well-formed		
Result Algorithm			
Line 1	Extract the <i>Qual</i> (identifier) of the boolean sort. The set of legal sorts for the expression only includes that sort.		
Line 2-3	If the transformation function is trapped, then false is returned otherwise		
Line 4	True is returned		

(3.3.6)

Fascicle X.4 – Rec. Z.100 – Annex F.2

```
(let level = dict(SCOPEUNIT) in
  1
  2
        cases decl:
  3
         (\mathbf{mk}-Blockdef_0(\mathbf{mk}-Id_0(q, nm), decll, blksub, tid)
              \rightarrow (let dict' = dict + [SCOPEUNIT \mapsto level \frown ((BLOCK, nm))] in
  4
  5
                  (let (decll', blksub') =
  6
                        if blksub = nil then
  7
                           (remove-select(decll, sorts)(dict'), nil)
  8
                          else
  9
                           (let dlist = remove-select(decll \frown (blksub), sorts)(dict') in
10
                            let i be s.t. is-Blocksubdef<sub>0</sub>(dlist[i]) in
11
                            (\langle dlist[n] \mid 1 \leq n \leq len \ dlist \land n \neq i \rangle, dlist[i])) in
12
                   \mathbf{mk}-Blockdef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q, nm), decll', blksub', tid))),
           \mathbf{mk}-Servicedef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q, nm), sigl, decll, body, tid)
13
              \rightarrow (let dict' = dict + [SCOPEUNIT \mapsto level \frown ((SERVICE, nm))] in
14
                  let decll' = remove-select(decll, sorts)(dict') in
15
16
                  \mathbf{mk}-Servicedef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q, nm), sigl, decll', body, tid)),
17
           mk-Chandef<sub>0</sub>(nm, p1, p2, chansub, tnm)
18
              \rightarrow if chansub = nil then
                    decl
19
 \mathbf{20}
                   else
21
                    (let mk-Chansubdef_0(id, decll, tid) = chansub in
22
                     let nm' = if id = nil then nm else s-Name_0(id) in
 23
                     let dict' = dict + [SCOPEUNIT \mapsto level \frown ((SUBSTRUCTURE, nm'))] in
                     let decll' = remove-select(decll, sorts)(dict') in
24
 25
                     mk-Chandef<sub>0</sub>(nm, p1, p2, mk-Chansubdef<sub>0</sub>(id, decll', tid), tnm)),
 26
           \mathbf{mk}-Prdef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q, nm), inst, parm, inpset, decll, body, tid)
 27
              \rightarrow (let dict' = dict + [SCOPEUNIT \mapsto level \frown ((PROCESS, nm))] in
                  let (decll', body') =
 28
 29
                       if is-Body_0(body) then
 30
                          (remove-select(decll, sorts)(dict'), body)
 31
                         else
 32
                          (let dlist = remove-select(decll \frown (body), sorts)(dict') in
 33
                          let i be s.t. is-Decomposition<sub>0</sub>(dlist[i]) in
 34
                           (\langle dlist[n] \mid 1 \leq n \leq len \ dlist \land n \neq i \rangle, dlist[i])) in
 35
                  \mathbf{mk}-Prdef<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(q, nm), inst, parm, inpset, decll', body', tid)),
 36
           \dot{\mathbf{mk}}-Blocksubdef<sub>0</sub>(id, decll, tid)
 37
              \rightarrow (let (, nm) = level[len level] in
 38
                  let nm' = if id = nil then nm else s-Name_0(id) in
                  let dict' = dict + [SCOPEUNIT \mapsto level \frown ((SUBSTRUCTURE, nm'))] in
 39
 40
                  let decll' = remove-select(decll, sorts)(dict') in
 41
                  mk-Blocksubdef<sub>0</sub>(id, decll', tid)),
 42
           mk-Decomposition<sub>0</sub>(decll)
 43
              \rightarrow (let decll' = remove-select(decll, sorts)(dict) in
 44
                  if (\forall d \in \mathbf{elems} \; decll')(\mathbf{is}\text{-}Sigroutedef_0(d) \lor
                                               (is-Connect_0(d) \land is-Id_0(s-Connectpoint_0(d))) \lor
 45
 46
                                               is-Servicedef<sub>0</sub>(d)) then
 47
                     mk-Decomposition<sub>0</sub>(decll')
 48
                    else
 49
                     exit("§4.3.3: The selected definition is not allowed in that scopeunit")),
 50
           \mathsf{T} \rightarrow decl)
          (Decl_0 \mid Blocksubdef_0 \mid Decomposition_0) Name_o-set \rightarrow Dict \rightarrow (Decl_0 \mid Blocksubdef_0 \mid Decomposition_0)
type :
```

Objective Remove select definitions in an enclosed scopeunit.

Parameters

decl A definition which may be a scopeunit.

48 **Fascicle X.4** – Rec. Z.100 – Annex F.2

sorts	The sorts visible (excluding the predefined).
Result	A definition wherein select definitions have been removed.
Algorithm	
Line 1	Denote the context (in which the definition occurs) by level.
Line 3-12	If the definition is a block definition then remove the select def- initions in the definition list of the block (line 7). If the block contains a sub-structure then it is also considered as a definition. The select definitions are removed in the context of the block, i.e. SCOPEUNIT is <i>Dict</i> is updated to denote the block.
Line 13-41	Do the same for the other alternative scopeunits as done in the case where the definition is a block definition.
Line 42-49	If the definition is a decomposition (which may contain select defi- nitions although it is not a scopeunit) then check that the resulting definition list (after removal of select definitions), only contains ser- vice signal route definitions, service signal route connections and service definition. The <i>connectpoint</i> ₀ in a service signal route con- nection must not be ENV (this case is not checked syntactically if the connection is contained in a select definition).

collect-illegal-synonyms(decllist, sorts) \triangleq

1	(if $decllist = \langle \rangle$ then
2	· ({}, {})
3	else
4	(let (restsyn, restillsyn) = collect-illegal-synonyms(tl decllist, sorts) in
5	let (synset, illsynset) =
6	cases hd decllist:
7	$(\mathbf{mk}$ -Synonymdef ₀ $(nm, sort,)$
8	$\rightarrow \mathbf{if} \ (\textit{sort} \neq \mathbf{nil} \land \mathbf{s}\text{-}Name_0(\textit{sort}) \in \textit{sorts} \land \mathbf{s}\text{-}Qualifier_0(\textit{sort}) \neq \langle (SYSTEM,) \rangle) \ \mathbf{then}$
9	$(\{nm\}, \{nm\})$
10	else
11	$(\{nm\}, \{\}),$
12	\mathbf{mk} -Select ₀ (, dlist)
13	\rightarrow collect-illegal-synonyms(dlist, sorts),
14	$T \rightarrow (\{\}, \{\})) \text{ in }$
15	$(restsyn \cup synset, restillsyn \cup illsynset \cup (restsyn \cap synset))))$

type: $Decl_0^* Name_0$ -set $\rightarrow Name_0$ -set $Name_0$ -set

Objective	Collect the synonyms which (potentially) are defined in a definition
	list and identify those of these synonyms which cannot be used in any
	simple expressions of select definitions.

Parameters

decllist	The definition list
sorts	The sorts which (potentially) are defined in the definition list.
Result	The set of potentially defined synonyms and the synonyms which cannot be used.
Algorithm	
Line 1	When through the definition list, return empty sets.
Line 4	Collect the synonym sets for the rest of the definition list.
Line 5	Let synset denote the synonyms defined in this definition and let

ine 5	Let synset denote the synonyms defined in this definition and let
	illsynset denote those of these which cannot be used.

49

(3.3.8)

Line 7-11	If the definition is a synonym definition then the synonym name is <i>synset</i> and the name cannot be used if the sort name is one of the visible sorts and the qualifier does not denote the system level. Note that the <i>Dict</i> do only contain the descriptors for the predefined sorts. This check is therefore only of importance if a predefined sort has been redefined.
Line 12	If the definition is a select definition then collect the synonym sets for the contained definitions.
Line 15	The resulting set of defined synonym names is the names for the rest of definitions joined with the names for this definition. The resulting set of non-usable synonyms is the non-usable synonyms for the rest of definitions joined with the names for this definition joined with the names both defined in the rest of definition and in this definition.

collect-sorts $(decllist) \triangleq$

(3.3.9)

1	(if $decllist = \langle \rangle$ then
2	8
3	else
4	$(collect-sorts(tl decllist) \cup$
5	cases hd <i>decllist</i> :
6	$(\mathbf{mk}$ -Syntypedef ₀ $(nm, , , ,),$
7	\mathbf{mk} -Partialtypedef ₀ (nm , , , ,)
8	$\rightarrow \{nm\},$
9	\mathbf{mk} -Select $_{0}(, dlist)$
10	\rightarrow collect-sorts(dlist),
11	$T \rightarrow \{\})))$

type: $Decl_0^* \rightarrow Name_0$ -set

Objective	Collect the sort names for the sorts which potentially are defined in a definition list
D	

Parameters

•

decllist	The definition list
Result	The set of potentially defined sort names (whether they actually are defined depends on select definitions).
Algorithm	
Line 1	When through the definition list, return the empty set.
Line 6-7	If the definition is a partial type definition or a syntype definition then extract the sort name.
Line 9	If the definition is a select definition then collect the potentially defined sort names in the contained definition list.

3.4 Transformation of Definitions

transform- $decllist(decllist)(dict) \triangleq$

1 (if decllist = $\langle \rangle$ then

2 ({},[])

3 else

- 4 (let $(as_1 dcl, d) = transform decl(hd decllist)(dict)$ in
- 5 let $(as_1 dcll, d') = transform-decllist(tl decllist)(dict)$ in
- 6 if dom $d \cap \operatorname{dom} d' \neq \{\}$ then
- exit("§2.2.2: Two definitions in the same scopeunit and same entity class define the same name")
 else
- 9 $(as_1 dcl \cup as_1 dcll, d + d')))$

type: $Decl_0^* \rightarrow Dict \rightarrow Decl_1$ -set Dict

Objective Transform a list of AS₀ definitions into a set of AS₁ definitions.

Parameters An AS₀ definition list.

ResultThe AS_1 definitions and the *Dict* contributions from the AS_0 definition
list. Note that it is not the entire *dict* which is returned, as opposed to
the expression and graph transforming functions. This means that no
returned descriptor (except for *ValueidD* which is used strictly local in
axioms and generator parameters and *ErrorD* which is used locally to
trap recursive definitions) influence the content of *dict*. The equivalence
between the returned descriptors and *dict* is fulfilled by the **be such**
that construct in the function *transform-system* as mentioned earlier.

Algorithm

Line 4	Transform the first definition in the definition list.
Line 5	Transform the rest of the definitions.
Line 6	The pair of name and entity class (reflected in the <i>Qual</i>) of the first definition must be disjoint from the pairs representing the rest of the definitions
Line 9	Return the Dict contributions and the AS ₁ definitions.

1	(cases decl:
2	$(\mathbf{mk}-Blockdef_0(,,,))$
3	→ transform-blockdef(decl)(dict),
4	\mathbf{mk} -Chandef ₀ (, , , ,)
5	\rightarrow transform-channeldef (decl)(dict),
6	mk - $Prdef_0(, , , , ,)$
7	\rightarrow transform-processdef(decl)(dict),
8	mk-Sigdef ₀ ()
9	\rightarrow transform-signaldef(decl)(dict),
10	mk-Procdef ₀ (, , , ,)
11	\rightarrow transform-proceduredef(decl)(dict),
12	mk-Partialtypedef ₀ (, , , ,)
13	\rightarrow transform-partial-typedef(decl)(dict),
14	mk-Syntypedef ₀ (, , , ,)
15	\rightarrow transform-syntype(decl)(dict),
16	mk-Sortgenerator ₀ (, , , ,)
17	\rightarrow transform-sortgenerator(decl)(dict),
18	mk -Synonymde $f_0(,,)$
19	\rightarrow transform-synonymdef (decl)(dict),
20	mk-Vardef ₀ (,,)
21	\rightarrow transform-vardef(decl)(dict),
22	mk- <i>Viewdef</i> ₀ ()
23	\rightarrow transform-viewdef(decl)(dict),
24	mk-Importdef ₀ ()
25	\rightarrow transform-importdef(decl)(dict),
2 6	\mathbf{mk} -Sigroutedef ₀ (, ,)
27	\rightarrow if is-BlockD(dict(dict(LEVEL)))
28	then transform-signalroutedef $(decl)(dict)$
29	else transform-servicesigroutedef(decl)(dict),
30	\mathbf{mk} -Signallistdef ₀ (,)
31	\rightarrow transform-signallistdef(decl)(dict),
32	\mathbf{mk} -Timerde $f_0()$
33	\Rightarrow transform-timerdef(decl)(dict),
34	\mathbf{mk} -Servicede $f_0(,,,,)$
35	\rightarrow build-service-descriptor(decl)(dict),
36	$T \rightarrow (\{\}, [])))$

 $\mathbf{type}: \quad \mathit{Decl}_0 \to \mathit{Dict} \to \mathit{Decl}_1 \text{-set} \: \mathit{Dict}$

Objective	Transform an AS_0 definition into an AS_1 definition. See transform-decllist.	
Result		
Algorithm	Transform either	
Line 2	A block definition or	
Line 4	A channel definition or	
Line 6	A process definition or	
Line 8	A signal definition or	
Line 10	A procedure definition or	
Line 12	A partial data type definition or	
Line 14	A syn type definition or	
Line 16	A sort generator or	
Line 18	A synonym definition or	
Line 20	A variable definition or	
Line 22	A view definition or	
Line 24	An import definition or	

52

.

Line 26-29	A signal route definition or a service signal route depending on the enclosing scopeunit or
Line 30	A signal list definition or
Line 32	A timer definition or
Line 29	A service signal route definition or
Line 34	A service definition
Line 19	Nothing, as the other kind of definitions (i.e. connects) are handled elsewhere.

~

3.4.1 Block Definitions

transform-blockdef (mk-Blockdef₀(bid, decllist, subdef, tid))(dict) \triangleq (3.4.1.1) $(let mk-Id_0(q, bnm) = bid in$ 1 let $bqual = dict(SCOPEUNIT) \frown \langle (BLOCK, bnm) \rangle$ in 2 let $dict' = dict + [SCOPEUNIT \mapsto bqual] +$ 3 $[DATATYPEDEF \mapsto initial datadef(dict)]$ in 4 let $explicit = (\exists d \in elems \ decllist)(is - Sigroutedef_0(d))$ in 5 6 let (chandefl, routedefl, connects, exp, imp) =7 *implicit-channels-and-signal-routes*(*decllist*)(*dict'*) in let (outerchannels, cdi) = transform-decllist(chandefl)(dict) in 8 9 let $(as_1 dcl, di) = transform-decllist(decllist \frown routedefl)(dict')$ in 10 let $(as_1 connect, connectmap) = transform-block-connect(decllist, {}, [])(dict')$ in if $((\exists i \in \text{elems } decllist)(\text{is-}Prdef_0(i)) \lor subdef \neq nil) \land q = \langle \rangle \land tid \in \{bid, nil\}$ then 11 if subdef = nil then 12 (let $descr = [bqual \mapsto mk-BlockD(exp, imp, explicit, connectmap)]$ in 1314 let $as_1 block = make-as_1 tree(BLOCK, bnm, as_1 dcl \frown as_1 connect, nil, nil, nil)(dict)$ in 15 $(outerchannels \cup \{as_1 block\}, descr + di + cdi\})$ 16else 17 $(let mk-Blocksubdef_0(subid, subdecll, tailid) = subdef in$ 18 let $mk-Id_0(q', bnm') = if subid = nil then <math>mk-Id_0(\langle \rangle, bnm)$ else subid in let chansubqual = dict(SCOPEUNIT) \frown ((SUBSTRUCTURE, bnm')) in 19 20 let $subqual = if chansubqual \in dom dict then$ 21 chansubqual22 else 23 $bqual \frown \langle (SUBSTRUCTURE, bnm') \rangle$ in 24 let dict'' = [SCOPEUNIT] \mapsto subqual. DATATYPEDEF \mapsto initial datadef(dict')] in 25 26 let $(as_1 subdcl, subdi) = transform-decllist(subdecll)(dict'')$ in 27 let $as_1 connect' = transform-substructure-connect(subdecll <math>\frown connects, \{\}, [])(dict'')$ in 28 let $as_1 tree = make - as_1 tree(SUBSTRUCTURE, bnm',$ 29 $as_1 subdcl \cup as_1 connect', nil, nil, nil)(subdi)$ in 30 let $as_1 block' = make-as_1 tree(BLOCK, bnm, as_1 dcl, as_1 tree, nil, nil)(dict)$ in 31 let $descr = [bqual \mapsto mk-BlockD(exp, imp, explicit, connectmap)] +$ 32 (if chansubqual \in dom dict then [] else [subqual \mapsto mk-BlocksubD()]) in 33 $(q' \neq \langle \rangle$ 34 \rightarrow exit("§2.4.1: Defining names may only be qualified in remote definitions"), 35 tailid \notin {nil, subid} 36 \rightarrow exit("§2.2.2: Ending name in block sub-structure definition is different from defining name"), 37 $\neg (\exists d \in \mathbf{elems} \ subdecll)(\mathbf{is} \cdot Blockdef_0(d))$ 38 \rightarrow exit("§3.2.2: Block sub-structure does not contain a block definition"), 39 $\mathsf{T} \rightarrow (outerchannels \cup \{as_1 block'\}, descr + di + subdi + cdi)))$ **4**0 else 41 $(\neg (\exists i \in \text{elems } decllist)(\text{is} - Prdef_0(i) \lor subdef \neq nil)$ 42 \rightarrow exit("{2.4.3: Block must contain either one or more processes or a sub-structure definition"), 43 $q \neq \langle \rangle$ 44 → exit("§2.4.1: Defining names may only be qualified in remote definitions"), $T \rightarrow exit($ "§2.2.2: Ending name in block definition is different from defining name")))45 $Blockdef_0 \rightarrow Dict \rightarrow Decl_1$ -set Dicttype : **Objective** Transform an AS_0 block definition into an AS_1 block definition. Parameters The AS₀ block definition containing bid The unqualified block identifier decllist Its definition list subdef Its optional sub-structure tid Its optional ending identifier

Result See transform-decllist.

Algorithm

Line 2-3	Construct the Qual denoting the block identifier (bqual) and update the Dict entry SCOPEUNIT to denote the context of the block. Construct the initial Data-type-definition ₁ for the block.
Line 5	Let <i>explicit</i> be true if explicit signal routes are specified for the block.
Line 6	Create the implicit AS_0 channel definitions implied by export and import from and to the block, and also the <i>ExpimpchanD</i> maps (see the domain definition of <i>ExpimpchanD</i>) which is used to interface the channel definitions to the sub-structure and to the surround- ings.
Line 8	Transform the implicit channel definitions into AS_1 .
Line 9	Transform the contained definition list, with the <i>dict</i> entry SCOPE-UNIT updated to denote the block.
Line 10	Transform the channel to signal route connections in the block. Also return the <i>BlockconnectionD</i> for the block.
Line 11	If the sub-structure is omitted then there must exist at least one process definition in the block. The block identifier must not be qualified and if the ending identifier is specified then it must be equal to the block identifier.
Line 12-15	If the block does not contain a block sub-structure then return the AS_1 definition of the implicit channels (<i>outerchannels</i>) and of the block (<i>as</i> ₁ <i>block</i>) and <i>Dict</i> contributions for the implicit channels (<i>cdi</i>), the block (<i>descr</i>), and the contained definitions. (<i>di</i>)
Line 17	Decompose the block sub-structure.
line 18	If the block sub-structure name is omitted then it is the same as the block name. Let bnm' denote the block sub-structure name
Line 19-20	Let <i>subqual</i> denote the <i>Qual</i> of the sub-structure. If the block sub-structure is derived from a channel sub-structure then <i>subqual</i> denotes the <i>Qual</i> of the channel sub-structure.
Line 24	Update SCOPEUNIT and DATATYPEDEF as in line 3.
Line 26	Transform the definition list of the sub-structure.
Line 27	Create the AS_1 definition of the block $(as_1 block)$,
Line 28	Create the AS_1 connections from the AS_0 connections in subdecll.
Line 30	The AS_1 definition of the block sub-structure (as ₁ tree),
Line 31-32	The <i>Dict</i> entry for the block (<i>bqual</i>) and unless the sub-structure denotes a channel sub-structure then also the <i>Dict</i> entry for the block sub-structure (<i>subqual</i>).
Line 33	The block sub-structure name (identifier) must not be qualified (as it is not a remote definition).
Line 35	If the tailing id is specified, it must be the same as the sub-structure identifier (<i>subid</i>).
Line 37	The sub-structure must contain at least one block definition.
Line 39	Return the AS_1 definitions as in line 15 and <i>Dict</i> contributions for the implicit channels (<i>cdi</i>), for the block and the sub-structure (<i>descr</i>), and the contained definitions in the block (<i>di</i>) and the definitions contained in the sub-structure (<i>subdi</i>).
Line 41	There must exist at least one process definition in the block unless a sub-structure is specified and
Line 33	The block identifier must not be qualified and
Line 45	If the ending name is specified then it must be equal to the block name

Fascicle X.4 – Rec. Z.100 – Annex F.2

 $\mathbf{55}$

1 (let mk-Data-type-definition₁(unm, , , ,) = dict(DATATYPEDEF),

- 2 $qual = dict(SCOPEUNIT) \frown \langle (TYPE, unm) \rangle$ in
- 3 let $typeid = make-as_1$ -identifier(qual)(dict) in

4 **mk**-Data-type-definition₁(create-unique-name(), {typeid}, {}, {}, {}, {}))

type: $Dict \rightarrow Data$ -type-definition₁

Objective Construct the AS₁ data type definition for a scopeunit where the identifier, representing the data type definition of the surrounding scopeunit, is included in the type union. Literals, operators and equations are added to the data type definition during the transformation of the partial data type definitions in the scopeunit

Algorithm

Line 1	Extract the AS_1 data type definition of the surrounding scopeunit.
Line 2	Construct the <i>Qual</i> of the type identifier of the surrounding scope- unit.
Line 3	Construct the AS_1 identifier of the type.
Line 4	Return a new data type definition which has a unique name and where the type identifier of the surrounding scopeunit is included in the type union and which contains no literals, operators or equa- tions

Fascicle X.4 – Rec. Z.100 – Annex F.2

3.4.2 Channel Definitions

transform-channeldef (mk-Chandef₀(cnm, chanpath, ochanpath, csub, tnm))(dict) \triangleq

```
1
       (let mk-Chanpath_0(ori, dest, siglist) = chanpath in
   2
        let orid = get-visible-gual(ori, BLOCK)(dict),
   3
            destid = get-visible-gual(dest, BLOCK)(dict),
   4
            sigidset = transform-signallist(siglist)(dict),
   5
            sigidset' =
   6
            if ochanpath = nil then
   7
              {}
   8
              else
   9
              (let mk-Chanpath_0(orig', dest', osiglist) = ochanpath in
  10
               let orid' = get-visible-qual(orig', BLOCK)(dict),
                   destid' = get-visible-qual(dest', BLOCK)(dict) in
  11
  12
               if orid = destid' \wedge destid = orid' then
  13
                  transform-signallist(osiglist)(dict)
  14
                 else
 15
                 exit("§2.5: Second path in channel definition must denote reverse direction of first path")) in
 16
        if orid = destid then
 17
          exit("§2.5: Endpoints of channel must be different")
 18
         else
 19
          (let as_1 orid = if ori = ENV then ENVIRONMENT else make-as_1-identifier(orid)(dict),
 20
               as_1 destid = if dest = ENV then
 21
                               ENVIRONMENT
  22
                               else
 23
                               make-as_1-identifier(destid)(dict),
 24
               as_1 sigs = make - as_1 idset(sigidset)(dict),
 25
               as_1 sigs' = make - as_1 idset(sigidset')(dict),
 26
               cqual = dict(SCOPEUNIT) \frown \langle (CHANNEL, cnm) \rangle in
           (\neg is-local(orid)(dict) \lor \neg is-local(destid)(dict)
 27
 28
               \rightarrow exit("s2.5: Endpoint of channel is defined in another scopeunit than the channel"),
 29
            tnm \notin \{cnm, nil\}
               \rightarrow exit("§2.2.2: Ending name in channel definition is different from defining name"),
 30
 31
            csub \neq nil
 32
               \rightarrow transform-channel-sub(csub, cnm, sigidset, sigidset', orid, destid)(dict),
 33
            T \rightarrow (let \ descr = [cqual \mapsto mk-ChannelD(orid, destid, sigidset, sigidset', nil)] in
 34
                  let path1 = mk-Channel-path<sub>1</sub>(as_1 orid, as_1 destid, as_1 sigs),
 35
                      path2 = if as_1 sigs' = \{\} then
 36
                                  nil
 37
                                 else
 38
                                  mk-Channel-path<sub>1</sub>(as<sub>1</sub> destid, as<sub>1</sub> orid, as<sub>1</sub> sigs') in
 39
                   (\{\mathbf{mk-Channel-definition}_1(name-to-name_1(cnm), path1, path2)\}, descr)))))
type:
          Chandef_0 \rightarrow Dict \rightarrow Decl_1-set Dict
                       Transform a channel definition into AS<sub>1</sub>
Objective
Result
                       The AS<sub>1</sub> channel definition and a dict contribution containing the chan-
                       nel descriptor and a channel sub-structure descriptor (if present)
Parameters
                       The AS<sub>0</sub> channel definition containing
                             The channel name
     cnm
     chanpath
                             The first path
     ochanpath
                            The second optional channel path
     csub
                            The optional channel sub-structure
     tnm
                            The name ending the definition
Algorithm
```

Line 1

Decompose the first path

(3.4.2.1)

line 2-15	Make the Qual of the origination block (orid), the destination block (destid), the signals (sigidset) and the signals in the reverse direction (sigidset').
line 9-15	If the channel is bidirectional then the originating endpoint of one of the directions must be the same as the terminating endpoint of the other direction.
line 16	The originating block must not be the same as the destination block.
line 19-25	Make the <i>Identifier</i> ₁ s of the origination block $(as_1 orid)$, the destination block $(as_1 destid)$, the signals $(as_1 sigidset)$ and the signals in the reverse direction $(as_1 sigidset')$.
line 26	Update SCOPEUNIT to denote the channel identifier.
line 27-28	The originating block and the destination block must be defined at the same level as where the channel is defined and
line 29	The name ending the channel definition must be equal to the chan- nel name if specified
line 31	If a channel sub-structure is present then transform the channel sub-structure else
Line 33	Construct the Dict contribution for the channel.
Line 34-35	Construct the two AS ₁ paths.
Line 39	Return the AS_1 channel definition and its <i>Dict</i> contribution.

transform-channel- $sub(csub, nm, sigset, osigset, endpoint1, endpoint2)(dict) \triangleq$

(3.4.2.2)

•

1	$(let mk-Chansubdef_0(subid, decilist, tailid) = csub in$
2	let $mk-Id_0(q, nm') = if subid = nil then mk-Id_0(\langle \rangle, nm) else subid in$
3	let $mk-Id_0(qtail, nmtail) = if tailid = nil then mk-Id_0(q, nm') else tailid in$
4	$\mathbf{if} \ q \neq \langle \rangle \lor qtail \neq \langle \rangle \ \mathbf{then}$
5	exit("§2.4.1: Defining names may only be qualified in remote definitions")
6	else
7	if $nmtail \neq nm'$ then
8	exit("§2.2.2: Ending name in channel sub-structure definition is different from defining name")
9	else
10	$(let \ level = dict(SCOPEUNIT) in$
11	let newbnm = create-unique-name() in
12	$\texttt{let} \ \textit{newbqual} = \textit{level} \frown \langle (BLOCK, \textit{newbnm}) \rangle \ \texttt{in}$
13	let newc1 = create-unique-name(),
14	newc2 = create-unique-name() in
15	$\textbf{let } path1 = \textbf{mk-}Chanpath_0(as_0 \textit{-}id(\textit{endpoint1}), as_0 \textit{-}id(\textit{newbqual}), \langle as_0 \textit{-}id(q) \mid q \in \textit{sigset} \rangle),$
16	opath1 =
17	if $osigset = \{\}$
18	then nil
19	else mk-Chanpath ₀ (as_0 -id($newbqual$), as_0 -id($endpoint1$), (as_0 -id(q) $q \in osigset$)),
20	$path 2 = \mathbf{mk} \cdot Chanpath_0(as_0 \cdot id(newbqual), as_0 \cdot id(endpoint 2), (as_0 \cdot id(q) \mid q \in sigset)),$
21	opath2 =
22	if $osigset = \{\}$
23	then nil
24	else mk-Chanpath ₀ (as_0 - $id(endpoint2)$, as_0 - $id(newbqual)$, $(as_0$ - $id(q) q \in osigset)$) in
25	let chandef $1 = mk$ -Chandef ₀ (newc1, path1, opath1, nil, newc1),
26	chandef $2 = mk$ -Chandef ₀ (newc2, path2, opath2, nil, newc2) in
27	let substructurequal = level $((SOBSTRUCTORE, nm^2))$ in
28	let $dict' = dict + [SCOPEONIT \mapsto substructurequal] in$
29	let $aecilist = replace-connects(aecilist, newc1, enapoint1, newc2, enapoint2)(aici) in$
30	let newchannels = $(enapoint1, newc1, enapoint2, newc2)$ in
31	let blockdef = $(1 + 1) (1 + $
32	$\mathbf{m}\mathbf{k}$ -Biockae $f_0(\mathbf{m}\mathbf{k}$ -I $a_0(\langle \rangle, newonm \rangle, \langle \rangle, \mathbf{m}\mathbf{k}$ -Biocksubae $f_0(\mathbf{m}\mathbf{k}$ -I $a_0(\langle \rangle, nm^2), aeclist, \mathbf{n}\mathbf{l}\rangle, \mathbf{n}\mathbf{l}\rangle$ in
33	let channelqual = level $((CHANNEL, nm))$ in
34	let $di = [channelqual \rightarrow mk-ChannelD(endpoint1, endpoint2, sigset, osigset, newchannels),$

35	$substructure qual \mapsto \mathbf{mk}$ - $Channel subD(newbqual)$] in
36	let $(as_1 declset, dict') = transform-decllist((chandef 1, chandef 2, blockdef))(dict)$ in
37	$(as_1 declset, dict' + di)))$

- **Objective** Transform a channel sub-structure definition into two channel definitions and a block definition

Parameters

csub	The AS_0 channel sub-structure definition
nm	The name of the enclosing channel definition
siglist	The signals conveyed by the enclosing channel.
o s iglist	The optional signals leading in the opposite direction.
endpoint1	The block from which siglist is sent.
endpoint2	The block to which <i>siglist</i> is sent. The <i>osiglist</i> signals are sent from <i>endpoint2</i> to <i>endpoint1</i> .

Result See transform-decllist

Algorithm

Line 1	Let <i>subid</i> denote the channel sub-structure identifier, <i>decllist</i> the definition list enclosed in the sub-structure and <i>tailid</i> the identifier ending the sub-structure definition
Line 2	If no identifier (name) is specified for the sub-structure, the name of the surrounding channel is inherited.
Line 3	Let $qtail$ denote the qualifier in the tailing identifier (<i>subid</i>) and let $nmtail$ denote the name in the tailing identifier
Line 4	The name of the sub-structure must not be qualified (as it is not a remote definition) and the identifier ending the definition must be equal to the identifier starting the definition if specified
Line 7	The tailing name must be equal to the channel substructure name
Line 10	Let level denote the Qual of the block where the channel is defined
Line 11	Create a distinct new name for the block to be constructed
Line 12	Construct the Dict entry for the block to be constructed
Line 13-14	Create distinct new names for the two channels to be constructed
Line 15-16	Construct the paths for the first of the two new channels
Line 20-21	Construct the paths for the second of the two new channels
Line 25-26	Construct the two new AS_0 channels
Line 29	Replace the channel endpoint connections $(Connect_0s)$ by block sub-structure connections $(Connect_0s)$ in the definition list of the channel sub-structure
Line 31	Construct the new block. It has an empty definition list and a block sub-structure containing the modified definition list
Line 34	Let <i>di</i> denote the <i>Dict</i> consisting of the descriptor for the enclosing channel and the descriptor for the channel sub-structure.
Line 36	Transform the two constructed channel definitions and the block definition into \mathbf{AS}_1
Line 37	Return the three AS_1 definitions and the <i>Dict</i> which includes the descriptors for the three definitions, descriptors for the contained definitions, descriptor for the enclosing channel and descriptor for the channel sub-structure.
1	(let $conset = \{d \in elems \ decllist \mid is - Connect_0(d)\}$ in
----	---
2	if card $conset = 2$ then
3	$\{ \mathbf{k}, $
4	let $bqual1 = get$ -visible-qual(blkid1, BLOCK)(dict),
5	bqual2 = get-visible-qual(blkid2, BLOCK)(dict) in
6	if {bqual1, bqual2} = {endpoint1, endpoint2} then
7	(let (c1, c2) = if bqual1 = endpoint1 then (newc1, newc2) else (newc2, newc1) in
8	let $decllist' = \langle decllist[i] \mid i \in ind decllist \land \neg is-Connect_0(decllist[i]) \rangle$ in
9	decllist' 🔿
10	$(\mathbf{mk}$ -Connect ₀ (\mathbf{mk} -Id ₀ ($\langle \rangle, c1$), clist1),
11	\mathbf{mk} -Connect ₀ (\mathbf{mk} -Id ₀ ($\langle \rangle, c2 \rangle, clist2 \rangle$)
12	else
13	exit("§3.2.3: The block identifiers in the connects do not denote channel endpoints"))
14	else
15	exit("§3.2.3: There must be exactly two channel endpoint connects"))

 $\mathbf{type}: \quad Decl_0^* \ Channame_0 \ Endpoint \ Channame_0 \ Endpoint \ \rightarrow \ Dict \ \rightarrow \ Decl_0^+$

Objective Change a channel sub-structure definition list to a block sub-structure definition list such that the list contains channel connections instead of channel endpoint connections.

Parameters

decllist	The definition list to be changed
newc1,newc2	The names of the two synthetic channels which replaces the channel containing a channel sub-structure.
endpoint 1,	
endpoint2	The endpoints of the channel containing a channel sub-structure. <i>newc1</i> is connected to <i>endpoint1</i> and <i>newc2</i> is connected to <i>newc2</i> .
Result	The new definition list to be enclosed by a synthetic block sub-structure.

Algorithm

Line 1	Extract the channel endpoint connections from the definition list.
Line 2 and 13	There must be exactly two such channel endpoint connections.
Line 3	Decompose the set containing the two channel endpoint connec- tions
Line 4-5	Construct the <i>Quals</i> of the block identifiers mentioned in the two channel endpoint connections
Line 6	These two block identifiers must be the same block identifiers as mentioned in the channel definition.
Line 7	Let c1 denote the name of the channel to which clist1 correspond and let c2 denote the name of the channel to which clist2 corre- spond
Line 8	Construct the definition list where the two channel endpoint con- nections have been removed and
Line 9-11	Return this list concatenated with two synthetic channel connec- tions

3.4.3 Process Definitions

transj	$form$ -process $def(\mathbf{mk}$ -Pr $def_0(pid, ins, pl, sigl, decll, body, tid))(dict) \stackrel{\Delta}{=}$	(3.4.3.1)
1	$(let mk_{-}Id_{0}(a name) - nid in$	
2	let mk-Instanceso(ini, maxi) = if ins = nil then mk-Instanceso(nil, nil) else ins in	
3	let $ini' = if ini = nil then 1$ else $eval-simple-expr(ini, "INTEGER")(dict)$.	
4	max' = if maxi = nil then infinite else eval-simple-expr(maxi, "INTEGER")(dict) in	
5	$(q \neq \langle \rangle$	
6	\rightarrow exit("§2.4.1: Defining names may only be qualified in remote definitions"),	
7	$tid \notin \{pid, nil\}$	
8	\rightarrow exit("§2.2.2: Ending name in process definition is different from defining name"),	
9	ini' > max'	
10	$ ightarrow \mathbf{exit}(``§2.2.3: Initial number is greater than maximum number of instances"),$	
11	ini' < 0	
12	$\rightarrow exit($ "§2.2.3: Initial number of instances is less than zero"),	
13	max' = 0	
14	\rightarrow exit("§2.2.3: Maximum number of instances equals zero"),	
15	$I \rightarrow (\text{let } d = \{\text{IMPLIED} \mapsto \{\}, \\ outform A \in G \}$	
16	$OUTSIGNALS \mapsto \{\},$	
17	$SCOPEUNIT \mapsto \operatorname{dict}(SCOPEUNIT) \land ((PROCESS, \operatorname{name})),$	
18	DATATYPEDEF \mapsto initial data def (dict) in	
19	let $(as_1 list, pd, dict') = transform-processparm(pl)(dict + d),$	
20	sigset = transform-valiainputset(sigl)(aict + a),	
21	$(as_1 aeciset, aarct) = transform-aecinist(aecin)(arct + a) In$	
22	evit ("\$2.2.2: Names of formal parameters must be distinct from variable names")	
24	else	
25	$(let (servicedeclset_1, as_1 body, bdict, connectmap) =$	
26	transform-process-body(body)(dict + d),	
27	outsigs = bdict(OUTSIGNALS),	
28	$number = mk-Number - of - instances_1(ini', max')$ in	
29	$\mathbf{if} \ (\exists q1, q2 \in \textit{outsigs} \cup \textit{sigset}) (\mathbf{len} \ q1 > \mathbf{len} \ q2 \land \langle q1[i] \ \ 1 \leq i \leq \mathbf{len} \ q2 \rangle = q2) \ \mathbf{then}$	
30	exit("§3.3: Process uses signals on different refinement levels of the same signal")	
31	else	
32	$($ let $(as_1 declset', vdict) = make-implicit-vardecl(bdict),$	
33	$as_1 totset = as_1 declset \cup as_1 declset' \cup servicedeclset_1,$	
34	$as_1 tree =$	
35	make-as ₁ tree(PROCESS, name, as ₁ totset, number, as ₁ list, as ₁ body)(alict) in	
30 97	let $aelem = [a(SCOPEONIT) \mapsto mk-ProcessD(pa, sigset, outsigs, connectmap)] + dist! + dist + adjust in$	
30 20	aici + aaici + vaici III	
00	([us1::ee], ue:en:))))))	
type	: $Prdef_0 \rightarrow Dict \rightarrow Process-definition_1$ -set $Dict$	
Obje	ctive Transform a process definition into AS ₁	
Para	meters The AS ₀ process definition containing	
p	id The process identifier	
i	ns The "number of instances" construct	
p	d The formal parameter list	
s	igl The valid input signal set	
à	lecll The contained definition list	
ĥ	ody The process state body	
ť	id The tailing identifier	
Resu	lt See transform-decllist	
Algo	rithm	
I	ine 1 Let name denote the process name	

Line 2	If the "number of instances" construct is omitted it is the same as omitting the initial number of instances and omitting the maximum number of instances
Line 3-4	If the initial number of instances is unspecified, it is equal to 1. If the maximum number of instances is unspecified, an infinite number of instances is allowed. The predefined constant <i>infinite</i> denotes an "unlimited" number (see also annex F.1 section 5.8). If one of the expressions are specified, it is evaluated and it must be of the predefined data sort INTEGER, i.e. the integer <i>Qual (iqual)</i> is given as parameter to <i>eval-simple-expr</i> as the only valid sort in the set of sorts.
Line 5	The name (identifier) of the process must not be qualified (as it is not a remote definition)
Line 7	The identifier ending the process definition (tid) , must be equal to the process name (identifier) if specified
Line 9	The maximum number of instances must be greater than or equal to the initial number of instances
Line 11	The initial number of instances must not be less than zero
Line 13	The maximum number of instances must not be zero
Line 15	Initiate the IMPLIED entry to contain no implicit variables and initiate OUTSIGNALS to contain no output signals. The two sets are filled during the transformation of the process body.
Line 17	Update SCOPEUNIT to indicate the process level and construct the initial Data-type-definition ₁ for the process.
Line 19	Transform the process formal parameters.
Line 20	Extract the complete valid input signal set.
Line 21	Transform the contained definitions
Line 22	The names of the formal parameters must be different from the variable and synonym names defined in the process (i.e. they must have distinct <i>Quals</i>)
Line 25	Transform the process body and return the list of AS_1 definitions from the contained services (if any), the AS_1 process graph, a <i>Dict</i> wherein only the IMPLIED entry and the OUTSIGNALS entry is used and the relation between signal routes and service signal routes (<i>connectmap</i> is empty if no services are present in the pro- cess).
Line 29-3	70 There must not exist two output signals where the first one is defined in the second one. The same must hold for input signals
Line 32	Construct the implicit AS ₁ variable definitions.
Line 33	Return the AS ₁ process definition $(as_1 tree)$, and the <i>Dict</i> contribu- tion consisting of the process descriptor (<i>delem</i>), the formal param- eter descriptors (<i>dict'</i>), and the descriptors of the entities defined inside the process (<i>ddict</i>).

(let qual = dict(SCOPEUNIT)) in 1 2 let mk-BlockD(,, explicit,) = dict(get-sur(process-level(qual))) in 3 let routesigset = if $\neg explicit$ then 4 $\mathbf{5}$ {} 6 else 7 $\{squal \mid (\exists mk-Signal routeD(p1, p2, s1, s2) \in rng dict)\}$ 8 $((p1 = qual \land squal \in s2) \lor (p2 = qual \land squal \in s1))$ in 9 let squalset = 10 if sigset = nil then {} 11 12 else 13 $(let mk-Inputset_0(sigl) = sigset in$ 14 if sigl = nil then {} else transform-signallist(sigl)(dict)) in 15 let implicit = 16 if is-ServiceD(dict(qual)) then 17 {} 18 else (let (expimpinput,) = import-export-signals(dict) in 19 20 expimpinput) in 21 let timers = { $tqual \in dom dict | is - TimerD(dict(tqual)) \land is - local(tqual)(dict)$ } in let $locals = \{tqual \in dom \ dict \mid is-SignalD(dict(tqual)) \land is-local(tqual)(dict)\}$ in 22 if squalset \cap timers = {} \land locals \subseteq squalset then 23 24 routesigset \cup squalset \cup implicit \cup timers $\mathbf{25}$ else 26 exit("§2.5.2: Valid input signal must contain all local signals and no timers"))

type: $[Signallist_0] \rightarrow Dict \rightarrow Signalqual-set$

	T 1 1 1	1 /	1.1.	• 1			c	•
Objective	Extract th	e complete	valid input	; signal se	t for a	process or	tor a	service
		· · · · · · · · · · · · · · · ·				F		

Parameters

sigset	The optional	list of AS ₀	signal	identifiers
0	-		<u> </u>	

Algorithm

Line 1	Let qual denote the Qual of the service or process
Line 2	<i>explicit</i> is true if explicit signal routes are specified for the surrounding block.
Line 3-8	Let <i>routeset</i> denote the signals contained in a signal route (implicit or explicit) leading to the process or service. The set is empty if no explicit signal routes are specified for the surrounding block.
Line 9-14	Let <i>squalset</i> denote the signals contained in the valid input signal set construct for the process or service
Line 15-19	Unless the scopeunit is a service extract the <i>Quals</i> of the implicit signals leading to the scopeunit.
Line 21	Let timers denote the timer signals defined in the process or service
Line 22	Let locals denote the signals defined in the process or service
Line 23	The valid input signal set for the process or service must not include any timers and it must contain all locally defined signals.
Line 24	The complete valid input signal set consist of the signals in the signal routes, the signals in the valid input signal set construct, the implicit signals and the timers.

1 (if $pl = \langle \rangle$ the	en e
$2 \qquad (\langle \rangle, \langle \rangle, [])$	
3 else 4 (1-4 1- D)	
4 (let mk-P)	$arm_0(nmi, iia) = na pi m$ $t_1 t_2(nmi, iia) = transform_nnocesenanm(t) nl)(dict) in$
$\begin{array}{c} 5 & \text{let} (as_1) \\ 6 & \text{let} as_0 var \end{array}$	def = mk-Vardefelem ₀ (nml tid nil) in
$7 \qquad let (d) =$	$transform$ -vardef (mk-Vardef ₀ (nil, nil, $\langle as_0 vardef \rangle$))(dict) in
8 let $tq = g$	et-visible-qual(tid, TYPE)(dict) in
9 let $tq' = g$	get-parent(tq)(dict) in
10 let $tql = \langle$	$\langle tq' \mid 1 \leq i \leq ext{len } nml angle$ in
11 let $as_1 id$	= make-as ₁ -identifier(tq')(dict) in
12 let $as_1 nm$	$l = \langle name-to-name_1(nml[i]) 1 \le i \le \text{len } nml \rangle \text{ in}$
13 if card ele	erns $as_1 nml \neq \text{len } as_1 nml$ then $2, 2, T_{\text{true definitions in the same assumptions the same name."}$
14 exit(g)	2.2.2. Two definitions in the same scopeunit use the same name
16 (let as_1	tree = mk-Process-formal-parameter, (as, nml, as, id) in
$17 \qquad (\langle as_1 tr$	$ee (as_1 list, tql \land tp', d + d'))))$
type: $Parm_0^* \rightarrow$	$Dict \rightarrow Process-formal-parameter_1^* Sortqual^* Dict$
Objective	Transform a list of formal process parameters into AS_1
Parameters	
pl	The list of formal AS_0 process parameters.
Result	The AS_1 formal parameters, the corresponding sort list which is used for checking of actual parameters in the create request node, and the <i>Dict</i> contribution containing the descriptors of the formal parameters.
Algorithm	The function traverse recursively through the list of formal parameters.
Line 1	When through, return empty lists and the empty map
Line 4	Let <i>nml</i> denote the name list of the first element in the list and let <i>tid</i> denote their sort
Line 5	Transform the rest of the formal parameters
Line 6	Construct an AS_0 variable definition for the parameters in hand and
Line 7	Transform this variable definition.
Line 8	Construct the <i>Qual</i> of the variable sort
Line 9	Extract the parent in the case of a syntype
Line 10	Construct the list (<i>tql</i>) of sort <i>Quals</i> corresponding to the variable list.
Line 11	Construct the AS ₁ identifier $(as_1 id)$ of the parent partial type (tq') for the sort of the variable list (nml)
Line 12	transform the name list to an AS_1 name list
Line 13	The names in the list must be distinct
Line 16	Construct the AS_1 formal parameter definition for the parameters in hand (nml) .
Line 17	Return the AS_1 formal parameter definition together with the rest of the formal parameters, return the associated sort list and return their <i>Dict</i> contributions

3.4.4 Signal Definitions

transform-signaldef (mk-Sigdef₀(elemlist))(dict) \triangleq

1 $(let mk-Sigelem_0(nm, tidl, refinement) = hd elemlist in$ 2 let $dlev = dict + [SCOPEUNIT \mapsto dict(SCOPEUNIT) \frown \langle (SIGNAL, nm) \rangle]$ in 3 let $(as_1 refinement, subsig1, subsig2, d) =$ 4 if refinement = nil then5 $(nil, \{\}, \{\}, [])$ 6 else $\mathbf{7}$ $(let mk-Refinement_0(subsiglist) = refinement in$ 8 let $(as_1 set, s1, s2, d') = transform$ -refinement(subsiglist)(dlev) in 9 $(mk-Signal-refinement_1(as_1 set), s1, s2, d'))$ in let $quall = \langle get \text{-}visible\text{-}qual(tidl[i], TYPE)(dict) \mid 1 \leq i \leq \text{len } tidl \rangle$ in 10 let $d' = [dict(SCOPEUNIT) \frown \langle (SIGNAL, nm) \rangle \mapsto mk-SignalD(quall, subsig1, subsig2)]$ in 11 12 let $(as_1 set', d'') =$ 13 if tl elemlist = $\langle \rangle$ 14 then $(\{\}, [])$ 15 else transform-signaldef (mk-Sigdef₀(tl elemlist))(dict) in 16 if dom $d' \cap \operatorname{dom} d'' \neq \{\}$ then 17 exit("§2.2.2: Two definitions in the same scopeunit use the same name") 18 else 19 (let $as_1 idlist = \langle make-as_1 \cdot identifier(quall[i])(dict) | i \in ind quall \rangle$ in 20 let $as_1 tree = mk$ -Signal-definition₁(name-to-name₁(nm), $as_1 idlist$, $as_1 refinement$) in 21 $(\{as_1 tree\} \cup as_1 set', d + d' + d'')))$ type: Sigdef₀ \rightarrow Dict \rightarrow Signal-definition₁-set Dict Objective Transform a signal definition into AS_1 Parameters The composite AS₀ signal definition introducing a list (elemlist) of elementary signal definitions. Result See transform-decllist Algorithm Line 1 Decompose the first signal definition in the composite AS₀ signal definition Line 2 Update level to indicate the signal structure. Line 3-9 Transform the refinement part of the signal definition and return the contained AS_1 definitions (as₁ refinement), the sub-signals leading in the same direction as the signal being defined (subsig1), the sub-signals leading in the opposite direction of the signal being defined (subsig2) and the Dict contribution from the new definitions (d).Line 10 Construct the sort Quals from the specified AS_0 sort identifier list Line 11 Construct the Dict contribution of the signal. Line 12-15 Transform the rest of the signal definitions in the composite signal definition. Line 16 No two signals in the composite definition may have the same name Line 19 Construct the AS_1 sort identifier list.

Line 20-21 Return the set of AS_1 signal definitions and the *Dict* contributions from the signals.

Fascicle X.4 – Rec. **Z.100** – Annex **F.2** 65

(3.4.4.1)

1 (if decllist =	$=\langle\rangle$ then
$2 (\{\}, \{\}, \{\}, \{$	<u>}</u> ,[])
3 else	1. J. J. J. J. J. Martin J. Martin J.
4 (let (as_1)	accirest, sig1rest, sig2rest, arest) = transform-represent (t1 accilist) (arct) in
5 let mk-	$Subsignal_{0}(reverse, signed) = nd accuss indeal_d) = transform_signaldef(sigdef)(digt) in$
$\frac{1}{2}$ if dom	$d \cap dom dreet \neq \{\}$ then
8 exit($\frac{1}{2}$ (3.2.2: Two definitions in the same scopeunit and same entity class define the same name")
9 else	
10 (let a	$s_1 tot = as_1 declrest \cup \{ \mathbf{mk} ext{-}Subsignal ext{-}definition_1(reverse, decl) \mid decl \in as_1 decl \} ext{ in }$
11 if rea	verse = nil then
12 (a.	$s_1 tot, sig1rest \cup \mathbf{dom} \ d, sig2rest, d + drest)$
13 else 14 (a	s_{s_1} tot, sig1rest, sig2rest + dom d, d + drest))))
type : Subsigna	$l_0^* \rightarrow Dict \rightarrow Subsignal$ -definition ₁ -set Signalqual-set Signalqual-set Dict
Objective	Transform the sub-signals in a signal refinement into \mathbf{AS}_1 subsignal definitions.
Parameters	
decllist	The list of AS_0 subsignal definitions
Result	A set of AS_1 subsignal definitions, the set of signal Quals containing the signals leading in the same direction as the parent signal, the set of signal Quals containing the signals leading in the opposite direction as the parent signal (these two sets are in the function transform-signaldef put into the descriptor for the parent signal) and the Dict contribution for the sub-signals.
Algorithm	
Line 1	When through then return no contributions.
Line 4	Transform the rest of the sub-signals.
Line 5	Decompose the first subsignal in the list.
Line 6	Transform the subsignal as if it was an ordinary signal.
Line 7	Check that the subsignal definitions are unique.
Line 10	Construct the set of AS_1 subsignal definitions from the AS_1 signal definitions and
Line 11-14	Return this set and if REVERSE was specified then add the signal $Quals$ (taken from the domain of d) to the first Signalqual set, otherwise add them to the second Signalqual set. Also return the dict contributions for the sub-signals (d) and the contribution for the rest of the sub-signals (drest).

3.4.5 **Procedure Definitions**

transform-procedured ef (mk-Procdef₀(pid, pl, decll, body, tid))(dict) \triangleq

```
(let mk-Id_0(q, name) = pid in
1
2
     if q = \langle \rangle \wedge tid \in \{pid, nil\} then
        (let name' = if is-ServiceD(dict(dict(SCOPEUNIT))) then
3
4
                           create-unique-name()
\mathbf{5}
                          else
6
                           name in
         let nqual = dict(SCOPEUNIT) \frown \langle (PROCEDURE, name') \rangle in
7
         let d = [SCOPEUNIT]
                                        \mapsto dict(\mathsf{SCOPEUNIT}) \frown \langle (\mathsf{PROCEDURE}, name) \rangle,
8
```

(3.4.5.1)

9	$DATATYPEDEF \mapsto initial data def(dict)]$ in					
10 let (let $(as_1 list, pd, dict') = transform-procedure parml(pl)(dict + d),$					
11 ($(as_1 declset, ddict) = transform-decllist(decll)(dict + d),$					
	$(mk-Procedure-graph_1(sta, stateset), bdict) = transform-body(body)(dict + d)$ in					
	om dict' () dom ddict \neq {} then it ("\$2.2.2). Nomes of formal non-matrix much be distinct from uniable nomes")					
14 ех 15 оја	at (92.2.2. Warnes of formal parameters must be distinct from variable names)					
16 efs	$(\exists saual \in \mathbf{dom} \ dict)(\mathbf{is} \cdot Service D(\ dict(saual)) \land$					
17	$get-sur(squal) = process-or-service-level(dict(SCOPEUNIT))) \land$					
18	stateset \neq {}					
19	then exit("§4.10.2: Procedure in decomposition or service has states or import expressions")					
20	else (let $as_1 tree =$					
21	$make-as_1 tree(PROCEDURE, name', as_1 declset,$					
22	$as_1 list, mk-Procedure-graph_1(sta, stateset), nil)(ddict) in$					
23	$\{a_{s}, tree\} \ delem + bdict\})$					
25 else						
26 $(q \neq$	$\langle \rangle$					
27 →	exit("§2.4.1: Defining names may only be qualified in remote definitions"),					
28 T →	exit("§2.2.2: Ending name in procedure definition is different from defining name")))					
type: Procd	$ef_0 \rightarrow Dict \rightarrow Procedure-definition_1$ -set $Dict$					
Objective	Transform a procedure definition into AS_1					
Parameters	The procedure definition containing					
pid	The procedure identifier (must contain a name only)					
pl	The list of formal parameters					
decll	The list of definitions					
body	The state body					
tid	The identifier (name) ending the definition					
Result	An AS_1 definition set consisting of one definition only and the <i>dict</i> contributions for the procedure and for the contained definitions					
Algorithm						
Line 1	Let name denote the procedure name					
Line 2	The procedure name (identifier) must not be qualified (as it is not a remote definition) and the name (identifier) ending the procedure definition must be equal to the procedure name if specified.					
Line 3	Construct a unique name for the procedure definition if it occurs in a service.					
Line 7	Construct the variable Qual to be used in AS ₁					
Line 8-9	Update SCOPEUNIT to denote the procedure scopeunit and con- struct the initial <i>Data-type-definition</i> ₁ for the procedure.					
Line 10	Transform the formal procedure parameters in order to obtain the AS_1 parameters ($as_1 list$), their sort descriptors (to be used when the procedure is invoked), and their <i>Dict</i> contributions.					
Line 11	Transform the contained definitions					
Line 12	Transform the procedure body and return the AS_1 procedure graph and a <i>Dict</i> wherein only the IMPLIED entry and the OUTSIGNALS entry are used.					
Line 13	No formal parameter may have the same name as a variable or synonym defined in the procedure					
Line 16-1.	If a procedure containing states or imports is defined in a process or in a procedure in a process then the process must not contain services.					

Fascicle X.4 – Rec. Z.100 – Annex F.2 67

.

Line 20-24 Return the AS₁ procedure definition $(as_1 tree)$ and a Dict contribution consisting of the procedure descriptor the formal parameter descriptors, and the descriptors of the entities defined in the procedure (bdict).

transform-procedure $parml(pl)(dict) \triangleq$

1	(if $pl = \langle \rangle$ then
2	$(\langle \rangle, \langle \rangle, [])$
3	else
4	$(let (as_1 elems, tpelems, delems) =$
5	cases hd pl:
6	(mk-Inoutparm ₀ (varlist, tid)
7	\rightarrow transform-varparm(true, varlist, tid)(dict),
8	mk-Inparm ₀ (varlist, tid)
9	\rightarrow transform-varparm(false, varlist, tid)(dict)) in
10	let $(as_1 list, tplist, d) = transform-procedure parml(tl pl)(dict)$ in
11	if dom delems \cap dom $d \neq \{\}$ then
12	exit("§2.2.2: Two definitions in the same scopeunit use the same name")
13	else
14	$(as_1 elems \frown as_1 list, tpelems \frown tplist, delems + d)))$
type	: $Procparm_0^* \rightarrow Dict \rightarrow Procedure-formal-parameter_1^* FormparmD^* Dict$
Obje	ctive Transform a list of formal procedure parameters into AS ₁

Parameters

pl The	list of formal AS_0	parameters.
--------	-----------------------	-------------

Result The AS_1 Formal parameters, the descriptors (*FormparmD*^{*}) which are put into the *ProcedureD* descriptor and used for type checking of the actual parameters and finally the *Dict* contributions for the parameters.

Algorithm

Line 1	When through, return empty lists and the empty Dict
Line 4-9	Transform the first parameter which is either an INOUT variable parameter (line 6) or an IN variable parameter (line 8).
Line 10	Transform the rest of the formal parameter list
Line 11	The names introduced in <i>pl</i> must be distinct
Line 14	Return the objects composed of the first formal parameter and the rest.

(3.4.5.2)

if card elems $varlist \neq$ len $varlist$ then
exit("§2.2.2: Two definitions in the same scopeunit use the same name")
else
(let tqual = get-visible-qual(tid, TYPE)(dict)) in
let $tqual' = get-parent(tqual)(dict)$ in
$ ext{let} \ as_1 \ varlist = \langle name-to-name_1(varlist[i]) \ \ 1 \leq i \leq ext{len} \ varlist angle \ ext{in}$
let $as_1 tree = if isout then$
${f mk} ext{-}Inout ext{-}parameter_1(as_1 varlist, make ext{-}as_1 ext{-}identifier(tqual)(dict))$
else
${f mk} ext{-}In ext{-}parameter_1(as_1varlist, make ext{-}as_1 ext{-}identifier(tqual)(dict)),$
parmdescrlist = if isout then
$\langle \mathbf{mk} extsf{-InoutDescr(tqual)} \mid 1 \leq i \leq \mathbf{len} \; varlist angle$
else
$\langle {f mk} extsf{-InDescr}(tqual') \mid 1 \leq i \leq {f len} \; varlist angle \; {f in}$
let nmlist =
(if is-ServiceD(dict(dict(SCOPEUNIT)))
then create-unique-name()
$else \ varlist[i] \mid 1 \leq i \leq len \ varlist angle,$
$newquallist = \langle dict(SCOPEUNIT) \frown \langle (VALUE, nmlist[i]) angle \mid 1 \leq i \leq \operatorname{len} varlist angle$ in
$let \ vquall = \langle dict(SCOPEUNIT) \frown \langle (VALUE, varlist[i]) \rangle \ \ 1 \leq i \leq len \ varlist \rangle,$
$delem = [vquall[i] \mapsto mk-VarD(tqual, nil, nil, nil, newquallist[i]) \mid 1 \le i \le len varlist]$ in
$(\langle as_1 tree \rangle, parmdescrlist, delem))$

 $\mathbf{type}: \quad Bool \; Name_0^* \; Id_0 \to Dict \to Procedure \text{-} formal \text{-} parameter_1^+ \; Formparm D^+ \; Dict$

Objective Transform a formal parameter into AS₁

Parameters

isout	True if the formal parameter is an INOUT parameter.
varlist	The names of the formal parameters
tid	Their sort.

Result

 $See \ transform-procedure parml$

Algorithm

Line 1	The names in the formal parameters must be distinct
Line 4	Extract the Qual of the parameter sort.
Line 5	Extract the parent partial type of the sort.
Line 6	Transform the name list into AS ₁ names
Line 7-10	Construct the AS_1 formal parameter.
Line 11-14	Construct the actual parameter sort descriptor.
Line 21	Construct the dict contribution for the formal parameter. The contained descriptors are <i>VarD</i> descriptors, (like for ordinary variable) since formal variable parameters acts as ordinary variables with respect to the static properties.

3.4.6 Sort Generators

transform-sortgenerator(mk-Sortgenerator₀(nm, parml, geninstl, prop, tnm))(dict) \triangleq

- 1 (if $tnm \in \{nm, nil\} \land gen-formparm-unique(parml, \{nm\}, \{\}, \{\})$ then
- 2 (let $gqual = dict(SCOPEUNIT) \frown \langle (GENERATOR, nm) \rangle$ in
- 3 let $prop' = transform-geninst(nm, geninstl, prop)(dict + [gqual \mapsto mk-ErrorD()])$ in
- 4 let descr = mk-GeneratorD(parml, prop') in
- 5 $(\{\}, [gqual \mapsto descr]))$

6 else

7 exit("§5.4.1.12: Ending name in generator definition is different from defining name"))

 $\mathbf{type}: \quad Sortgenerator_0 \rightarrow Dict \rightarrow Decl_1 \text{-set } Dict$

ObjectiveConstruct the Dict contribution corresponding to a data sort generator.
No AS1 objects are returned.

An AS₀ data sort generator containing

Parameters

nm	The generator name
parml	The formal parameters
geninstl	A list of contained generator instantiations
prop	The normal properties
tnm	The name ending the definition
-	

Result

For convenience the function returns a set of AS_1 definitions though the list is always empty (see *transform-decllist*). Also returned is the *Dict* contribution of the data sort generator.

Algorithm

Line 1	The name ending the definition must be equal to the generator name if specified and the formal parameters within the various parameter classes must be unique.
Line 2	Construct the Qual for the generator.
Line 3	Transform the generator instantiations contained in the generator definition. The generator qual $(gqual)$ is denoted by a <i>ErrorD</i> such that recursion can be detected.
Line 4-7	Return the <i>Dict</i> contribution containing the generator formal parameters (<i>parml</i>), and the generator body (<i>prop</i>). Well-formedness is applied to the body after it is replaced by the generator instance construct (not at this place.)

 $gen-formparm-unique(parml, sset, lset, oset) \triangleq$

1	if $parml = \langle angle$ then
2	true
3	else
4	cases hd parml:
5	$(mk-Sortparm_0(nmlist))$
6	$ ightarrow {f card} \ {f elems} \ nmlist = {f len} \ nmlist \wedge {f elems} \ nmlist \cap sset = \{\} \land$
7	gen -formparm-unique(tl parml, $sset \cup elems \ nmlist, lset, oset),$
8	\mathbf{mk} - $Termparm_0(nmlist)$,
9	$mk-Litparm_0(nmlist)$
10	$ ightarrow {f card} \ {f elems} \ nmlist = {f len} \ nmlist \wedge {f elems} \ nmlist \cap lset = \{\} \land$
11	gen -formparm-unique(tl parml, sset, lset \cup elems nmlist, oset),
12	\mathbf{mk} -Opparm ₀ (nmlist)
13	$ ightarrow \mathbf{card} \ \mathbf{elems} \ nmlist = \mathbf{len} \ nmlist \land \mathbf{elems} \ nmlist \cap oset = \{\} \land$
14	gen -formparm-unique(tl parml, sset, lset, oset \cup elems $nmlist))$

type: Genparm₀ Name₀-set Name₀-set Name₀-set^{*} \rightarrow Bool

(3.4.6.2)

Objective Parameters	Check that the formal parameters for a generator are unique.
parml sset,lset,oset	The formal parameters The set of sort parameters, literal or term parameters and op- erator parameters respectively considered so far (the function is recursive).
Result	true if success
Algorithm	
Line 5-7	For a sort parameter, the contained names must be unique and none of the names may occur in another sort parameter and the rest of formal generator parameters must also be unique.
Line 8-11	For a term parameter or a literal parameter, the contained names must be unique and none of the names may occur in another term or literal parameter and the rest of formal generator parameters must also be unique.
Line 12-14	For an operator parameter, the contained names must be unique and none of the names may occur in another operator parameter and the rest of formal generator parameters must also be unique.

3.4.7 Sort Definitions

transform-partial-typedef (mk-Partialtypedef₀(nm, extprop, prop, vlist, tnm))(dict) \triangleq

```
(3.4.7.1)
```

```
(if tnm \in \{nm, nil\} then
 1
 2
         (let tqual = dict(SCOPEUNIT) \frown \langle (TYPE, nm) \rangle in
 3
         let (implicitdecl, delem) = make-implicit-sigdecls(tqual)(dict) in
 4
         if (\exists opqual \in dom \ dict)((is \cdot Operator D(\ dict(\ opqual))) \lor is \cdot Literal D(\ dict(\ opqual))) \land
 5
                                      s-Result(dict(opqual)) = tqual \wedge
 6
                                      get-sur(get-sur(opqual)) = dict(SCOPEUNIT)) then
 7
            if vlist = nil then
 8
               (let dict' = cases \ extprop:
 9
                             (nil
10
                                 \rightarrow transform-sortdef(nm, prop, nil)(dict),
11
                              \mathbf{mk}-Struc<sub>0</sub>()
12
                                 \rightarrow transform-struc(nm, extprop, prop)(dict),
                              mk-Inherited<sub>0</sub>(,,)
13
                                 \rightarrow transform-inherited(nm, extprop, prop)(dict),
14
15
                              mk-Geninstlist<sub>0</sub>(instl)
16
                                 \rightarrow (let prop' = transform-geninst(nm, instl, prop)(dict) in
                                     transform-sortdef(nm, prop', nil)(dict))) in
17
18
               (implicitdecl, dict'))
19
              else
20
              (let unm = create-unique-name()) in
21
               let(,dnew) =
22
                    transform-partial-typedef(mk-Partialtypedef<sub>0</sub>(unm, extprop, prop, nil, unm))(dict),
23
                    id = mk-Id_0(dict(SCOPEUNIT), unm) in
24
               let (as_1 syn, dsyn) =
                    transform-syntype(mk-Syntypedef_0(nm, id, vlist, nil, tnm))(dict) in
25
26
               (implicit decl \cup as_1 syn, delem + dnew + dsyn))
27
           else
            exit("§5.2.1: There exist no operators which returns a value of that sort"))
28
29
        else
30
        exit("§5.2.1: Ending name in partial type definition is different from defining name"))
```

 $\mathbf{type}: \quad Partialtypedef_0 \rightarrow Dict \rightarrow Decl_1 \text{-set } Dict$

Fascicle X.4 – Rec. Z.100 – Annex F.2 71

Objective	Transform a partial data type definition into AS_1
Parameters	The data sort definition containing
nm	The sort name
extprop	The extended properties
prop	The properties (literals, operators, equations etc.)
vlist	A value list in the case of a syntype
tnm	The name ending the definition
Result	See transform-decllist
Algorithm	
Line 1	The name ending the data sort definition must be equal to the data sort name if specified.
Line 2	Construct the Qual representing the sort identifier.
Line 3	Construct the AS_1 definitions which defines the implicit signals attached to all the IMPORT - EXPORT variables of the sort being defined.
Line 4	There must exist an operator or literal which
Line 5	has this sort as result sort and which
Line 6	is defined in the surrounding scopeunit
Line 7	If the CONSTANTS construct is omitted then it is a real sort definition
Line 8	Construct the <i>Dict</i> contribution containing the sort descriptor, the operator and literal descriptors and the updated <i>Data-type-</i> <i>definition</i> ₁ . The AS ₀ sort definition is either
Line 9	A (simple) sort definition (with no extended properties).
Line 11	A struct definition or
Line 13	A sort which is based on inheritance or
Line 15	A (sequence of) generator instance(s). In this case, the instances are expanded (line 15) before they are transformed in the ordinary way (line 17)
Line 20-26	If CONSTANTS is specified then it is a syntype definition which means that
Line 20	A unique implicit sort name is generated and
Line 21	The <i>Partialtypedef</i> ₀ without any CONSTANTS and with that new name is transformed and
Line 24	The Syntypedef ₀ with CONSTANTS (vallist) and the implicit sort as parent is transformed

make-implicit-sigdecls(tqual)(dict) \triangleq

1 (let $qset = \{(tq,) \in dom dict | tq = tqual\}$ in 2 transform-decllist({make-implicit-decl(tqual, dict(t)) | t \in qset})(dict))

 $\mathbf{type}: \quad Sortqual \rightarrow Dict \rightarrow Decl_1 \text{-set } Dict$

Objective	Construct the AS_1 signal definitions attached to all the NameclosureDs
	which contains the sort <i>tqual</i> (see the definition of <i>Exportmap</i>).

Algorithm

Line 1	Construct the set of those <i>NameclosureDs</i> of which the <i>Sortqual</i> equals <i>tqual</i> and
Line 2	Construct the list of AS_0 definitions constructed by joining the lists of definitions attached to every element in the set and transform this list into AS_1 .

Fascicle X.4 - Rec. Z.100 - Annex F.2 72

(3.4.7.2)

 $make-implicit-decl(tqual, mk-SignalnamesD(, xqnm, xrnm)) \triangleq$

```
1 (let as_0 tid = as_0 \cdot id(tqual) in

2 mk-Sigdef_0(\langle mk-Sigelem_0(xqnm, \langle \rangle, nil),

3 mk-Sigelem_0(xrnm, \langle as_0 tid \rangle, nil))))
```

type: Sortqual Signalnames $D \rightarrow Sigdef_0$

Objective	Construct the AS ₀ signal definitions attached to EXPORT - IMPORT
	of a certain name and a certain sort. (tqual).

Algorithm

line 1	Construct the AS_0 identifier of the sort carried by the xtREPLY signal
Line 2-3	Construct the signal definition containing
Line 2	The xtQUERY signal and
Line 3	The xtREPLY signal.

transform-inherited (nm, mk-Inherited₀ (pid, lrenam, ops), prop)(dict) \triangleq

(3.4.7.4)

(let pqual = get-inherited-parent(get-visible-qual(pid, TYPE)(dict))(dict) in
 if is-recursive-sort(pqual, {})(dict) then

3	exit("§5.4.1.11: Sort is based on itself")
4	else
5	$(let \ pqual' = s-Newqual(dict(pqual)))$ in
6	let $sortdict = transform$ -sortdef $(nm, prop, pqual)(dict)$ in
7	let $typedef = sortdict(DATATYPEDEF)$ in
8	let mk-Data-type-definition ₁ (typename, union, sorts, sigs, eqs) = typedef in
9	$\textbf{let } \textit{iqual be s.t. } \textit{iqual} \in \textbf{dom } \textit{sortdict} \land \textbf{is-} \textit{SortD}(\textit{sortdict}(\textit{iqual})) \textbf{ in}$
10	let mk -Sort $D(eqs', pq, exp_1, nqual) = sortdict(iqual)$ in
11	let (<i>litmap</i> , <i>litd</i>) = <i>transform-literal-renaming</i> (<i>lrenam</i> , <i>iqual</i> , <i>pqual</i>)(<i>dict</i>) in
12	let $concasioms_1 = make-as_1-concasioms(dom litd)(dict)$ in
13	let (opmap, opd, opset) = transform-operator-renaming(ops, iqual, pqual)(dict) in
14	$\mathbf{if} \ \mathbf{dom} \ sortdict \cap \mathbf{dom} \ litd \cap \mathbf{dom} \ opd \neq \{\} \ \mathbf{then}$
15	exit("§5.2.2: Operator or literal both defined explicit and by inheritance")
16	else
17	$(let \ inhax = extract-inherited-axioms(litmap, opmap, nqual, pqual')(dict)$ in
18	let $iid_1 = make-as_1$ -identifier $(nqual)(dict)$ in
19	let $litsig = {mk-Literal-signature_1(nm_1, iid_1) mk-Identifier_1(, nm_1) \in rng litmap}$ in
20	let $datatypedef' =$
21	${f mk} ext{-}Data ext{-}type ext{-}definition_1(typename, union, sorts,$
22	$sigs \cup litsig \cup opset, eqs \cup inhax \cup concasioms_1)$ in
23	$\textbf{let } sortdescr = \textbf{mk-}SortD(\textit{eqs'} \cup \textit{inhax} \cup \textit{concasioms}_1, pq, \textit{exp}_1, \textit{nqual}) \textbf{ in}$
24	$(sortdict + litd + opd + [iqual \rightarrow sortdescr,$
25	$DATATYPEDEF \mapsto datatypedef')))))$

 $\textbf{type}: \quad \textit{Name}_0 \ \textit{Inherited}_0 \ \textit{Properties}_0 \rightarrow \textit{Dict} \rightarrow \textit{Dict}$

Objective Transform a partial type definition which is based on inheriting.

Parameters

nm The name of the sort being defined	
Inherited	The AS ₀ inherit construct
prop The AS ₀ properties defined in the ADDING construct	
Result	The <i>Dict</i> where the DATATYPEDEF entry has been updated to include the sort being defined and where descriptors for the sort and operators has been added.

Algorithm

Line 1	Extract the Qual denoting the sort identifier of the parent.	
Line 2-3	The sort must not inherit from itself	
Line 5	Extract the unique <i>Qual</i> of the parent	
Line 6	Update the DATATYPEDEF entry with the sort being defined and with its ADDING properties.	
Line 8	Decompose the updated Data-type-definition ₁ .	
Line 9-10	Extract the (just added) <i>Qual</i> of the sort being defined and decompose it.	
Line 11	Transform the literal renaming part into a map <i>litmap</i> and con- struct descriptors for the literal names introduced in the literal renaming.	
Line 12	Construct the axioms implied from any character string literals introduced in the literal renaming.	
Line 13	Transform the operator renaming part into a map opmap and con- struct descriptors for the new operator names (opd) and construct the AS ₁ signatures for the operators $(opset)$. This function also deals with the operators which are implicitly inherited (the invisi- ble operators)	
Line 14-15	all operators and literals defined in the adding part <i>sortdict</i> and the operators (<i>opd</i>) and literals (<i>litd</i>) defined in the inheritance part must have different signatures.	
Line 17	Extract all the axioms using the operators which are implicitly inherited.	
Line 18	Construct the AS ₁ identifier of the sort being defined.	
Line 19	Construct the AS_1 signatures of the renamed literals.	
Line 20-23	Include the properties from the inheritance part in the <i>Data-type-</i> <i>definition</i> and in the descriptor for the sort.	
Line 24	Return the <i>Dict</i> contribution from the adding part (<i>sortdict</i>), for the renamed literals (<i>litd</i>), for the renamed operators (<i>opd</i>), for the sort descriptor and the updated <i>Data-type-definition</i> ₁	

is-recursive-sort(qual, qset)(dict) \triangleq

```
1
   (if qual \in qset then
2
       true
3
       else
4
        cases dict(qual):
5
         (\mathbf{mk}-SortD(, pa, ,)
6
             \rightarrow if pa = nil then false else is-recursive-sort(pa, qset \cup {qual})(dict),
7
          mk-SyntypeD(pa, , , )
             \rightarrow is-recursive-sort(pa, qset \cup {qual})(dict)))
8
```

 $\mathbf{typ}\acute{\mathbf{e}}: \quad Sortqual \ Sortqual \ \mathbf{set} \rightarrow Dict \rightarrow Bool$

Objective Check that a syntype or an inheriting sort is not based on itself. The function traverse recursively through the *dict* until a partial type descriptor is found which is not based in inheritance. (I.e. until the false condition applies).

Parameters

\cdot qual	Denotes the sort in hand	
qset	Denotes the set of sorts which already have been referred. When the function initially is applied, this set is empty.	
Result	True if the sort is recursively defined.	

74 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.4.7.5)

Algorithm

Line 1	If the sort in hand (qual) already has been referred then true else
Line 5-6	if the sort in hand is a partial type having no parent then the sort is not recursively defined, otherwise add the partial type to the sortset and proceed with its parent.
Line 7	Add the syntype in hand to the sortset and proceed with its parent.

transform-literal-renaming(lrenam, qual, pqual)(dict) \triangleq

- 1 (let $plitset = \{lq \in dom dict \mid is-LiteralD(dict(lq)) \land s-Sortqual(dict(lq)) = pqual\}$ in
- 2 let $defaultmap = [qual \mapsto qual \mid qual \in plitset]$ in
- 3 let litmap = defaultmap + build-literal-renaming(lrenam, qual, pqual, plitset) in
- 4 $([make-as_1-identifier(lq)(dict) \mapsto make-as_1-identifier(litmap(lq))(dict) \mid lq \in dom litmap],$
- 5 $[lq \mapsto \mathbf{mk}\text{-}LiteralD(qual) \mid lq \in \mathbf{rng}\ litmap]))$
- type: Literalrenaming₀ Sortqual Sortqual \rightarrow Dict \rightarrow (Literal-operator-identifier₁ \Rightarrow Literal-operator-identifier₁) Dict
- **Objective** Construct a map from parent literals into new literals to be used when the inherited axioms are to be extracted (in *extract-inherited-axioms*) and construct *Dict* descriptors for the new literals

Parameters

lrenam	The AS ₀ literal renaming
qual	The Qual of the sort being defined
pqual	The Qual of the sort on which the inheritance is based.
Result	The constructed map and the <i>Dict</i> contribution containing the literal descriptors
Algorithm	
Line 1	Extract from <i>Dict</i> , the set of literals defined for the parent sort.
Line 2	Construct the default map, i.e. the corelation which applies for the literals which are not mentioned in the renaming part.
Line 3	Construct literal renaming map (where the contained literals are <i>Quals</i>) by overwriting the default map.

- Line 4 Return the literal renaming map after having converted the Quals to AS₁ identifiers and return
- Line 5 The literal descriptors (LiteralDs) which all contain the Qual of their sort

(3.4.7.6) ,

build-literal-renaming(lrenam, qual, pqual, plitset) \triangleq

1	if $lrenam = \langle \rangle$ then
2	Π
3	else
4	$(let mk-Literal pair_0(nlit, olit) = hd lrenam in$
5	let $nqual = qual \frown \langle (LITERAL, nlit) \rangle$,
6	$oqual = pqual \frown \langle (LITERAL, olit) \rangle$ in
7	if $oqual \in plitset$ then
8	(let restmap = build-literal-renaming(tl lrenam, qual, pqual, plitset) in
9	if $nqual \in \mathbf{rng}$ restmap then
10	exit(" $5.4.1.11$: Literal defined twice in renaming" $)$
11	else
12	$\mathbf{if} \ oqual \in \mathbf{dom} \ restmap \ \mathbf{then}$
13	exit("§5.4.1.11: Literal renamed twice")
14	else
15	$restmap + [oqual \mapsto nqual])$
16	else
17	exit("§5.4.1.11: Literal in literal renaming is not defined in the parent sort"))

 $\mathbf{type}: \quad Literal renaming_0 \ Sortqual \ Sortqual \ Qual-set \rightarrow (Qual \ \mathbf{m} \cdot Qual)$

Objective Construct from the AS_1 renaming part a map from parent *Quals* into *Quals* of the new literal names.

Parameters

lrenam	The AS ₀ literal renaming	
qual	The Qual of the sort being defined	
pqual	The Qual of the sort on which the inheritance is based	
plitset	The set of <i>Quals</i> containing all the literals defined for the parent sort	

Result

The constructed literal map

Algorithm

Line 1	When through then return nothing (the function is recursive).
Line 4	Decompose the next pair of literal names in the literal renaming.
Line 5-6	Construct the Quals of the new literal name (nqual) and of the parent (old) literal name (oqual).
Line 7	The right-hand literal in $Literal pair_0$ must be a literal of the parent sort.
Line 8	Construct the map for the rest of the literal renaming.
Line 9-12	If the lefthand literal (line 9) or the right-hand literal (line 12) is in the map for the rest of the literal renaming then it is mentioned twice in the literal renaming
Line 15	Else return the literal map for the rest of the literal renaming where this contribution has been added

transform-operator-renaming(oprenam, iqual, pqual)(dict) \triangleq

- - 8 let $(opmap', opd') = build-implicit-operators(iqual, pqual, opset \setminus explicitset)(dict)$ in
 - 9 let (qmap, opdict) = (opmap + opmap', opd + opd') in
- 10 let $idmap = [make-as_1 identifier(qual)(dict) \mapsto make-as_1 identifier(qmap(qual))(dict) |$
- 11 $qual \in \operatorname{dom} qmap$] in
- 12 let $as_1 typing = \{make as_1 typing(op)(dict) \mid op \in dom opdict\}$ in
- 13 $(idmap, opdict, as_1 typing))$
- Objective Construct from the AS_1 operator renaming part a map from parent operator identifiers into operator identifiers of the sort being defined. The map includes the identifiers of the operators which are implicitly inherited (an operator is implicitly inherited if it includes the parent sort in its signature)

Parameters

oprenam	The AS_0 operator renaming
iqual	The Qual of the sort being defined
pqual	The Qual of the parent

Result

The constructed operator map

Algorithm

Line 1	Construct the set of operator Quals from $Dict$ for which it holds that the parent $Qual$ (pqual) occur in the argument sort list (argl) or is the result of the operator.
Line 4	Construct the subset of <i>opset</i> which contains those operators which are explicitly defined (or inherited).
Line 5	Construct the set of operator names for the explicit defined oper- ators.
Line 6	If ALL is specified then let oprenam' denote the Operatorrenaming ₀ which includes all explicit operators else let oprenam' be oprenam.
Line 7	Construct the operator <i>Qual</i> map and the <i>Dict</i> descriptors for the explicit operators.
Line 8	Construct the operator <i>Qual</i> map and the <i>Dict</i> descriptors for the implicit operators.
Line 9	The complete operator <i>Qual</i> map is <i>qmap</i> and the complete <i>Dict</i> contribution is <i>opdict</i> .
Line 10	Convert the operator Qual map to an operator identifier map.
Line 12	For each operator in the $Dict$ contribution, construct the AS ₁ operator signature.
Line 13	Return the operator identifier map, the $Dict$ contributions and the AS_1 signatures of the operators

 $make-as_1-typing(qual)(dict) \triangleq$

- 1 (let mk-OperatorD(sl, res, qual',) = dict(qual) in
- 2 let (, (nm, ,)) = qual[len qual'] in
- 3 let $sl_1 = \langle make-as_1 identifier(sl[i])(dict) | 1 \leq i \leq len sl \rangle$,
- 4 $res_1 = make-as_1-identifier(res)(dict)$ in
- 5 mk-Operator-signature₁(name-to-name₁(nm), sl₁, res₁))

type: Operator $D \rightarrow Dict \rightarrow Operator-signature_1$

Objective	From an operator $Qual$ construct the AS ₁ signature of the operator
Parameters	
qual	The operator Qual
Result	The constructed operator signature
Algorithm	
Line 1	Decompose the operator descriptor. $qual'$ denotes the Newqual containing the name to be used in AS_1
Line 2	Extract the operator name by decomposing the last element in the <i>Qual</i> . For an operator, the last element always is an <i>Operatorqualelem</i> (see the domain).
Line 3	Construct the AS ₁ identifiers list denoting the argument sorts.
Line 4	Construct the AS ₁ identifier denoting the result sort.

Line 5 Return the composed operator signature

build-operator-renaming(renlist, qual, pqual, opset)(dict) \triangleq

1	(if $renlist = \langle \rangle$ then
2	
3	else
4	$(let mk-Operatorpair_0(nop, oop) = hd renlist in$
5	let $oset = \{oqual \in opset \mid (let (, (nm, ,)) = oqual[len oqual] in$
6	$get\text{-}sur(oqual) = pqual \land$
7	$nm = oop)\}$ in
8	$if oset = \{\} \lor (is-Name_0(oop) \land (let mk-Name_0(, exc) = oop in$
9	$exc \neq nil)$ then
10	if $oset = \{\}$ then
11	exit("§5.4.1.11: Operator in operator renaming is not defined in the parent sort")
12	else
13	exit("§5.4.1.11: Operator with an exclamation is mentioned in an operator renaming")
14	else
15	(let (maprest, drest) =
16	$build$ -operator-renaming(tl renlist, qual, pqual, opset \setminus oset)(dict) in
17	let $(map, d) = rename-operator(qual, pqual, oset, nop)(dict)$ in
18	$\mathbf{if} \mathbf{dom} d \cap \mathbf{dom} drest = \{\} \mathbf{then}$
19	(map + maprest, d + drest)
20	else
21	exit("§5.4.1.11: Operator renamed twice"))))

 $\textbf{type}: \quad \textit{Operatorrenaming}_0 \ \textit{Sortqual Sortqual Qual-set} \rightarrow \textit{Dict} \rightarrow (\textit{Qual } \overrightarrow{m}\textit{Qual}) \ \textit{Dict}$

Objective From an operator renaming, construct a map from parent operator Quals into operator Quals of the sort being defined. Also construct the Dict contributions for the new operators

Parameters

renlist The AS₀ operator renaming list

78 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.4.7.10)

qual	The Qual of the sort being defined
pqual	The Qual of the parent sort
opset	The set containing all Quals of the explicitly defined operators
Result	The constructed operator Qual map and the Dict contributions
Algorithm	
Line 1	When through, return nothing (the function is recursive).
Line 4	Decompose the next rename pair in the rename list.
Line 5	Extract the set of operator <i>Quals</i> for which the surrounding scope- unit of the place where it is defined is the parent <i>Qual</i> and the name part is equal to the parent operator name mentioned in the renaming.
Line 8-11	There must exist at least one Qual in the set.
Line 8-13	The parent operator name must not contain an exclamation mark.
Line 15	Construct the operator map and the <i>Dict</i> contributions for the rest of the renaming list.
Line 17	Rename the operator in hand. map denotes the contributions to the operator map and d denotes the contribution to the <i>Dict</i> .
Line 18-19	If the Quals of the operator name in hand (there may be several Quals for the operator name because the parent operator name mentioned in the operator renaming may denote several (overloaded) operators) are not in the <i>Dict</i> contributions for the rest of the renaming list then return the operator map contributions for the operator name in hand (map) and for the rest of the list and return the corresponding <i>Dict</i> contributions

rename-operator(iqual, pqual, oset, nop)(dict) \triangleq

if $oset = \{\}$ then 1 2 ([], []) 3 else 4 (let $qual \in oset$ in 5 let (, (nm, ,)) = qual[len qual] in 6 let mk-OperatorD(arglist, result, ,) = dict(qual) in 7 let $arglist' = \langle if get-parent(arglist[i])(dict) = pqual then iqual else <math>arglist[i] \mid 1 \le i \le len arglist \rangle$ in let $parglist = \langle get-parent(arglist'[i])(dict) | 1 \le i \le len arglist' \rangle$ in 8 9 let result' = if get-parent(result)(dict) = pqual then iqual else result in10 let presult = get-parent(result')(dict) in let $(maprest, drest) = rename-operator(iqual, pqual, oset \setminus {qual}, nop)(dict)$ in 11 if $result = result' \land arglist = arglist'$ then 12 13 (maprest, drest) 14 else (let nm' = if nop = nil then nm else nop in1516 let newnm = create-unique-name() in 17 let $opqual = iqual \frown \langle (OPERATOR, (nm', parglist, presult)) \rangle$ in let $newqual = iqual \frown \langle (OPERATOR, (newnm, parglist, presult)) \rangle$ in 18 19 $(maprest + [iqual \mapsto newqual], drest + [opqual \mapsto mk-OperatorD(arglist', result', newqual, true)])))$ Sortqual Sortqual Qual-set Newoperator₀ \rightarrow Dict \rightarrow (Qual \implies Qual) Dict type :

Objective	Construct a map from parent operator Quals into operator Quals for
	a given operator name. Also construct the Dict contributions for the
	operators denoted to the name

Parameters

iqual	The	Qual of the	inheriting sort
pqual	The	Qual of the	parent sort

79

(3.4.7.11)

oset	The set of operator <i>Quals</i> defined in the parent sort and having the name mentioned in the operator renaming
nop	The new operator name
Result	The constructed map and the corresponding Dict contributions
Algorithm	
Line 1	When through then return nothing (the function is recursive).
Line 4-5	Take the next operator <i>Qual</i> in the set and extract the operator name.
Line 6	Decompose the operator descriptor for the parent operator in hand
Line 7	Replace every occurrence of the parent sort in the argument sort list for the operator in hand by the inheriting sort. Note that the function <i>get-parent</i> has nothing to do with the parent of the inheriting sort. <i>get-parent</i> replaces any syntypes by its (parent) sort.
Line 8	Remove any syntypes from the argument list. This nominal list is used in the <i>Qual</i> for the operator.
Line 9-10	Do the same for the result sort.
Line 11	Go through the rest of the set of parent operator Quals.
Line 12-13	If the parent <i>Qual</i> is not used in the argument list or in the result of the operator then return the map and the <i>Dict</i> contributions for the rest of the list else
Line 15	If a new operator name is not specified in the $Operator pair_0$ then the inherited operator has the same name as the parent operator.
Line 16	Construct a unique name to be used in the <i>Newqual</i> for the operator (see the definition of <i>OperatorD</i>).
Line 17	Construct the Qual to be used as the Dict entry for the operator.
Line 18	Construct the Newqual for the operator.
Line 19	Return the operator <i>Qual</i> map for the rest of the operators and for the operator in hand and return the <i>Dict</i> for the contributions

build-implicit-operators(iqual, pqual, opset)(dict) \triangleq

(3.4.7.12)

1	if $opset = \{\}$ then
2	
3	else
4	(let $qual \in opset$ in
5	let (, (, arglist, result)) = qual[len qual] in
6	$\texttt{let } arglist' = \langle \texttt{if } get\text{-}parent(arglist[i])(dict) = pqual \texttt{ then } iqual \texttt{ else } arglist[i] \mid 1 \leq i \leq \texttt{len } arglist \rangle \texttt{ in }$
7	let $result' = if get-parent(result)(dict) = pqual then iqual else result in$
8	${f let}\;(restmap,drest)=build-implicit-operators(iqual,pqual,opset\setminus\{qual\})(dict)$ in
9	if $arglist = arglist' \land result = result'$ then
10	(restmap, drest)
11	else
12	(let newnm = create-unique-name() in
13	let $opqual = iqual \frown \langle (OPERATOR, (newnm, arglist', result')) \rangle$ in
14	$(\textit{restmap} + [\textit{qual} \mapsto \textit{opqual}], \textit{drest} + [\textit{opqual} \mapsto \textit{mk-OperatorD}(\textit{arglist'}, \textit{result'}, \textit{opqual}, \textit{false})])))$
type	: Sortqual Sortqual Qual-set \rightarrow Dict \rightarrow (Qual \implies Qual) Dict

Objective Construct a map from parent operator *Quals* into operator *Quals* for the implicit operators. Also construct the *Dict* contributions for the operators.

Parameters

iqual The Qual of the inheriting sort

Fascicle X.4 – Rec. Z.100 – Annex F.2

pqual	The Qual of the parent sort
oset	The set of operator Quals using the parent sort
Result	The constructed map and the corresponding Dict contributions
Algorithm	
Line 1	When through, return nothing (the function is recursive).
Line 4	Take an operator <i>Qual</i> in the set and extract the argument sort list and the result sort.
Line 6-7	Construct the argument sort list where every occurrence of the parent sort is replaced by the inheriting sort (<i>iqual</i>) and do the same for the result sort.
Line 8	Construct the <i>Qual</i> map and the <i>Dict</i> contributions for the rest of the operators in <i>opset</i> .
Line 9-10	If <i>pqual</i> is not used in the signature then return the constructed objects.
Line 12-13	Create a new unique name for the implicit operator and construct the <i>Qual</i> containing this name.
Line 14	Return the <i>Qual</i> map and the <i>Dict</i> contributions for the rest of the operators in <i>opset</i> and return the map contribution for the operator and its <i>Dict</i> contribution

extract-inherited-axioms(litmap, opmap, qual, pqual)(dict) \triangleq

- 1 (let $qualset = all visible sorts(dict) \setminus \{qual\}$ in
- 2 let $id_1 = make-as_1$ -identifier(qual)(dict) in
- 3 let $pid_1 = make-as_1-identifier(pqual)(dict)$ in
- 4 let $axset = union \{s-Equations_1(dict(qual)) \mid qual \in qualset\}$ in
- 5 let $axset' = \{convert axiom(axiom, litmap, opmap, id_1, pid_1) \mid axiom \in axset\}$ in
- 6 $axset' \setminus axset$)

Objective	Extract all the inherited axioms, that is, all the axioms which uses
	any of the operators or literals which includes the parent sort in the
	signature

Parameters

litmap	A map from parent literal identifiers into literal identifiers defined for an inheriting sort
opmap	A map from parent operator identifiers into operator identifiers defined (implicit or explicit) for an inheriting sort
qual	The Qual of the inheriting sort
pqual	The Qual of the parent sort
Result	The set of equations using any of the parent operators/literals, where the parent operators/literals identifiers have been replaced by the op-

erator/literal identifier of the inheriting sort

Algorithm

Line 1	Construct the set of sort <i>Quals</i> which are visible in the enclosing scopeunit. Exclude the inheriting sort from the set.
Line 2-3	Construct the AS_1 identifiers of the inheriting sort and the parent sort respectively.
Line 4	Construct the set which is the union of the set of equations defined in the various (visible) sorts.

81

(3.4.7.13)

Line 5	Construct the set consisting of all the equations defined in a visible
	sort and such that each equation is converted to include the new
	operators/literals instead of the parent operators/literals.
Line 6	Return this set, but exclude those equations which has not changed

(3.4.7.14)

convert- $axiom(axiom, lmap, omap, id, pid) \triangleq$

1 cases axiom: 2 $(\mathbf{mk-}Unquantified-equation_1(t1, t2))$ 3 \rightarrow mk-Unquantified-equation₁(convert-term(t1, lmap, omap), convert-term(t2, lmap, omap)), **mk**-Quantified-equations₁(nms, sort, eqs) 4 5 \rightarrow mk-Quantified-equations₁ (nms, if sort = pid then id else sort, $\{convert-axiom(eq, lmap, omap, id, pid) \mid eq \in eqs\}),$ 6 7 **mk**-Conditional-equation₁(eqs, eq) \rightarrow mk-Conditional-equation₁({convert-axiom(a, lmap, omap, id, pid) | a \in eqs}, 8 convert-axiom(eq, lmap, omap, id, pid)), 9 $T \rightarrow axiom$) 10

Objective Modify an inherited axioms to include the operators and literals defined by an inheriting sort

Parameters

axiom	The axiom to be modified
lmap	A map from parent literal identifiers into literal identifiers defined for an inheriting sort
omap	A map from parent operator identifiers into operator identifiers defined (implicit or explicit) for an inheriting sort
id	The AS ₁ identifier of the inheriting sort
pid	The AS ₁ identifier of the parent sort
Result	The modified axiom (equation)
Algorithm	
Line 2	If the equation is a simple unquantified equation then convert the lefthand side term $(t1)$ and the right-hand side term $(t2)$.
Line 4-6	If the equation is a quantified equation then replace the sort in the quantification if it is the parent sort and convert the equations contained in the quantified equation.
Line 7-9	If the equation is a conditional equation then convert the restriction (line 8) and convert the restricted equations (line 9).
Line 10	Informal text is left unchanged

type: Equation₁ (Literal-operator-identifier₁ \implies Literal-operator-identifier₁) (Operator-identifier₁ \implies Operator-identifier₁) Sort-identifier₁ Sort-identifier₁ \rightarrow Equation₁

convert-term(term, lmap, omap) \triangleq

8 9 10

22

23

else

 \mathbf{mk} -Composite-term₁(t'))

1	if is- $Error$ -term ₁ (term) then
2	term
3	else
4	(let $t = cases \ term$:
5	$(\mathbf{mk}$ -Ground-term ₁ $(te) \rightarrow te$,
6	\mathbf{mk} -Composite-term ₁ (te) \rightarrow te) in
7	let $t' = cases t$:
8	$(\mathbf{mk}$ -Identifier ₁ $(,)$
9	\rightarrow if is-Ground-term ₁ (term) $\land t \in \text{dom} lmap \text{then} lmap(t) \text{else} t$,
.0	\mathbf{mk} -Conditional-term ₁ (t1, t2, t3)
1	. \rightarrow mk-Conditional-term ₁ (convert-term(t1, lmap, omap),
.2	convert-term(t2, lmap, omap),
3	convert-term(t3, lmap, omap)),

11	\rightarrow mk-Conditional-term ₁ (convert-term(t1, lmap, omap),
12	convert-term(t2, lmap, omap),
13	convert-term(t3, lmap, omap)),
14	$T \rightarrow (\mathbf{let} \ (\textit{opid}, \textit{arglist}) = t \ \mathbf{in}$
15	$let \ arglist' = \langle convert-term(arglist[i], lmap, omap) \mid 1 \leq i \leq len \ arglist \rangle$ in
16	if $opid \in dom \ omap$ then
17	(omap(opid), arglist')
18	else
19	(opid, arglist'))) in
2 0	if is- $Ground$ - $term_1(term)$ then
21	\mathbf{mk} -Ground-term ₁ (t')

Parameters

term	The term to be modified
lmap	A map from parent literal identifiers into literal identifiers defined for an inheriting sort
omap	A map from parent operator identifiers into operator identifiers defined (implicit or explicit) for an inheriting sort
Result	The modified Term
Algorithm	
Line 1	If it is the error term then do nothing
Line 4-6	Decompose the term. The replacement takes place regardless of whether it is a ground or a composite term.
Line 7	If the term contains an identifier and the term is a ground term then the identifier denotes a literal and it is replaced if it is in the literal map.
Line 10-13	If the term contains a conditional term then convert the boolean term, the "then" term and the "else" term.
Line 14-19	If the term is an operator application then
Line 14	Decompose the operator application.
Line 15	Convert the argument terms.
Line 16-19	If the operator identifier is in the operator map then fetch the new inherited operator identifier from the map (<i>omap</i>) else do not change the operator identifier. Compose the operator application again.
Line 20-23	Compose the term again (reverse of line 4-6)

type: $Term_1$ (Literal-operator-identifier₁ \Rightarrow Literal-operator-identifier₁)

 $⁽Operator - identifier_1 \implies Operator - identifier_1) \rightarrow Term_1$

Objective Modify an term to include the operators and literals defined by an inheriting sort

transform-geninst $(nm, instlist, adding)(dict) \triangleq$

.....

•

.

1 2	(if instlist = adding)	$\langle \rangle$ then
3	else	
4	(let mk-G	$eninst_0(id, parm) = hd instlist in$
5	let mk-P	$roperties_0(lit, op, ax, ma, init) = transform-geninst(nm, tl instlist, adding)(dict)$ in
6	let tqual	= get-visible-qual(id, GENERATOR)(dict) in
7	let mk- <i>Ia</i>	$h_0(, genname) = id$ in
8	let mk-G	eneratorD(fparm, prop) = dict(tqual) in
9	if len fpai	$m \neq \text{len } parm \text{ then}$
10	exit(3	5.4.1.12.2. Lengths of actual and formal parameter lists in generator must be the same j
11	else	(from norm) = collect component(from norm) in
12	(let (th	(1, 1, 1, 1, 1, 1, 1, 1) = collect-genparms(jparm, parm) m
14	let ml	$= in + [genname \rightarrow mk - mg((/, nn)]] m$
15	let lit	' = (insert - gennarms(lit'[i])(tm' litm onm constm) 1 < i < len lit')
16		$= (insert - genparms(an'[i])(im', itim, opm, constm) 1 \le i \le interm (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', itim, opm, constm) 1 \le i \le int (int [i])(im', int [i])(im',$
17	ax	$= (insert - genparms(ax'[i])(tm', litm, opm, constm) 1 \le i \le len ax').$
18		$u'' = (insert - genparms(ma'[i])(im', itim, opm, constm) 1 \le i \le len ma') in$
19	if init	\neq nil \wedge init' \neq nil then
20	exit	("§5.5.3.3: More than one default assignment")
21	else	3 <i>(</i>)
22	(let	init'' = if init = nil then init' else init in
23	mk	-Properties ₀ (lit \frown lit", op \frown op", ax \frown ax", ma \frown ma", init")))))
type	: Name ₀ Ge	$ninst_0 \ Properties_0 \rightarrow Dict \rightarrow Properties_0$
Obje	ective	Transform a series of generator instances into AS_0 Properties ₀ .
Para	meters	
T	ım	The name of the AS_0 sort definition containing the generator instance.
i	nstlist	The AS_0 generator instance list.
a	ıdding	The additional properties specified in the ADDING construct.
Resu	llt	AS_0 Properties ₀ to be transformed into AS_1 in the function transform- partial-typedef
Algo	rithm	
1	Line 1	When the generator instance list is empty then return the ADDING properties (the function is recursive).
1	Line 4	Decompose the next generator instance in the list.
1	Line 5	Transform the rest of the generator instances and return the prop-
		<i>erties</i> where the properties of the generators in the rest of the list have been added.
1	Line 6-7	Construct the <i>Qual</i> of the generator identifier and decompose the generator identifier.
1	Line 8	Decompose the generator descriptor.
1	Line 9-10	The length of the generator actual parameter list must be equal to the length of the generator formal parameter list.
	Line 19	Construct four maps which contains the correlation between the
1	Line 12	formal and actual parameters the contains the correlation between
		formal and actual sort parameters. <i>litm</i> between formal and actual
		literal parameters. <i>opm</i> between formal and actual operator param-
		eters and <i>constm</i> between formal and actual constant parameters.
i	Line 19	Regard the generator name as a formal parameter and include it
1	5000 10	in the sort map.

84 Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 15-18	Replace every formal parameter in the generator body by the cor- responding actual parameter i.e. replace the formal parameters in the literal signature (line 15), operator signature (line 16) equa- tions (line 17) and mapping part of the equations (line 18).
Line 19	If this generator instance contains a default assignment then the other generator instances or the ADDING properties must not con- tain a default assignment.
Line 23	Compose the properties from the properties from this generator instance joined with the properties from the other instances.

insert-genparms $(node)(tmap, lmap, omap, constmap) \triangleq$

tmap

1 cases node: 2 $(\mathbf{mk}$ - $Opspec_0(nm, sortl, sort)$ \rightarrow mk-Opspec₀(insert-parm(nm, omap), (insert-parm(sortl[i], tmap) | $1 \le i \le \text{len sortl}$), 3 4 insert-parm(sort, tmap)), 5 mk-Equation₀(t1, t2) 6 \rightarrow mk-Equation₀(insert-genparms(t1)(tmap, lmap, omap, constmap), 7 insert-genparms(t2)(tmap, lmap, omap, constmap)), 8 **mk**-Condequation₀(eql, eq) 9 \rightarrow mk-Condequation₀((insert-genparms(eql[i])(tmap, lmap, omap, constmap) | $1 \le i \le \text{len eql}$), 10 insert-genparms(eq)(tmap, lmap, omap, constmap)), 11 mk-Mappingaxiom₀(vl, sid, al) 12 \rightarrow mk-Mappingaxiom₀(vl, insert-parm(sid, tmap), 13 (insert-genparms(al[i])(tmap, lmap, omap, constmap) | 1 < i < len al)),14 mk-Quantequation₀(vl, sid, al) 15 \rightarrow mk-Quantequation₀(vl, insert-parm(sid, tmap), 16 (insert-genparms(al[i])(tmap, lmap, omap, constmap) | 1 < i < len al)),17 $mk-Name_0(,)$ 18 \rightarrow insert-parm(node, lmap), 19 \mathbf{mk} - $Id_0(,)$ 20 \rightarrow insert-parm(node, lmap + constmap), 21 \mathbf{mk} -Operatorterm₀(\mathbf{x}, tli) \rightarrow mk-Operatorterm₀(insert-parm(x, omap)), 22 $(insert-genparms(tli[i])(tmap, lmap, omap, constmap) | 1 \le i \le len tli \rangle),$ 23 24 mk-Condterm₀(e1, e2, e3) 25 \rightarrow mk-Condterm₀(insert-genparms(e1)(tmap, lmap, omap, constmap), 26 insert-genparms(e2)(tmap, lmap, omap, constmap), 27 insert-genparms(e3)(tmap, lmap, omap, constmap)), 28 mk-Monadterm₀(op, e) 29 \rightarrow mk-Monadterm₀(op, insert-genparms(e)(tmap, lmap, omap, constmap)), 30 \mathbf{mk} -Infixterm₀(e1, op, e2) 31 \rightarrow mk-Infixterm₀(insert-genparms(e1)(tmap, lmap, omap, constmap), 32 op, insert-genparms(e2)(tmap, lmap, omap, constmap)), 33 \mathbf{mk} -Spellingterm₀(x) 34 \rightarrow mk-Spellingterm₀(insert-parm(x, lmap)), 35 $\mathbf{T} \rightarrow node$) $(Literal_0 \mid Op_0 \mid Axiom_0 \mid Mappingaxiom_0) \rightarrow (Name_0 \overrightarrow{m} Id_0) (Name_0 \overrightarrow{m} Literal_0)$ type: $(Name_0 \implies (Name_0 \mid Quotedop_0))$ $(Name_0 \implies Term_0) \rightarrow (Literal_0 \mid Op_0 \mid Axiom_0 \mid Mappingaxiom_0)$ Objective Replace formal generator parameters by actual generator parameters in the body of a generator **Parameters** node An object occurring in the body of the generator. The function recursively traverses through the sub-trees of node

Fascicle X.4 – Rec. Z.100 – Annex F.2

The map from formal sort parameters into actual type parameters

85

(3.4.7.17)

lmap	The map from formal literal parameters into actual literal param- eters
omap	The map from formal operator parameters into actual operator parameters
constmap	The map from formal constant parameters into actual constant parameters
Result	The node where the formal parameters have been replaced
Algorithm	
Line 2-4	In an operator signature, consider the operator name (nm) , the argument sort list (<i>sortl</i>) and the result sort (<i>sort</i>).
Line 5-7	In an equation, consider the two terms $t1$ and $t2$.
Line 8-10	In a conditional equation, consider the restriction $(t1)$ and the restricted equations $(t2)$.
Line 11-13	In a mapping equation, consider the sort identifier (sid) and the contained equations (al) .
Line 14-16	In a quantified equation, consider the sort identifier (sid) and the contained equations (al) .
Line 17	If the node is a Literal ₀ Name ₀ , consider it using the literal map.
Line 19	If the node is an identifier (occurring in an equation) then con- sider it using the literal map and the constant map (literal formal parameters may also be used in equations).
Line 21-23	In an operator application, consider the operator identifier (x) and the argument terms (tli) .
Line 24-27	In a conditional term, consider the boolean term $(e1)$ the "then" term $(e2)$ and the "else" term $(e3)$
Line 28-32	in a monadic term or a dyadic term, consider the contained term(s).
Line 33	In a spelling term, consider the contained identifier.
Line 35	Other kinds of <i>nodes</i> cannot or must not contain any formal parameters

.

(3.4.7.18)

insert- $parm(x, map) \triangleq$

1	cases x:
2	$(\mathbf{mk}$ - $Id_0(q, nm)$
3	\rightarrow if $nm \in \text{dom } map$ then
· 4	if $q = \langle \rangle$ then
5	cases $map(nm)$:
6	$(\mathbf{mk}-Name_0(,))$
7	\rightarrow mk-Id ₀ ($\langle \rangle$, map(nm)),
8	mk-Quotedop ₀ ()
9	$\rightarrow \mathbf{mk} - Qualop_0(\langle \rangle, map(nm)),$
10	mk-Nmclass ₀ ()
11	\rightarrow exit("§5.4.1.12: Name class cannot be used in equations"),
12	mk-String ₀ ()
13	$\rightarrow \mathbf{mk}\text{-}Stringterm_0(\langle\rangle, map(nm)),$
14	$T \rightarrow map(nm))$
15	else
16	exit("§5.4.1.12: Generator formal name is qualified")
17	else
18	$\boldsymbol{x},$
19	$mk-Name_0(,)$
20	\rightarrow if $x \in $ dom map then
21	cases $map(x)$:
22	$(\mathbf{mk}-Name_0(,),$
23	\mathbf{mk} - $Nmclass_0(),$
24	\mathbf{mk} -String ₀ ()
25	$\rightarrow map(x),$
26	\mathbf{mk} - $Quotedop_{0}()$
27	$\rightarrow map(x),$
28	$T \rightarrow exit($ "§5.4.1.12: Generator constant parameter used in literal signature" $))$
29	else
30	$\boldsymbol{x},$
31	$T \rightarrow x$)

type :	$(Id_0 \mid Name_0)$	Quotedop ₀) (Nam	$e_0 \implies (Term_0)$	Literal ₀	$ $ Quotedop ₀ $)) \rightarrow$
	(Term ₀ Liter	$ral_0 \mid Quotedop_0)$			

Objective Test whether an identifier or a name is a formal generator parameter and if so, replace it by the corresponding actual parameter

Parameters

x	The identifier or name to be tested upon. In order to simplify the applying function <i>insert-genparms</i> , x may also be an <i>Quotedop</i> ₀ in which case x is returned unchanged.
map	A map containing the association between formal parameters and actual parameters for a certain parameter class depending on the context in which <i>insert-parm</i> is applied. The class is either type formal parameters, operator formal parameters or the composition of literal and constant formal parameters.
Result	The corresponding actual parameter if x is a formal parameter, otherwise x
Algorithm	
Line 2	If the object in hand is an identifier and the name part it is in the map (map) then the identifier denotes a formal parameter in which case it must not be qualified (line 4 and line 16).
Line 6	If the actual parameter is a name (i.e. a literal or operator name) then return it enclosed in an identifier (because it is used in apply- ing context).

Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 8	If the actual parameter is a quoted operator then return it enclosed in an operator identifier $(Qualop_0)$
Line 10	A nameclass cannot be used in applying context.
Line 12	If the actual parameter is a character string then return it enclosed in a string literal identifier $(Stringterm_0)$.
Line 14	Otherwise the actual parameter is a term in which case the term is return.
Line 18	If the identifier is not a formal parameter then return the identifier unchanged.
Line 19	If the object in hand is a name and it is in the map then it is a formal parameter used in defining context.
Line 22-24	If the actual parameter is a name or a name class or a character string then it is returned.
Line 26	If the actual parameter is a quoted infix operator then the con- tained infix operator is returned.
Line 28	In other cases, the actual parameter denotes a term which is not an allowed parameter in defining context.
Line 30	If the name is not a formal parameter then return the name un- changed

2

ί.

1	$(if fparm = \langle \rangle then$
2	
3	else
4	(let (trest, litrest, oprest, constrest) = collect-genparms(tl fparm, tl parm) in
5	let exclamation =
6	if is $-Id_0(hd parm)$ then
7	$(let mk-Name_0(, exc) = s-Name_0(hd parm) in$
8	$exc \neq nil)$
9	else
10	false in
11	cases hd fparm:
12	$(\mathbf{mk}$ -Sortparm $_0(nm)$
13	$ ightarrow$ if is-Id ₀ (hd parm) $\land \neg$ exclamation then
14	$(trest + [nm \mapsto hd parm], litrest, oprest, constrest)$
15	else
16	exit("§5.4.1.12.2: TYPE actual generator parameter must be a identifier"),
17	\mathbf{mk} - $Opparm_0(nm)$
18	$ ightarrow {f if} \left({f is} extsf{-} Id_0({f hd} \ parm) \wedge {f s} extsf{-} Qualifier_0({f hd} \ parm) = \langle angle ight) {f then}$
19	$(\textit{trest},\textit{litrest},\textit{oprest} + [\textit{nm} \mapsto \text{s-Name}_0(\text{hd}\textit{parm})],\textit{constrest})$
20	else
21	if is- $Quotedop_0(hd parm)$ then
22	$(trest, litrest, oprest + [nm \mapsto hd parm], constrest)$
23	else
24	exit("§5.4.1.12.2: OPERATOR actual generator parameter must be an operator signature"),
25	\mathbf{mk} -Litparm ₀ (nm)
2 6	\rightarrow cases hd parm:
27	$(\mathbf{mk}\text{-}String_0(str)$
28	\rightarrow (trest, litrest + [nm \mapsto str], oprest, constrest),
29	$mk-Id_0(q, nam)$
30	\rightarrow if $q = \langle \rangle \land \neg$ exclamation then
31	$(trest, litrest + [nm \mapsto nam], oprest, constrest)$
32	else
33	exit(" $5.4.1.12.2$: LITERAL actual generator parameter must be a literal signature"),
34	$mk-Nmclass_0()$.
35	\rightarrow (trest, litrest + [nm \mapsto hd parm], oprest, constrest),
3 6	$T \rightarrow exit($ "§5.4.1.12.2: LITERAL actual generator parameter must be a literal signature" $))$,
37	mk-Termparm ₀ (nm)
38	$ ightarrow {f if} {f is}$ - $Nmclass_0({f hd}\ parm) \lor {f is}$ - $Quotedop_0({f hd}\ parm) \lor exclamation\ {f then}$
39	$\mathbf{exit}(``\$5.4.1.12.2:$ CONSTANT actual generator parameter must be a term")
40	else
41	$(trest, litrest, oprest, constrest + [nm \mapsto hd parm]))))$
type	: $Genparm_0^*$ $Genactparm_0 \rightarrow (Name_0 \implies Id_0)$ $(Name_0 \implies Literal_0)$
	$(Name_0 \implies (Name_0 \mid Quotedop_0)) \ (Name_0 \implies Term_0)$
Obje	ctive Construct four maps which associate the four kinds of formal param-
	eters to the corresponding actual parameters for a generator instance.
	Prior to the application of this function, it is checked that the two lists
	have the same length
Para	meters
fi	parm The list of generator formal parameters

parm	The list of generator actual parameters
------	---

Algorithm

Line 1 When through the formal parameter list return the empty maps (the function is recursive).

Line 4	Construct the maps for the rest (all but the first) of the formal parameters.
Line 5-10	Let <i>exclamation</i> be true if the actual parameter is an Id_0 where the $Name_0$ has an exclamationmark.
Line 12-16	If the formal parameter is a sort parameter then the actual pa- rameter must be an identifier without any exclamationmark. The association between the formal name and the identifier is added to the sort map.
Line 17-24	If the formal parameter is an operator parameter then the actual parameter must be an unqualified identifier (i.e. a name) or a quoted infix operator
Line 19 and Line 2	22 The association between the formal name and the actual name respectively actual infix operator is added to the operator map.
Line 25	If the formal parameter is a literal parameter then the actual pa- rameter must be an unqualified identifier or an unqualified string or a name class.
Line 27 and Line 3	⁰⁴ The association between the formal name and the actual name or string or nameclass is added to the literal map.
Line 37-41	If the formal parameter is a constant parameter then the actual parameter must be a term (i.e. not a name class or a quoted infix operator) and if the term is an Id_0 then it must not contain an exclamationmark.
Line 41	The association between the formal name and the term is added to the constant map

transform-syntype(mk-Syntypede $f_0(nm, pid, initial, vallist, tnm))(dict) \triangleq$

1	(let tq = get-visible-qual(pid, TYPE)(dict) in
2	if is-recursive-sort(tq, {})(dict) then
3	exit("§5.4.1.9: Syntype is based on itself")
4	else
5	if $tnm \notin \{nm, nil\}$ then
6	exit("§5.4.1.9: Ending name in syntype definition is different from defining name")
7	else
8	$(let \ tqual = get - parent(tq)(dict) in$
9	let $initial_1 = cases \ dict(tq)$:
10	$(\mathbf{mk}$ -Sort $D(,, init,)$
11	\rightarrow init,
12	\mathbf{mk} -Syntype $D(,, init,)$
13	$\rightarrow init$) in
14	let $expr_1 = if initial = nil then$
15	$initial_1$
16	else
17	$(\mathbf{let} \ (as_1 tree, ,) =$
18	$transform$ - $expr(initial, CONSTANT, \{tqual\})(dict)$ in
19	as ₁ tree) in
20	$let (, as_1 valset) = transform-valueset({tqual}, vallist)(dict) in$
21	let $as_1 id = make-as_1$ -identifier $(tqual)(dict)$ in
22	let $nm' = if is$ -Service $D(dict(dict(SCOPEUNIT)))$ then
23	create-unique-name()
24	else
25	nm in
26	$\mathbf{let} \ as_1 dcl = \mathbf{mk} \text{-} Syn \text{-} type \text{-} definition_1(name \text{-} to \text{-} name_1(nm'), as_1 id, as_1 valset) \mathbf{in}$
27	let $synqual = dict(SCOPEUNIT) \frown \langle (TYPE, nm') \rangle$ in
28	$\mathbf{let} \ d = [dict(SCOPEUNIT) \frown \langle (TYPE, nm) \rangle \mapsto \mathbf{mk}\text{-}SyntypeD(tq, synqual, expr_1, as_1valset)] \mathbf{in}$
29	$(\{as_1 dcl\}, d)))$

(3.4.7.20)

 $\textbf{type}: \quad Syntypedef_0 \rightarrow Dict \rightarrow Syn-type\text{-}definition_1\text{-set} \ Dict$

Objective	Transform a syntype definition into AS ₁		
Parameters	A syntype definition containing:		
nm	The name of the syntype.		
pid	The parent sort identifier.		
initial	The initial value for variables of the syntype.		
vallist	The allowed value set for variables of the sort.		
tnm	The name ending the definition		
Result	See transform-decllist		
Algorithm			
Line 1	Extract the Qual for the specified parent sort.		
Line 2	The parent sort must not be based on this syntype		
Line 5	The tailing name must be equal to the syntype name is specified		
Line 8	Extract the partial type of the specified parent sort.		
Line 9	Let $initial_1$ denote the initial expression of pid.		
Line 14-19	Construct the AS_1 version of the initial expression. If it is omitted then the initial expression of <i>pid</i> is used.		
Line 20	Transform the value set		
Line 22	If the syntype definition occurs in a service then create a new name for the syntype		
Line 27	Construct the $Qual$ to be used when deriving the AS_1 identifier of the syntype (at the places where the syntype is used).		
Line 28-29	Return the AS_1 syntype definition $(as_1 dcl)$ and the <i>Dict</i> contribu- tion containing the syntype descriptor (d) .		

transform-valueset(tqualset, valset)(dict) \triangleq

1	(if	valset	$=\langle\rangle$	then
---	-----	--------	-------------------	------

2 (let boolq = get-predef-sort("BOOLEAN")(dict) in

- 3 let $orq = boolq \frown \langle (OPERATOR, (OR, \langle boolq, boolq \rangle, boolq)) \rangle$ in
- 4 $(tqualset, mk-Range-condition_1(make-as_1-identifier(orq)(dict), \{\})))$
- 5 else
- 6 (let mk-Condition₀(cr, expr) = hd valset in
- 7 let $(tset, as_1 range) = transform-valuerange(tqualset, cr, expr)(dict)$ in

8 let (trest, mk-Range-condition₁(orid, condset)) = transform-valueset(tset, tl valset)(dict) in

9 $(trest, mk-Range-condition_1(orid, \{as_1 range\} \cup condset))))$

 $\textbf{type}: \quad Sortqual\textbf{-set} \ Condition_0^* \rightarrow Dict \rightarrow Sortqual\textbf{-set} \ Range\textbf{-condition}_1$

returned ($Range-Expression_1^*$).

Objective	Transform a	value set	into AS_1 .
-----------	-------------	-----------	---------------

Parameters

tqualset	A set of possible (legal) sorts.
valset	The list of value ranges. When the value set occurs in a syntype def- inition the <i>tqualset</i> contains the parent of the syntype only. When the value set occurs in a decision answer the <i>tqualset</i> contains some subset (also depending of other answers) of the possible sorts for the question expression.
Result	The set of possible (legal) sorts after having dealt with the value set, i.e. the resulting set is a subset of $tqualset$. Also the AS ₁ value set is

91

(3.4.7.21)

{

Algorithm

Line 1-4	When through all the elements in the value set then return the set of possible sorts and an empty <i>Range-condition</i> ₁ containing the AS_1 identifier of the boolean OR operator.
Line 6	Take the first element in the set (list) which consists of an optional operator or an optional expression (cr) followed by an expression $(expr)$.
Line 7-9	Transform a value range and use the resulting (possibly restricted) sort set $(tset)$ during the transformation of the rest of the value set.

transform-valuerange(tqualset, cr, expr)(dict) \triangleq

```
1 (let bq = get-predef-sort("BOOLEAN")(dict) in
       let cr' = if cr = nil then EQ else cr in
  2
       let isrel = cr' \in \{NE, EQ, GT, LT, LE, GE\} in
   3
   4
        let cr'' = if isrel then cr' else LE in
        let t_{qualset'} =
  5
   6
            if isrel then
  7
               tqualset
  8
              else
  9
               (let (, tgset, ) = transform - expr(cr, CONSTANT, {bg})(dict) in
 10
                tqset \cap tqualset) in
 11
        let opqset =
             \{opqual \in all\text{-}visible\text{-}operators(\langle\rangle, cr'', dict(SCOPEUNIT))(dict) \mid
 12
              is-OperatorD(dict(opqual)) \land
 13
              (let (, (, argl, res)) = opqual[len opqual] in
 14
 15
               len argl = 2 \wedge
 16
               res = bq \land argl[1] = argl[2] \land elems argl \subset tqualset') \} in
 17
        if opqset = \{\} then
 18
           exit("§5.4.1.9.1: Ordering operator is not defined for the sort of the range condition")
 19
          else
           (let tset = tqualset' \cap \{sq \in dom dict \mid is-SortD(dict(sq)) \land
 20
                                                           (\exists q \in opqset)((\mathsf{OPERATOR}, (cr'', \langle sq, sq \rangle, bq)) = q[\mathtt{len} q])\} in
 21
 22
            if card tset \ge 1 then
 23
              (tset, nil)
 24
              else
               (let (as_1 tree, ,) = transform-expr(expr, CONSTANT, tset)(dict) in
 25
 26
               let sort \in tset in
               let opqual = sort \frown \langle (OPERATOR, (cr'', (sort, sort), bq)) \rangle in
 27
 28
               if isrel then
 29
                  (tset, mk-Open-range<sub>1</sub>(make-as<sub>1</sub>-identifier(opqual)(dict), as<sub>1</sub>tree))
 30
                 else
                  (let (as_1 tree', )) = transform - expr(cr, CONSTANT, tset)(dict) in
 31
 32
                   let r1 = mk-Open-range<sub>1</sub>(make-as<sub>1</sub>-identifier(opqual)(dict), as<sub>1</sub> tree'),
 33
                       r2 = mk-Open-range<sub>1</sub>(make-as<sub>1</sub>-identifier(opqual)(dict), as<sub>1</sub> tree) in
 34
                   let andq = bq \frown \langle (OPERATOR, (AND, \langle sort, sort \rangle, \{bq\})) \rangle in
 35
                   (tset, mk-Closed-range<sub>1</sub>(make-as<sub>1</sub>-identifier(andq)(dict), r1, r2))))))
type: Sortqual-set [Expr_0 | Relop_0] Expr_0 \rightarrow Dict \rightarrow Sortqual-set [Condition-item_1]
Objective
                         Transform an AS_0 Condition<sub>0</sub> into an AS_1 Condition-item<sub>1</sub>
```

Parameters

tqualset	The set of legal sorts prior to transformation of the value range	
cr	The relational operator or first expression occurring in the val	
	range	
expr	The (second) expression of the value range	

Result	The set of legal sorts after the transformation of the value range and the constructed AS_1 Condition ₁ . The sort set is used in the transformation of decision actions where this function is applied twice. First time in order to derive the sort and the second time in order to transform the value range		
Algorithm			
Line 1	Construct the Qual of the boolean sort.		
Line 2	If neither a relational operator nor an expression is specified in the value range then the equality operator applies.		
Line 4	If cr is an expression then the less-equal operator (LE) is used as relational operator.		
Line 5-10	If cr is an expression then the set of legal sorts (tqualset) is re- stricted by the legal sorts for that expression.		
Line 11-16	Construct the Qual set of legal relational operators such that the length of the argument list is equal to 2 and the result sort is boolean and the two arguments are of the same sort and that sort is one of the legal sorts in the context where the value range is used (if there is more than one element in the set then the operator name (cr) is overloaded).		
Line 17-18	If no such operators exits then it is an error.		
Line 20-21	Construct a new set of legal sorts by restricting the old set of legal sorts (<i>tqualset'</i>) to contain only those sorts which can be used on the operators in <i>opgset</i> .		
Line 22-23	If there is more than one element in the restricted set of sorts then the value range is (still) ambiguous and no value range is returned (nil is returned).		
Line 25	Evaluate the expression again. This time, <i>tset</i> contains exactly one sort and therefore an AS_1 expression is returned (if it is otherwise well-formed).		
Line 26	Denote the sort in <i>tset</i> by <i>sort</i> .		
Line 27	Construct the Qual of the operator used.		
Line 28-29	If cr denotes a relational operator then return the set containing the sort and the <i>Condition-item</i> ₁ which is an <i>Open-range</i> ₁ .		
Line 31	If cr is an expression then transform the expression (again).		
Line 32-33	Construct the two $Open$ -range ₁ s which together with the AND operator constitutes the $Closed$ -range ₁ .		
Line 34	Construct the qual of the AND operator and		
Line 35	Return the resulting set of sorts (containing one element) and the $Closed$ -range ₁ containing the AS ₁ identifier of the AND operator and the two $Closed$ -range ₁ s.		

transform-synonymdef (mk-Synonymdef_0(nm, tid, expr))(dict) \triangleq

(let $squal = dict(SCOPEUNIT) \frown ((VALUE, nm))$ in 1 let sortset = if tid = nil then2 3 all-visible-sorts(dict) 4 else $\{get-parent(get-visible-qual(tid, TYPE)(dict))(dict)\}$ in 5 let $(,tpset,) = transform-expr(expr, CONSTANT, sortset)(dict + [squal \mapsto mk-ErrorD()])$ in 6 7 if card tpset = 1 then 8 (let $tp \in Qual$ be s.t. $tp \in tpset$ in 9 $([squal \mapsto \mathbf{mk} - SynD(tp, expr)]))$ 10 else exit("§5.4.1.13: Sort of synonym cannot be uniquely determined")) 11 **type**: Synonymdef₀ \rightarrow Dict \rightarrow Dict

(3.4.7.23)

Objective	Transform a synonym definition into AS ₁		
Parameters	An AS ₀ synonym definition containing		
nm	The synonym name		
tid	The optional sort identifier		
expr	The ground expression		
Result	See transform-decllist		
Algorithm			
Line 1	Construct the Qual denoting the synonym.		
Line 2-5	The sort of the synonym must be found in the set of sorts which are visible to the synonym definition if the sort identifier (tid) is absent ,otherwise the sort of the synonym is tid .		
Line 6	Transform the expression contained in the synonym definition and return the subset of sorts (<i>tpset</i>) which matches both the synonym sort. The resulting AS_1 expression is not used. As the synonym identifier must not be used in <i>expr squal</i> denotes a <i>ErrorD</i> during evaluation of the expression.		
Line 7	Only one sort is allowed to match the sort of the synonym and the sort of the expression.		
` Line 8-9	Construct the <i>Dict</i> contribution containing the synonym descrip- tor.		

3.4.7.1 Partial type Definitions

transform-sortdef(nm, prop, parent)(dict) \triangleq

```
(let nm' = if is-ServiceD(dict(dict(SCOPEUNIT))) then create-unique-name() else nm in
 1
     let newgual = dict(SCOPEUNIT) \frown \langle (TYPE, nm') \rangle in
 2
     let descr = dict(SCOPEUNIT) \frown \langle (TYPE, nm) \rangle in
 3
     let dict' = dict + [SCOPEUNIT \mapsto descr] in
 4
     let prop' = transform-nameclass(prop) in
 5
     let prop'' = add-ordering(prop', descr)(dict) in
 6
7
     let mk-Properties<sub>0</sub>(lit, oplist, axioms, mapping, term) = prop'' in
     let (eqop, eqax) = add-equality(descr)(dict) in
 8
 9
     let (expr_1, ,) = transform - expr(term, CONSTANT, {descr})(dict) in
10
     if card elems lit \neq len lit then
        exit("§5.2.2: Literal defined twice in a partial type definition")
11
12
       else
13
        (\text{let } litd = [descr \frown ((LITERAL, nm)) \mapsto \text{mk-}LiteralD(descr) \mid nm \in \text{elems } lit],
14
             (as_1 op, opd) = transform-typing(oplist \frown eqop)(dict'),
15
             as_1 ax = transform-axioms(axioms \frown eqax, AXIOMS)(dict'),
             as_1 mapping = transform - axioms(mapping, MAPPING)(dict') in
16
17
         let sortid = make-as_1-identifier(newqual)(dict) in
         let as_1 litset = \{mk-Literal-signature_1(nm, sortid) \mid nm \in card lit\} in
18
19
         let concarioms_1 = make-as_1-concarioms(dom litd)(dict) in
20
         let typedef = dict(DATATYPEDEF) in
21
         let mk-Data-type-definition_(typename, union, sorts, sigs, eqs \cup concasioms_1) = typedef in
         let datatypedef' = mk-Data-type-definition_1(typename, union, sorts \cup \{name-to-name_1(nm')\},\
22
23
                                                            sigs \cup as<sub>1</sub> op \cup as<sub>1</sub> litset,
24
                                                            eqs \cup as_1 ax \cup as_1 mapping \cup concarioms_1) in
\mathbf{25}
         let sortdescr = mk-SortD(as_1 ax \cup as_1 mapping, parent, expr_1, newqual) in
26
         (litd + opd + [descr])
                                            \mapsto sortdescr,
                          DATATYPEDEF \mapsto datatypedef'])))
27
```

(3.4.7.1.1)

type: Name₀ Properties₀ [Sortqual] \rightarrow Dict \rightarrow Dict

94 Fascicle X.4 – Rec. Z.100 – Annex F.2

Objective	Transform the $Properties_0$ of a sort definition and add the resulting AS_1 properties to the <i>Data-type-definition</i> ₁ contained in the <i>DATATYPE-DEF</i> entry in the <i>Dict</i> and also add the descriptors for the literals, for the operators and for the sort to <i>Dict</i>
Parameters	
nm	The AS ₀ name of the sort being defined
prop	The AS ₀ properties to be transformed
parent	The Qual of the parent sort in the case where the properties orig- inated from the inheriting sort i.e. parent denotes the identifier of the sort from which this sort inherits. It is put in the descriptor for the sort descriptor $SortD$ (see the definition of $SortD$).
Result	The $Dict$ updated with the \mathbf{AS}_1 properties and updated with the various descriptors
Algorithm	
Line 1-2	Construct a $Qual$ to be used when constructing the AS_1 name. If the sort is defined in a service a new unique name is used in the Qual
Line 3-4	Update SCOPEUNIT indicating that the properties are evaluated in the context of the sort <i>nm</i> and update <i>Dict</i> to include information of the new scopeunit.
Line 5	Modify the properties such that all the name classes in the literal definition are expanded to a sequence of literals.
Line 6	Modify the properties such that any ORDERING in the operator signatures are replaced by the operator signatures and equations reflecting the ordering properties.
Line 7	Decompose the Properties ₀ .
Line 8	Construct the \mathbf{AS}_0 operators and equations reflecting the equality properties.
Line 9	Transform the DEFAULT expression in the sort definition into ${f AS_1}$
Line 10	Number of distinct literal names in the literal signature must be equal to the length of the literal signature list.
Line 13	Construct the descriptors for all the literals in the literal signature.
Line 14	Construct the AS ₁ Operator-signature ₁ s $(as_1 op)$ and operator descriptors for the operators in the operator signatures and for the equality operators.
Line 15	Construct the AS_1 equations from the AS_0 equations (axioms) which are the equations specified in the properties joined with the equality equations.
Line 17	Construct the equations corresponding to the MAP part of the ${ m AS}_0$ properties.
Line 18	Construct the AS ₁ literal signatures.
Line 19	Construct the AS_1 equations implied from any defined character string literal (the implicit concatenation equations).
Line 21	Extract and decompose the current Data-type-definition1.
Line 22-23	Construct a new Data-type-definition which is the old one updated to include the constructed AS_1 properties.
Line 25	Construct the descriptor for the sort.
Line 26	Return the <i>Dict</i> containing the descriptors for the literals, the descriptors for the operators, the descriptor for the sort and the modified <i>Data-type-definition</i> ₁

ł
transform-nameclass(mk-Properties $_0(litlist, o, a, m, t)) \triangleq$

(3.4.7.1.2)

(3.4.7.1.3)

- 1 if $(\exists lit \in elems \ litlist)(is Nmclass_0(lit))$ then
- 2 (let $i \in ind \ litlist \ be s.t. \ is -Nmclass_0(litlist[i])$ in
- 3 let mk-Nmclass₀(regexpr) = litlist[i] in

4 let $stringset = \{str \in Char^+ \mid is \cdot in \cdot regular \cdot expr(str, regexpr)\}$ in

- 5 let nameset = form-names-and-strings(stringset) in
- 6 let namelist be s.t. card elems namelist = card nameset \wedge
- 7 len namelist = card nameset \land
- 8 $(\forall i1, i2 \in ind namelist)$

 $(namelist[i1] < namelist[i2] \supset i1 < i2)$ in

- 10 let $litlist' = \langle litlist[n] | 1 \le n < i \rangle \frown namelist \frown \langle litlist[n] | i < n \le len litlist \rangle$ in
- 11 $transform-name class(mk-Properties_0(litlist', o, a, m, t)))$

```
12 else
```

9

```
13 \mathbf{mk}-Properties<sub>0</sub>(litlist, o, a, m, t)
```

type: $Properties_0 \rightarrow Properties_0$

Objective	Modify some AS_0 properties such that any contained name classes are expanded into a sequence of literal names
Parameters	The AS ₀ properties containing
litlist	The literal signature list
0	The operator signature list

a	The	equations
---	-----	-----------

	m	•	
m	The	mapping	equations

- t The term denoting the DEFAULT value
- Result

The modified AS₀ properties

Algorithm

Line 1	If there (still) exist a name class in the literal signatures then
Line 2-3	Let i denote the index to the element in the literal signatures list which is a name class and decompose the name class (line 3).
Line 4	Construct the set of (Meta-IV) character strings which satisfy the regular expression denoted by <i>regexpr</i> .
Line 5	From this set of character strings, construct a <i>nameset</i> consisting of AS_0 names and character strings.
Line 6-9	Transform the set into an alphabetic ordered list.
Line 10	Replace the name class in the literal signatures by the constructed list and
Line 11	Replace any further name classes.
Line 13	If no name classes are left then return the properties

 $form-names-and-strings(stringset) \triangleq$

if $stringset = \{\}$ then 1 2 {} 3 else 4 (let $string \in stringset$ in if len string $\geq 2 \wedge string[1] = """ \wedge string[len string] = """ then$ 5 $\{\mathbf{mk}\text{-}String_0(\langle string[i] \mid 2 \leq i \leq \text{len } string - 1 \rangle)\} \cup$ 6 7 form-names-and-strings(stringset $\setminus \{string\}$) 8 else 9 (let string' = check-name-syntax(string) in 10 $\{\mathbf{mk}\text{-}Name_0(string', \mathbf{nil})\} \cup$ 11 form-names-and-strings(stringset $\{string\})$)

type: $Char^*$ -set $\rightarrow (String_0 \mid Name_0)$ -set

96

Objective	From a set of Meta-IV character strings form a set of AS_0 names and character strings
Algorithm	
Line 1	When through, return nothing (the function is recursive).
Line 4	Take an element of the set and denote it by string.
Line 5	string denotes a AS_0 character string if the first character and the last character are single quotes.
Line 6-7	Return the \mathbf{AS}_0 character string together with the rest of the names and string.
Line 9-11	If it is not a character string it denotes an AS_0 name.
Line 9	Remove/replace space characters in accordance with the semantics of the underline character, convert the name to uppercase and check the spelling against the lexical rules defined in Z.100.
Line 10-11	Return the AS_0 name together with the rest of the names and strings

$is-in-regular-expr(string, regexpr) \triangleq$

(3.4.7.1.4)

97

1	(cases regexpr:
2	(mk -Orrege x p ₀ (reg, partreg)
3	\rightarrow is-in-regular-expr(string, reg) \land
4	is-in-regular-expr(string, partreg),
5	\mathbf{mk} -Andrege $\mathbf{x}p_0(reg, partreg)$
6	$\rightarrow (\exists (\textit{str1}, \textit{str2}))(\textit{str1} \frown \textit{str2} = \textit{string} \land$
7	is -in-regular-expr $(str1, reg) \land$
8	is-in-regular-expr(str2, partreg)),
9	\mathbf{mk} -Rngrege $\mathbf{x}p_0(\mathbf{str1},\mathbf{str2},\mathbf{exptp})$
10	\rightarrow is-in-regular-range(string, str1, str2, exptp),
11	\mathbf{mk} -Singregexp ₀ (str1, exptp)
12	\rightarrow is-in-regular-single(string, str1, exptp),
13	mk-Parenregexp ₀ (regexp, exptp)
14	\rightarrow is-in-regular-par(string, regexp, exptp)))

strings

type: Char^{*} Regularexp₀ \rightarrow Bool

Objective Test whether a Meta-IV character string is included in a regular expression

Parameters

string	The Meta-IV character string
regexpr	The regular expression
ult	True if success

Result

If the regular expression consist of two OR'd regular expressions then the result is true if the string is defined in one of them.
If the regular expression consist of two concatenated regular expressions then the result is true if there exist two strings such that they form <i>string</i> when they are concatenated and such that the first sub-string is defined in the first regular expression and the second sub-string is defined in the second sub-string.
See is-in-regular-range.
See is-in-regular-single.
See is-in-regular-par

 $is-in-regular-range(string, mk-String_0(str1), mk-String_0(str2), exptp) \triangleq$

(if len $str1 \neq 1 \lor$ len $str2 \neq 1$ then 1 exit("§5.4.1.14: Length of character strings in regular interval is not equal to one") 2 3 else 4 (if len $string = 0 \land exptp = MULT$ then 5 true 6 else 7 (len string $\leq 1 \land$ $(\forall ch \in \mathbf{elems} \ string)$ 8 $((hd str 1 \leq ch \land$ 9 $ch < hd str2 \land$ 10 (cases exptp: 11 12 $(\mathbf{mk}-Name_0(numstr,))$ 13 \rightarrow if elems $numstr \in \{ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" \}$ then (let $i = form \cdot integer(numstr)$ in 14 15 len string = i) 16 else exit("§5.4.1.14: Repetition name in name class must denote a natural number"), 17 18 $T \rightarrow true))))))))$

type: Char^{*} String₀ String₀ [Regexpexp₀] \rightarrow Bool

Objective Test whether a string is defined in a regular expression which is a character range possibly repeated a number of times

Parameters

string	The string to be tested upon
str1,str2	The character sequences denoting the lower and upper bounds
exptp	The optional repetition factor

Result True if success

Algorithm

Line 1-2	The length of the lower and upper bounds must be equal to one.
Line 4	The empty string can only be in the range if the repetition factor is specified and it allows for empty strings.
Line 7-10	Otherwise the length must be greater or equal to one and for all characters (ch) in the string it must hold that their representation values are greater or equal to the lower bound (line 8) and that the representation values are less than or equal to the upper bound.
Line 11-17	If the repetition factor is a name then it must also hold that it denotes a natural literal name (it must consist of digits) and that the value it denotes is equal to the length of the string

form-integer(str) \triangleq

1	(let $ch = str[$ len $str]$ in
2	let $n = cases ch$:
3	$("0" \rightarrow 0,$
4	"1" \rightarrow 1,
5	"2" → 2,
6	"3" \rightarrow 3,
7	"4" → 4,
8	"5" \rightarrow 5,
9	"6" \rightarrow 6,
10	"7" \rightarrow 7,
11	"8" → 8,

(3.4.7.1.6)

12 "9" \rightarrow 9) in 13 if tl str = $\langle \rangle$ then n else form-integer($\langle str[i] | 1 \le i \le \text{len str} \rangle$) * 10 + n)

type: $Char^+ \rightarrow Intg$

ObjectiveConvert a sequence of characters (a spelling) to a Meta-IV Intg valueAlgorithm

Line 1	Extract the last character in the character list.
Line 2-12	Convert the character to a Meta-IV Intg value.
Line 13	If it is the only character in the list then return the value else multiply the value obtained from the rest of the list by 10 and add
	the value obtained from the character to the result

 $is-in-regular-single(string, mk-String_0(str), exptp) \triangleq$

(3.4.7.1.7)

1	(cases <i>exptp</i> :
2	(MULT
3	$\rightarrow (\exists n)(\operatorname{conc} \langle str \mid 0 \leq i \leq n \rangle = string),$
4	PLUS
5	$\rightarrow (\exists n) (\operatorname{conc} \langle str \mid 1 \leq i \leq n \rangle = string),$
6	$mk-Name_0(numstr,)$
7	$ ightarrow$ if elems $numstr \subset \{$ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" $\}$ then
8	(let n = form - integer(numstr)) in
9	$\mathbf{conc} \langle str \mid 1 \leq i \leq \mathbf{len} \ n angle = string)$
10	else
11	exit("§5.4.1.14: Repetition name in name class must denote a natural number")
12	nil
13	$\rightarrow str = string))$

type: Char^{*} String₀ [Regexpexp₀] \rightarrow Bool

Objective Test whether a certain string can be formed by repeating another string a number of times

Parameters

string	The string to be formed
str	The string to be repeated
exptp	The repetition factor
Result	True if success
Algorithm	
Line 2	If the repetition factor is an asterisk then there must exist a value n such that repetition (concatenation) of str n times forms string.
Line 4	If the repetition factor is a plus then there must exist a non-zero value n such that repetition (concatenation) of str n times forms string.
Line 6	If the repetition factor is a name it must denote a natural number and the result is true if <i>string</i> can be formed by repeating <i>str</i> that number of times.
Line 12	If the repetition factor is omitted, the strings must be equal

99

1 cases exptp: 2 (MULT 3 $\rightarrow (\exists (str, n))(\operatorname{conc} \langle str \mid 0 \leq i \leq n \rangle = string \land$ is-in-regular-expr(str, regexp)), 4 5 PLUS 6 $\rightarrow (\exists (str, n))(\operatorname{conc} \langle str \mid 1 \leq i \leq n \rangle = string \land$ 7 is-in-regular-expr(str, regexp)), 8 mk-Name₀(numstr,) → if elems $numstr \in \{$ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9" $\}$ then 9 10 (let n = form-integer(numstr)) in 11 $(\exists str)(\mathbf{conc} \langle str \mid 1 \leq i \leq n \rangle = string \land$ 12 is-in-regular-expr(str, regexp))) 13 else exit("§5.4.1.14: Repetition name in name class must denote a natural number"), 14 15nil 16 \rightarrow is-in-regular-expr(string, regexp))

type: Char^{*} Regularexp₀ [Regexpexp₀] \rightarrow Bool

Objective	Test whether a certain string can be formed by repeating a sub-string
	denoted by a regular expression a number of times

Parameters

string	The string to be tested upon
regexp	The regular expression which is to be repeated
exptp	The optional repetition factor

Result True if success

Algorithm

Line 2-4	If the repetition factor is an asterisk then there must exist a sub- string str which is defined by the regular expression $regexp$ and a number n such that repetition of the sub-string n times forms the string
Line 5-7	If the repetition factor is a plus then there must exist a sub-string str which is defined by the regular expression $regexp$ and a non-zero number n such that repetition of the sub-string n times forms the string.
Line 8-14	If the repetition factor is a name it must denote a natural number and the result is true if there exist a sub-string <i>str</i> defined by the regular expression <i>regexp</i> such that repetition of the sub-string the specified number of times forms <i>string</i> .
Line 15	If the repetition factor is omitted, the result is true if the string is defined by the regular expression

transform-axioms(axioms, context)(dict) \triangleq

1	$($ if $axioms = \langle \rangle$ then $\{\}$ else $(transform - axiom(hd axioms, context)(dict) \cup$
2	transform-axioms(tl axioms, context)(dict)))

type: $Axiom_0^*$ Context \rightarrow Dict \rightarrow Equations₁

Objective Transform a list of AS₀ equations (axioms) into a set of AS₁ equations

Parameters

axioms The axioms to be transformed

100 Fascicle X.4 – Rec. Z.100 – Annex F.2

context	The context is which the axioms are transformed. The context ei- ther denotes the normal axioms (AXIOMS) or the mapping axioms (MAPPING)
Result Algorithm	The generated AS ₁ equations
Line 1	When through, return the empty set.
Line 1-2	Return the set of equations consisting of the set corresponding to the first equation (line 1) unified with the rest of the equations (line 2)

(3.4.7.1.10)

transform-axiom(axiom, context)(dict) \triangleq

1	(cases axiom:
2	$(\mathbf{mk}$ -Equation ₀ $(,)$
3	\rightarrow {transform-equation(axiom, context)(dict)},
4	\mathbf{mk} -Condequation ₀ (eql, eq)
5	$\rightarrow (\textbf{let } eql' = \langle \textit{insert-equals-true}(eql[i])(dict) \mid i \leq i \leq \textbf{len } eql \rangle,$
6	eq' = insert-equals-true $(eq)(dict)$ in
7	$\{transform$ -condequation $(mk$ -Condequation $(eql', eq'), context)(dict)\}),$
8	mk-Quantequation ₀ (,,)
9	\rightarrow {transform-quantequation(axiom, context)(dict)},
10	\mathbf{mk} -Mappingaxiom ₀ $(,,)$
11	\rightarrow transform-mapping(axiom)(dict),
12	$T o \mathbf{if} \ \mathbf{is}$ -Stringterm $_0(axiom) \wedge \mathbf{s}$ -Qualifier $_0(axiom) = \langle angle \ \mathbf{then}$
13	$\{mk$ -Informal-text ₁ (axiom)\}
14	else
15	(let axiom' = insert-equals-true(axiom)(dict) in
16	$\{transform$ -equation $(axiom', context)(dict)\})))$

type: $Axiom_0$ $Context \rightarrow Dict \rightarrow Equations_1$

Objective	Transform an AS_0 axiom into a set of AS_1 equations. Except for in the
	case of a mapping axiom, the set consist of only one element

Parameters

axiom	The axiom to be transformed	
context	The context is which the transformation takes place (see <i>transform-axioms</i>)	
Result	The generated AS ₁ equations	
Algorithm		
Line 2	If the axiom is a simple equation then transform the equation.	
Line 4-7	If the axiom is a conditional equation then replace boolean terms in the restriction (eql) and in the restricted equation (eq) by a simple equation and transform the resulting conditional equation.	
Line 8-10	If the axiom is a quantified equations (line 8) or a mapping equation (line 10) then transform it.	
Line 12-13	Otherwise the axiom is a term which denotes informal text it the term is an unqualified character string.	
Line 15-16	If the axiom does not denote informal text then it is a boolean axiom and "equals true" is inserted before it is transformed	

- if is-Equation $_0(axiom)$ then 1
- 2 axiom
- 3 else
- (let $truenm = mk-Name_0("TRUE", nil)$ in 4
- let $trueid = mk-Id_0(\langle hd dict(SCOPEUNIT) \rangle, truenm)$ in 5
- mk-Equation₀(axiom, trueid)) 6

type: Unquantequation₀ \rightarrow Dict \rightarrow Equation₀

Objective	If an axiom is a boolean term, then construct an AS_0 equation, that is define the term to equals true
Parameters	
axiom	The axiom to be tested upon
Result	The possibly modified axiom
Algorithm	
Line 1	If the axiom is an equation then it is all right else
Line 4	It is a term then construct the name for the boolean sort.
Line 5	Construct the identifier for the boolean sort. The qualifier is the first element in the <i>Qual</i> SCOPEUNIT which denotes the current scopeunit. The first element denotes the system level.
Line 6	Construct an equation from the boolean term and the true literal

transform-equation(mk-Equation₀(term1, term2), context)(dict) \triangleq

identifier

(3.4.7.1.12)

 $(let (as_1 term 1, as_1 term 2, dict') = transform-lhs-rhs(term 1, term 2, context)(dict) in$ 1 2

build-quant-equation(mk-Unquantified-equation1(as1term1, as1term2))(dict'))

type: Equation₀ Context \rightarrow Dict \rightarrow Equations₁

Objective	Transform a simple unquantified AS_0 equation into an AS_1 equation	
Parameters		
term1,term2 context	The two terms in the equation to be transformed See <i>transform-azioms</i>	
Result Algorithm	The constructed AS ₁ equation	
Line 1	Transform the two terms. New ValueidD descriptors in dict' (see the definition of Dict) contains information of all the value identifiers used in the two terms.	
Line 2	Construct an unquantified equation from the two AS_1 terms and enclose the equation by some quantification (if there are any Val- ueidD descriptors in dict')	

1	(let totset = all-visible-sorts(dict) in
2	let (, tset1,) =
3	if is-Errorterm ₀ (term1)
4	then (, <i>totset</i> ,)
5	else transform-term(term1, context, totset)(dict),
6	(, tset 2,) =
7	if is-Errorterm ₀ (term2)
8	then (, totset,)
9	else transform-term(term2, context, totset)(dict) in
10	let $tqual = if card (tset 1 \cap tset 2) = 1$ then
11	(let $tq \in (tset1 \cap tset2)$ in
12	tq)
13	else
14	$ extbf{exit}(``\$4.2.3:$ The two terms in equation must be of the same sort") in
15	$let (as_1 term 1, , d) =$
16	if is- $Errorterm_0(term1)$
17	then $(mk$ - $Error$ - $term_1(),, dict)$
18	else transform-term(term1, context, {tqual})(dict) in
19	$let (as_1 term2, , d') =$
2 0	if is- $Errorterm_0(term 2)$
2 1	then $(mk$ - $Error$ - $term_1(),, d)$
22	else transform-term(term2, context, {tqual})(d) in
23	$(as_1 term1, as_1 term2, d'))$

 $\textbf{type}: \quad \textit{Term}_0 \ \textit{Term}_0 \ \textit{Context} \rightarrow \textit{Dict} \rightarrow \textit{Term}_1 \ \textit{Term}_1 \ \textit{Dict}$

Objective Transform two AS₀ terms from an equations into two AS₁ terms

Parameters

term1,term2	The two terms to be transformed
context	See transform-axioms
Result	The two constructed AS ₁ terms and a <i>Dict</i> including <i>ValueidD</i> descrip-

tors of the value identifiers occurring in the two terms

Algorithm

Line 1	Extract the Qual set containing all the visible sorts
Line 2-9	Transform the two terms in order to determine the set of legal sorts for the terms. $tset1$ denotes the legal sorts for $term1$ and $tset2$ denotes the legal sorts for $term2$. If one of the terms is the error term then all visible sorts are legal for that term.
Line 10-14	Determine the sort of the equation. There must exist exactly one such sort i.e. the two sets must have one sort in common.
Line 15-23	If one of the terms is the error term then return the AS_1 error term for that term else transform it (line 18 and line 22), given the legal sort as argument (<i>tqual</i>). The <i>Dict</i> returned from <i>transform-</i> <i>term</i> for the first term (line 18) is used when the second term is transformed (line 22) such that the <i>ValueidD</i> descriptors are not created twice.

build-quant-equation(equation_1)(dict) \triangleq

1 if $(\exists q \in \text{dom } dict)(\text{is-ValueidD}(dict(q)) \land \neg \text{s-Explicit}(dict(q)))$ then

```
2 (let q \in \text{dom } dict \text{ be s.t. is-} ValueidD(dict(q)) \land \text{s-} Mapvalue(dict(q)) = \text{nil} \land \neg \text{s-} Explicit(dict(q)) \text{ in}
```

3 let mk-ValueidD(, tqs,) = dict(q) in

```
4 let tq \in tqs in
```

- 5 $\operatorname{let}(,nm) = q[\operatorname{len} q]$ in
- 6 let equation' = build-quant-equation(equation_1)(dict $\setminus \{q\}$) in
- 7 let $as_1 tid = make-as_1$ -identifier(tq)(dict) in
- 8 mk-Quantified-equations₁({name-to-name₁(nm)}, as₁ tid, {equation'}))
- 9 else
- 10 $equation_1$

type: Equation₁ \rightarrow Dict \rightarrow Equation₁

Objective Enclose an AS₁ equation by a quantification for every value name found in *dict*

Parameters

$equation_1$	The AS_1 equation to be quantified. As the function is recursive, equation 1 may be an equation which already is quantified
Algorithm	
Line 1	If there exist an <i>ValueidD</i> descriptor (value identifier descriptor) in the <i>Dict</i> and it is not introduced by explicit quantification then
Line 2	Denote the $Qual$ of the value identifier by q .
Line 3	Decompose the value identifier descriptor. The set of sorts tqs contains at this stage only one sort.
Line 4	Denote the sort of the value identifier by tq.
Line 5	Extract the name of the value identifier.
Line 6	Construct a new equation by enclosing the old equation by quan- tification corresponding to the rest of the value identifiers.
Line 7	Construct the AS_1 identifier from the value identifier Qual.
Line 8	Return an equation quantified with an AS_1 name and which con- tains the new equation

transform-quantequation(mk-Quantequation(vl, tid, axl), context)(dict) \triangleq

```
1 (let tqual = get-visible-qual(tid, TYPE)(dict) in
```

```
2 let qualset = {dict(SCOPEUNIT) \frown \langle (VALUE, vl[i]) \rangle \mid 1 \le i \le \text{len } vl} in
```

- 3 let $dict' = dict + [q \mapsto \mathbf{mk} ValueidD(\mathbf{nil}, \{tqual\}, true) |$
- 4 $q \in qualset$] in
- 5 let $as_1 ax = transform axioms(axl, context)(dict')$ in
- 6 let $as_1 tid = make-as_1$ -identifier(tqual)(dict) in
- 7 let $as_1vl = \{name-to-name_1(vl[i]) \mid 1 \le i \le len vl\}$ in
- 8 \mathbf{mk} -Quantified-equations₁(as_1vl, as_1tid, as_1ax))

type: $Quantequation_0 Context \rightarrow Dict \rightarrow Quantified$ -equations₁

Objective Transform a quantified equation into AS₁

Parameters

vl,tid,axl	The value name list, their sort and the axiom list contained in the
	quantified equation
context	See transform-axioms
-	

Result The AS₁ quantified equation

104 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.4.7.1.15)

Algorithm	
Line 1	Construct the Qual of the sort (tid)
Line 2	Construct the Quals of the value identifiers corresponding to the value names (vl) .
Line 3-4	Update Dict to include the value identifier descriptors. nil in- dicates that its not a literal value identifiers (mappings), $\{tqual\}$ indicates that the only allowed sort for the value identifiers is $tqual$ (in implicit quantification), the set may contain several elements and $true$ indicates that the value identifiers are introduced by ex- plicit quantification.
Line 5	Transform the axioms in the quantified equation into AS_1 .
Line 6	Construct an AS_1 identifier for the sort <i>Qual</i> .
Line 7	Construct an AS ₁ name set containing the value names.
Line 8	Return a constructed AS_1 quantified equation

transform-condequation(mk-Condequation₀(eql, eq), context)(dict) \triangleq

1 $(let (eql_1, dict') = transform - restrictions(eql, context)(dict))$ in

- let mk-Equation₀(term1, term2) = insert-equals-true(eq)(dict) in 2
- let $(as_1 term_1, as_1 term_2, dict'') = transform-lhs-rhs(term_1, term_2, context)(dict')$ in 3
- let $eq_1 = \mathbf{mk}$ -Unquantified-equation₁(as_1 term1, as_1 term2) in 4
- build-quant-equation(mk-Conditional-equation_1(eql_1, eq_1))(dict'')) 5

type: Condequation ₀	$Context \rightarrow$	$Dict \rightarrow$	$Equation_1$
---------------------------------	-----------------------	--------------------	--------------

Objective	Transform a	conditional	equation	into	AS ₁	
-----------	-------------	-------------	----------	------	-----------------	--

Parameters

eql, eq	The restriction and the restricted equations in the conditional equation
Result	The constructed AS ₁ conditional equation
Algorithm	
Line 1	Transform the restrictions.
Line 2	Decompose the AS_0 equation.
Line 3	Transform the two terms in the AS_0 restricted equation. Note that $dict'$ is used in the transformation of the restricted equations such that the implicit value identifiers in the two parts are the same.
Line 4	Construct an AS_1 equation.
Line 5	Enclose the constructed equation by quantification (if <i>dict''</i> con- tains any <i>ValueidD</i> descriptors).

transform-restrictions(eql, context)(dict) \triangleq

(3.4.7.1.17)

(3.4.7.1.16)

1 (if $eql = \langle \rangle$ then 2 $(\{\}, dict)$ 3 else $(let mk-Equation_0(term1, term2) = insert-equals-true(hd eql)(dict) in$ 4 5 if is- $Errorterm_0(term1) \lor is$ - $Errorterm_0(term2)$ then 6 exit("§5.4.1.7: Error term is part of restriction") 7 else $(let (as_1 term 1, as_1 term 2, dict') = transform-lhs-rhs(term 1, term 2, context)(dict) in$ 8 9 let (eqlrest, dictrest) = transform-restrictions(tl eql, context)(dict') in 10 $(eqlrest \cup \{mk-Unquantified-equation_1(as_1 term1, as_1 term2)\}, dictrest))))$

type: $Unquantequation_0^*$ Context \rightarrow Dict \rightarrow Equation₁-set Dict

105

Objective Transform a list of restrictions into a set of AS_1 restrictions by traversing recursively through the list and by collecting information in *Dict* of the value identifiers. The function is similar to *transform-equation*, but applied on a list of equations instead.

transform-mapping(mk-Mappingaxiom₀(vl, tid, axl))(dict) \triangleq

- 1 (let tqual = get-visible-qual(tid, TYPE)(dict) in
- 2 let qualset = {dict(SCOPEUNIT) \frown ((VALUE, vl[i])) | $1 \le i \le \text{len } vl$ } in

3 let $litset = \{qual \in dom dict \mid is-LiteralD(dict(qual)) \land s-Sortqual(dict(qual)) = tqual\}$ in

(3.4.7.1.18)

(3.4.7.1.19)

4 transform-mappingazioms(qualset, tqual, litset, axl)(dict))

type: $Mappingaxiom_0 \rightarrow Dict \rightarrow Equations_1$

Objective Transform a mapping axiom into a set of AS₁ equations

Parameters

vl	The value name list in the mapping axiom
tid	The sort of the value names
axl	The axioms contained in the mapping axiom

Result

The transformed AS₁ equation

Algorithm

Line 1	Extract the Qual of the sort.
Line 2	Construct the set of Quals for the value names.
Line 3	Extract the set of literal Quals defined for the sort tqual.
Line 4	Do the transformation

transform-mapping $axioms(qualset, tqual, litset, axl)(dict) \triangleq$

1	if $qualset = \{\}$ then
2	
3	else
4	(let $qual \in qualset$ in
5	union $\{transform$ -axioms $(axl, MAPPING)(dict + [qual \mapsto mk-ValueidD(litqual, \{tqual\}, true)])$
6	$litgual \in litset \} \cup$
7	$transform$ -mappingaxioms(qualset \ {qual}, tqual, litset, axl)(dict))

type: Qual-set Sortqual Qual-set $Axiom_0^* \rightarrow Dict \rightarrow Equations_1$

Objective	With a given set of value identifiers, their sort and the literals defined for that sort, expand a set of equations by replacing all the value identifiers in the axioms by a literal
Parameters	
qualset	A set of Quals representing the value identifiers
tqual	A Qual representing the identifier of their sort
litset	A set of Quals representing the literals defined for tqual
axl	The axioms to be expanded
Result	A set of AS_1 Equations where the value identifiers corresponding to <i>qualset</i> have been replaced
Algorithm	
Line 1	When through, return the empty set of equations.
Line 4	Take the next value identifier in the set.
106	Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 5-6	Construct the set of equations which is the union of all those set of equations where the value identifier is replaced by a particular literal in <i>litset</i> .
Line 7	Return this constructed set of equations, unified with the equations constructed by replacing the rest of the value identifiers
add-equality(tqual)(a	lict) \triangleq

(let bqual = get-predef-sort("BOOLEAN")(dict) in1 let $bid = as_0 - id(bqual)$ in 2 3 let $tid = as_0 - id(tqual)$ in 4 let $opl = \langle mk-Opspec_0(EQ, \langle tid, tid \rangle, bid), mk-Opspec_0(NE, \langle tid, tid \rangle, bid) \rangle$ in 5 let anm = create-unique-name(), 6 bnm = create-unique-name(),7 cnm = create-unique-name(), $trueid = mk-Id_0(bgual, mk-Name_0("TRUE", nil))$ in 8 9 let $aid = \mathbf{mk} \cdot Id_0(\langle \rangle, anm),$ 10 $bid = \mathbf{mk} \cdot Id_0(\langle \rangle, bnm),$ 11 $cid = \mathbf{mk} - Id_0(\langle \rangle, cnm)$ in let eq1 = mk-Equation₀(mk-Infixterm₀(aid, EQ, aid), trueid), 12 eq2 = mk-Equation₀(mk-Infixterm₀(aid, EQ, bid), mk-Infixterm₀(bid, EQ, aid)), 13 14 eq3 = mk-Equation₀(mk-Infixterm₀(mk-Infixterm₀(mk-Infixterm₀(aid, EQ, bid), AND, mk-Infixterm₀(bid, EQ, cid)), 15 16 IMPLY, mk-Infixterm₀(aid, EQ, cid)), trueid), 17 $eq4 = \mathbf{mk}$ -Equation₀(\mathbf{mk} -Infixterm₀(aid, NE, bid), mk-Monadterm₀(NOT, mk-Infixterm₀(aid, EQ, bid))), 18 19 eq5 = mk-Condequation₀($\langle mk$ -Equation₀(mk-Infixterm₀(aid, EQ, bid), trueid) \rangle, 20 mk-Equation₀(aid, bid)) in 21 $(opl, \langle \mathbf{mk-Quantequation}_0(\langle anm, bnm, cnm \rangle, tid, \langle eq1, eq2, eq3, eq4, eq5 \rangle) \rangle))$

type: Sortqual \rightarrow Dict \rightarrow Opspec₀⁺ Axiom₀⁺

Objective For a given sort, construct the AS_0 equality properties as defined in §5.4.1.4 of Z.100

Parameters

tqual	The Qual of the sort
Result	An AS_0 list of operator definitions and an AS_0 list of axioms
Algorithm	
Line 1-3	Construct the AS_0 (qualified) identifiers of the boolean sort and of <i>tqual</i> .
Line 4	Construct the definitions:
	"=" : tqual, tqual -> boolean "/=" : tqual, tqual -> boolean
Line 5-7	Create some distinct names to be used in the quantification.
Line 8	Construct the qualified AS ₀ identifier of the boolean literal TRUE.
Line 9-11	Construct AS_0 identifiers for the value names.
Line 12-20	Construct the five axioms (eq1 - eq5):
	aid = aid == true;
	aid = bid == bid = aid;
	(aid = bid) and $(bid = cid) =>$
	aid = cid == true;
	aid /= bid == not(aid = bid);
	aid = bid == true ==> aid == bid:

Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.4.7.1.20)

Line 21	Return the constructed operator definitions and axioms	
add-ordering(ml	x -Properties ₀ (lit, oplist, axioms, map, init), tqual)(dict) \triangleq	(3.4.7.1.21)
1 (if $(\exists op \in I)$	elems $oplist)(is-Ordering_0(op))$ then	
2 (let opl	$ist' = \langle oplist[i] \mid 1 \leq i \leq \text{len } oplist \land \text{is-} Opspec_0(oplist[i]) angle ext{ in } in$	
3 if len o	$plist = len \ oplist' - 1 \ then$	
4 (let) 5	$braaxioms = as_0$ -ordering-axioms(lqual)(aict), $braaxioms = islon lit \leq 1$ then $l \mid also as_order(log lit the lit tangl)$	
6	$ordtyping = a_{0}$ -ordering-typing(taual)(dict) in	
7 mk-	Properties (lit, ordtyping \frown oplist', ordaxioms \frown axioms \frown order, map, init))	
8 else		
9 exit("§2.2.2: Ordering operators are multiple defined"))	
10 else		
11 mk-Pro	perties ₀ (lit, oplist, axioms, map, init))	
type: Propert	ies ₀ Sortqual \rightarrow Dict \rightarrow Properties ₀	
Objective	Expand the ordering directive in some properties into operator defini- tions and axioms as defined in §5.4.1.8 of Z.100	
Parameters	The properties consist of	
lit	Literal definitions	
oplist	Operator definitions	
axioms	Axioms	
map	Mapping axioms	
init	The default value	
tqual	Denotes the sort defining the properties	
Result	The modified properties	
Algorithm		
Line 1	If there exist an ordering directive in the operator definitions then	
Line 2	Construct an operator definition list where the ordering directives have been removed.	
Line 3	There must exist only one such directive in the operator list.	
Line 4	Construct the AS ₀ properties of the ordering operators.	
Line 5	If there are any literals defined for the sort then construct the axioms reflecting the ordering of the literals.	
Line 6	Construct the definitions for the ordering operators.	
- · - ·		

 as_0 -ordering-axioms(squal)(dict) \triangleq

```
(let bqual = get-predef-sort("BOOLEAN")(dict) in
   1
   2
        let falseid = mk - Id_0(bqual, mk - Name_0("FALSE", nil)) in
   3
        let sid = as_0 - id(squal) in
   4
        let anm = create-unique-name(),
   5
             bnm = create-unique-name(),
   6
             cnm = create-unique-name() in
   7
        let aid = mk - Id_0(\langle \rangle, anm),
  8
             bid = \mathbf{mk} - Id_0(\langle \rangle, bnm),
  9
             cid = \mathbf{mk} - Id_0(\langle \rangle, cnm) in
 10
        let axioml =
 11
             (mk-Equation<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LT, aid), falseid),
 12
              mk-Equation<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LT, bid), mk-Infixterm<sub>0</sub>(bid, GT, aid)),
 13
              mk-Equation<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LE, bid), mk-Infixterm<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LT, bid),
 14
                                                                                              OR.
                                                                                              mk-Infixterm<sub>0</sub>(aid, EQ, bid))),
 15
 16
              mk-Equation<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, GE, bid), mk-Infixterm<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LE, bid),
 17
                                                                                               OR,
                                                                                               mk-Infixterm<sub>0</sub>(aid, EQ, bid))),
 18
 19
              mk-Infixterm<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LT, bid),
 20
                                   IMPLY,
                                   mk-Monadexpr<sub>0</sub>(NOT, mk-Infixterm<sub>0</sub>(aid, LT, bid))),
 21
 22
              mk-Infixterm<sub>0</sub>(mk-Infixterm<sub>0</sub>(mk-Infixterm<sub>0</sub>(aid, LT, bid),
 23
                                                        AND, mk-Infixterm<sub>0</sub>(bid, LT, cid)),
                                   IMPLY,
 24
 25
                                   \mathbf{mk}-Infixterm<sub>0</sub>(aid, LT, cid))) in
 26
        \langle \mathbf{mk-}Quantequation_0(\langle anm, bnm, cnm \rangle, sid, axioml) \rangle \rangle
type: Sortqual \rightarrow Dict \rightarrow Axiom<sub>0</sub>
```

Objective

Construct the AS_0 axiom reflecting the properties of the ordering operators i.e. :

FOR ALL aid,bid,cid IN sid
(aid < aid == False;
aid < bid == bid > aid;
aid <= bid == (aid < bid) OR (aid = bid);
aid >= bid == (aid > bid) OR (aid = bid);
aid < bid => not(bid < aid);
aid < bid and bid < cid => aid < cid);</pre>

Algorithm

Line 11	Construct the 1'th equation.
Line 12	Construct the 2'th equation.
Line 13	Construct the 3'th equation.
Line 16	Construct the 4'th equation (i.e. a boolean axiom).
Line 19	Construct the 5'th equation (i.e. a boolean axiom).
Line 22	Construct and return the quantified equation which contains the five equations.

ĥ

```
1 (let tid = as_0 - id(tqual),
```

```
2 bid = as_0 \cdot id(get \cdot predef \cdot sort("BOOLEAN")(dict)) in
```

- 3 $\langle \mathbf{mk-}Opspec_0(\mathsf{LT}, \langle tid, tid \rangle, bid),$
- 4 \mathbf{mk} -Opspec₀(GT, $\langle tid, tid \rangle$, bid),
- 5 \mathbf{mk} -Opspec₀(LE, $\langle tid, tid \rangle$, bid),
- 6 \mathbf{mk} -Opspec₀(GE, $\langle tid, tid \rangle, bid \rangle$)

```
type: Name_0 \rightarrow Dict \rightarrow Opspec_0^+
```

Objective

Construct the AS_0 definitions of the ordering operators i.e. :

"<" : tid, tid -> bid; ">" : tid, tid -> bid; "<=" : tid, tid -> bid; ">=" : tid, tid -> bid;

 as_0 -order(lit, litlist, squal) \triangleq

```
(if litlist = \langle \rangle then
 1
 2
          \langle \rangle
 3
          else
 4
          (if is -Nmclass_0(lit) then
 5
               as<sub>0</sub>-order(hd litlist, tl litlist, squal)
 6
              else
 7
               if is-Nmclass<sub>0</sub>(hd litlist) then
 8
                  as<sub>0</sub>-order(lit, tl litlist, squal)
 9
                 else
                  (let id1 = if is-Name<sub>0</sub>(lit) then
10
11
                                    mk-Id<sub>0</sub>(squal, lit)
12
                                    else
13
                                    mk-Stringterm<sub>0</sub>(squal, lit),
14
                        id2 = if is-Name_0(hd litlist) then
15
                                    mk-Id<sub>0</sub>(squal, hd litlist)
16
                                    else
17
                                    mk-Stringterm<sub>0</sub>(squal, hd litlist) in
                    \langle \mathbf{mk}-Infixterm<sub>0</sub>(id1, LT, id2) \rangle
18
19
                    as<sub>0</sub>-order(hd litlist, tl litlist, squal))))
```

type: Literal₀ Literal₀^{*} Sortqual \rightarrow Axiom₀^{*}

Objective Construct the axioms reflecting the ordering of the literals for a sort

Parameters

lit	The first literal in the literal list
litlist	The rest of the literal list (the function is recursive)
squal	The Qual of the sort defining the literals

Result A list of axioms on the form :

id1 < id2

Algorithm

Line 1	When through, return nothing.
Line 4-5	If the literal in hand is a name class then skip it over.
Line 7-8	If the next literal in the literal list is a name class then skip it over.
Line 10-14	Construct the AS ₀ identifier of the literal in hand and of the next literal in the list. Note that the full qualifier is present in order to avoid ambiguity.

110 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.4.7.1.24)

Line 18-19

Return the boolean axiom for this literal concatenated with the boolean axioms for the rest of the literals

transform- $typing(oplist)(dict) \triangleq$

(if $oplist = \langle \rangle$ then 1 2 ({},[]) 3 else 4 $(let mk-Opspec_0(nm, opsortl, ressort) = hd oplist in$ 5 let (oprest, drest) = transform-typing(tl oplist)(dict) in 6 let tqual = get-visible-qual(ressort, TYPE)(dict) in 7 let pqual = get-parent(tqual)(dict) in 8 let $as_1 id = make - as_1 - identifier(tqual)(dict)$ in let $arglist = \langle get - visible - qual(opsortl[i], TYPE)(dict) | 1 \le i \le len opsortl \rangle$ in 9 10 let $parglist = \langle get - parent(arglist[i])(dict) | 1 < i < len arglist \rangle$ in 11 let $opparml = (make-as_1 - identifier(arglist[i])(dict) | 1 < i < len arglist) in$ 12 let $opqual = dict(SCOPEUNIT) \frown \langle (OPERATOR, (nm, parglist, pqual)) \rangle$ in 13 let newnm = create-unique-name() in let $newqual = dict(SCOPEUNIT) \frown \langle (OPERATOR, (newnm, parglist, pqual)) \rangle$ in 14 let descr = mk-OperatorD(arglist, tqual, newqual, true) in 15 16 let $as_1 tree = mk$ -Operator-signature₁(name-to-name₁(newnm), opparml, $as_1 id$) in 17 if $opgual \in \text{dom } drest$ then 18 exit("§2.2.2: Multiple appearence of operator definition") 19 else 20 $(\{as_1 tree\} \cup oprest, drest + [opqual \mapsto descr])))$ $Opspec_0^* \rightarrow Dict \rightarrow Operator-signature_1$ -set Dict type : Objective Transform a list of operator definitions into AS_1 and update Dict to include descriptors for the operators **Parameters** oplist The list of AS₀ operator definitions Result The AS_1 operator definitions and the updated *dict* Algorithm Line 1 When through, return empty objects (the function is recursive). Line 4 Decompose the first operator definition in the list. Line 5 Transform the rest of the operator definitions. Line 6-7 Extract the Qual of the result sort and fetch the parent sort (pqual) in the case of a syntype. Line 8 Construct the AS_1 identifier of the result sort. Line 9-10 Extract the Quals of the argument sorts and fetch the parent sorts (parglist) in the case of any syntypes. Line 11 Construct the AS₁ identifier list of the argument sorts. Line 12 Construct the Quals of the operator. Note that the Operatorgualelem (see the domain definition) contains the parent sorts (no syntypes) such that uniqueness of operators can be verified by inspecting the operator Quals. Line 13 Construct a unique name for the operator. (Unique names are generated for all operators such that no overloading occurs in AS_1). Line 14 Construct the operator Qual which is used for transforming the applied occurrences of the operator into AS_1 . Line 15 Construct the Dict descriptor for the operator. This time, the arguments and the result can be syntypes.

Line 16 Construct the AS_1 signature of the operator.

(3.4.7.1.25)

Line 17	If the Qual of the operator occurs in the Dict contribution for the
	rest of the operators then two operators with the same name, the
	same argument sorts and the same result are defined within the same sort definition.
Line 20	Return the signature for this operator unified with the signatures
	for the rest of the operators and return the Dict contributions for
	this operator and for the rest of the operators

3.4.7.2 Struct Definitions

transform-struc(nm, mk- $Struc_0(fl), mk$ - $Properties_0(l, o, a, am, init))(dict) \triangleq$

1 (let sid = mk-Id ₀ (dict(SCOPEUNIT))	, nm) in
---	------	------

2 let $(o', a',) = transform-fields(sid, fl, \{\}, \langle \rangle)$ in

3 let
$$prop' = \mathbf{mk}$$
-Properties₀ $(l, o \frown o', a \frown a', am, init)$ in

transform-sortdef(nm, prop', nil)(dict)) 4

type: Name₀ Struc₀ Properties₀ \rightarrow Dict \rightarrow Dict

Objective Transform a STRUCT sort definition into AS₁ Parameters nmThe name of the sort being defined The field list fl l, o, a, am, initThe literals, the operators, the axioms, the mapping axioms and the default value specified in the ADDING construct Result The Dict updated to include descriptors for the literals and operators and updated to include the generated AS₁ objects in its DATATYPEDEF entry Algorithm Line 1 Construct the AS_0 identifier of the sort being defined. Line 2 Generate the AS₀ operator definitions and axioms implied by the struct definition. Line 3 Construct the AS₀ properties containing the implied properties and the additional properties. Line 4 Transform those properties in the usual way

(3.4.7.2.1)

1	(if $flist = \langle \rangle$ then
2	$(\langle \mathbf{mk} - Opspec_0(\mathbf{mk} - Name_0(``MAKE'', EXCLAMATION), sidlist, tid) \rangle, \langle \rangle, \text{len sidlist})$
3	else
4	$(let mk-Fieldspec_0(fnml, fid) = hd flist in$
5	let $nm = hd fnml$ in
6	if $nm \in fset$ then
7	exit("§5.4.1.10: Two structure fields have the same name")
8	else
9	(let $flist' = if tl fnml = \langle \rangle$ then
10	tl flist
11	else
12	$\langle \mathbf{mk} extsf{-}Fieldspec_{0}(\mathbf{tl}fnml,fid) angle \frown \mathbf{tl}flist\mathbf{in}$
13	let $(as_0 oprest, as_0 axrest, argnum) =$
14	$transform$ -fields $(\mathit{tid},\mathit{flist}',\mathit{fset} \cup \{\mathit{nm}\},\mathit{sidlist} \frown \mathit{fid})$ in
15	let $(as_0 op, as_0 ax) = transform-field(tid, fid, nm, argnum, len sidlist + 1)$ in
16	$(as_0 op \frown as_0 oprest, as_0 ax \frown as_0 axrest, argnum))))$

type: Sortid₀ Fieldspec₀* Fieldname₀-set Sortid₀* \rightarrow Op₀* Axiom₀* N₁

Objective	Transform a field list from an AS ₀ struct definition into a list of operator
	definitions and a list of axioms

Parameters

tid	The AS_0 identifier of the sort defining the struct
flist	The field list
fset	The set of already used field names (the function is recursive)
sidlist	The current list of sorts for the fields. This list is used for con- structing the signature of the MAKE! operator
Result	The AS_0 operator definitions, the axioms implied by the field list and the complete number of fields. This number is only used internal in the function
Algorithm	
Line 1-2	When through then <i>sidlist</i> is complete and the signature of the MAKE! operator can be constructed. The length of <i>sidlist</i> is also returned such that the axioms including the MAKE! operator, constructed at the other recursion levels, can be made properly.
Line 4	Decompose the first field specification.
Line 5	Let nm denote the first name in the field name list of the first field specification.
Line 6	If the name already has been used then it is an error.
Line 9	Construct a new field list where the name in hand is excluded.
Line 13	Transform the rest of the fields.
Line 15	Construct the operator definitions and the axioms for the field in hand
Line 16	Return the properties for the field in hand concatenated with the properties for the rest of the fields

transform-field(tid, fid, fnm, totnum, index) \triangleq

```
1 (let (modop, modax) = as_0 - modify - properties(tid, fid, fnm, totnum, index),
```

type: Sortid₀ Sortid₀ Fieldname₀ $N_1 N_1 \rightarrow Op_0^* Axiom_0^*$

(3.4.7.2.3)

² $(extop, extax) = as_0 - extract - properties(tid, fid, fnm, totnum, index)$ in

³ $(\langle modop \frown extop \rangle, \langle modax \frown extax \rangle))$

Objective	Construct the implied operator definitions and axioms attached to a field name
Parameters	
tid	The AS_0 identifier of the sort defining the struct
fid	The AS ₀ identifier of the field sort
fnm	The field name
totnum	The complete number of fields for the sort tid
index	The position of the field in the argument list of the MAKE! oper- ator attached to <i>tid</i>
Result	The Operator definitions and axioms attached to the field fnm
Algorithm	
Line 1	Construct the operator definition and axiom for the modify oper- ator attached to the field.
Line 2	Construct the operator definition and axiom for the extract oper- ator attached to the field.
Line 3	Return the two operator definitions and the two axioms

 as_0 -modify-properties(tid, fid, mk-Name_0(fst,), totlistlength, index) \triangleq

```
(3.4.7.2.4)
```

```
1 (let mnm = mk-Name_0(fst \frown "MODIFY", EXCLAMATION) in
```

- 2 let $mk-Id_0(qualifier, tnm) = tid$ in
- 3 let $tqual = qualifier \frown \langle (TYPE, tnm) \rangle$ in
- 4 let $opspec = mk-Opspec_0(mnm, \langle tid, fid \rangle, tid)$ in
- 5 let $fvarid = \mathbf{mk} \cdot Id_0(\langle \rangle, create \cdot unique \cdot name())$ in
- 6 let makearglist = $\langle \mathbf{mk} Id_0(\langle \rangle, create-unique-name()) | 1 \le i \le totlistlength \rangle$ in
- 7 let $makearglist' = \langle makearglist[i] \mid 1 \leq i < index \rangle$
- 8 $\langle fvarid \rangle \frown$
- 9 $\langle makearglist[i] \mid index < i \leq totlistlength \rangle$ in
- 10 let $makenm = mk-Name_0$ ("MAKE", EXCLAMATION) in
- 11 let makeop = mk-Operatorterm₀(mk-Id₀(tqual, makenm), makearglist),

12 $makeop' = mk-Operatorterm_0(mk-Id_0(tqual, makenm), makearglist')$ in

- 13 let lterm = mk-Operatorterm₀(mk-Id₀(tqual, mnm), (makeop, fvarid)) in
- 14 let ax = mk-Equation₀(lterm, makeop') in
- $15 \quad (opspec, ax))$

type: Sortid₀ Sortid₀ Fieldname₀ $N_1 N_1 \rightarrow Op_0 Axiom_0$

Objective	Construct the AS_0 properties for the modify operator attached to a
	struct field

Parameters

tid	The identifier of the sort defining the struct
fid	The identifier of the field sort
fst	The spelling of the field name
tot list length	The number of fields defined for the sort tid
index	The position of the field in the argument list of the MAKE! oper- ator attached to <i>tid</i>
Result	The implied operator definition and axiom as defined in $5.4.1.10$ of Z.100
Algorithm	

```
Line 1 Construct the name of the modify operator by concatenating the spelling of the field name by the string "MODIFY".
```

Line 2-3	Construct the qualifier (<i>tqual</i>) denoting the sort <i>tid</i> . The MAKE! operator is qualified by <i>tqual</i> in order to avoid ambiguity.
Line 4	Construct the operator definition for the field modify operator.
Line 5-6	Construct a distinct value identifier (<i>fvarid</i>) and create a list of distinct value identifiers to be used as argument to the (left-hand) MAKE! operator (see the example in Z.100 §5.4.1.10).
Line 6-9	Modify the argument list by replacing the value identifier at posi- tion <i>index</i> by <i>fvarid</i> . This argument list is used on the right hand side of the axiom.
Line 10	Construct the Name ₀ of the MAKE! operator.
Line 11	Make the AS_0 operator application for the left hand MAKE! operator.
Line 12	Make the AS_0 operator application for the right hand side term.
Line 13	Construct the left hand side term.
Line 14-15	Return the operator definition and the constructed axiom

 as_0 -extract-properties(tid, fid, mk-Name_0(fst,), totlistlength, index) \triangleq

(3.4.7.2.5)

1 (let $enm = mk-Name_0$ (fst \frown "EXTRACT", EXCLAMATION) in

- 2 let $mk-Id_0(qualifier, tnm) = tid$ in
- 3 let $tqual = qualifier \frown \langle (TYPE, tnm) \rangle$ in
- 4 let $opspec = mk-Opspec_0(enm, \langle tid \rangle, fid)$ in
- 5 let makearglist = $\langle \mathbf{mk} Id_0(\langle \rangle, create unique name()) | 1 \le i \le totlistlength \rangle$ in
- 6 let $makenm = mk-Name_0$ ("MAKE", EXCLAMATION) in
- 7 let makeop = mk-Operatorterm₀(mk-Id₀(tqual, makenm), makearglist) in
- 8 let lterm = mk-Operatorterm₀(mk-Id₀(tqual, enm), (makeop)) in
- 9 let ax = mk-Equation₀(lterm, makearglist[index]) in

```
10 \quad (opspec, ax))
```

 $\mathbf{type}: \quad Sortid_0 \ Sortid_0 \ Fieldname_0 \ N_1 \ N_1 \rightarrow Op_0 \ Axiom_0$

Objective	Construct the \mathbf{AS}_0 properties for the extract operator attached to a struct field
Parameters	
tid	The identifier of the sort defining the struct
fid	The identifier of the field sort
fst	The spelling of the field name
totlistlength	The number of fields defined for the sort tid
index	The position of the field in the argument list of the MAKE! oper- ator attached to <i>tid</i>
Result	The implied operator definition and axiom as defined in §5.4.1.10 of Z.100
Algorithm	
Line 1	Construct the name of the extract operator by concatenating the spelling of the field name by the string "EXTRACT".
Line 2-3	Construct the qualifier (tqual) denoting the sort tid.
Line 4	Construct the operator definition for the field extract operator.
Line 5-6	Construct a distinct value identifier (<i>fvarid</i>) and create a list of distinct value identifiers to be used as argument to the (left-hand) MAKE! operator (see the example in Z.100 §5.4.1.10).

- Line 6-7 Construct the left hand side MAKE! operator application.
- Line 8 Construct the left hand side term.
- Line 10-11 Return the constructed operator definition and axiom

115

3.4.8 Timer Definitions

transform-timerdef (mk-Timerdef₀(vlist))(dict) \triangleq

```
if (\exists squal \in dom dict)(is-ServiceD(dict(squal)) \land get-sur(squal) = dict(SCOPEUNIT)) then
  1
  2
        exit("§4.10.2: Process contains both service definitions and timer definitions")
  3
        else
  4
         (let mk-Timerelem_0(tnm, sortlist) = hd vlist in
         let tgual = dict(SCOPEUNIT) \frown \langle (SIGNAL, tnm) \rangle in
  5
         let unm = if is-ServiceD(dict(dict(SCOPEUNIT))) then create-unique-name() else tnm in
  6
  7
         let nqual = dict(SCOPEUNIT) \frown \langle (SIGNAL, unm) \rangle in
         let squallist = \langle get - visible - qual(sortlist[i], TYPE)(dict) | i \in ind sortlist \rangle in
  8
  9
         let as_1 idlist = (make-as_1-identifier(squallist[i])(dict) | i \in ind squallist) in
 10
         let as_1 tree = mk-Timer-definition<sub>1</sub>(name-to-name<sub>1</sub>(unm), as_1 idlist),
             delem = [tqual \mapsto mk-TimerD(squallist, nqual) \mid 1 \le i \le len squallist] in
 11
 12
         if the vlist = \langle \rangle then
            (\langle as_1 tree \rangle, delem)
 13
 14
           else
            (let (as_1 rest, drest) = transform-timerdef(mk-Timerdef_0(tl vlist))(dict) in
 15
             (\{as_1 tree\} \cup as_1 rest, delem + drest)))
 16
type: Timerdefo<sup>+</sup> \rightarrow Dict \rightarrow Timer-definition<sub>1</sub>-set Dict
Objective
                      Transform a timer definition into AS_1
Parameters
     vlist
                            The list of (elementary) timer definitions contained in the (com-
                            posite) timer definition
Result
                       A set of AS_1 timer definitions and the Dict contribution containing the
                       descriptors for the timers
Algorithm
     Line 1-2
                            The surrounding process must not contain any services.
     Line 4
                            Decompose the next elementary timer definition (the function is
                            recursive).
     Line 5
                            Construct the Qual for the timer.
     Line 6-7
                            Construct the unique name and the unique Qual which is used for
                            deriving the AS<sub>1</sub> identifier (see the definition of Newqual)
     Line 8-9
                            Construct the list of sort Quals attached to the timer and construct
                            the corresponding AS_1 sort identifier list.
     Line 10
                            Construct the AS_1 timer definition for the timer in hand
     Line 11
                            Construct the Dict contribution for the timer in hand
     Line 12
                            If this elementary timer definition is the last element in the list
                            then return the AS<sub>1</sub> definition and the Dict contribution else
     Line 15-16
                            Join them with the definitions and Dict contribution corresponding
                            to the rest of the elementary timer definitions
```

3.4.9 Variable Definitions

6

transform- $vardef(\mathbf{mk}$ - $Vardef_0(revatt, expatt, vlist))(dict) \triangleq$

- 1 (let mk-Vardefelem₀(vl, tp, expr) = hd vlist in 2 let tqual = get-visible-qual(tp, TYPE)(dict) in
- 3 let pq = get-parent(tqual)(dict) in

```
4 let expr' = if expr = nil then
```

- 5 cases dict(tqual):
 - $(\mathbf{mk}$ -Sort $D(,, expr_1,) \rightarrow expr_1,$

116 **'Fascicle X.4 – Rec. Z.100 – Annex F.2**

(3.4.9.1)

7 \mathbf{mk} -Syntype $D(,, expr_1,) \rightarrow expr_1)$ 8 else 9 $(let (expr_1, .) = transform-expr(expr, CONSTANT, {pq})(dict) in$ 10 $expr_1$) in 11 let vnum = len vl in 12 let scope = dict(SCOPEUNIT) in 13 let nmlist = (if is-ServiceD(dict(scope))) then create-unique-name() else $vl[i] \mid 1 \le i \le vnum)$ in let quallist = $(scope \frown ((VALUE, vl[i])) | 1 \le i \le vnum),$ 14 $newquallist = (scope \frown ((VALUE, nmlist[i])) | 1 \le i \le vnum)$ in 15 16 let (decll, dexport) =if expatt =nil then 17 $(\{\}, [])$ 18 else 19 build-exported-vardef(vl, tqual, expr)(dict) in 20 let $(as_1 set, delem) =$ 21 (let $as_1 tp = make - as_1 - identifier(tqual)(dict)$ in 22 let $as_1 dl = \{mk-Variable-definition_1(name-to-name_1(nmlist[i]), as_1tp, revatt) | i \in ind vnum\},\$ 23 $d = [quallist[i] \mapsto mk-VarD(tqual, revatt, expatt, expr', newquallist[i]) | 1 \le i \le vnum]$ in 24 $(as_1 dl, d)$ in 25 if \neg is-ProcessD(dict(scope)) \land (revatt \neq nil \lor expatt \neq nil) then 26 exit("§2.4.5: Variable in procedure (or service) cannot be EXPORTED or REVEALED") 27 else 28 if card elems $vl \neq \text{len } vl$ then 29 exit("§2.2.2: Two definitions in the same scopeunit use the same name") 30 else 31 if tl $vlist = \langle \rangle$ then 32 $(as_1 set \cup decll, delem + dexport)$ 33 else 34 $(let (as_1 rest, drest) =$ 35 transform-vardef (mk-Vardef₀(revatt, expatt, tl vlist))(dict) in 36 if dom delem \cap dom drest \neq {} then 37 exit("§2.2.2: Two definitions in the same scopeunit use the same name") 38 else 39 $(as_1 set \cup decll \cup as_1 rest, delem + drest + dexport)))$ $Vardef_0 \rightarrow Dict \rightarrow Variable$ -definition₁-set Dict type: Objective Transform a variable definition into AS₁ Parameters The variable definition containing: revatt The optional **REVEAL** attribute The optional EXPORT attribute expatt vlist The list of (elementary) variable definitions Result The set of AS_1 variable definitions and a *Dict* contribution containing the descriptors of the defined variables Algorithm Line 1 Decompose the first elementary variable definition (the function is recursive). Line 2 Extract the Qual of their sort. Line 3 Extract the Qual of its parent (in the case of a syntype). Line 4-10 If the initial expression is not specified in the variable definitions then extract the AS_1 default expression for its sort (which also may be nil) otherwise transform the expression specified. Line 11 Let vnum denote the number of variable names introduced in the elementary variable definition. Line 12 Let scope denote the Qual of the scopeunit defining the variables. Line 13 Construct new unique names for the variables if they are defined in a service.

Line 14	Construct the variable Quals to be used as the Dict entries for the variables.
Line 15	Construct the <i>Quals</i> to be put into the <i>Newqual</i> component of the variable descriptors (they differs from the <i>Quals</i> constructed at line 14 if in a service).
Line 16-19	If the variables have the EXPORT attribute then construct the AS_1 definitions (<i>decll</i>) for the implicit variables.
Line 20	Construct the AS_1 variable definitions and <i>Dict</i> contributions for the variables by:.
Line 20	Constructing the AS_1 identifier of their sort.
Line 21	For each of the variables constructing an AS_1 variable definition containing the name $(nmlist[i])$, its sort $(as_1 tp)$ and possibly a reveal attribute (revatt).
Line 23	For each of the variables, construct a <i>Dict</i> descriptor containing the <i>Qual</i> of its sort (<i>tqual</i>), possibly a reveal attribute (<i>revatt</i>), possibly an export attribute (<i>expatt</i>), possibly an initial AS_1 ex- pression (<i>expr'</i>) and the (possible new) <i>Qual</i> to be used in the applied occurrences of the variable.
Line 25-26	Unless the variables are defined at the process level they cannot be EXPORTED or REVEALED .
Line 28	The names in vl must be unique.
Line 31	If there are no more elementary variable definitions in the compos- ite variable definition then return the constructed objects else
Line 34-39	Join them with the AS_1 definitions and <i>Dict</i> contributions for the rest of the elementary variable definitions provided the names in the variable definition are unique

build-exported-vardef(varlist, tqual, expr)(dict) \triangleq

1 if $varlist = \langle \rangle$ then

({},[])

else

2

3

(3.4.9.2)

4 5 6 7 8	(let nm = let (vdre let id ₀ = let mk-S let varde	= hd varlist in st, drest) = build-exported-vardef(tl varlist, tqual, expr)(dict) in : as_0 -id(tqual) in SignalnamesD(impnm, ,) = exportmap((tqual, nm)) in : $f_0 = mk$ -Varde $f_0(nil, nil, \langle mk$ -Vardefelem $_0(\langle impnm \rangle, id_0, expr) \rangle$) in laf dist() = then shown undef(undef)(dist) in
10	(vdrest)	$\int vardef_1, drest + dict')$
	(********	
type :	$Name_0^*$	$Qual \ [Expr_0] \rightarrow Dict \rightarrow Variable-definition_1-set \ Dict$
Objecti	ive	Construct the AS_1 variable definitions for the objects implied by exported variables
Parame	eters	
vari	list	The list of variables which are exported
tque	al	The Qual of the variable sort
exp	r	The expression denoting the initial value of the variables
Result		The AS ₁ definitions
Algorit	hm	
Lin	e 1	When through, return nothing (the function is recursive).
Lin	e 4	Let <i>nm</i> denote the first (next) name in the variable list.
Lin	e 5	Construct the AS ₁ definitions for the rest of the variable list
Lin	e 6	(Re)construct the AS ₀ identifier of the variable sort.

.

Fascicle X.4 - Rec. Z.100 - Annex F.2 118

Line 7	Decompose the export descriptor (<i>SignalnamesD</i>) in order to access the name of the implicit variable.
Line 8	Construct an AS ₀ variable definition of that implicit name.
Line 9	Transform the implicit variable definition into AS_1 .
Line 10	Return that AS_1 definition joined with the definitions for the rest of the exported variables. The <i>VarD</i> descriptor of the implicit variable (contained in <i>dict'</i>) is included in the resulting <i>Dict</i> .

3.4.10 View Definitions

transform-viewdef (mk-Viewdef₀(vars))(dict) \triangleq

1	(let mk-Viewdefelem ₀ (varlist, tp) = hd vars in
2	if card elems varlist \neq len varlist then
3	exit("§2.2.2: Two definitions in the same scopeunit use the same name")
4	else
5	$(let \ tqual = get-visible-qual(tp, TYPE)(dict) in$
6	let $tqual' = get$ -parent($tqual$)($dict$) in
7	let $(as_1 set, d) = transform$ -view $(varlist, tqual')(dict)$ in
8	if the $vars = \langle \rangle$ then
9	$(as_1 set, d)$
10	else
11	(let (as ₁ rest, drest) = transform-viewdef(mk-Viewdef ₀ (tl vars))(dict) in
12	if dom $d \cap \text{dom } drest \neq \{\}$ then
13	exit("§2.2.2: Two definitions in the same scopeunit use the same name")
14	else
15	$(as_1set \cup as_1rest, d + drest))))$

 $\textbf{type}: \quad \textit{Viewdef}_0 \rightarrow \textit{Dict} \rightarrow \textit{View-definition}_1\text{-set} \textit{Dict}$

Objective	Transform a view definition into AS_1
Parameters	
, vars	The list of (elementary) definitions contained in the (composite) view definition
Result	A set of AS_1 view definitions and a <i>Dict</i> contribution containing descriptors for the view variables

Algorithm

Line 1	Decompose the first (the next) elementary view definition (the function is recursive).
Line 2	Check that the names in the variable list are unique.
Line 5	Extract the Qual of their sort.
Line 6	Extract the Qual of the parent sort in the case of a syntype.
Line 7	Transform the first elementary view definition.
Line 8	If there are no more elementary view definitions then return the AS_1 definition and <i>Dict</i> contribution for these view variables else
Line 11-15	Join them with the definitions and contributions for the rest of the elementary view definitions provided that the names in the view definition are unique.

(3.4.10.1)

1	(if $varlist = \langle \rangle$ then
2	· ({},[) · · ·
3	else
4	$(\mathbf{let} \ \mathbf{mk} - Id_0(q, nm) = \mathbf{hd} \ varlist \ \mathbf{in}$
5	let $as_1 tid = make-as_1-identifier(tqual)(dict),$
6	$(as_1 rest, drest) = transform-view(tl varlist, tqual)(dict)$ in
7	let $qual = (let \ bqual = get \cdot sur(dict(SCOPEUNIT)))$ in
8	$\mathbf{if} (\exists! vqual \in \mathbf{dom} dict)$
9	$((get-sur(get-sur(vqual)) = bqual) \land$
10	$(\exists q')(q' \frown q \frown \langle (VALUE, nm) \rangle = vqual) \land$
11	$\textbf{is-VarD}(\textit{dict}(\textit{vqual})) \land \\$
12	$(\mathbf{let} \ \mathbf{mk}$ - $VarD(tq, attr, , ,) = dict(vqual)$ in
13	$tq = tqual \wedge attr = REVEALED))$ then
14	$(extbf{let vqual be s.t. }(extbf{get-sur(vqual})) = extbf{bqual } \wedge$
15	$\mathbf{is}\text{-}VarD(dict(vqual)) \land \\$
16	$(\exists q')(q' \frown q \frown \langle (VALUE, nm) \rangle = vqual) \land$
17	(let mk- $VarD(tq, attr, , ,) = dict(vqual)$ in
18	$tq = tqual \wedge attr = REVEALED))$ in
19	vqual)
20	else
21	exit("§2.6.1.2: No unique corresponding revealed variable of that sort")) in
22	let $as_1 id = make-as_1$ -identifier(qual)(dict) in
23	let $as_1 tree = mk$ -View-definition ₁ ($as_1 id$, $as_1 tid$) in
24	$(\{as_1 tree\} \cup as_1 rest, drest + [dict(SCOPEUNIT) \frown \langle (VIEW, qual) \rangle \mapsto mk\text{-}ViewD(qual)])))$

 $\mathbf{type}: \quad \mathit{Id_0}^* \ \mathit{Qual} \rightarrow \mathit{Dict} \rightarrow \mathit{View}\text{-}\mathit{definition_1}\text{-}\mathbf{set} \ \mathit{Dict}$

Objective Transform a list of view variables into AS₁ view definitions

Parameters

varlist	The view variables
tqual	The Qual of the variables sort

Algorithm

Line 1	When through, return nothing (the function is recursive).
Line 4	Decompose the first variable identifier.
Line 5	Transform the variable sort into an AS_1 identifier.
Line 6	Transform the rest of the view variables.
Line 7-21	Denote the Qual of the corresponding revealed variable by qual.
Line 7	Construct the Qual of the surrounding block.
Line 8	There must exist a unique variable identifier (i.e. variable Qual) which is defined in a process of the same surrounding block,
Line 10	which contains the qualifier and name specified in the view defini- tion,
Line 11	which is a variable,
Line 13	which is of the same sort and which is revealed.
Line 14-19	If there exist such an identifier then let vqual denote its Qual.
Line 22-23	Construct the AS ₁ view definition and
Line 24	Join it with the definitions containing the rest of the view vari- ables $(as_1 rest)$. Also join the view descriptor (<i>ViewD</i>) with the descriptors for the rest of the view definitions

120

3.4.11 Import Definitions

transform-import $def(\mathbf{mk}$ -Import $def_0(import elem list))(dict) \triangleq$

- 1 (let mk-Importelem₀(varl, tid) = hd importelemlist in
- 2 let tqual = get-visible-qual(tid, TYPE)(dict) in
- 3 let pqual = get-parent(tqual)(dict) in
- 4 let scope = dict(SCOPEUNIT) in
- 5 let $delem = [scope \frown ((\mathsf{IMPORT}, (varl[i], pqual))) \mapsto \mathsf{mk} \cdot ImportD(tqual) \mid 1 \leq i \leq \mathsf{len} \; varl]$ in
- 6 if tl importelemlist = $\langle \rangle$ then
- 7 $(\{\}, delem)$
- 8 else
- 9 (let drest = transform-importdef(t1 importelemlist)(dict) in
- 10 if dom $delem \cap dom drest \neq \{\}$ then
- 11 exit("§2.2.2: Two definitions in the same scopeunit use the same name")
- 12 else

13 $(\{\}, delem + drest)))$

type: Import def_0 \rightarrow Dict \rightarrow Decl₁-set Dict

Objective	Construct the Dict contribution for an imported entity.	
Parameters	The import definition containing:	
importelemlist	A list of (elementary) import definitions	
Result	The Dict contributions for the import variables and an empty set (see transform-signallistdef).	

Algorithm

Line 1	Decompose the first elementary import definition (the function is recursive).
Line 2	Extract the sort Qual of the contained variables (varl).
Line 3	Extract the parent sort in the case of a syntype.
Line 4-5	Construct the <i>Dict</i> contributions for the contained variables. Note that <i>pqual</i> is used in the <i>Qual</i> in order to achieve uniqueness of the pair of import name- sort, while <i>tqual</i> is used in the descriptor since the implicit variable associated with import expressions may be of syntypes.
Line 6-9	And join them with the contributions for the rest of the elementary view definitions (if any).
Line 10	The pairs of import name and sort must be unique

3.4.12 Signalroute Definitions

transform-signalrouted ef (mk-Sigrouted ef_0(nm, path, opath))(dict) \triangleq (3.4.12.1) $(let mk-Sigroute path_0(endpoint1, endpoint2, siglist) = path in$ 1 let sigroutequal = $dict(SCOPEUNIT) \curvearrowright \langle (SIGNALROUTE, nm) \rangle$ in 2 3 let sigset = transform-signallist(siglist)(dict) in 4 let p1 = get-visible-qual(endpoint1, PROCESS)(dict), 5 p2 = get-visible-qual(endpoint2, PROCESS)(dict) in 6 let osigset =7 if opath = nil then 8 {} 9 else 10 $(let mk-Sigroute path_0(orig', dest', osiglist) = opath in$ let p1' = get-visible-gual(orig', PROCESS)(dict), 11 p2' = get-visible-qual(dest', PROCESS)(dict) in 12 13 if $p1 = p2' \wedge p2 = p1'$ then 14 transform-signallist(osiglist)(dict) 15 else 16 exit("§2.5.2: The second path must denote reverse direction of the first path")) in 17 if $p1 \neq p2 \land is-local(p1)(dict) \land is-local(p2)(dict)$ then (let $as_1p_1 = if p_1 = ENV$ then ENVIRONMENT else make-as_1-identifier(p_1)(dict), 18 19 $as_1p_2 = if p_2 = ENV$ then ENVIRONMENT else make-as_1-identifier(p_2)(dict), 20 $as_1 sigidset = make-as_1 idset(sigset)(dict),$ 21 $as_1 sigidset' = make - as_1 idset(osigset)(dict)$ in 22 let $as_1 path1 = mk$ -Signal-route-path₁($as_1 p1$, $as_1 p2$, $as_1 sigidset$), 23 $as_1 path 2 = if as_1 sigidset' = \{\}$ then 24 nil 25 else 26 mk-Signal-route-path₁(as₁p2, as₁p1, as₁sigidset'), 27 $descr = \mathbf{mk}$ -SignalrouteD(p1, p2, sigset, osigset) in 28 let as_1 tree = mk-Signal-route-definition₁ (name-to-name₁ (nm), as_1 path 1, as_1 path 2) in 29 $(\{as_1 tree\}, [sigroutequal \mapsto descr]))$ 30 else 31 if p1 = p2 then 32 exit("§2.5.2: The endpoints of the signal route are not different") 33 else 34 exit("§2.5.2: The endpoints of the signal route are not locally defined")) type: Sigroutedef_0 \rightarrow Dict \rightarrow Signal-route-definition₁-set Dict **Objective** Transform a signalroute definition into AS₁ **Parameters** An AS₀ signalroute definition containing: The name of the signal route nmpath The first path opath The second optional path Result A set containing an AS_1 signal route definition and a *Dict* contribution containing the signal route descriptor Algorithm Line 1 Decompose the first path. Line 2 Construct the Qual denoting the signal route. Line 3 Transform the signal list in the first path into a set of signal Quals. Line 4-5 Extract the Qual of the two endpoints of the first path (get-visiblequal can handle the case where the endpoint is ENV). Line 6-16 Let osigset denote the set of signal Qual for the opposite direction (the second path).

122 Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 6	If the second path is omitted then it is the empty set otherwise
Line 10	Decompose the second path.
Line 11-1	2 Extract the Qual of the two endpoints of the second path.
Line 13	The first endpoint of the first path must be equal to the second endpoint of the second path and the second endpoint of the first path must be equal to the first endpoint of the second path
Line 14	Let osigset denote the set of signal Quals from the second path.
Line 17	The endpoints of the signal route must be different and the end- points must be locally defined.
Line 18-1	9 Construct the AS ₁ identifiers (or ENVIRONMENT) of the two endpoints.
Line 20-2	1 Construct the two AS_1 signal sets of the signals conveyed in the two directions.
Line 22-2	3 Construct the two AS_1 paths of the directions.
Line 27	Construct the signal route descriptor.
Line 28	Construct the AS ₁ signal route definition.
Line 29	Return the AS ₁ definition and the <i>Dict</i> contribution containing the constructed descriptor.
Line 31-3	For clarity, split the error condition into two exits

3.4.13 Signallist Definitions

transform-signallistdef (mk-Signallistdef₀(nm, signals))(dict) \triangleq

1 (let siglistqual = dict(SCOPEUNIT) \frown ((SIGNALLIST, nm)) in

 $2 \quad let() =$

3 transform-signallist(signals)(dict + [siglistqual \mapsto mk-ErrorD()]) in

4 $(\{\}, [siglistqual \mapsto mk-SignallistD(signals)]))$

type: Signalli	$stdef_0 \rightarrow Dict \rightarrow Decl_1$ -set $Dict$
Objective	Construct the Dict contribution for a signal list definition
Parameters	The AS ₀ signal list definition containing:
nm	The signal list name
signals	The associated list of signals
Result	Beside of the <i>Dict</i> contribution, also an empty set of AS_1 definitions is returned (such that all "definition transforming" functions can be treated equally)
Algorithm	
Line 1	Construct the Qual of the signal list.
Line 3	Transform the list of signals into a signal <i>Qual</i> set. However, the result is not used as the function only is applied for checking of recursive definition.
Line 4	Return the Dict contribution containing the signal list descriptor

(3.4.13.1)

1	$(if sigl = \langle \rangle then$
2	{}
3	else
4	(let signest = if tl sigl = () then {} else transform-signallist(tl sigl)(dict) in
5	let sigsetelem $=$
6	cases hd <i>sigl</i> :
7	$(\mathbf{mk}$ - $Id_0(,)$
8	$\rightarrow \{signal-qual(hd sigl)(dict)\},\$
9	mk-Signallistid ₀ (id)
10	\rightarrow (let qual = get-visible-qual(id, SIGNALLIST)(dict) in
11	let mk -Signallist $D(siglist) = dict(qual)$ in
12	$transform$ -signallist $(siglist)(dict + [qual \mapsto mk$ - $ErrorD()])))$ in
13	$\mathbf{if} \ sigsetelem \cap sigrest \neq \{\} \ \mathbf{then}$
14	exit("§2.5.5: Signal identifiers in signal list are not distinct")
15	else
16	$sigsetelem \cup sigrest))$

type: $Signallist_0 \rightarrow Dict \rightarrow Signalqual-set$

Parameters

sigl	The	list	of	signals

Algorithm

,

Line 4	Transform all but the first element in the list (the function is re- cursive).
Line 5-12	Let sigsetelem denote the Quals of the first element in the list.
Line 7	If the first element in the list is an identifier then it denotes a signal and <i>sigsetelem</i> denotes the set containing that signal <i>Qual</i> .
Line 9	If the first element in the list is a signal list then let <i>qual</i> denote the <i>Qual</i> of the signal list.
Line 11	Let <i>siglist</i> denote the AS_0 signal list attached to the signal list identifier.
Line 12	Transform that signal list, but invalidate the signal list identifier by denoting it as a <i>ErrorD</i> in <i>Dict</i> .
Line 13	If any signal <i>Qual</i> from the first element also appear in another element then it is an error otherwise
Line 16	The union of the set from the first element and the set from the rest of the list is returned

J

3.4.14 Connect Statements

transform-block-connect(decllist, sigrouteset, connectmap)(dict) \triangleq 1 (if decllist = () then

2	(let $bqual = dict(SCOPEUNIT)$ in	
3	let $outerchanset = \{mk-ChannelD(endp1, endp2, , , newc) \in rng dict \mid $	
4	$bqual \in \{endp1, endp2\} \land newc = nil\}$ in	
5	if outerchanset \neq dom connectmap then	
6	exit("§2.5.3: No connection for channel connected to block")	
7	else	
8	if sigroutes et = union rng connect map then	
9	({}, connectmap)	
10	else	
11	exit("§2.5.3: Signal route does not appear in exactly one connect"))	
12	else	
13	(cases hd decllist:	
14	$(\mathbf{mk}$ -Sigroutedef ₀ $(nm, \mathbf{mk}$ -Sigroutepath ₀ $(end1, end2,),)$	
15	$\rightarrow (\text{let } qset = \text{if } end1 = \text{ENV} \lor end2 = \text{ENV}$	
16	then { $dict(SCOPEUNIT) \frown \langle (SIGNALROUTE, nm) \rangle$ }	
17	else {} in	
18	let $newset = sigrouteset \cup qset$ in	
19	transform-block-connect(tl decllist, newset, connectmap)(dict)),	
20	\mathbf{mk} -Connect ₀ (,)	
21	\rightarrow (let (channel, routeset, connect) = block-connect(hd decllist)(dict) in	
22	if $channel \in dom connectmap$ then	
23	exit (§2.5.3: Channel to signal route connection appears twice)	
24		
25	if union rng connectmap () routeset \neq {} then	
26	exit("§2.5.3: Signal route mentioned in more than one connection")	
27	else	
28	$(let n connect map = connect map + [channel \mapsto routeset] in$	
29	let $(restas_1, restmap) =$	
30	transform-block-connect(tl accuist, sigrouteset, nconnectmap)(act) in	
31 20	$\{\{connect\} \cup restas_1, restmap\}\},$	
52	$1 \rightarrow transform-block-connect(1 accuss, signoaceset, connectimap)(acct))))$	
type	$Decl_0^*$ Qual-set $BlockconnectionD \rightarrow Dict \rightarrow Channel-to-route-connection_1$ -set $Blockconnection_1$	nD
Obje	tive Transform the connect definitions of a block into a set of AS ₁ channel to route connections	
Para	neters	
d	collist The AS ₁ definition list of a block	
\$	grouteset The set of Quals denoting the signal routes which already have been handled (recursively). Initially, this set is empty	
с	nnectmap A map from Quals, denoting the channels which already have oc- curred in a connect definition, into the signal route Quals to which the channels are connected. Initially, this map is empty	
Resu	t The constructed AS ₁ connect definitions	
Algo	ithm	
,		

Line 2	Let bqual denote the block
Line 3	Let outerchanset denote the channels having the block as one of their endpoints. Do not include the channels which have been replaced by two new channels (i.e. $newc = nil$).
Line 5-6	The set of channels having the block as one of its endpoints must be equal to the set of channels mentioned in a connection in the block.

(3.4.14.1)

Line 8-11	Return if the set of signal route Quals derived from the signal route definitions in the block is the same as the constructed set, by merging the sets contained in the <i>connectmap</i> i.e. all signal routes mentioned in a connect must be defined in the block and having the environment as one of the endpoints and vice versa.
Line 14-19	If the first (the next) definition in the list is a signal route defini- tion then include the signal <i>Qual</i> (contained in <i>qset</i>) to <i>sigrouteset</i> provided that one of the endpoints are ENV.
Line 20	If the next definition is a block connect then
Line 21	Derive the channel $Qual$, the signal route $Quals$ and the AS ₁ connect definition from the block connect.
Line 22	If the channel already has been used in a block connect then it is an error.
Line 25	Each signal route must be mentioned in only one channel to signal route connection.
Line 28	Update the connectmap to include the connect information in hand
Line 32	If the next definition is anything else then continue with the rest of the definitions

block-connect(mk-Connect₀(chid, routeidlist))(dict) \triangleq

1	(let	cqual	=	get-visible-q	ual(chid,	CHANNEL)	(dict)) iı
---	------	-------	---	---------------	-----------	----------	--------	------

- 2 let mk-ChannelD(, endpoint2, sigset1, sigset2, newc) = dict(cqual) in
- 3 let bqual = dict(SCOPEUNIT) in

4	let connectset = $-$	{get-visible-qual(routeidlist[i], SIGNALROUTE)(a	dict)	$i \in ind routeidlist \}$ in
---	----------------------	--------------------	---------------	--------------------	-------	-------------------------------

(3.4.14.2)

- 5 let (insigset, outsigset) = if endpoint2 = bqual then (sigset1, sigset2) else (sigset2, sigset1) in
- 6 let $cas_1 id = make-as_1$ -identifier(cqual)(dict),
- 7 $sas_1set = \{make as_1 identifier(cq)(dict) \mid cq \in connectset\}$ in

8 let cqual' = if newc = nil then cqual else convert-channel-qual(newc, bqual) in

9 if card connectset = len routeidlist \land

10 $is-wf-connectsignal routes(connectset, insigset, outsigset, {}, {})(dict)$ then

- 11 $(cqual', connectset, \mathbf{mk}-Channel-to-route-connection_1(cas_1id, sas_1set))$
- 12 else

13 (second state of the signal route connection is not well-formed"))

type: $Connect_0 \rightarrow Dict \rightarrow Channelqual Qual-set Channel-to-route-connection_1$

Objective Derive the channel Qual, the set of signal route Quals and an AS₁ connect definition from an AS₀ channel to route connection

Parameters

chid	The AS ₀ channel identifier in the connect			
routeidlist	The AS ₀ list of signal route identifiers			
Result	The Qual of the channel in the enclosing scopeunit, a Qual set containing the signal routes connected to that channel and the AS_1 connection.			

Algorithm

Line 1	Extract the Qual of the channel.
Line 2	Decompose the channel descriptor.
Line 3	Let bqual denote the Qual of the block containing the connect def- initions.
Line 4	Construct the set of <i>Quals</i> denoting the signal route identifiers contained in the channel to route connection.
Line 5	Let <i>insigset</i> denote the incoming signals and let <i>outsigset</i> denote the outgoing signals.

126 **Fascicle X.4** – Rec. Z.100 – Annex F.2

Line 6-7	Construct the AS_1 identifier of the channel and the AS_1 identifier set containing the signal routes.
Line 8	If the channel has a substructure then use the <i>Qual</i> of the appro- priate replacing channel.
Line 9	A signal route identifier must not be mentioned twice in the connect definition and
Line 10	The signals in the signal routes must be mentioned in the channel.
Line 11	Return the $Qual$ of the channel, the set of signal route $Quals$ and an AS ₁ channel to route connection

is-wf-connectsignalroutes (connectset, insigset, outsigset, res1, res2)(dict) \triangleq

(3.4.14.3)

1	if $connectset = \{\}$ then
2	$insigset = res1 \land outsigset = res2$
3	else
4	(let squal \in connectset in
5	let mk -SignalrouteD(endpoint1, endpoint2, sset1, sset2) = dict(squal) in
6	if ENV \notin {endpoint1, endpoint2} then
7	false
8	else
9	(let (inset, outset) = if endpoint1 = ENV then (sset1, sset2) else (sset2, sset1) in
10	is -wf-connectsignal routes (connects et \setminus {squal}, insigset, outsigset,
11	$inset \cup res1, outset \cup res2)(dict)))$

 $\texttt{type:} \quad \textit{Qual-set Signalqual-set Signalqual-set Signalqual-set Signalqual-set} \rightarrow \textit{Dict} \rightarrow \textit{Bool}$

Objective	Check that signal routes in a channel to route connection are properly
	interfaced

Parameters

connectset	The (remaining) set of signal route <i>Quals</i> (the function is recursive)
insigset	The set of signal <i>Quals</i> leading to the block via the channel speci- fied in the channel to route connection
outsigset	The set of signal <i>Quals</i> leading out of the block via the channel specified in the channel to route connection
res1,res2	The recursively created sets of input signals and output signals specified in the signal routes. Eventually, these set must be equal to the corresponding set specified for the channel
Result	The collected set of signal of incoming signal (<i>res1</i>) and the outgoing signals (<i>res2</i>) must be equal to the incoming respective outgoing signals specified in the channel
Algorithm	
Line 1	When through, return true if all signals from the channel have been mentioned in a signal route.
Line 4	Let squal denote a Qual in the signal route set.
Line 5	Decompose the Dict descriptor for the signal route
Line 6	ENV must be one of the endpoints for the signal route.
Line 9	Let <i>inset</i> denote the signals, taken from the signal route descriptor, which leads into the block and let <i>outset</i> denote the signals which leads out of the block.
Line 10	The rest of the signal routes in the connect must be properly in- terfaced

.

transform-substructure-connect(decllist, channelset, connectmap)(dict) \triangleq

1 (if decllist = $\langle \rangle$ then $(let \ bgual = get-sur(dict(SCOPEUNIT)))$ in 2 let $outerchanset = \{mk-ChannelD(endp1, endp2, , , newc) \in rng dict \mid \}$ 3 4 $bqual \in \{endp1, endp2\} \land newc = nil\}$ in 5 if card outerchanset > card dom connectmap then 6 exit("§3.2.2: No connection for channel connected to block substructure") 7 else 8 if channelset = union rng connectmap then 9 {} 10 else exit("§3.2.2: Sub-channel does not appear in exactly one connect")) 11 12 else 13 (cases hd decllist: (mk-Chandef₀(nm, mk-Chanpath₀(orig, dest,), , ,) 14 \rightarrow (let gset = if orig = ENV \lor dest = ENV 15 16 then { $dict(SCOPEUNIT) \frown ((CHANNEL, nm))$ } 17 else {} in 18 let $newset = channelset \cup qset$ in transform-substructure-connect(tl decllist, newset, connectmap)(dict)), 19 20 \mathbf{mk} -Connect₀(,) \rightarrow (let (chan, chanset, connect) = transform-block-substructure-connect(hd decllist)(dict) in 21 22 if $chan \in \mathbf{dom} \ connectmap$ then 23 exit("§3.2.2: Channel connection appears twice") 24 else 25 if union rng connectmap \cap chanset \neq {} then 26 exit("§3.2.2: Sub-channel mentioned in more than one connection") 27 else 28 (let $nconnectmap = connectmap + [chan \mapsto chanset]$ in 29 $\{connect\} \cup$ 30 transform-substructure-connect(tl decllist, channelset, nconnectmap)(dict))), 31 $T \rightarrow transform$ -substructure-connect(tl decllist, channelset, connectmap)(dict)))) type: $Decl_0^*$ Channelqual-set (Channelqual \overrightarrow{m} Channelqual-set) \rightarrow Dict \rightarrow Channel-connection₁-set Objective Construct the channel connections attached to the block sub-structure Parameters decllist The AS₀ definition list of the block sub-structure joined with the AS₀ connections which connects the implicit export - import channel. channelset, connectmap, During the recursive traverse through the definition list *decllist*, channel names from channel definition leading from or to the environment are collected and kept in channelset, connect information is collected and kept in connectmap. When transform-substructureconnect initially is applied (in transform-blockdef), these parameters are empty. Result The collected AS₁ connections. Algorithm Line 2 Let bqual denote the block surrounding the block substructure Line 3 Let outerchanset denote the channels having the block as one of their endpoints and which do not have a sub-structure. Line 5-6 If there are more channels having the block as one of their endpoints than channels in channel connections then some channel connections are missing.

128

Line 8-11	If all channels (having one of the endpoints as the environment) have occurred in a connection then return.
Line 14	If the definition in hand is a channel definition then
Line 15-18	Construct the set consisting of the empty set if the channel do not lead from or to the environment, otherwise consisting of the channel <i>Qual</i> .
Line 19	Traverse through the rest of the definition list with the set added to channelset
Line 21	If the definition in hand is a channel connection then transform the connection into AS_1 , obtaining the channel <i>Qual</i> (<i>chan</i>), the set of channel <i>Quals</i> (<i>chanset</i>), and the AS_1 connection <i>connect</i> .
Line 22	The channel must not be contained in more than one channel con- nection.
Line 25	A sub-channel must be mentioned in only one channel connection.
Line 28-29	Traverse through the rest of the definition list with the connect information added to <i>connectmap</i> .

 $transform-block-substructure-connect(mk-Connect_0(chid, chidlist))(dict) \triangleq$

```
(let cqual = get-visible-qual(chid, CHANNEL)(dict) in
  1
       let mk-ChannelD(endpoint1, endpoint2, sigset1, sigset2, newc) = dict(cqual) in
  2
       let bqual = get-sur(dict(SCOPEUNIT)) in
  3
       if bqual \in \{endpoint1, endpoint2\} then
  4
          (let connectset = \{get-visible-qual(chidlist[i], CHANNEL)(dict) \mid i \in ind chidlist\} in
  5
  6
          let (insigset, outsigset) = if endpoint2 = bqual then
  7
                                        (sigset1, sigset2)
  8
                                       else
  9
                                        (sigset2, sigset1) in
 10
          let cas_1 id = make-as_1-identifier(cqual)(dict),
              cas_1 list = \{make-as_1 - identifier(cq)(dict) \mid cq \in connectset\} in
 11
 12
          let cqual' = if newc = nil then cqual else convert-channel-qual(newc, bqual) in
 13
          if card connectset = len chidlist \wedge
 14
            is-wf-connectchannels(connectset, insigset, outsigset, {}, {})(dict) then
 15
             (cqual', connectset, mk-Channel-connection_1(cas_1id, cas_1list))
 16
            else
 17
             exit("§3.2.2: Channel connection is not well-formed"))
 18
         else
         exit("§3.2.2: Channel connection is not well-formed"))
 19
         Connect_0 \rightarrow Dict \rightarrow Channelqual \ Channelqual-set \ Channel-connection_1
type:
Objective
                      Transform a channel connect into AS<sub>1</sub>
Parameters
                      The channel connection containing:
     chid
                           The identifier of the channel in the enclosing scopeunit
     chidlist
                           The list of channels connected to chid
Result
                      The Qual of the channel in the enclosing scopeunit, a Qual set con-
                      taining the channels connected to that channel and the AS<sub>1</sub> channel
                      connection
Algorithm
    Line 1
                           Construct the Qual of chid.
    Line 2
                           Decompose its channel descriptor.
    Line 3
                           Let bqual denote the Qual of the enclosing block.
    Line 4
                           The block must be one of the endpoints of the channel mentioned
                          in the connect definition.
```

(3.4.14.5)

Line 5	Construct a set containing the <i>Quals</i> of the channels connected to <i>chid</i> .
Line 6	Let <i>insigset</i> denote the signal <i>Qual</i> set leading into the sub-struc- ture via the channel and let <i>outsigset</i> denote the signal <i>Qual</i> set leading out of the sub-structure via the channel.
Line 10-11	Construct the AS_1 identifier of the outer channel and the set of AS_1 identifiers of the channels to which it is connected.
Line 12	If the channel has a substructure then use the <i>Qual</i> of the appro- priate replacing channel.
Line 13	A channel must not be mentioned twice in a channel connection and
Line 14	The signals in the channels must be properly interfaced to the outer channel.
Line 15	If everything is OK then return the <i>Qual</i> of the outer channel, the <i>Qual</i> set of the channels to which it is connected and an AS_1 channel connection

 $is-wf-connect channels(connect set, insigset, outsigset, res1, res2)(dict) \triangleq$

(3.4.14.6)

1	$(if connectset = \{\} then$
2	is-wf-refinement (insigset, outsigset, res1, res2)(dict)
3	else
4	(let $cqual \in connectset$ in
5	let mk-ChannelD(endpoint1, endpoint2, sset1, sset2,) = dict(cqual) in
6	if ENV \notin {endpoint1, endpoint2} then
7	false
8	else
9	(let (inset, outset) = if endpoint1 = ENV then (sset1, sset2) else (sset2, sset1) in
10	$is-wf-connect channels(connect set \setminus \{cqual\}, insigset, outsigset, res1 \cup inset, res2 \cup outset)(dict))))$

 $\texttt{type:} \quad Channel qual-\texttt{set} \ Signal qual-\texttt{se$

Objective Check that channels in a channel connection are properly interfaced

Parameters

connectset	The (remaining) set of channel Quals (the function is recursive)
insigset	The set of signal Quals leading to the block sub-structure via the sub-channel
outsigset	The set of signal <i>Quals</i> leading out of the block sub-structure via the sub-channel
res1,res2	The recursively created sets of input signals and output signals specified in the sub-channels.
Result	True if success
Algorithm	
Line 1	When through, check that the constructed signal sets (<i>res1,res2</i>) are well-formed refinements of the signals specified for the outer channel.
Line 4	Let squal denote a Qual in the sub-channel set.
Line 5	Decompose the Dict descriptor for the sub-channel
Line 6	ENV must be one of the endpoints for the sub-channel.
Line 9	Let <i>inset</i> denote the signals, taken from the sub-channel descriptor, which leads into the block sub-structure and let <i>outset</i> denote the signals which leads out of the block sub-structure.
Line 9	Return true if the rest of the sub-channels in the connect is prop- erly interfaced

is-wf-refinement(parentset1, parentset2, subset1, subset2)(dict) \triangleq

```
(if (\exists q \in subset 1 \cup subset 2)(get-sur(q) \in parentset 1) then
 1
          (let q \in subset1 \cup subset2 be s.t. get-sur(q) \in parentset1 in
 2
 3
          let parent = get-sur(q) in
 4
          let mk-SignalD(, sub1, sub2) = dict(parent) in
 5
          if q \in subset 1 \land sub 1 \subseteq subset 1 \land sub 2 \subseteq subset 2 then
 6
             is-wf-refinement(parentset1 \ {parent}, parentset2, subset1 \ sub1, subset2 \ sub2)(dict)
 7
            else
             false)
 8
 9
        else
10
         (if (\exists q \in subset 2 \cup subset 1)(get-sur(q) \in parentset 2) then
             (let q \in subset 1 \cup subset 2 be s.t. get-sur(q) \in parentset 2 in
11
12
              let parent = get-sur(q) in
13
              let mk-SignalD(, sub1, sub2) = dict(parent) in
14
              \mathbf{if} \; q \in \mathit{subset2} \land \mathit{sub1} \subseteq \mathit{subset2} \land \mathit{sub2} \subseteq \mathit{subset1} \; \mathbf{then}
15
                 is-wf-refinement(parentset1, parentset2 \ {parent}, subset1 \ sub2, subset2 \ sub1)(dict)
16
                else
17
                false)
18
            else
19
             parentset1 = subset1 \land parentset2 = subset2))
```

```
\texttt{type}: \quad Signal qual-set \ Signal qual-set \ Signal qual-set \ Signal qual-set \ \rightarrow Dict \rightarrow Bool
```

Objective Check that the signal refinement at a sub-structure boundary is made properly

Parameters

parentset1	The set of incoming signal Quals conveyed by the outer channel
parentset2	The set of outgoing signal Quals conveyed by the outer channel
subset1	The set of incoming signal Quals conveyed by the sub-channels
subset2	The set of outgoing signal Quals conveyed by the sub-channels

Result True if success

Algorithm

Line 1	If there exist a signal conveyed by a sub-channel which has a incom- ing parent signal conveyed by the outer channel then refinement of an incoming signal has been used.
Line 2	Extract any sub-signal.
Line 3	Extract the parent of the sub-signal.
Line 4	Decompose the signal descriptor in order to access its sub-signals <i>sub1</i> and <i>sub2</i> .
Line 5	As one of the sub-signals is specified in the sub-channels, all of the sub-signals must be specified, that is the sub-signals in the two directions (<i>sub1</i> , <i>sub2</i>) must be subsets of the signals specified for the sub-channels.
Line 6	Remove the parent signal and its sub-signals from the parameters before checking for further refinements.
Line 10-17	Do the same as in line 1-6, but where the presence of an outgoing parent signal is investigated.
Line 19	If there is no (more) refinement then the incoming signals conveyed by the outer channel must be equal to the incoming signals con- veyed by the sub-channels and the outgoing signals conveyed by the outer channel must be equal to the outgoing signals conveyed by the sub-channels
service-connectmap(decllist, sigrouteset, connectmap)(dict) \triangleq

(if $decllist = \langle \rangle$ then 1 (let pqual = dict(SCOPEUNIT) in2 let outersigrouteset = {mk-SignalrouteD(endp1, endp2, ,) \in rng dict | pqual \in {endp1, endp2}} in 3 if sigrouteset = $\{\} \land connectmap = []$ then 4 5 [] 6 else if card outersigrouteset > card dom connectmap 7 then exit("§4.10.2: Missing signal route connection in process") 8 else if sigroutes et \neq union rng connectmap 9 then exit("§4.10.2: All service signal routes must be mentioned in a connect") 10 11 else connectmap) 12 else 13 (cases hd decllist: $(\mathbf{mk}$ -Sigroutedef₀ $(nm, \mathbf{mk}$ -Sigroutepath₀(end1, end2,),)14 15 \rightarrow (let gset = if end1 = ENV \lor end2 = ENV then { $dict(SCOPEUNIT) \frown \langle (SIGNALROUTE, nm) \rangle$ } 16 17 else {} in 18 let $newset = sigrouteset \cup qset$ in 19 service-connectmap(tl decllist, newset, connectmap)(dict)), 20 \mathbf{mk} -Connect₀(,) 21 \rightarrow (let (route, routeset) = service-connect(hd decllist)(dict) in 22 let $nconnectmap = connectmap + [route \mapsto routeset]$ in 23 if route \notin dom connectmap \land routeset \cap union rng connectmap = {} then 24 service-connectmap(tl decllist, sigrouteset, nconnectmap)(dict) 25 else exit("§4.10.2: Illegal service signal route connection")), **2**6 27

 $T \rightarrow service-connectmap(tl decllist, sigrouteset, connectmap)(dict))))$

 $\textbf{type}: \quad Decomposition decl_0^* \ Qual-set \ Process connection D \rightarrow Dict \rightarrow Process connection D$

Objective	Check that the service signal routes of a service decomposition are properly connected
Parameters	
decllist	The definition list of a decomposition
sigrouteset	The Quals of the service routes which have ENV specified as one of the endpoints. The service signal routes are collected during the recursive traverse through the definition list. When the func- tion initially is applied (in <i>transform-decomposition-body</i>) the set is empty
connectmap	A map which defines the relationship between the signal routes and the service signal routes to which it is connected. This map is constructed during the recursive traverse through the definition list
Result	The above mentioned <i>ProcessconnectionD</i> . It is used for checking of VIA constructs in services.

Algorithm

Line 1-9	When all the connections and service signal routes have been con- sidered it must hold that the set of service signal routes equals the service signal routes mentioned in a service signal route connect (line 9).
Line 2	Let pqual denote the process
Line 3	Let <i>outersigrouteset</i> denote the signal routes having the process as one of their endpoints

(3.4.14.8)

Line 4	If no service signal routes (and connections) are specified for the process then return the empty map.
Line 7	If there are more signal routes having the process as one of their endpoints than signal routes in service signal route connections then some service signal route connections are missing (line 7).
Line 13	Consider the next definition:.
Line 14-18	If the next definition is a service signal route definition and one of the endpoints is ENV then let <i>newset</i> denote the set which is updated to include that service signal route.
Line 19	Continue with the next definition.
Line 20	If the next definition is a service signal route connection then
Line 21	Check that the connection is well-formed and derive the <i>Qual</i> of the signal route (<i>route</i>) and the <i>Quals</i> of the service signal routes to which it is connected (<i>routeset</i>).
Line 22	Update the connection map to include information about this con- nection
Line 23	No signal route or service signal route may be mentioned in more than one connection. route and the signal routes in this connection must not be connected in another connection.
Line 24	Continue with the rest of the definitions.
Line 27	Continue with the rest of the definitions

service-connect(mk-Connect₀(sigrouteid, routeidlist))(dict) \triangleq

1 (let squal = get-visible-qual(sigrouteid, SIGNALROUTE)(dict) in

2 let mk-SignalrouteD(, endpoint2, sigset1, sigset2) = dict(squal) in

3 let
$$pqual = dict(SCOPEUNIT)$$
 ir

4 let $connectset = \{get \text{-}visible \text{-}qual(routeidlist[i], SIGNALROUTE)(dict) \mid i \in ind routeidlist\}$ in

(3.4.14.9)

5 let (insigset, outsigset) = if endpoint2 = pqual then (sigset1, sigset2) else (sigset2, sigset1) in

6 if card connectset \neq len routeidlist then

7 exit("§4.10.1: Service signal route identifier occurs twice in service signal route connection")

8 else

9	if is-wf-	$\cdot connect signal routes ($	connectset, insigset,	outsigset,]}, {	[})	(dict)	then
---	-----------	---------------------------------	-----------------------	------------	-------	-----	--------	------

- 10 (squal, connectset)
- 11 else
- 12 exit("§4.10.1: Signals in service signal routes must be the same as for the connected signal route"))

 $\mathbf{type}: \quad Connect_0 \rightarrow Dict \rightarrow Qual \ Qual-set$

Objective	Check that a service signal route connection is well-formed			
Parameters	The AS ₀ service signal route connection containing			
sigrouteid routeidlist	The signal route The service signal routes			
Result	The Qual of the signal route and the set of service signal route Quals			
Algorithm				
Line 1	Construct the Qual of the signal route.			
Line 2	Decompose the signal route descriptor.			
Line 3	Let pqual denote the Qual of the surrounding process			
Line 4	Construct the Quals of the service signal routes.			
Line 5	Let <i>insigset</i> denote signals in the signal route which leads to the process and let <i>outsigset</i> denote the signals which leads out of the signal route.			
Line 6-7	The service signal routes in the connection must be disjoint and			

The signals in the signal route must match the signals in the service signal routes

3.5 Transformation of Expressions

This section contains the functions which transform expressions and terms into AS_1 expressions and terms. They also takes care of the "resolution by context" problem, that is, sometimes the expression transforming functions are called for the sake of identifying the sort of an expression. Therefore, the functions also takes as argument a set of allowed sorts and they return a set of allowed sorts which always is a non-empty subset of the argument set. For instance, in the transformation of equations, the set of all visible sorts are initially given as argument when the left-hand side is transformed. The resulting set of sorts is then used when the right-hand side is transformed. The resulting set of sorts of this transformation must then contain exactly one sort. The left-hand side and the right-hand side is then transformed again, this time with that particular sort given as argument.

In addition, information about the *Context* in which the expression/term is used is given as argument. Four different kind of contexts are used: CONSTANT denoting that the argument expression/term must be a constant expression, EXPRESSION denoting that the argument may be a non-constant expression, AXIOMS denoting that the argument must be a term used in the axioms and MAPPING denoting that the argument must be a term used in the axioms.

During the transformation, information is collected about the import expressions and value identifiers occurring in the expression/term. Therefore also a *Dict* is returned which may contain value identifier descriptors (*ValueidD*) and may contain information about the import expressions in the *Quotdict* entries IMPLIED and IMPORTLIST (see the domain definition of *Quotdict*).

The entry functions are the two (identical) functions transform-term and transform-expr

transform- $term(term, context, sortset)(dict) \triangleq$

1 transform-expr(term, context, sortset)(dict)

type: Term₀ Context Sortqual-set \rightarrow Dict \rightarrow Term₁ Sortqual-set Dict

Objective Transform an AS_0 term into an AS_1 term. The function is identical to transform-expr. It is introduced for the sake af readability.

(3.5.1)

Line 9

1	$(let (as_1 tree, sortset', dict') =$
2	(cases expr:
3	$(\mathbf{mk}$ -Scopee $xpr_0(scope, ex)$
4	\rightarrow transform-expr(ex, context, sortset)(dict + [SCOPEUNIT \mapsto scope]),
5	$mk-Id_0(,)$
6	\rightarrow if context \in {AXIOMS, MAPPING} then
7	transform-axiom- $id(expr, sortset)(dict)$
8	else
9	transform-id(expr, context, sortset)(dict),
10	\mathbf{mk} -Stringterm ₀ (,)
11	\rightarrow transform-stringexpr(expr, sortset)(dict),
12	\mathbf{mk} -Condexpr ₀ (e1, e2, e3),
13	mk-Condterm ₀ (e1, e2, e3)
14	\rightarrow transform-condexpr(mk-Condexpr ₀ (e1, e2, e3), context, sortset)(dict),
15	mk-Operatorapp ₀ (,)
16	\rightarrow transform-operatorexpr(expr, context, sortset)(dict),
17	mk-Operatorterm ₀ (,)
18	\rightarrow transform-operator term(expr, context, sortset)(dict),
19	\mathbf{mk} -Monade $xpr_0(op, ex)$,
20	mk-Monadterm ₀ (op, ex)
21	\rightarrow transform-monadexpr(mk-Monadexpr ₀ (op, ex), context, sortset)(dict),
22	\mathbf{mk} -Infixexpr ₀ (e1, op, e2),
23	\mathbf{mk} -Infixterm ₀ (e1, op, e2)
24	\rightarrow transform-infixexpr(mk-Infixexpr ₀ (e1, op, e2), context, sortset)(dict),
25	\mathbf{mk} -Errorterm ₀ ()
26	\rightarrow exit("§5.4.1.7: Error term is used in a composite term"),
27	mk-Spellingterm ₀ ()
28	\rightarrow transform-spelling(expr, context, sortset)(dict),
2 9	$T \rightarrow transform-build-in-expression(expr, context, sortset)(dict)))$ in
3 0	let $as_1 tree' = if \ context \notin \{AXIOMS, MAPPING\} \land is - Ground - term_1(as_1 tree) \ then$
31	mk -Ground-expression ₁ (as ₁ tree)
32	else
33	$as_1 tree$ in
34	$(as_1 tree', sortset', dict'))$

```
type: (Expr_0 \mid Term_0 \mid Scopeexpr_0) Context Sortqual-set \rightarrow Dict \rightarrow
           [Expression<sub>1</sub> | Term<sub>1</sub>] Sortqual-set Dict
```

Objective Transform an AS_0 expression into an AS_1 expression

Parameters

expr	expr The AS ₀ expression or term	
context	The (syntactic) context in which <i>expr</i> is used (see above).	
sortset	The set of legal result sorts for the expression/term.	
Result	• The resulting AS ₁ expression or term.	
	• The resulting set of (possible) legal result sorts of the expression. This set will always be a subset of <i>sortset</i> . If the cardinality of the set is greater than one then the resulting AS_1 expression/term is not used (= nil) due to ambiguity. (Which not necessarily is an error as <i>transform-expr</i> also takes care of "resolution by context" see above).	
	 dict is updated with information about possible implicit value iden- tifiers contained in a term and with implicit import variables (see 	

dentifiers contained in a term and with implicit import variables (see above).

Algorithm

1

Line	3	If the expression is the special synthetic $Scopeexpr_0$ (see the defini- tion of AS_0) then transform the contained expression in the context of the service denoted by <i>scope</i> .
Line	5-9	If the expression is an identifier then transform it as a literal or a value identifier if the expression occurs in the axioms else as a literal, a synonym or a variable.
Line	10	Transform a character string.
Line	12-13	Transform a conditional expression or a conditional term.
Line	15	Transform an operator application applied in expression context.
Line	17	Transform an operator application applied in term context.
Line	19-20	Transform a monadic expression or term.
Line	22-23	Transform a dyadic expression or term.
Line	25	The error term may generally not occur in terms (or expressions). The special cases where it is allowed are excluded before applying <i>transform-term</i> .
Line	27	Transform the spelling term.
Line	29	Transform the other (imperative) kind of expressions.
Line	30-33	If the transformed expression/term is constant then it is a <i>Ground-expression</i> ₁ .
Line	34	Return the AS_1 term/expression, the restricted set of allowed sorts, and the <i>Dict</i> possibly containing value identifier descriptors and information about contained import expressions

136 Fascicle X.4 – Rec. Z.100 – Annex F.2

3.5.1 Identifiers

transform-axiom-id(id, sortset)(dict) \triangleq

```
1
     if card sortset = 1 then
 2
        transform-axiom-id-of-this-sort(id, sortset)(dict)
 3
       else
  4
        (\text{let mk-}Id_0(q, nm) = id \text{ in }
 5
         let litset = all-visible-literals(id, sortset)(dict) in
 6
         let litsortset = \{get-sur(q) \mid q \in litset\} in
         let qual = dict(SCOPEUNIT) \frown \langle (VALUE, nm) \rangle in
 7
 8
         let sorts = if q \neq \langle \rangle then
 9
                         {}
10
                        else
11
                        if qual \in \mathbf{dom} \ dict
12
                           then (let mk-ValueidD(, so, ) = dict(qual) in
13
                                  so)
14
                           else sortset in
15
         let valset = sortset \cap sorts in
16
         let totset = litsortset \cup valset in
         if card totset = 0 then
17
18
           exit("§2.2.2: No sort can be used for value identifier")
19
          else
20
           if card totset = 1 then
21
              transform-axiom-id-of-this-sort(id, totset)(dict)
·22
             else
23
             if q = \langle \rangle then
24
             (let mk-ValueidD(val, so, e) = if qual \in dom dict then
25
                                                      dict(qual)
26
                                                      else
27
                                                      mk-ValueidD(nil, sortset, false) in
28
                 if so \cap sortset = {} then
29
                   (nil, totset, dict)
30
                   else
31
                   (let dict' = dict + [qual \mapsto mk-ValueidD(val, so \cap sortset, e)] in
32
                    (nil, totset, dict')))
33
               else
34
                (nil, totset, dict))
```

type: Id_0 Sortqual-set \rightarrow Dict \rightarrow [Term₁] Sortqual-set Dict

Objective	Transform a term which is a literal or a value identifier into AS_1 . See <i>transform-expr</i> and the introduction to this section			
Parameters				
Result	See transform-expr and the introduction to this section			
Algorithm				
Line 1	If the sort of the identifier has been determined then transform the identifier given that sort.			
Line 4	Decompose the identifier.			
Line 5	Construct a <i>Qual</i> set of all visible literals having the same AS_0 identifier and being of an allowed sort in this context.			
Line 6	Construct a Qual set containing the sort of the literals.			
Line 7	Construct a value identifier Qual.			
Line 8-14	If the identifier is qualified then it cannot be a value identifier (the set of possible sorts is empty) else if there exist a descriptor for a value identifier in $Dict$ (implied by explicit quantification or by implicit quantification elsewhere) then the set of possible sorts is found in the descriptor (so) else the value identifier can be of any sort allowed in this context (sortset).			

Line 15	Let <i>valset</i> denote the set of allowed sorts in this context if the identifier is a value identifier.
Line 16	Let <i>totset</i> denote the set of allowed sorts in this context if the identifier denotes a value identifier or a literal.
Line 17	There must exist at least one possible sort.
Line 20-34	If there exist exactly one possible sort then transform the identifier given that sort else return no AS_1 object (nil) and return the complete set of allowed sorts. But first, create or modify the value identifier descriptor if the identifier can denote a value identifier (if it is not qualified).
Line 24-27	If a value identifier descriptor does not already exist then create a descriptor.
Line 28-29	If the sort set in the descriptor has no elements in common with the allowed set of sorts in this context then the identifier cannot denote a value identifier and no descriptor is therefore added to <i>Dict.</i>
Line 31-32	If the descriptor has elements in common with the allowed set of sorts then restrict the sort set in the descriptor to contain only the common elements. Return the modified <i>Dict</i>

.

.

.

 $transform-id(id, context, sortset)(dict) \triangleq$

(3.5.1.2)

```
1
     (let squal = get-visible-qual(id, VALUE)(dict)) in
 2
      let sort = get-parent(s-Sortqual(dict(squal)))(dict) in
 3
      if is-local(squal)(dict) then
        if (context = EXPRESSION \lor is-SynD(dict(squal))) \land sort \in sortset then
 4
 5
          if is -SynD(dict(squal)) then
 6
             transform-expr(s-Expro(dict(squal)), CONSTANT, {sort})(dict)
 7
            else
             (make-as<sub>1</sub>-identifier(squal)(dict), {sort}, dict)
 8
 9
          else
10
          exit("§2.2.2: Local synonym or variable is not of right sort")
11
       else
12
        (let \ totalset = all - visible - literals(id, \ sortset)(\ dict) \cup
13
             all-variables-and-synonyms(id, context, sortset)(dict) in
         let squalset = {q \mid (\exists d \in totalset)(q = get-parent(s-Sortqual(dict(d)))(dict))} in
14
15
         if totalset = \{\} then
16
           exit("§2.2.2: No synonym, variable or literal matches the sort of the context")
17
           else
18
           if card squalset = 1 then
19
             if card totalset \neq 1 then
20
                exit("§2.2.2: Several variables and synonyms are possible for the context")
21
               else
22
                (let qual \in totalset in
23
                let squal \in squalset in
24
                if is-SynD(dict(qual)) then
                                                                                      ١
                   (let deflevel = [SCOPEUNIT \mapsto get-sur(gual)] in
25
26
                    transform-expr(s-Expr_0(dict(qual)), CONSTANT, {squal})(dict + deflevel))
27
                  else
28
                   if is-LiteralD(dict(qual)) then
                     (mk-Ground-term<sub>1</sub>(make-as<sub>1</sub>-identifier(qual)(dict)), {squal}, dict)
29
30
                    else
31
                     (make-as_1-identifier(qual)(dict), \{squal\}, dict))
32
             else
33
             (nil, squalset, dict)))
```

type: Id_0 Context Sortqual-set \rightarrow Dict \rightarrow [Expression₁] Sortqual-set Dict

Objective	Transform a literal or a variable or a synonym into \mathbf{AS}_1
Parameters	See transform-expr and the introduction to this section
Result	See transform-expr and the introduction to this section
Algorithm	

Line 1	First use the normal visibility algorithm to find a variable or syn- onym.
Line 3	If it is defined locally then
Line 4	If the context is constant expression then it must be a synonym and the sort of the variable or synonym must be of a right sort
Line 5	If the identifier denotes a synonym then transform the expression of the synonym else return the AS_1 identifier of the variable and return the sort of the variable.
Line 12-26	If the synonym or variable is not locally defined the place of defi- nition is solved by context.
Line 12-14	The total set of possible <i>Quals</i> for visible literals, variables and synonyms is denoted by <i>totalset</i> and their sorts are denoted by <i>squalset</i> .
Line 15-16	There must exist at least one appropriate variable or synonym or literal.

Line 18-19	If there exist exactly one possible sort for the context then there must also exist exactly one possible identifier and if so then
Line 22	Let qual denote the Qual of the identifier.
Line 23	Let squal denote the Qual of the sort.
Line 24-26	If the identifier denotes a synonym then transform the expression of the synonym in the context where the synonym is defined (i.e. <i>deflevel</i>).
Line 28-31	Return the AS_1 identifier of the variable or synonym and if the identifier denotes a literal then enclose the identifier in a <i>Ground</i> - <i>term</i> ₁ .
Line 33	If there is more than one possible sort then the expression is (still) not unique and nil is returned

(3.5.1.3)

all-variables-and-synonyms(mk- $Id_0(qu, nm), context, sortset$)(dict) \triangleq

```
1 (let level = dict(SCOPEUNIT) in

2 \{q \in dom \, dict \mid (is-SynD(dict(q)) \lor (is-VarD(dict(q)) \land context \neq CONSTANT)) \land

3 (\exists q')(get-parent(q' \frown qu)(dict) \frown \langle (VALUE, nm) \rangle = q \land

4 (\exists q'')(q \frown q'' = level) \land

5 get-parent(s-Sortqual(dict(q)))(dict) \in sortset)\})
```

 $\textbf{type}: \quad \textit{Id}_0 \ \textit{Context} \ \textit{Sortqual-set} \rightarrow \textit{Dict} \rightarrow \textit{Qual-set}$

Objective	Extract the Quals of all the synonyms and variables which can be used
	on a given condition

Parameters

Id ₀	An identifier which qualifies (restricts) the resulting Qual set
context	if context equals CONSTANT then only the synonyms are extracted
sortset	A set of sorts which also qualifies the resulting Qual set

Algorithm

Line 1	Let level denote the enclosing scopeunit.
Line 2-5	Return all those <i>Quals</i> which denotes synonyms or variables, includes the qualifier (line 3), is visible (line 4) and which is of the right sort (line 5).

١.

transform-axiom-id-of-this-sort(id, totset)(dict) \triangleq

if val = nil then

$(let mk-Id_0(qual, nm) = id in$ let $q = dict(SCOPEUNIT) \frown \langle (VALUE, nm) \rangle$ in if $qual = \langle \rangle \land q \in \mathbf{dom} \ dict \land$ (let mk-ValueidD(, so, e) = dict(q) in $so = totset \wedge e$) then (let mk-ValueidD(val, ,) = dict(q) in $(\mathbf{mk}$ -Composite-term₁ $(make-as_1$ -identifier(q)(dict)), totset, dict)

9	else
10	$transform$ - $axiom$ - id - of - $this$ - $sort(as_0$ - $id(val), totset)(dict))$
11	else
1 2	(let litset = all-visible-literals(id, totset)(dict) in
13	if $litset = \{\}$ then
14	if $q \neq \langle \rangle$ then
15	exit("§5.2.3: Value identifier must not be qualified")
16	else
17	(let $vald = if q \in dom dict$ then
18	(let mk- $ValueidD(, so,) = dict(q)$ in
19	$if so \cap totset = \{\} then$
20	exit("§5.2.3: Inconsistent use of implicitly quantified value name")
21	else
22	$\mathbf{mk}\text{-}\textit{ValueidD}(\mathbf{nil},\textit{so} \cap \textit{totset},\mathbf{false}))$
23	else
24	mk- $ValueidD(nil, totset, false)$ in
25	let $d = dict + [q \mapsto vald]$ in
26	$(\mathbf{mk}\text{-}Composite\text{-}term_1(make\text{-}as_1\text{-}identifier(q)(dict)), totset, d))$
27	else
28	(let $lit_{qual} \in lit_{set}$ in
29	$(\mathbf{mk}$ -Ground-term $_1(\mathbf{make}$ -as $_1$ -identifier $(litqual)(dict)), totset, dict)))))$

 $\mathbf{type}: \quad Id_0 \ Sortqual \textbf{-set} \rightarrow Dict \rightarrow Term_1 \ Sortqual \textbf{-set} \ Dict$

Objective Transform an identifier of a specific sort into AS_1

Parameters

1

2

3 4

5

6 7

8

id	The AS_0 identifier to be transformed
totset	A sort Qual set containing only the specific sort
Result	See transform-expr and the introduction to this section
Algorithm	
Line 1	Decompose the identifier.
Line 2	Construct the <i>Qual</i> of the identifier supposing that it a value iden- tifier.
Line 3	It denotes an explicit quantified value identifier if it is not qualified and it has a <i>ValueidD</i> descriptor in <i>Dict</i> (line 3) and the specific sort equals the sort for the value identifier (line 5) and the flag (e) , indicating that the identifier is explicit quantified, is true.
Line 6-8	If the value identifier is not introduced by literal quantification $(val=nil)$ then return the composite term containing the AS ₁ value identifier else
Line 10	Transform the identifier of the associated literal.
Line 12	If the identifier does not represent an explicitly quantified value identifier then all the possible literal <i>Quals</i> are extracted.
Line 13-14	If the identifier does not represent a literal then it represents an implicitly quantified value identifier and it must therefore not be qualified.

Line 17-24	Extract or construct the descriptor of the value identifier and de- note it by <i>vald</i> .
Line 18	If the descriptor already is found in <i>Dict</i> (due to use elsewhere) then it is decomposed and
Line 19	There must be at least one legal and common sort for this usage and for the usage elsewhere and the set of legal sorts in the descriptor is then restricted by <i>totset</i> (line 22).
Line 24	Else a new descriptor is constructed.
Line 26	Return the AS_1 composite term containing the value identifier, the (single) legal sort and the updated <i>Dict</i> .
Line 28-29	If there exist a literal $Qual$ of the sort then transform it into AS_1

3.5.2 Character Strings

transform-stringexpr(mk- $Stringterm_0(q, strnm), sortset)(dict) \triangleq$

```
1 (let lqualset = all-visible-literals(mk-Stringterm<sub>0</sub>(q, strnm), sortset)(dict) in
```

```
2 let litsortset = \{get-sur(lit) \mid lit \in lqualset\} in
```

```
3 if lqualset = \{\} then
```

- 4 exit("§2.2.2: Character string is not of appropriate sort")
- 5 else

6 if card lqualset = 1 then

- 7 (let $lqual \in lqualset$ in
- 8 let $as_1 lit = make-as_1$ -identifier(lqual)(dict) in
- 9 $(\mathbf{mk}$ -Ground-term₁ $(as_1 lit), sortset, dict))$
- 10 else

11 (nil, litsortset, dict))

type: Stringterm₀ Sortqual-set \rightarrow Dict \rightarrow [Ground-term₁] Sortqual-set Dict

Objective	Transform a character string into AS ₁
Parameters	See transform-expr and the introduction to this section
Result	See transform-expr and the introduction to this section
Algorithm	
Line 1	Extract the Quals of all the literals which are of a sort in sortset and which may be denoted by the $Stringterm_0$
Line 2	Extract the Quals of their sort
Line 3-4	There must exist at least one possible literal which matches the sort
Line 6-9	If there exist exactly on possible literal (and resulting sort) then extract the <i>Qual</i> of the literal (line 7), construct the AS_1 literal (line 8) and return a ground term containing that literal, the sort set containing its sort and the unchanged <i>Dict</i> .
Line 11	If there (still) exist more than one possible literal (and sort) then return no AS_1 term and return the set of possible sorts and the unchanged <i>Dict</i>

3.5.3 Operators

•

transform-operatorexpr(mk-Operator $app_0(expr, exprlist), context, tpset)(dict) \triangleq$

```
1 (let (qual, nm) = cases expr:

2 (mk-Id_0(q, n) \rightarrow (q, n),

3 mk-Qualop_0(q, n) \rightarrow (q, n),
```

142 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.5.3.1)

(3.5.2.1)

```
т
 4
                                                  \rightarrow ((\langle),nil)) in
      let level = dict(SCOPEUNIT) in
 5
 6
      let opqualset = if nm = nil then \{\} else all-visible-operators(qual, nm, level)(dict) in
 7
      let legalqualset = extract-legal-operators(exprlist, context, opqualset, tpset)(dict) in
 8
      let op = build-extract-operator(expr, exprlist) in
      let (as_1 tree', tpset', dict') =
 9
          if op = nil then
10
11
             (nil, {}, [])
12
            else
13
             (trap exit with (nil, {}, []) in
14
              transform-operatorexpr(op, context, tpset)(dict)) in
15
      let fop = build-field-operator(expr, exprlist) in
      let (as_1 tree'', tpset'', dict'') =
16
17
          if fop = nil then
18
             (nil, \{\}, [])
19
            else
20
             (trap exit with (nil, {}, []) in
21
              transform-selectexpr(fop, context, tpset)(dict)) in
22
      (card (legalqualset \cup tpset' \cup tpset'') = 0
          \rightarrow exit("§2.2.2: The operator term cannot be used in this context"),
23
        card legalqualset = 0 \land card tpset' = 0
24
25
          \rightarrow (as<sub>1</sub> tree", tpset", dict"),
       card legalqualset = 0 \wedge card tpset" = 0
26
27
          \rightarrow (as<sub>1</sub> tree', tpset', dict'),
       card (tpset' \cup tpset'') = 0 \land card legalqualset = 1
28
29
          \rightarrow (let qu \in legal qualset in
30
              transform-qual-operator(qu, exprlist, context, tpset)(dict)),
31
       T \rightarrow (nil, \{get-parent(s-Result(dict(q)))(dict) \mid
32
                    q \in legalqualset \} \cup tpset' \cup tpset'', dict)))
```

type: Operatorapp₀ Context Sortqual-set \rightarrow Dict \rightarrow Expression₁ Sortqual-set Dict

Objective	Transform an AS_1 expression which is an operator application or an extract shorthand or a field select shorthand into AS_1
Parameters	See transform-expr and the introduction to this section
Result	See transform-expr and the introduction to this section
A1 */1	

Algorithm

Line 1-4	Extract the qualifier and the name of the operator. If the operator is a general expression (line 4) then there is no name since it is a shorthand for the extract operator in that case.
Line 5	Let level denote the enclosing scopeunit.
Line 6	Extract the <i>Quals</i> of all the operators which are possible according to the qualifier and name.
Line 7	Restrict the <i>Qual</i> set to contain only those operators which can be used when taking into account the argument list.
Line 8-14	Try the extract operator shorthand. <i>op</i> contains the possible result sorts for the extract application.
Line 15-21	Try the field selection shorthand. <i>fop</i> contains the possible result sorts for the field selection.
Line 22	If neither the normal operator application nor the extract applica- tion nor the field selection can be used in this context then it is an error.
Line 24	If only the field selection can be used in this context then select this shorthand as the result.
Line 26	If only extract application can be used in this context then select this shorthand as the result.

143

	Line 28	If only the normal operator application can be used in this con- text then extract the operator <i>Qual</i> and transform the operator application given that <i>Qual</i> .
	Line 31	Else the operator is (still) ambiguous and return therefore no AS_1 expression, the sort set consisting of the result sorts of all possible operators in this context joined with the possible sorts for the extract shorthand (<i>tpset'</i>) and joined with the sorts for the field select shorthand (<i>tpset''</i>).
all-v	isible-operators(qua	$(l, nm, level)(dict) \stackrel{\Delta}{=}$
1 2	$\{q \in \mathbf{dom} \ dict \mid (\exists q \in \mathbf{dom} \ dict \mid q)\}$	$(q')(get-sur(get-sur(q)) \frown q' = level) \land$ $(q'')(get-parent(q'' \frown qual)(dict) \frown ((OPERATOR, (nm, ,))) = q)$

(3.5.3.2)

(3.5.3.3)

ObjectiveExtract the Quals of all those operators which are visible in the scopeu-
nit level and which includes the qualifier qual and which have the name
nmAlgorithmThe resulting set contains all those Operatorquals which are visible (i.e.
the scopeunit containing the partial type definition which defines the

operator must be part of *level*) and which includes the qualifier in the *Operatorqual*.

transform-operatorterm(mk-Operator $term_0(id, exprlist), context, tpset)(dict) \triangleq$

 $Qual (Name_0 \mid Quotedop_0) Qual \rightarrow Dict \rightarrow Operatorqual-set$

type :

1 (let (qual, nm) = cases id:2 $(\mathbf{mk}-Id_0(q,n))$ $\rightarrow (q, n),$ mk- $Qualop_0(q, n) \rightarrow (q, n))$ in 3 let level = get-sur(dict(SCOPEUNIT)) in 4 let opqualset = all-visible-operators(qual, nm, get-sur(level))(dict) in 5 6 let legalqualset = extract-legal-operators(exprlist, context, opqualset, tpset)(dict) in 7 if card legalqualset = 0 then 8 exit("§2.2.2: The operator term cannot be used in this context") 9 else 10 if card legalqualset = 1 then 11 (let $qu \in legal qualset$ in 12 transform-qual-operator(qu, exprlist, context, tpset)(dict)) 13 else 14 $(nil, \{get-parent(s-Result(dict(q)))(dict) \mid q \in legalqualset\}, dict))$ type: Operator term₀ Context Sortqual-set \rightarrow Dict \rightarrow Term₁ Sortqual-set Dict **Objective** Transform an operator term into AS₁ Parameters See transform-expr and the introduction to this section Result See transform-expr and the introduction to this section Algorithm Line 1-3 Extract the qualifier and the name of the operator. Line 4 The level where the operator must be visible is the scopeunit surrounding the sort definition where the operator is used Line 5 Extract the Quals of all those operators which are visible in the surrounding scopeunit and which may have qual as the AS₀ qualifier and which have the name nm. Line 6 Restrict the Qual set to contain only those operators which can be used when taking into account the argument list

144 Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 7	There must exist at least one possible operator term which matches the context.
Line 10-12	If there exist exactly one operator term matching the context then transform it into AS_1 given the right <i>Qual</i> (<i>qu</i>).
Line 14	If the operator term is (still) ambiguous then return no AS_1 term, but return the result sorts of the possible operators

build-extract-operator(expr, exprlist) \triangleq

1 if is-Qualop₀(expr) then 2 nil

3 else

4 (let $nm = mk-Name_0$ ("EXTRACT", EXCLAMATION) in

5 $mk-Operatorapp_0(mk-Id_0(\langle \rangle, nm), \langle \langle expr \rangle \frown exprlist \rangle))$

```
type: Expr_0 Exprlist_0 \rightarrow [Operatorapp_0]
```

Objective

Construct an extract operator application from its shorthand notation.

example

a(b,c)

(a is the formal parameter *expr* and the list b, c is the formal parameter *exprlist*) is transformed into

EXTRACT!(a,b,c)

If the operator identifier is an infix operator then nil is returned since the notation always denotes an operator application in that case

build-field-operator(var, exprlist) \triangleq

1 (let expr = exprlist[len exprlist] in 2 let $rest = \langle exprlist[i] | 1 \leq i \leq len exprlist - 1 \rangle$ in 3 if $\neg is - Id_0(expr) \land s - Qualifier_0(expr) = \langle \rangle$ then 4 nil

5 else

6 (let exprvar = if len rest = 0 then var else build-field-operator(var, rest) in

7 if exprvar = nil then

8 nil

9 else

10 $(\text{let mk-}Id_0(, nm) = expr \text{ in})$

11 **mk**-Selectexpr₀(exprvar, nm))))

type: $Expr_0 Exprlist_0 \rightarrow [Selectexpr_0]$

Objective

Construct a field extract shorthand from the shorthand notation with parenthesis

example

a(b,c)

(a is the formal parameter *var* and the list b,c is the formal parameter *exprlist*) is transformed into

a!b!c

The function is recursive. That is, first a!b is constructed then a!b!c is constructed

(3.5.3.5)

(3.5.3.4)

(3.5.3.6)

 $extract-legal-operators(exprlist, context, opqualset, sortset)(dict) \triangleq$

(if $opqualset = \{\}$ then 1 2 {} 3 else 4 (let $q \in oppualset$ in $\mathbf{\hat{let}}(,ts,) =$ 5 (trap exit with $(nil, \{\}, [])$ in 6 7 transform-qual-operator(q, exprlist, context, sortset)(dict)) in 8 let $qs = if ts = \{\}$ then $\{\}$ else $\{q\}$ in $qs \cup extract-legal-operators(exprlist, context, opqualset \setminus \{q\}, sortset)(dict)))$ 9

 $\textbf{type}: \quad \textit{Exprlist}_0 \ \textit{Context} \ \textit{Operatorqual-set} \ \textit{Sortqual-set} \rightarrow \textit{Dict} \rightarrow \textit{Operatorqual-set}$

Objective	Extract all	the	operator	Quals	which	matches	the	sort	of the	actual
	parameters	and	the sort	of the 1	esult a	nd which	hav	e a sj	pecific	name

Parameters

exprlist	The actual parameters
context	The context in which the operator is used (see transform-expr)
opqualset	The possible Quals which all have the specific name
sortset	The possible result sorts

Result

The operator Quals which can be used. This set is a subset of opqualset

Algorithm

Line 1	When through, return the empty set (the function is recursive).
Line 4	Take an operator Qual and test it by
Line 5-7	Trying to transform the operator application, given that operator <i>Qual</i> . If this transformation goes well (if <i>transform-qual-operator</i> is not trapped) then the set of result sorts (<i>ts</i>) is non-empty.
Line 8	If the operator Qual can be used then qs denotes the Qual.
Line 9	Join qs with the allowed operator Quals from the rest of opqualset

2 if tqual ∉ sortset then 3 exit("§2.2.2: Result sort of operator is illegal for the context") 4 else 5 if len parm ≠ len exprlist then 6 exit("§5.2: Length of parameter list is not correct for an operator") 7 else 8 (let (as ₁ parmlist, d) = transform-actparms(parm, exprlist, context)(dict) in 9 let as ₁ id = make-as ₁ -identifier(qual)(dict) in 10 let const = (∀p ∈ elems as ₁ parmlist)(is-Ground-term ₁ (p)) in 11 let as ₁ tree = 12 if context ∈ {AXIOMS, MAPPING} then 13 if const then 14 mk-Ground-term ₁ ((as ₁ id, as ₁ parmlist)) 15 else 16 mk-Composite-term ₁ ((as ₁ id, as ₁ parmlist)) 17 else 18 if const then 19 mk-Ground-term ₁ ((as ₁ id, as ₁ parmlist)) 20 else 21 mk-Operator-application ₁ (as ₁ id, as ₁ parmlist) in 22 (as, tree {tmual} d)))	1	(let (, (, parm, tqual)) = qual[len qual] in
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2	if $tqual \notin sortset$ then
4else5if len $parm \neq len exprlist$ then6 $exit(``§5.2: Length of parameter list is not correct for an operator'')7else8(let (as_1 parmlist, d) = transform - actparms(parm, exprlist, context)(dict) in9let as_1 id = make - as_1 - identifier(qual)(dict) in10let const = (\forall p \in elems as_1 parmlist)(is - Ground - term_1(p)) in11let const = (\forall p \in elems as_1 parmlist)(is - Ground - term_1(p)) in12if context \in \{AXIOMS, MAPPING\} then13if const then14mk - Ground - term_1((as_1 id, as_1 parmlist)))15else16mk - Composite - term_1((as_1 id, as_1 parmlist)))17else18if const then19mk - Ground - term_1((as_1 id, as_1 parmlist)))20else21mk - Operator - application_1(as_1 id, as_1 parmlist) in22(as_t tree . {taual} d)))$	3	exit("§2.2.2: Result sort of operator is illegal for the context")
5if len $parm \neq len exprlist$ then6exit("§5.2: Length of parameter list is not correct for an operator")7else8(let $(as_1 parmlist, d) = transform-actparms(parm, exprlist, context)(dict)$ in9let $as_1 id = make-as_1-identifier(qual)(dict)$ in10let $const = (\forall p \in elems as_1 parmlist)(is-Ground-term_1(p))$ in11let $as_1 tree =$ 12if $context \in \{AXIOMS, MAPPING\}$ then13if $const$ then14mk-Ground-term_1((as_1id, as_1 parmlist)))15else16mk-Composite-term_1((as_1id, as_1 parmlist)))17else18if $const$ then19mk-Ground-term_1((as_1id, as_1 parmlist)))20else21mk-Operator-application_1(as_1id, as_1 parmlist)) in22(as_t tree {taual} d)))	4	else
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5	if len $parm \neq$ len $exprlist$ then
7else8(let $(as_1 parmlist, d) = transform-actparms(parm, exprlist, context)(dict)$ in9let $as_1 id = make-as_1$ -identifier $(qual)(dict)$ in10let $const = (\forall p \in elems \ as_1 parmlist)(is-Ground-term_1(p))$ in11let $as_1 tree =$ 12if $context \in \{AXIOMS, MAPPING\}$ then13if $const$ then14mk-Ground-term_1((as_1id, as_1 parmlist)))15else16mk-Composite-term_1((as_1id, as_1 parmlist)))17else18if $const$ then19mk-Ground-term_1((as_1id, as_1 parmlist)))20else21mk-Operator-application_1(as_1id, as_1 parmlist)) in22(as_t tree {taual} d)))	6	exit("§5.2: Length of parameter list is not correct for an operator")
8 (let $(as_1 parmlist, d) = transform - act parms(parm, exprlist, context)(dict)$ in 9 let $as_1 id = make - as_1 - identifier(qual)(dict)$ in 10 let $const = (\forall p \in elems \ as_1 parmlist)(is - Ground - term_1(p))$ in 11 let $as_1 tree =$ 12 if $context \in \{AXIOMS, MAPPING\}$ then 13 if $const$ then 14 mk-Ground - term_1(($as_1 id, as_1 parmlist$)) 15 else 16 mk-Composite - term_1(($as_1 id, as_1 parmlist$)) 17 else 18 if $const$ then 19 mk-Ground - term_1(($as_1 id, as_1 parmlist$)) 20 else 21 mk-Operator - application_1($as_1 id, as_1 parmlist$) in 22 ($as_1 tree \{taual\} d$)))	7	else
9 let $as_1 id = make-as_1-identifier(qual)(dict)$ in 10 let $const = (\forall p \in elems \ as_1 parmlist)(is-Ground-term_1(p))$ in 11 let $as_1 tree =$ 12 if $context \in \{AXIOMS, MAPPING\}$ then 13 if $const$ then 14 mk-Ground-term_1(($as_1 id, as_1 parmlist$)) 15 else 16 mk-Composite-term_1(($as_1 id, as_1 parmlist$)) 17 else 18 if $const$ then 19 mk-Ground-term_1(($as_1 id, as_1 parmlist$)) 20 else 21 mk-Operator-application_1($as_1 id, as_1 parmlist$) in 22 ($as_1 tree \{taual\} d$)))	8	$(let (as_1 parmlist, d) = transform-act parms(parm, exprlist, context)(dict)$ in
10let $const = (\forall p \in elems as_1 parmlist)(is-Ground-term_1(p))$ in11let $as_1 tree =$ 12if $context \in \{AXIOMS, MAPPING\}$ then13if $const$ then14mk-Ground-term_1((as_1id, as_1 parmlist)))15else16mk-Composite-term_1((as_1id, as_1 parmlist)))17else18if $const$ then19mk-Ground-term_1((as_1id, as_1 parmlist)))20else21mk-Operator-application_1(as_1id, as_1 parmlist) in22(as_t tree {taual} d)))	9	let $as_1 id = make-as_1$ -identifier $(qual)(dict)$ in
11let $as_1 tree =$ 12if $context \in \{AXIOMS, MAPPING\}$ then13if $const$ then14 mk -Ground-term_1(($as_1id, as_1 parmlist$))15else16 mk -Composite-term_1(($as_1id, as_1 parmlist$))17else18if $const$ then19 mk -Ground-term_1(($as_1id, as_1 parmlist$))20else21 mk -Operator-application_1($as_1id, as_1 parmlist$) in22($as_1 tree \{taual\} d$)))	10	let $const = (\forall p \in elems \ as_1 parmlist)(is - Ground - term_1(p))$ in
12if context \in {AXIOMS, MAPPING} then13if const then14mk-Ground-term1((as1id, as1parmlist))15else16mk-Composite-term1((as1id, as1parmlist))17else18if const then19mk-Ground-term1((as1id, as1parmlist))20else21mk-Operator-application1(as1id, as1parmlist) in22(as1 tree {taual} d)))	11	let $as_1 tree =$
13 if const then 14 mk-Ground-term1((as1id, as1parmlist)) 15 else 16 mk-Composite-term1((as1id, as1parmlist)) 17 else 18 if const then 19 mk-Ground-term1((as1id, as1parmlist)) 20 else 21 mk-Operator-application1(as1id, as1parmlist) in 22 (as1 tree {taual} d)))	12	if $context \in \{AXIOMS, MAPPING\}$ then
14 mk-Ground-term1((as1id, as1parmlist)) 15 else 16 mk-Composite-term1((as1id, as1parmlist)) 17 else 18 if const then 19 mk-Ground-term1((as1id, as1parmlist)) 20 else 21 mk-Operator-application1(as1id, as1parmlist) in 22 (as1 tree {taual} d)))	13	if const then
15 else 16 mk-Composite-term1((as1id, as1parmlist)) 17 else 18 if const then 19 mk-Ground-term1((as1id, as1parmlist)) 20 else 21 mk-Operator-application1(as1id, as1parmlist) in 22 (as1 tree {taual} d)))	14	\mathbf{mk} -Ground-term $_1((as_1id, as_1parmlist))$
16mk-Composite-term1((as1id, as1parmlist))17else18if const then19mk-Ground-term1((as1id, as1parmlist))20else21mk-Operator-application1(as1id, as1parmlist) in22(as1 tree {taual} d)))	15	else
17 else 18 if const then 19 mk-Ground-term1((as1id, as1parmlist)) 20 else 21 mk-Operator-application1(as1id, as1parmlist) in 22 (as1 tree {taual} d)))	16	\mathbf{mk} -Composite-term ₁ ((as ₁ id, as ₁ parmlist))
18 if const then 19 mk-Ground-term1((as1id, as1parmlist)) 20 else 21 mk-Operator-application1(as1id, as1parmlist) in 22 (as1 tree {taual} d)))	17	else
19mk-Ground-term1((as1id, as1parmlist))20else21mk-Operator-application1(as1id, as1parmlist) in22(as1 tree {taual} d)))	18	if const then
20else21mk-Operator-application1(as1id, as1parmlist) in22(as1tree {taual} d)))	19	\mathbf{mk} -Ground-term ₁ ((as ₁ id, as ₁ parmlist))
21 mk-Operator-application ₁ (as ₁ id, as ₁ parmlist) in 22 (as, tree {tanal} d)))	2 0	else
22 $(as, tree \{taual\} d)))$	21	\mathbf{mk} -Operator-application ₁ (as_1id , $as_1parmlist$) in
(motores) [nAmma]: (1))	22	$(as_1 tree, \{tqual\}, d)))$

type: Operatorqual $(Exprlist_0 | Term_0^*)$ Context Sortqual-set \rightarrow Dict \rightarrow $(Term_1 | Expression_1)$ Sortqual-set Dict

Objective Transform a operator of a specific definition into AS₁

Parameters

Qual	The Qual which uniquely identifies the operator
exprlist	The argument list which is a list of terms if the operator occurs in equations. Otherwise it is a list of expressions.
context, sortset	See transform-expr
Result	See transform-expr. The resulting sort set contains only one sort
Algorithm	
Line 1	Extract the Operatorqualelem from the operator Qual and identify the resulting sort by tqual and the argument sorts by parm
Line 2-6	The result sort must be one of the allowed sorts of this context and the length of the formal parameter list must be equal to the length of the actual parameter list.
Line 8	Transform the actual parameters which are either terms or expres- sions.
Line 9	Construct the AS ₁ identifier of the operator
Line 10	const is true if all the actual parameters are ground terms (constants).
Line 11-18	If the operator occurs in the axioms then form an AS_1 term (line 13) else form an AS_1 expression.
Line 22	Return the formed AS_1 term/expression, the result sort of the operator and the <i>Dict</i> , possibly updated during the evaluation of the actual parameters (see <i>transform-expr</i>)

3.5.3.1 The Spelling Operator

transform-spelling(mk-Spellingterm₀(mk-Id₀(q, nm)), context, sortset)(dict) \triangleq

```
if context \neq MAPPING \lor q \neq \langle \rangle then
 1
       exit("§5.4.1.15: Illegal use of the SPELLING operator")
 2
 3
       else
 4
        (let stringsort = get-predef-sort("CHARSTRING")(dict) in
        let qualset = \{q \in \text{dom } dict \mid is \text{-} ValueidD(dict(q)) \land s \text{-} Mapvalue(dict(q)) \neq nil \land
 5
                                            (VALUE, nm) = q[len q]\} in
 6
 7
        if card qualset = 1 \land stringsort \in sortset then
           (let qual \in qualset in
 8
 9
            let mk-ValueidD(litq,,) = dict(qual) in
10
            let (, \mathbf{mk} - Name_0(str, )) = litq[len litq] in
            transform-stringexpr(\mathbf{mk}-Stringterm_0(\langle \rangle, str), \{stringsort\})(dict))
11
12
           else
           exit("§5.4.1.15: Illegal use of the SPELLING operator"))
13
```

type: Spellingterm₀ Context Sortqual-set \rightarrow Dict \rightarrow Term₁ Sortqual-set Dict

Objective	Transform the SPELLING operator into the AS_1 character string literal which it denotes (in the function <i>transform-mappingazioms</i> an axiom is generated for each possible literal of the quantified value name)
Parameters	See transform-expr and the introduction to this section
Result	See transform-expr and the introduction to this section
Algorithm	
Line 1	The spelling operator must only be used in literal quantification and the contained value identifier must not be quantified
Line 4	Extract the Qual of the character string sort
Line 5-7	There must be only one $Qual$ (i.e. a unique descriptor), of the contained value name (nm) , and the predefined character string sort must be allowed in the context.
Line 8-9	Extract the <i>Qual</i> of the value name and decompose its descriptor. <i>litq</i> denotes the <i>Qual</i> of the literal represented by the value name.
Line 10	Extract the spelling of the literal.
Line 11	Construct an AS_0 string term from the literal spelling and transform the string term

148 Fascicle X.4 - Rec. Z.100 - Annex F.2

(3.5.3.1.1)

3.5.3.2 Export, Import, View, Active

transform-build-in-expression(expr, context, sortset)(dict) \triangleq

(3.5.3.2.1)

1	if context \neq EXPRESSION $\land \neg$ is-Selectexpr ₀ (expr) $\land \neg$ is-Tupleexpr ₀ (expr) then
2	exit("§5.5.4: Imperative operator cannot be used in constant expression")
3	else
4	cases expr:
5	$(\mathbf{mk}$ -Importexpr ₀ (v, exp)
6	\rightarrow transform-importexpr(v, exp, sortset)(dict),
7	\mathbf{mk} -Viewexpr ₀ (v, exp)
8	\rightarrow transform-viewexpr(v, exp, sortset)(dict),
9	$mk-Nowexpr_0()$
10	\rightarrow transform-nowexpr(sortset)(dict),
11	\mathbf{mk} -Activee $\mathbf{x}pr_{0}(,)$
12	\rightarrow transform-activeexpr(expr, sortset)(dict),
13	mk-Selectexpro(,)
14	→ transform-selectexpr(expr, context, sortset)(dict),
15	mk-Tupleexpro(,)
16	\rightarrow transform-tupleexpr(expr, context, sortset)(dict),
17	$T \rightarrow transform-pid-build-in(expr, sortset)(dict))$

type: $Expr_0$ Context Sortqual-set $\rightarrow Dict \rightarrow [Expression_1]$ Sortqual-set Dict

Objective	Transform one of the special expressions into AS_1
Parameters	See transform-expr and the introduction to this section

Result	See	transfo	rm-expr	and	the	introd	uction	to	this	section	
	200	0, 0,00,00	int cup:					••			

Algorithm

Line 1-2	Only the cases $Selectexpr_0$ or $Tupleexpr_0$ of the above alternatives are allowed in constant expressions.
Line 5	Transform an IMPORT expression.
Line 7	Transform a VIEW expression.
Line 9	Transform a NOW expression.
Line 11	Transform a timer ACTIVE expression.
Line 13	Transform a field select expression.
Line 15	Transform a tuple expression.
Line 17	Otherwise, it is a predefined PID expression

transform-importexpr(mk-Id_0(qu, nm), expr, sortset)(dict) \triangleq

(let level = process-or-service-level(dict(SCOPEUNIT)) in 1 2 let qualset = { $q \in \text{dom dict} | (\exists q', sort)(q' \frown qu \frown ((\mathsf{IMPORT}, (nm, sort))) = q \land$ 3 $(get-sur(q) = level \lor get-sur(q) = process-level(level)) \land$ 4 $sort \in sortset)$ in 5 if $qualset = \{\}$ then 6 exit("§2.2.2: No import variable matches the context") 7 else 8 if card gualset = 1 then 9 (let $qual \in qualset$ in 10 let sort = s-Sortqual(dict(qual)) in 11 let importlist = dict(IMPORTLIST) in 12 let imp = dict(IMPLIED) in 13 let nm' = create - unique - name() in 14 let $newqual = level \frown \langle (VALUE, nm') \rangle$, 15 $imp' = imp \cup \{(sort, nm')\},\$ 16 $as_1 id = make-as_1$ -identifier(newqual)(dict) in let importlist' = importlist $\frown \langle (nm', qual, expr) \rangle$ in 17 18 $(as_1 id, \{get-parent(sort)(dict)\}, dict + [IMPORTLIST \rightarrow importlist',$ 19 IMPLIED $\mapsto imp']))$ 20 else 21 $(\text{let sortset}' = \{\text{sort} \mid (\exists q \in qualset)(dict(q) = \mathbf{mk} \cdot ImportD(sort))\}$ in 22 (nil, sortset', dict))) type: $Id_0 [Expr_0]$ Sortqual-set $\rightarrow Dict \rightarrow [Expression_1]$ Sortqual-set Dict Objective Transform an import expression into its AS₁ representation **Parameters** Id The identifier of the imported variable The optional PID expression denoting the exporting process expr See transform-expr sortset Result See transform-expr and the introduction to this section. The returned expression is the implicit variable identifier implied by the import expression Algorithm Line 1 Extract the level at which the import variable is defined, i.e. a process or a service. Line 2-4 Extract the import Quals of all the import variables which can be specified by means of a qualifier (qu), a name (nm) (line 2) and a sort sort from sortset and which are defined in the enclosing service or in the enclosing process (line 3). Line 5 There must exist at least one possible import variable. Line 9 If there exist a unique import Qual then Line 9 Denote the Qual of that import variable by qual. Line 10 Denote the Qual of its sort by sort. Line 11 Denote the current list of import expressions used elsewhere in the surrounding expression by importlist. Line 12 Denote the current set of implicit variables used in the process body by imp. Line 13-14 Create a unique AS₀ variable name and construct its Qual. Line 15 Update the current set of implicit variables with the pair of its sort (sort) and its new name. Line 16 Construct the AS_1 identifier of the implicit variable.

Line 17	Update the current list of import expressions.
Line 18	Return the AS_1 identifier and the <i>Dict</i> containing the updated importlist and implicit variable set.
Line 21	If the import expression is (still) ambiguous, then return the set of possible sorts

transform-viewexpr(id, expr, sortset)(dict) \triangleq

1 $(let mk-Id_0(qu, nm) = id in$ let pqual = process-or-service-level(dict(SCOPEUNIT)) in 2 let $qset = \{q \in \text{dom } dict \mid (\text{let } qual = pqual \frown ((VIEW, q)) \text{ in }$ 3 4 qual \in dom dict \wedge 5 get-parent(s- $Qual(dict(qual)))(dict) \in sortset \land$ $(\exists q')(q' \frown qu \frown \langle (VALUE, nm) \rangle = q)) \}$ in 6 7 if card qset $\neq 1$ then exit("§2.2.2: One and only one revealed variable must match the view expression") 8 9 else 10 (let $q \in qset$ in 11 let inst = get-predef-sort("PID")(dict) in 12 let $as_1 id = make - as_1 - identifier(q)(dict)$, $(as_1 expr, d) = transform - expr(expr, EXPRESSION, {inst})(dict)$ in 13 let $as_1 tree = mk$ -View-expression₁($as_1 id$, $as_1 expr$) in 14 15 $(as_1 tree, \{s-Sortqual(dict(q))\}, d)))$

type: $Varid_0 Expr_0 Sortqual-set \rightarrow Dict \rightarrow View-expression_1 Sortqual-set Dict$

Objective Transform a View expression into AS₁

Parameters

id expr sortset	The view variable The Pid expression denoting the revealing process See <i>transform-expr</i>
Result	See transform-expr
Algorithm	
Line 1	Decompose the view variable identifier.
Line 2	Extract the level on which the view variable is defined.
Line 3-6	Let <i>qset</i> denote set which matches the view expression. The set consist of those variable <i>Quals</i> which are viewed in the process (line 3-4), are of an appropriate sort (line 5) and which includes the qualifier and name specified in the view expression (line 6).
Line 11	Extract the Qual of the PID sort.
Line 12	Construct the AS_1 identifier of the revealing variable (which is the same as the identifier of the viewed variable).
Line 13	Transform the PID expression.
Line 14	Construct the AS ₁ view expression.
Line 15	Return the AS_1 view expression, the sort of the variable and the (possibly) updated <i>Dict</i>

transform-nowexpr(sortset)(dict) \triangleq

- 1 (let tqual = get-predef-sort("TIME")(dict) in
- 2 if $tqual \in sortset$ then
- 3 (mk-Now-expression₁(), {tqual}, dict)
- 4 else

5 exit("§5.5.4.1: NOW expression must be used where TIME values are allowed"))

 $\textbf{type}: \quad \textit{Sortqual-set} \rightarrow \textit{Dict} \rightarrow \textit{Now-expression}_1 \ \textit{Sortqual-set} \ \textit{Dict}$

(3.5.3.2.4)

151

(3.5.3.2.3)

Objective	Transform a NOW expression into AS ₁	
Parameters	arameters See transform-expr	
Result	See transform-expr	
Algorithm		
Line 1	Extract the Qual denoting the TIME sort.	
Line 2	If this sort is allowed at this place	
Line 3	Then return the AS_1 now expression, the TIME sort, and the un- changed $Dict$	

transform-activeexpr(mk-Activeexpro(id, actparm), sortset)(dict) \triangleq

1 (let qual = get-visible-qual(id, SIGNAL)(dict),2 bqual = get-predef-sort("BOOLEAN")(dict) in 3 let $as_1 id = make-as_1$ -identifier(qual)(dict) in if \neg is-*TimerD*(*dict*(*qual*)) then 4 5 exit("§2.8: Identifier in timer active expression does not denote a timer") 6 else 7 (let mk-TimerD(tplist,) = dict(qual) in8 if $bqual \in sortset \land len actparm = len tplist then$ 9 $(let (as_1 a ctparm, d) = transform - a ctparms(tplist, a ctparm, EXPRESSION)(dict) in$ 10 let $as_1 tree = \mathbf{mk} \cdot Timer \cdot active \cdot expression_1(as_1 id, as_1 actparm)$ in 11 $(as_1 tree, \{bqual\}, d))$ 12 else 13 exit("§2.8: Illegal timer active expression")))

 $\textbf{type:} \quad Active expr_0 \; Sortqual \textbf{-set} \rightarrow Dict \rightarrow Timer \textbf{-} active \textbf{-} expression_1 \; Sortqual \textbf{-set} \; Dict$

Objective Transform a timer active expression into AS₁

Parameters

id	The timer identifier
actparm	The actual parameters
sortset	See transform-expr

Algorithm

Line 1-2	Extract the Qual of the timer and the Qual of the boolean sort.
Line 3	Construct the AS_1 identifier of the timer.
Line 4	The AS_0 identifier must denote a timer (not a signal).
Line 7	Let tplist denote the list of sorts of the parameters.
Line 8	The boolean sort must be an allowed result sort in this context and the length of the actual parameter list must be equal to the length of the sort list.
Line 9	Transform the actual parameters into AS_1 .
Line 10-11	Construct the AS_1 timer active expression and return it together with the boolean sort and the (possibly) updated <i>Dict</i>

transform-selectexpr(mk-Selectexpr₀(v, nm), context, sortset)(dict) \triangleq

1 (let $mk-Name_0(str,) = nm$ in

```
2 let opnm = mk-Name_0(str \frown "EXTRACT", EXCLAMATION) in
```

- 3 let $opid = mk Id_0(\langle \rangle, opnm)$ in
- 4 transform-expr(mk-Operatorapp₀(opid, $\langle v \rangle$), context, sortset)(dict))

type: Selectexpr₀ Context Sortqual-set \rightarrow Dict \rightarrow Expression₁ Sortqual-set Dict

(3.5.3.2.6)

(3.5.3.2.5)

Objective	Transform a field select expression into AS ₁	
Parameters	arameters See transform-expr	
Lesult See transform-expr		
Algorithm		
Line 1	Let str denote the spelling of the field.	
Line 2	Form the name of the EXTRACT! operator, which operates on the specified field.	
Line 3-4	Form the identifier of the operator, construct an operator applica- tion given the left-hand expression as parameter and transform it the usual way	
transform-tupleexpr	$(\mathbf{mk}\text{-}Tupleexpr_0(q, exprlist), context, sortset)(dict) \triangleq$	(3.5.3.2.7)
$\begin{array}{ll} 1 & (\textbf{let opid} = \textbf{m} \\ 2 & transform-ex \end{array}$	k-Id ₀ (q, mk-Name ₀ ("MAKE", EXCLAMATION)) in pr(mk-Operatorapp ₀ (opid, exprlist), context, sortset)(dict))	
type: Tupleexpro	Context Sortqual-set \rightarrow Dict \rightarrow Expression ₁ Sortqual-set Dict	
Objective	Transform a tuple expression (a structure primary) into AS_1	
Parameters	See transform-expr	
Result	See transform-expr	
Algorithm		
Line 1	Form the identifier of the MAKE! operator.	
Line 2	Construct an operator application given the expression list as pa- rameter list and transform it the usual way	
transform-pid-build	$-in(expr, sortset)(dict) \triangleq$	(3.5.3.2.8)
1 (let $payal = a$	et-predef-sort("PID")(dict) in	
2 if $pqual \in son$	tset then	
3 (cases exp	<i>r</i> :	
4 (mk-Par	entexpro()	
$5 \rightarrow (\mathbf{m})$	k -Parent-expression ₁ (), {pqual}, dict),	
$6 \qquad \mathbf{mk} \cdot Off $	$pringexpr_0()$	
$\begin{array}{ccc} 7 & \rightarrow (\mathbf{m}) \\ \mathbf{g} & \mathbf{m} \mathbf{k} \ \mathbf{S} \mathbf{c} \mathbf{n} \end{array}$	k -Offspring-expression ₁ (), {pqual}, aict),	
o mik-sen	uerexpro() k. Sandan, anneasion. () Ingual dict)	
$10 \qquad mk-Self$	exp()	
$11 \rightarrow (m)$	\mathbf{k} -Self-expression ₁ (), {pqual}, dict)))	
12 else		
13 exit("§5.5.	4.3: PID expression is used in wrong context"))	
type: Expr ₀ Sort	$qual-set \rightarrow Dict \rightarrow Pid-expression_1 \ Sortqual-set \ Dict$	

Objective	Transform one of the predefined PID expressions into AS_1
Parameters	See transform-expr
Result	See transform-expr

Algorithm

Line 1	Extract the Qual of the PID sort.
Line 2	The PID sort must be one of the allowed sorts at this place.
Line 4-10	Return the Qual of the PID sort (pqual), the unchanged Dict and
Line 4	A parent expression or
Line 6	An offspring expression or

Line 8	A sender expression of
Line 10	A self expression

3.5.4 Conditional Expressions

ч

transform-condexpr(mk-Condexpr₀(bexpr, expr1, expr2), context, sortset)(dict) \triangleq

(3.5.4.1)

(let boolqual = get-predef-sort("BOOLEAN")(dict) in 1 2 let $(as_1, d) = transform-expr(bexpr, context, \{boolqual\})(dict)$ in let (s', d') = transform - expr(expr1, context, sortset)(d) in 3 let (s'',) = transform-expr(expr2, context, sortset)(d') in 4 if $s' \cap s'' = \{\}$ then 5 exit("§2.2.2: Conditional expression does not match the context") 6 7 else if card $(s' \cap s'') = 1$ then 8 9 (let $sort \in s' \cap s''$ in let $(as_1 unique, dict') = transform-expr(expr1, context, {sort})(dict)$ in 10 let $(as_1 unique', dict'') = transform-expr(expr2, context, {sort})(dict')$ in 11 12 let $as_1 tree =$ if $context \in \{AXIOMS, MAPPING\}$ then 13 14 **mk**-Conditional-term₁(as₁, as₁ unique, as₁ unique') 15else mk-Conditional-expression₁(as_1 , as_1 unique, as_1 unique') in 16 17 let $as_1 tree' =$ if is-Ground-term₁(as₁) \land is-Ground-term₁(as₁unique) \land is-Ground-term₁(as₁unique') 18 19 then mk-Ground-term₁(as_1 tree) 20 else $as_1 tree$ in 21 $(as_1 tree', \{sort\}, dict''))$ 22 else $(nil, s' \cap s'', dict))$ 23

 $\texttt{type}: \quad Condexpr_0 \ Context \ Sortqual-set \rightarrow Dict \rightarrow [Term_1 \mid Expression_1] \ Sortqual-set \ Dict$

Objective	Transform a conditional expression or a conditional term into \mathbf{AS}_1
Parameters	See transform-expr
Result	See transform-expr

Algorithm

Line 1	Extract the Qual of the boolean sort.
Line 2	Transform the boolean condition.
Line 3	Transform the "then" expression/term.
Line 4	Transform the "else" expression/term.
Line 5-6	There must exist at least one resulting sort which can be used.
Line 8	If there is exactly one sort which can be used then
Line 9	Let sort denote the sort.
Line 10-11	Transform the expressions again, this time with the unique sort given as argument.
Line 12-16	Form the AS ₁ expression or term.
Line 17-20	If both the condition, the "then" part and the "else" part are ground terms then the resulting AS_1 expression is a ground term.
Line 20	Return the AS_1 expression/term, the sort of the conditional expression/term and the (possibly) updated <i>Dict</i>

3.5.5 Infix and Prefix operators

transform-monadexpr(mk-Monadexpr₀(op, expr), context, sortset)(dict) \triangleq (3.5.5.1)

```
1 (let qinfix = mk-Qualop_0(\langle \rangle, mk-Quotedop_0(op)) in
```

```
2 let operator =
```

```
3 if context \in {MAPPING, AXIOMS}
```

```
4 then mk-Operator term<sub>0</sub>(qinfix, \langle expr \rangle)
```

5 else mk- $Operatorapp_0(qinfix, \langle expr \rangle)$ in

```
6 transform-expr(operator, context, sortset)(dict))
```

 $\textbf{type:} \quad \textit{Monadexpr}_0 \ \textit{Context} \ \textit{Sortqual-set} \rightarrow \textit{Dict} \rightarrow [\textit{Expression}_1 \mid \textit{Term}_1] \ \textit{Sortqual-set} \ \textit{Dict}$

Objective	Transform a prefix operator application into AS_1
Parameters	See transform-expr
Result See transform-expr	
Algorithm	
Line 1	From the operator symbol, construct the qualified prefix operator (the qualifier is empty).
Line 2-5	Construct the operator term or operator application depending of whether it is used in the axioms or in the expressions.

Line 6 Transform the constructed term/expression in the usual way

 $transform-infixexpr(mk-Infixexpr_0(expr1, op, expr2), context, sortset)(dict) \triangleq$

1 (let $qinfix = mk-Qualop_0(\langle \rangle, mk-Quotedop_0(op))$ in

- 2 let operator =
- 3 **if** context \in {MAPPING, AXIOMS}

4 then mk-Operator term₀(qinfix, $\langle expr1, expr2 \rangle$)

- 5 else mk-Operatorapp₀(qinfix, $\langle expr1, expr2 \rangle$) in
- 6 transform-expr(operator, context, sortset)(dict))

 $\textbf{type:} \quad \textit{Infixexpr}_0 \ \textit{Context} \ \textit{Sortqual-set} \rightarrow \textit{Dict} \rightarrow [\textit{Expression}_1 \mid \textit{Term}_1] \ \textit{Sortqual-set} \ \textit{Dict}$

Objective	Transform an infix operator application into AS ₁ See <i>transform-expr</i>	
Parameters		
Result	See transform-expr	
Algorithm		
Line 1	From the operator symbol, construct the qualified infix operator (the qualifier is empty).	
Line 2-5	Construct the operator term or operator application depending of whether it is used in the axioms or in the expressions.	
Line 6	Transform the constructed term/expression in the usual way	

3.6 Visibility Handling

 $all-visible-sorts(dict) \triangleq$

$$\begin{array}{ll}1 & \{qual \in dom \ dict \mid is \ SortD(dict(qual)) \land \\2 & (\exists q \in Qual)(get \ sur(qual) \frown q = dict(\mathsf{SCOPEUNIT}))\}\end{array}$$

type: $Dict \rightarrow Sortqual-set$

Objective Extract the set of sort *Quals*, which are visible at a given place indicated by **SCOPEUNIT**, from *Dict*

(3.6.1)

(3.5.5.2)

Algorithm

Return all the *Quals* which denote a sort (line 1) and for which there exist a partial Qual(q) such that the Qual of the scope unit which defines the sort, when joined with q, can form the Qual of the current scope unit

all-visible-literals(id, sortset)(dict) \triangleq

1 (let (qual, nm) = cases id: $(mk-Id_0(q, n) \rightarrow (q, n),$ $mk-Stringterm_0(q, n) \rightarrow (q, n))$ in $\{q \in dom dict \mid (\exists squal \in sortset)(squal \frown \langle (LITERAL, nm) \rangle = q) \land$ $(\exists qu)(get-parent(qu \frown qual)(dict) \frown \langle (LITERAL, nm) \rangle = q)\})$

type: $(Id_0 \mid Stringterm_0)$ Sortqual-set $\rightarrow Dict \rightarrow Qual-set$

Objective Extract the set of all literals Quals which are visible at a given place and which can be denoted by a certain AS_0 identifier and which are of some specific sorts

Parameters

id	The AS_0 identifier which can denote the literal
sortset	The resulting literal Quals are all of a sort contained in sortset
Algorithm	

Line 1-3	Extract the qualifier and the name of the identifier (or string).
Line 4	Return all the Quals which denotes literals defined in one of the
	possible sorts and which includes the qualifier.

 $all-input-signals(qual)(dict) \triangleq$

1 (let qual' = process-or-service-level(qual) in

2 cases dict(qual'):

- 3 $(\mathbf{mk}$ -Service $D(,,,inp,) \rightarrow inp,$
- 4 \mathbf{mk} -Process $D(, inp, ,) \rightarrow inp))$

 $\textbf{type}: \quad Qual \rightarrow Dict \rightarrow Signal qual-set$

Objective Extract the *Quals* of the input signals (including timers)

Parameters

qual

The *Qual* denoting the level (scopeunit) where the input signals are required

Algorithm

Line 1	In the case of a procedure, modify the level by selecting the sur-
	rounding process or service.
Line 3	If the scopeunit is a service then return all the input signals.
Line 4	If the scopeunit is a process then return all the input signals

(3.6.2)

(3.6.3)

(let (emptyq, ,) = dict(GLOBALNAMES) in1 2 let (exportinput, exportoutput) = extract-exports(dict) in 3 let importset = { $(tq, nm) \in dom exportmap \mid (\exists q \in dom dict)(process-level(q) = dict(SCOPEUNIT) \land$ 4 $(\mathsf{IMPORT}, (nm, tq)) = q[\mathbf{len} q])$ in 5 **let** *importinput* = 6 $\{xrq \mid (\exists (tq, nm) \in importset)\}$ ((let mk-SignalnamesD(,,xr') = exportmap((tq,nm))) in 7 8 get- $sur(tq) \frown \langle (SIGNAL, xr') \rangle = xrq) \rangle$ in 9 let importoutput = 10 $\{xqq \mid (\exists (tq, nm) \in importset)\}$ 11 ((let mk-SignalnamesD(, xq,) = exportmap((tq, nm)) in 12 get- $sur(tq) \frown \langle (SIGNAL, xq) \rangle = xqq) \rangle$ in 13 $(exportinput \cup importinput \cup \{emptyq\}, exportoutput \cup importoutput))$

```
\mathbf{type}: \quad Dict \rightarrow Signal qual-set \ Signal qual-set
```

Objective Extract and return the *Quals* of all the implicit signals associated to import and export for a process and return the emptyq signal.

Algorithm

Line 1	Extract the <i>Qual</i> of the emptyq signal used in enabling condi- tion/continuous signal.
Line 2	Construct the <i>Quals</i> of all the input signals and the <i>Quals</i> of all the output signals used when a process exports variables (i.e. the xtQUERY input signals and the xtREPLY output signals).
Line 3-4	Extract the NameclosureDs (see the definition of exportmap) of all the imported variables in a process. The set consists of all those pairs of sort (tq) and name (nm) for which there exist an imported variable defined in the process or in a contained service nm which are of the sort tq .
Line 5-8	Construct the Quals of all the xtREPLY signals used by a process. The set consist of all those xtREPLY Quals which can be formed from a xtREPLY name contained in a SignalnamesD descriptor of a NameclosureD in importset.
Line 9-12	Do the same for the xtQUERY signals used by a process.
Line 13	Return the union of the <i>Quals</i> of the xtQUERY signals, of the xtREPLY signals and of the emptyq signal. The emptyq signal is not returned as an output signal because output signals are collected in order to construct implicit signal routes and no signal route contains the emptyq signal.

(3.6.5)

 $(let vqualset = \{qual \in dom dict | process-level(qual) = dict(SCOPEUNIT) \land is - VarD(dict(qual))\}$ in 1 2 let closset =3 $\{(tq, nm) \in \text{dom } dict \mid (\exists q \in vgualset)\}$ 4 ((let mk-VarD(t, , exp, ,) = dict(q) in 5 $t = tq \land (VALUE, nm) = q[len q] \land$ exp = EXPORTED)) in 6 7 let inputsig = 8 $\{qual \mid (\exists (tq, nm) \in closset)\}$ ((let mk-SignalnamesD(, xq,) = exportmap((tq, nm))) in 9 10 get-sur $(tq) \frown \langle (SIGNAL, xq) \rangle = qual) \rangle$ 11 outputsig =12 $\{qual \mid (\exists (tq, nm) \in closset)\}$ ((let mk-SignalnamesD(,,xr) = exportmap((tq,nm))) in 13 get-sur $(tq) \frown \langle (SIGNAL, xr) \rangle = qual) \rangle$ in 14 15 (inputsiq, outputsiq))

type: $Dict \rightarrow Signal qual-set Signal qual-set$

Objective	Extract and return the <i>Quals</i> of all the xtQUERY and xtREPLY signals used by an exporting process
Algorithm	
Line 1	Extract the Quals of the process variables.
Line 2-6	Construct, from the variable set, the NameclosureDs used by the process, i.e. the pairs of sort tq and variable name nm from Ex -portmap for which the variable of the sort tq is exported.
Line 7-10	From this set of <i>NameclosureDs</i> construct the <i>Quals</i> of the xt- QUERY signals (the same way as done for the xtREPLY signals in the function <i>import-export-signals</i>).
Line 11-14	Do the same for the xtREPLY signals.
Line 15	Return the input signals and the output signals

get-visible-qual(entity, entityclass)(dict) \triangleq

if entity = ENV then 1 ENV 2 3 else 4 (let (qual, nm) = cases entity: $(\mathbf{mk}-Id_0(q,n))$ 5 $\rightarrow (q, n),$ \mathbf{mk} -Stringterm₀ $(q, n) \rightarrow (q, n)$, 6 7 mk- $Qualop_0(q, n)$ $\rightarrow (q, n)$ in let level = dict(SCOPEUNIT) in 8 if $(\exists q \in \text{dom } dict)((\exists q')(q' \frown qual \frown ((entity class, nm)) = q) \land$ 9 $(\exists q'')(get-sur(q) \frown q'' = level))$ then (let $q \in \text{dom } dict \text{ be s.t. } (\exists q')(q' \frown qual \frown \langle (entity class, nm) \rangle = q) \land$ 10 11 12 $(\exists q'')(get-sur(q) \frown q'' = level \land$ $\neg(\exists qu)(get-sur(q) \frown qu = level \land len qu < len q''))$ in 13 if is-ErrorD(dict(q)) then 14 exit("§2.2.2: Synonym or generator or signal list is recursive defined") 15 16 else 17 q)18 else exit("§2.2.2: Identifier is not visible")) 19

 $\mathbf{type}: \quad (Id_0 \mid Stringterm_0 \mid Qualop_0 \mid \mathsf{ENV}) \ Quot \rightarrow Dict \rightarrow (Qual \mid \mathsf{ENV})$

Objective Construct the Qual for an AS₀ identifier if the identifier is visible

(3.6.6)

Parameters

entity	The identifier (or string or infix operator) for which a <i>Qual</i> is con- structed
entityclass	The entity class of the identifier (see §2.2.2 of Z.100). The entity class VALUE includes synonyms, variables and value identifiers. The function is not used for constructing <i>Quals</i> of literals and operators (due to special visibility rules).
Algorithm	
Line 1	If entity is ENV then return ENV (see in transform-channeldef).
Line 4-7	Extract the qualifier and name of the identifier (or string or infix operator).
Line 9-10	If there exist a <i>Qual</i> in <i>Dict</i> which includes the qualifier and the pair of entity class and name in the right-most part (line 9) and the scopeunit denoted by the <i>qualifier</i> ₀ is defined is visible then
Line 11-13	Let q denote such a Qual (line 11-13) and make the selection unique by expressing that q must denote the "nearest" Qual with respect to the current level (line 13)
Line 14-15	The identifier must not be recursively defined.
signal-qual(sigid)(di	$ct) \triangleq$

1 (let qual = (trap exit with nil in2 {get-visible-qual(sigid, SIGNAL)(dict)}) in 3 if $qual \neq nil$ then 4 qual 5 else 6 $(\text{let mk-}Id_0(q, nm) = sigid in$ let $qualelem = q \frown \langle (SIGNAL, nm) \rangle$ in 7 let level = dict(SCOPEUNIT) in 8 9 let qualset = { $qu \in dom dict \mid (\exists qua)(qua \frown qualelem = qu) \land$ 10 $(\exists q', q'')(q' \frown q'' = level \land signaldeflevel(qu) = q')$ in 11 if card qualset $\neq 1$ then 12 exit("§2.2.2: Signal identifier denotes more than one (sub) signal") 13 else 14 (let $qual' \in qualset$ in 15 qual')))

 $\mathbf{type}: \quad Sigid_0 \rightarrow Dict \rightarrow Signal qual$

Construct and return the Qual of an AS₀ signal identifier. The reason why the function *get-visible-qual* cannot be used directly for signals is that the visibility rules for signals are a little bit more complicated due to the subsignal concept

Parameters

Objective

sigid	The	$\mathbf{AS}_{\boldsymbol{0}}$	signal	identifier
-------	-----	--------------------------------	--------	------------

Algorithm

Line 1-3	If <i>sigid</i> is not a subsignal then the <i>Qual</i> can be found using the function <i>get-visible-qual</i> .
Line 7	Construct the partial <i>Qual</i> which includes the <i>Qualelem</i> containing the signal name
Line 8	level denotes the scopeunit where sigid is used.
Line 9-10	The complete set of possible Quals for the signal identifier is the Quals representing the sub-signals. The set of Quals for the sub- signals are those which have the partial Qual as the ending part (line 9) and which are contained in a visible signal definition q' .

Fascicle X.4 - Rec. Z.100 - Annex F.2

159

(3.6.7)

Line 11-15	If there is one and only one possible <i>Qual</i> for <i>sigid</i> then return the <i>Qual</i>	•

 $signaldeflevel(qual) \triangleq$

```
1 if s-Kind(qual[len qual]) = SIGNAL then
```

```
2 signaldeflevel(get-sur(qual))
```

```
3 else
```

```
4 qual
```

type: Signalqual \rightarrow Signalqual

Objective

From a Qual denoting a scopeunit which is a (sub) signal definition, construct the Qual of the scopeunit where the outermost signal definition is defined

(3.6.8)

(3.6.9)

Parameters

Algorithm

Line 1-2

If the last *Qualelem* contains the entity class SIGNAL then the *Qual* (still) denotes a signal definition and the *Qualelem* is removed before applying the function again

get-visible-variable(id, sortset, export)(dict) \triangleq

```
(let qualset = all-variables-and-synonyms(id, EXPRESSION, sortset)(dict) in
  1
  2
       let qualset' =
  3
           \{qual \in qualset \mid cases dict(qual):
                                (mk-VarD(, e, , , )
  4
  5
                                   \rightarrow export = false \lor e = EXPORT,
  6
                                mk-SynD(,)
  7
                                   \rightarrow false) in
  8
       if card qualset' = 1 then
  9
         (let qual \in qualset' in
 10
           qual)
 11
         else
 12
         exit( (§2.2.2: One and only one variable must match the context" ))
type: Id_0 Sortqual-set Bool \rightarrow Dict \rightarrow Qual
Objective
                      Extract the Qual of a variable. get-visible-variable is applied only where
```

Objective Extract the Qual of a variable. get-visible-variable is applied only where synonyms are not allowed (e.g. assignment, IN/OUT parameters etc.)

Parameters

id	The variable identifier.
sortset	The set of sorts which are allowed in the context.
export	A flag indicating whether the variable is used in an export action.
Result	The Qual which is unique for the context.
Algorithm	
Line 1	Construct the set of <i>Quals</i> consisting of those variables and syn- onyms which matches one of the sorts in <i>sortset</i> .
Line 2-6	Restrict the set to contain only variables and if <i>id</i> is used in an export action then the variables in the set must be exported.
Line 1	The set must contain a unique Qual

3.7 Transformation of Procedure- and Process Graph

In this section, the body of a process or a procedure is transformed. The result is a *Process-graph*₁ or a *Procedure-graph*₁ and a *Dict* which carries information of the implicit variables and output signals used in the body. If a process contains services, then also some AS₁ definitions are returned. The entry function transforming a process body is *transform-process-body* and the entry function which transforms a procedure body is *transform-body* (which also is used by *transform-process-body* if the process contains no service decomposition). For reasons of simplicity, transitions are only traversed once which means that the short-hands in transitions (i.e. option nodes, dash nextstate and import/export) are expanded "on the fly" while transitions are transformed.

The transformation of a body consist of the following steps:

- 1. Insertion of terminators in answers of decisions and options such that every AS_0 Transition₀ contains a Termstmt₀
- 2. Construction of a *Labeldict*, i.e. a collection of the labels used in the body and their associated transition
- 3. Construction of a *Statedict* i.e. the list of states is transformed into a map which is a more appropriate representation when the states are transformed. During this construction, multiple appearence of states and asterisk states are removed.
- 4. Expansion of asterisk inputs and asterisk save. Also the implicit transitions are added. As the signals implied by export and the empty queue signal are shared by all services, the transitions for those signals is not added until the services have been merged.
- 5. If a process contains services, the *Statedict* of all services are merged ("state exploded") into a *statedict*, where each entry is a new state name.
- 6. Expansion of enabling condition and continuous signal. The expansion is achieved by modifying the constructed *Statedict*
- 7. Transformation of Statedict and the contained transitions into a $Process-graph_1$ or $Procedure-graph_1$. During this transformation, new entries implied by import expressions are added to Statedict

transform-process-body(body)(dict) \triangleq

```
1 if is-Body_0(body) then
```

- 2 $(let (as_1 body, bdict) = transform-body(body)(dict) in$
- 3 $(\{\}, as_1 body, bdict, []))$
- 4 else
- 5 (let mk-Decomposition₀(decll) = body in
- 6 let $(as_1 dclset, sdict) = transform-decllist(decll)(dict)$ in
- 7 let $connectmap = service connectmap(decll, {}, [])(dict)$ in
- 8 if is-wf-servicesignals(dict) then

```
9 (let (as_1 body, dict') = transform-decomposition-body(dict) in
```

10 $(as_1 dclset, as_1 body, sdict + dict', connectmap))$

```
11 else
```

12 **exit**("§4.10.2: Service signals not well-formed"))

 $\textbf{type}: \quad Processbody_0 \rightarrow Dict \rightarrow Decl_1 \text{-set } Process-graph_1 \ Dict \ Process connectionD$

Objective Transform a $Processbody_0$ into its AS_1 representation

Parameters

body

The process body

(3.7.1)

Result	A list of AS_1 definitions (the list is non-empty if the process contains services), the AS_1 process body, a <i>Dict</i> carrying information about im- plicit variables, output signals etc. used in the process body and the connections of signal routes with service signalroutes for the process.		
Algorithm			
Line 1-3	If the process does not contain services then transform the state body contained in the process (like for procedures) else		
Line 5	Let <i>decll</i> denote the service definitions and service signal route definitions.		
Line 6	Transform the services and signal routes. During this transfor- mation, the services are replaced by the definitions they contain. Their state body is represented as a <i>Statedict</i> in the descriptors of the services (contained in <i>sdict</i>).		
Line 8	The valid input signal set of the services must be disjoint and no signal in a signal routes external to the process may be a high priority signal.		
Line 9	Construct the AS_1 process body from the <i>Statedicts</i> contained in the service descriptors of <i>dict</i> .		
Line 10	Return the AS_1 definitions from the services, the process body and the <i>Dict</i> contributions from the definitions and from the implicit variables, output signals etc. used in the services		

transform- $body(\mathbf{mk}$ - $Body_0(trans, statelist))(dict) \triangleq$

1	(let trans' = insert-trans-term(trans) in
2	let $statelist' = \langle insert - state - term(statelist[i]) 1 \le i \le len statelist \rangle$ in

- let labeldict = build-trans-labeldict(trans')([]) in 3
- let labeldict' = build-state-labeldict(statelist')(labeldict) in 4
- let statedict = build-statedict(statelist', dict(SCOPEUNIT))([]) in 5
- let statedict' = remove-asterisk-input-and-save(statedict)(dict) in 6
- let statedict" = remove-cont-enable-from-statelist(dom statedict)(dict, statedict') in 7
- let $dict' = dict + [LABELDICT \mapsto labeldict',$ 8
- STATEDICT \mapsto statedict"] in 9
- 10 let $(trans_1, dict'') = transform$ -transition(nil, trans', $\langle \rangle)(dict')$ in
- let $(statebody_1, dict'') = transform-statelist({})(dict'')$ in 11
- let $transition_1 = add$ - $varinit(trans_1, dict'')$ in 12
- if is-ProcedureD(dict(dict(SCOPEUNIT))) then 13
- 14 (mk-Procedure-graph1 (mk-Procedure-start-node1 (transition1), statebody1), dict''')
- 15 else

16 (mk-Process-graph₁(mk-Process-start-node₁(transition₁), statebody₁), dict^{'''}))

type: $Body_0 \rightarrow Dict \rightarrow (Procedure-graph_1 \mid Process-graph_1) Dict$

Objective	Transform a state body of a process or procedure
Parameters	An AS ₀ body containing
trans	The initial transition
statelist	The list of states
Result	An AS_1 procedure- or process graph and a <i>Dict</i> carrying information about implicit variables and output signals
Algorithm	
Line 1	Insert terminators in answers of decisions and options in the initial transition
Line 2	Insert terminators in answers of decisions and options in the state list.

(3.7.2)

Line 3	Collect information about the labels (connectors) used in the initial transition.
Line 4	Collect information about the labels used in the statelist. <i>labeldict'</i> reflects the association between the labels used in the process or procedure body and their following transitions (see the definition of <i>Labeldict</i>).
Line 5	Transform the statelist into a map from state names into a StateD descriptor (see the definition of Statedict in Quotdict). Multiple appearence of states and asterisk states are merged during this transformation.
Line 6	Expand asterisk inputs, asterisk saves and implicit transitions in the <i>Statedict</i> .
Line 7	Expand any enabling condition and continuous signal in the con- structed <i>Statedict</i> . After this expansion, the <i>Statedict</i> contains <i>ContenablestateD</i> descriptors for the states which are removed. The new states are represented by a <i>StateD</i> descriptor.
Line 8	Include the <i>Labeldict</i> and the <i>Statedict</i> in the <i>Dict</i> such that the transformation functions only need one dictionary parameter (instead of three).
Line 10	Transform the initial transition into AS ₁ .
Line 11	Transform the statelist into a set of AS_1 states.
Line 12	Modify the initial transition to include the initiation of the implicit variables used in the process.
Line 13-16	Return an AS_1 procedure graph if the state body belongs to a procedure, otherwise return an AS_1 process graph. In the returned <i>Dict</i> (<i>dict'''</i>) only the OUTSIGNALS and IMPLIED entries from <i>Quotdict</i> are used
add-varinit(trans, dict)	$\stackrel{\Delta}{=}$

1

 $(\texttt{let } \textit{qualset} = \{\textit{qual} \in \texttt{dom} \textit{dict} \mid \texttt{is-VarD}(\textit{dict}(\textit{qual})) \land \\$ get-sur(qual) = dict(SCOPEUNIT)} in 2

add-default-assign(trans, qualset)(dict)) 3

type: Transition₁ $Dict \rightarrow Transition_1$

Objective Modify the initial transition to include variable initiations.

Parameters

trans dict	The AS_1 initial transition. The <i>Dict</i> containing the relevant <i>VarD</i> descriptors and containing the AS_0 name of the variable attached to continuous signal (the name is the same for all processes)
Result Algorithm	The modified AS ₁ transition.
Line 1-2 Line 3	Extract the set of all those <i>Quals</i> which denote local variables. Modify the transition to include default assignments to the local variables.

(3.7.3)

1 if descrset =	{} then
2 trans	
3 else	_
4 (let $qual \in$	descreet in
5 let trans'	= add -default-assign(trans, descripter \ {qual})(dict) in
6 let mk-Va	$rD(,,,expr_1,qual) = dict(qual)$ in
i if $expr_1 = $	nii then
o circo	
$\begin{array}{c} \mathbf{y} \\ \mathbf{z} \\ $	$d = make_{ae}$, identifier(augl)(dict) in
$\frac{10}{11} \text{let } etm;$	t - mk-Task-node. (mk-Assianment-statement. (as. id_ernr.)) in
12 let mk	$Transition_{(actl. term)} = trans' in$
13 let tran	$s'' = \mathbf{mk}$ -Transition ₁ (stmt \frown actl, term) in
14 if is- Sy_1	ntypeD(dict(qual)) then
15 (let r	ange = s-Range-condition ₁ (dict(qual)) in
16 let n	nk-Range-condition ₁ (, cset) = range in
17 if cs	$et = \{\}$ then
18 tre	ins"
19 els	e
20 (le	$t des = mk-Decision-node_1(expr_1, \{mk-Decision-answer_1(range, trans'')\},$
21	\mathbf{mk} -Else-answer_1(trans')) in
22 n	$he-Transition_1(\langle angle, des)))$
23 else	
24 trans	"))
type : Transition	$_1$ Qual-set $\rightarrow Dict \rightarrow Transition_1$
Objective	Modify the initial transition to include the default assignments for the variables local to a scopeunit. As there also are <i>VarD</i> descriptors for the implicit variables attached to export variables, the implicit export variables are automatically initialized.
Parameters	
trans	The transition which should be modified.
descrset	The Quals of the local variables.
Result	The modified transition.
Algorithm	
Line 1	When through, do not modify the transition any more.
Line 4	Let qual denote an element in the set of Quals.
Line 5	Construct the transition which is <i>trans</i> modified to include variable initiation for the rest of the <i>Quals</i> .
Line 6	Decompose the descriptor of the variable in order to reveal the initial expression $(expr_1)$ and the variable sort. Note that <i>qual</i> is not used for deriving the initial expression (this has already been done).
Line 7	If the descriptor do not contains an initial expression then return
	do not modify the transition.
Line 10	Let as ₁ id denote the AS ₁ identifier of the variable.
Line 11	Let stmt denote the task which contains the default assignment.
Line 19-19	Let trans" denote the modified transition
Line 11-17	If the variable sort is a syntype then a decision must be constructed
10000 14=11 Tima 15	Let manage denote the AS, range condition for the constituted.
Line 15 Line 16-17	If the set of <i>Condition-items</i> in <i>range</i> is empty then there is no need to construct a syntype and the modified transition is therefore

(3.7.4)

returned.

Line 20-22 Return a new transition which consist of an empty action list and an AS_1 decision able of performing the default assignment only in the case where the range condition is satisfied.

3.7.1 Insertion of Terminators in Answers

insert-state-term(mk-Statebody $_0(idl, stlist, tnm)) \triangleq$

- $1 \quad (\texttt{let stlist'} = \langle \textit{insert-spec-term}(\textit{stlist}[i]) \mid 1 \leq i \leq \texttt{len stlist} \rangle \texttt{ in}$
- 2 mk-Statebody₀(idl, stlist', tnm))

type:	Statebodyn -	→ Statebodun
J PC .	State oug	· Dratetougi

Objective	Insert terminators in answers in decisions and options contained in an \mathbf{AS}_{0} state	
Parameters	The state containing	
idl	The list of state names for the state	
Result	The modified AS ₀ state	
Algorithm		
Line 1	Insert terminators in all the input transitions and	
Line 2	Construct the AS_0 state (again).	

.

```
insert-spec-term(stspec) \triangleq
```

1	cases	stspec:
---	-------	---------

2	(mk-Inputspec ₀ (vars, enab, trans)
3	\rightarrow mk-Inputspec ₀ (vars, enab, insert-trans-term(trans)),
4	mk -Contspec ₀ (expr, prio, trans)
5	\rightarrow mk-Contspec ₀ (expr, prio, insert-trans-term(trans)),
6	mk-Priinput ₀ (vars, trans)
7	\rightarrow mk-Priinput ₀ (vars, insert-trans-term(trans)),

8 $T \rightarrow stspec$)

type: $Statespec_0 \rightarrow Statespec_0$

Objective Insert terminators in answers in decisions and options contained in an input transition

Parameters

stspec	The input transition
Result	The modified AS_0 input transition
Algorithm	
Line 2	If the input transition is an input node then insert terminators in the transition following the input node (<i>trans</i>)
Line 4	If the input transition is a continuous signal then insert terminators in the transition following the continuous signal (<i>trans</i>).
Line 6	If the input transition is a priority input then insert terminators in the transition following the priority input (<i>trans</i>).
Line 8	Otherwise (in the case of a save node), return the transition un- changed

(3.7.1.2)

insert-trans-term(mk-Transition $_0(actl, term)) \triangleq$

1	$(\mathbf{if} \ actl = \langle \rangle \ \mathbf{t}]$	
2	mk-Transi	$tion_0(\langle \rangle, term)$
3	else	atatint (1 act) — Ind act in
4 5	(let mk-Ad	$cisimi_0(i, aci) = nd acii in$
6	$\frac{1118-Decis}{(let (an))}$	$(act) \vee B$ -Option(act) then even $(act) = cosec act$
7	(Let (un	(mk-Decision (and els)
8		\rightarrow (ansl. els).
9		\mathbf{mk} -Option ₀ (, ansl, els)
10		\rightarrow (ansl, els)) in
11	let (ac	tl', answerl', els') = insert-answer-term(tl actl, term, answerl, els) in
12	let act	' = cases act:
13		$(\mathbf{mk}$ -Decision $_{0}(q,,)$
14		\rightarrow mk-Actstmt ₀ (l, mk-Decision ₀ (q, answerl', els')),
15		\mathbf{mk} -Option ₀ $(q, ,)$
16		$\rightarrow \mathbf{mk} \cdot Actstmt_0(l, \mathbf{mk} \cdot Option_0(q, answerl', els'))) \text{ in }$
10	let mk	$-Transition_{0}(actl', t) = insert-trans-term(mk-Transition_{0}(actl', term)) in$
10	nik-17	$ansiton_0((act) \land acti, t))$
20	if +1 acti	$I - I \land term - nil then$
21	exit(($1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1 < 1 < 1 < 1 < 1$) ($1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <$
22	else	3-ion - i i i i i i i i i i i i i i i i i i
23	(let n	$\mathbf{h}\mathbf{k}$ -Transition ₀ (actl", t) =
24	<i>i</i> :	nsert-trans-term(mk-Transition ₀ (tl actl, term)) in
25	mk-	$Transition_0(\langle hd actl \rangle \frown actl'', t))))$
type	: Transition	$_0 \rightarrow Transition_0$
Obje	ctive	Insert terminators in answers of decision and option nodes in an action list
Para	meters	The transition containing
a	ctl	The action list
t	erm	The optional terminator following the action list
Resu	lt	The modified AS ₀ transition
Algo	rithm	
L	ine 1	When through, return the transition containing an empty action list (the function is recursive).
L	ine 4	Decompose the first action statement.
L	ine 5	If the action is a decision or an option then
L	ine 6-9	Extract the answer list (answerl) and the else part (els) from the decision or option.
L	ine 11	Insert terminators in the answer list and in the else part. If a terminator is inserted (a join) then the rest of the action list (th <i>actl</i>) is modified $(actl')$ to include a label.
L	ine 12-15	Construct the modified decision or option node.
L	ine 17	Insert terminators in the rest of the action list.
L	ine 18	Return the transition containing the modified decision or option (act') the rest of the action list (act'') and the terminator.
r	ine 20-25	If the first action is not a decision or option node then
L	ine 20-21	If the action is the last action and there is no terminator then it is
		an error.
L	ine 23-25	Insert terminators in the rest of the action list and compose the modified transition

(3.7.1.3)

insert-answer-term $(actl, term, answerl, els) \triangleq$

1	(if answerl =	$\langle \rangle$ then
2	if $els = ni$	l then
3	$(acti, \langle \rangle)$	nii)
14 5	eise (lot mk	$Fleenant_{(trans)} - cls in$
6	let ink	l' trans($l'ans$) = ets m
7		es trans) —
8	(n	il
9	(\rightarrow (let (acl. term') = insert-ioin(actl. term) in
10		$(acl, \mathbf{mk}$ -Transition ₀ ($\langle \rangle, term'))),$
11	n	ak-Transition ₀ (actl", term")
12		\rightarrow if $term'' =$ nil then
13		(let (actl''', term''') = insert-join(actl, term) in
14		(actl''', insert-trans-term(mk -Transition ₀ (actl'', term'''))))
15		else
16	((actl, insert-trans-term(trans))) in
17	$(actl', \langle$	\rangle, \mathbf{mk} -Elsepart ₀ (trans')))
18	else	
19	(let (acti',	(answerrest, els') = insert-answer-term(acti, term, ti answerl, els) in
20	let mk-A	$nswer_0(vset, trans) = nd answerl in$
21 22	let (actin	st, trans =
23	(nil	trans.
24	((let (acl. term) = insert-ioin(actl', term) in
25		$(acl, mk-Transition_{0}(\langle \rangle, term))),$
26	mk	-Transition ₀ (actl", term")
27		if $term'' = nil$ then
28		(let (actl''', term''') = insert-join(actl', term) in
2 9		$(actl''', insert-trans-term(mk-Transition_0(actl'', term'''))))$
30		else
31		(actl', insert-trans-term(trans))) in
32	$(actlist, \langle z \rangle)$	\mathbf{mk} -Answer $_0(vset, trans'') angle \frown answerrest, els')))$
type	: Actstmt ₀ *	$[Termstmt_0] Answer_0^* [Elsepart_0] \rightarrow Actstmt_0^* Answer_0^* [Elsepart_0]$
Obje	ective	Insert terminators in the answers of a decision or option node
Para	meters	
	actl	The action list which follows the decision or option node
. 1	term	The terminator which follows the decision or option node and which follows the action list
	answerl	The list of answers
	e ls	The optional else part
Resi	ılt	• The action list which follows the decision or option node. This action list is modified to include a label if it is non-empty and if any terminators is missing in the answers and in the elsepart
		• The list of answers, all containing terminators
		• The else part containing a terminator (unless the else part is omit- ted)
Algo	orithm	-7
	Line 1-17	When through the answer list then modify the else part
•	Tine 0	If the also part is omitted then return the action list the America
-	une z	list of answers and no else part
	Tine 5	If the also part is specified then decompose it
	Dine J	it the ense part is specified then decompose it.

Fascicle X.4 – Rec. Z.100 – Annex F.2

167
Line 6-17	Let <i>actl'</i> denote the new action list which follows the decision or option node and let <i>trans'</i> denote the new transition in the else part which contains a terminator.
Line 8	If no transition is specified then construct a join (<i>term</i>) and insert a label in the action list following the decision or option node (<i>acl</i>). The transition of the else part is an empty action list and a join (line 10).
Line 11-14	If a transition is specified in the else part, but the terminator is omitted then insert a label in the action list $(actl''')$, following the decision or option, construct a join $(term''')$, and insert terminators in the action list in the transition (line 14).
Line 16	If a transition containing a terminator is specified then insert ter- minator in the action list of the transition and do not modify the action list (<i>actl</i>) following the decision or option.
Line 17	Return the modified action list, an empty answer list and the mod- ified else part.
Line 19	Insert terminators in the rest of the answers.
Line 20	Decompose the first answer in the list.
Line 21-31	Do the same for the first answer in the answer list as done for the else part as defined at line 6-16.
Line 32	Return the new action list which follows the decision or option, the first of the modified answers joined with the rest of the modified answers and the modified else part (if specified)

insert-join $(actl, term) \triangleq$

1 (if $actl = \langle \rangle$ then

2 if term = nil then

3 exit("§2.6.7.1: Terminator missing in transition")

4 else

5 (let mk-Termstmt₀(, t) = term in

- 6 $(\langle \rangle, \mathbf{mk} Termstmt_0(\mathbf{nil}, t)))$
- 7 else
- 8 (let mk-Actstm $t_0(l, act) = hd actl in$

9 let l' = if l = nil then create-unique-name() else l in

10 $(\langle \mathbf{mk} - Actstmt_0(l', act) \rangle \frown tl actl, \mathbf{mk} - Termstmt_0(\mathbf{nil}, \mathbf{mk} - Join_0(l')))))$

 $\mathbf{type}: \quad Actstmt_0^* \; [\mathit{Termstmt_0}] \to Actstmt_0^* \; \mathit{Termstmt_0}$

Objective	From an action list and the following terminator, construct a join to the first action in the action list- or if it is empty, to the terminator. The join is used as terminator in the answers which are not terminating decisions (see <i>insert-answer-term</i>)
Parameters	
actl	The given action list
term	The terminator which follows the action list
Result	The action list where the first action have the same label as the con- structed join and the constructed join
Algorithm	

Line 1	If the action list is empty then
Line 2-6	A terminator must be present and if so then
Line 5-6	Return the same (but unlabeled) terminator as specified in the transition following the decision or option.
Line 8	Decompose the first action in the action list following the enclosing decision or option.

168 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.7.1.5)

Line 9Extract the label from the action and if it contains no label then
create one.Line 10Return the new action list which contains the label and return the
terminator statement containing a join to that label

3.7.2 Building of Labeldict

build-state-labeldict(statebody)(labeldict) \triangleq

```
1 (if statebody = \langle \rangle then
```

- 2 labeldict
- 3 else

4 (let mk-Statebody₀(, specl,) = hd statebody in

- 5 let $specl' = \langle specl[i] | 1 \leq i \leq len \ specl \land \neg is Savespec_0(specl[i]) \rangle$ in
- 6 let labeldict' = build-spec-labeldict(specl')(labeldict) in
- 7 build-state-labeldict(tl statebody)(labeldict')))

 $\mathbf{type}: \quad Statebody_0^* \rightarrow Labeldict \rightarrow Labeldict$

Objective From the state body of a process, procedure or service, collect the labels and their associated transitions to form a *Labeldict* (see the definition of *Labeldict*)

Parameters

statebody	The list of states
labeldict	The labels collected so far (the function is recursive)

Result

The constructed Labeldict

Algorithm

Line 1	When through, return the constructed labeldict.	
Line 4	Decompose the first state in the list	
Line 5	Extract those input transitions which are not saves.	
Line 6	Update labeldict to include the labels in these input transitions.	
Line 7	Collect the labels in the rest of the states	

build-spec-labeldict(speclist)(labeldict) \triangleq

1 ((if 8	speclist	= () then
-----	---------------	----------	-----	--------

- 2 labeldict
- 3 else
- 4 (let trans = s- $Transition_0(hd speclist)$ in
- 5 let labeldict' = build-trans-labeldict(trans)(labeldict) in
- 6 build-spec-labeldict(t1 speclist)(labeldict')))

type: $Statespec_0^* \rightarrow Labeldict \rightarrow Labeldict$

Objective From the transitions attached to a state (input transitions), collect the labels and their associated transitions to form a *Labeldict* (see the definition of *Labeldict*)

Parameters

speclist	The list of input transitions
labeldict	The labels collected so far (the function is recursive)

The constructed Labeldict

(3.7.2.2)

Algorithm

Line 1	When through, return the constructed Labeldict.
Line 4-5	Update labeldict to include the labels in the transition of the first
	input transition.
Line 6	Collect the labels for the rest of the input transitions

(3.7.2.3)

•

build-trans-labeldict(mk-Transition₀(actl, term))(labeldict) \triangleq

1	(if act l - l) the	n
2	(if term - ni)	u I than
3	labeldict	i then
4	else	
5	(let mk-T	$ermstmt_{0}(l_{1}) = term$ in
6	if l = nil	then
7	labeldic	t
8	else	
9	$\mathbf{if}\ l\in\mathbf{d}$	om labeldict then
10	exit("§2.6.6: Labels are not distinct")
11	else	,
12	labeld	$lict + [l \mapsto mk-Transition_0(\langle \rangle, term)]))$
13	else	
14	(let mk-Acts	$tmt_0(l, a) = hd \ actl \ in$
15	let labeldict'	=
16	$\mathbf{if}\ l=\mathbf{nil}$	then
17	labeldi	ct
· 18	else	
19	$\mathbf{if}\ l\in \mathbf{d}$	om labeldict then
20	exit("§2.6.6: Labels are not distinct")
21	else	
22	label	$dict + [l \mapsto \mathbf{mk}$ -Transition ₀ (actl, term)] in
23	let labeldict'	
24	cases a:	
25	$(\mathbf{mk}$ -Decision ₀ $(, ansl, els)$	
20	\rightarrow build-answerlist-labeldict(ansl, els)(labeldict'),	
21	mk-Option ₀ (, ansl, els)	
20	$\rightarrow 0 u$	hid - answeriisi -iaoeiaicti (ansi, eis) (iaoeiaict'),
29 30	i → ia huild_trane_i	letaici m leheldict (mk-Transitions (+1 act. term))(leheldict")))
00	04114-114113-0	
type	: $Transition_0$ –	\rightarrow Labeldict \rightarrow Labeldict
Obje	ctive F	rom a transition, collect the labels and their associated transitions to form a <i>Labeldict</i> (see the definition of <i>Labeldict</i>)
Para	meters A	A transition containing
a	actl	A list of action statements
t	erm	A terminator statement
l	abeldict	The labels collected so far
Resu	lt T	he constructed Labeldict
Algo	rithm	
1	ine 1-12	When through the list of action statements, consider the termina- tor
1	ine 5	Decompose the terminator statement in order to extract the label (l) .
1	ine 6	If the label is omitted then return the constructed labeldict.

Line 9	If the label already is present in the <i>Labeldict</i> then the label has been used twice.
Line 12	Return the Labeldict which is updated to include the label in the terminator statement. The Transition ₀ which follows the label has an empty list of action statements and a terminator statement
Line 14	Decompose the first action statement in the list.
Line 15-22	Let <i>labeldict'</i> denote the labeldict which is updated to include the label of the first action statement (if it is present and if the label is distinct).
Line 23-29	Let <i>labeldict</i> " denote the labeldict which is further updated to in- clude the labels of the answers in the case of a decision or option action.
Line 30	Collect the labels in the rest of the action statements

build-answerlist-labeldict(answerl, els)(labeldict) \triangleq

(if answerl = $\langle \rangle$ then 1 2 if els = nil then 3 labeldict4 else 5 $(let mk-Elsepart_0(trans) = els in$ 6 build-trans-labeldict(trans)(labeldict)) 7 else (let mk-Answer₀(, trans) = hd answerl in 8 let labeldict' = build-trans-labeldict(trans)(labeldict) in 9 10 build-answerlist-labeldict(t1 answerl, els)(labeldict')))

type: $Answer_0^*$ [Elsepart_0] \rightarrow Labeldict \rightarrow Labeldict

Objective From the answers in a decision or option action, collect the labels and their associated transitions to form a *Labeldict* (see the definition of *Labeldict*)

Parameters

answerl	The list of answers
els	The optional else part
labeldict	The labels collected so far

Result The constructed Labeldict

Algorithm

Line 2-6	When through the list of answers, consider the else part.
Line 2	If the decision or option action contains no else part then return the labeldict.
Line 5	Extract the transition from the else part.
Line 6	Update <i>labeldict</i> to include the labels in the transition of the else part.
Line 8	Extract the transition of the first answer in the list.
Line 9	Update labeldict to include the labels of the transition.
Line 10	Collect the labels of the rest of the answers

(3.7.2.4)

3.7.3 Building of Statedict

build-statedict(statelist, scope)(statedict) \triangleq

1	(if statelist =	$\langle \rangle$ then
2	statedict	
3	else	
4	(let $mk-S$	$tatebody_0(statenml, stspec, tailname) = hd statelist in$
5	let specli	$st = \langle (scope, stspec[i]) \mid 1 \leq i \leq ext{len } stspec angle ext{ in }$
6	cases sto	atenml:
7	(mk-Sta	atenamelist ₀ (nmlist)
8	\rightarrow if	$tailname \neq nil \land elems nmlist \neq \{tailname\} then$
9 10		exit(§2.0.3: Ending name of state must be the same as starting name)
10	e	else (lat statsdist) — insent stats names(nulist susplict)(statsdist) in
11		(let statedict = insert-state-names(namist, species)(statedict) in
12	mk-St	annedliets(nmliet)
14	if	$t_{ailname} \neq nil then$
15		exit("§2.6.3: Ending state name is not allowed in asterisk state")
16		else
17		(let totaldict = build-statedict(tl statelist, scope)(statedict) in
18		insert-starred(nmlist, speclist)(totaldict)))))
tun	o Statebody	* $Oual \rightarrow$ Statedict \rightarrow Statedict
υp	e. Statetoay	Gun Dinieniei Dinieniei
Objective Fro and of 2		From the state body of a process, procedure or service, collect the states and their associated transitions to form a <i>Statedict</i> (see the definition of <i>Statedict</i>)
Par	ameters	
	statebody	The list of states
	scope	The Qual denoting the scopeunit which contains the states. Every transition in Statedict must contain information about the context in which the transition is elaborated (since the Statedicts of services are merged into one Statedict before they are transformed into AS_1)
•	statedict	The states considered so far (the function is recursive)
Res	n] <i>t</i>	The constructed Statedict
Alg	orithm	/
	Line 1	When through, return the constructed Statedict.
	Line 4	Decompose the first state in the list.
	Line 5	Construct the list of <i>Specs</i> for the state (see the definition of <i>State-dict</i>), that is, the list of pairs of context information and input transition for the state.
	Line 7-12	If a state name list is specified in the state then
	Line 9	If a tailing name is specified then the state name list must consist of the same name.
	Line 11	For each of the state names in the list, add a <i>StateD</i> descriptor to <i>Statedict</i> .
	Line 12	Construct StateD descriptors for the rest of the states.
	Line 13-18	If an asterisk state name list is specified then

- Line 17 Construct the Statedict for the rest of the states (the complete statedict) before
- Line 18 The input transitions of the asterisk state are added

insert-state-names(namelist, stspec)(statedict) \triangleq

1	(if $namelist = \langle \rangle$ then
2	statedict
3	else
4	(let nm = hd namelist in
5	let $stspec' =$
6	if $nm \in \text{dom}$ statedict then
7	(let mk- $StateD(specl,) = statedict(nm)$ in
8	specl)
9	else
10	$\langle \rangle$ in
11	let $statedict' = statedict + [nm \mapsto mk-StateD(stspec \frown stspec', nil)]$ in
12	if $nm \in$ elems tl <i>namelist</i> then
13	exit("§2.6.3: State names in state must be distinct")
14	else
15	insert-state-names(tl namelist, stspec)(statedict')))

 $\textbf{type}: \quad Statenamelist_0 \ Speclist \rightarrow Statedict \rightarrow Statedict$

Objective Parameters	Update Statedict to include the input transitions of a state node.
namelist stspec	The list of state names which are specified in the state node A list of <i>Specs</i> which contains the input transitions and which, for each state in the list, is added to <i>Statedict</i>
Result	The updated Statedict
Algorithm	
Line 1	When through the state name list, return the updated <i>Statedict</i> (the function is recursive).
Line 4	Let nm denote the first name in the list.
Line 5-8	If that name already has an entry in <i>statedict</i> then <i>stspec'</i> denotes the input transitions associated to the entry else <i>stspec'</i> denotes the empty list of input transitions.
Line 11	Let statedict' denote the Statedict updated to include both the input transitions which already were there (stspec') and the new ones (stspec). nil in StateD indicates that the state is not an implicit state implied from an import expression (see the definition of Statedict).
Line 12-13	The state name list specified in the state must contain distinct state names.
Line 15	Consider the rest of the names in the state name list

insert-starred(namelist, stspec)(totaldict) \triangleq

1 (if card elems namelist \neq len nameli	$st \lor$	/
---	-----------	---

- 2 \neg (elems namelist \subseteq dom totaldict) \lor
- 3 elems namelist = dom totaldict \lor
- 4 totaldict = [] then
- 5 exit("§4.4: Illegal asterisk state")
- 6 else

7 (let restset = dom totaldict - elems namelist in

- 8 let namelist' = $\langle nm | nm \in \text{dom restset} \rangle$ in
- 9 insert-state-names(namelist', stspec)(totaldict)))

 $\textbf{type}: \quad \textit{Statenamelist}_0 \ \textit{Speclist} \rightarrow \textit{Statedict} \rightarrow \textit{Statedict}$

Objective	Update Statedict to include the input transition from an asterisk state		
Parameters			
namelist	The names mentioned in the asterisk state		
stspec	The Specs containing the input transitions of the asterisk state.		
Result	The update Statedict		
Algorithm			
Line 1	The names in the state name list must be distinct and		
Line 2	They must not be the only occurrences of the state name and		
Line 3	They must not include all states and		
Line 4	There must be at least one state which is not an asterisk state.		
Line 7	Extract the set of states which are covered by the asterisk state.		
Line 8	Transform the set into a list.		
Line 9	Add the Specs to Statedict for the deduced list of states (in the usual way)		

3.7.4 Expansion of Asterisk Input, Asterisk Save and Implicit Transitions

In this section, the asterisk from input nodes and save nodes are removed from the body of a process, procedure or service and it is checked that each state contains at most one asterisk. As enabling conditions, continuous signals and import expressions have not been removed yet, the replacement of the asterisk does not include the empty queue signal and the signals implied by import.

 $remove-asterisk-input-and-save(statedict)(dict) \triangleq$

1 $[stnm \mapsto remove-asterisk-from-state(statedict(stnm))(dict) | stnm \in dom statedict]$

type: $Statedict \rightarrow Dict \rightarrow Statedict$

Objective Remove asterisk input and asterisk save from the state bodies of a process, procedure or service

Parameters

statedict	The Statedict representing the state bodies
Result	The modified Statedict
Algorithm	Construct the <i>Statedict</i> (the map) where every state have its asterisk input and asterisk save removed

(3.7.4.1)

 $remove-asterisk-from-state(\mathbf{mk}-StateD(speclist,))(dict) \triangleq$

(let (speclist', saveset, inputset, priinput) = 1 2 $remove-asterisk-from-spec(speclist, \{\}, \{\}, \{\}, false)(dict)$ in 3 let (input signals, prisignals) =4 (let qual = process-or-service-level(dict(SCOPEUNIT)) in 5 **cases** dict(qual): 6 $(\mathbf{mk}$ -ProcessD(, sig,) \rightarrow (sig, {}), 7 \mathbf{mk} -Service $D(, , , sig, psig) \rightarrow (sig, psig)))$ in 8 if prinput = prisignals \land (saveset \cup inputset) \subset inputsignals then 9 (let (expimpinput,) = import-export-signals(dict) in 10 let $implicitinput = input signals \setminus saveset \setminus prinput \setminus input set \setminus expinpinput in$ 11 let $implicittrans = as_0 \cdot implicit \cdot transitions(implicitinput)(dict)$ in 12 **mk**-StateD(speclist' ~ implicittrans, nil)) 13 else 14 exit("§2.6.3: Signals in state node are not well-formed")) type: $StateD \rightarrow Dict \rightarrow StateD$ **Objective** Remove asterisk input and asterisk save from a state and include the implicit transitions for the unspecified signals in the Speclist The Statedict descriptor (StateD) containing **Parameters** The Speclist containing the $Statespec_0s$ of the state speclist Result The modified StateD descriptor Algorithm Line 1 Construct the modified Speclist and extract the signals specified in the save, the signals specified in the inputs and the signals specified in the priority inputs Line 3-7 Extract the complete valid input signal set and the priority signals for the process or service. Line 8 The signals in the priority inputs of the state must be equal to the priority signals for the service and the signals specified in the save and in the other inputs must be included in the complete valid input signal set. Let expimpinput denote the implicit xtQUERY and xtREPLY sig-Line 9 nals received in export and import shorthands and the emptyq signal. Line 10 The signals for which implicit transitions are to be constructed are the signals in the complete valid input signal set minus the signals mentioned in the save minus the high priority signals minus the signals mentioned in the input minus the implicit signals. Line 11 Construct the implicit transitions. Line 12 Construct the modified StateD descriptor

 as_0 -implicit-transitions(signalqualset)(dict) \triangleq

```
1
    if signal qualset = \{\} then
2
       \langle \rangle
3
      else
4
       (let signal qual \in signal qual set in
5
        let inputvars = as_0 \cdot inputvars(\{signalqual\})(dict) in
        let input = mk-Inputspec<sub>0</sub>(inputvars, nil,
6
7
                                              \mathbf{mk}-Transition<sub>0</sub>((), \mathbf{mk}-Termstmt<sub>0</sub>(nil, \mathbf{mk}-Nextstate<sub>0</sub>(nil)))) in
8
         \langle (dict(SCOPEUNIT)), input \rangle \frown as_0-implicit-transitions(signalqualset \ {signalqual})(dict))
```

type: Signalqual-set \rightarrow Dict \rightarrow Speclist

Fascicle X.4 - Rec. Z.100 - Annex F.2

175

(3.7.4.3)

Objective	Construct the implicit transitions for a state		
Parameters			
signalqualset	The set of signals for which implicit transitions are to be con- structed		
Result	A Speclist containing the implicit transitions		
Algorithm			
Line 1	When through, return the input Speclist.		
Line 4	Let signalqual denote the next signal to be dealt with.		
Line 5	Construct the parameter list for the signal.		
Line 6	Construct the input transition for the signal. The transition con- tains a nextstate dash only.		
Line 8	Construct a Spec and join it with the Speclist for the rest of the signals		

5 Fascicle X.4 – Rec. Z.100 – Annex F.2

.

176

(3.7.4.4)

 $remove-asterisk-from-spec(speclist, sigset, saveset, priset, asterisk)(dict) \triangleq$

1	(if $speclist = \langle \rangle$ then
2	$\langle \langle \rangle$, sigset, saveset, priset)
3	else
4	(let (q, spec) = hd speclist in
5	cases spec:
6	$(\mathbf{mk}-Savespec_0(sigl))$
7	\rightarrow if is-Starred ₀ (sigl) then
8	if asterisk then
9	exit("§4.7: State has more than one asterisk input or save")
10	else
11	(let (specrest, inputtot, savetot, pritot) =
12	remove-asterisk-from-spec(tl speclist, sigset, saveset, priset, true)(dict) in
13	let $sigq = all - input - signals(dict(SCOPEUNIT))(dict)$ in
14	let (expimpinput,) = import-export-signals(dict) in
15	let $sigq' = sigq \setminus inputtot \setminus savetot \setminus pritot \setminus expimpinput$ in
16	let $as_0 siglist = \langle as_0 \text{-}id(sig) \mid sig \in sigq' angle$ in
17	let $spec' = if as_0 siglist = \langle \rangle$ then
18	\sim $\langle \rangle$
19	else
20	$\langle (q, \mathbf{mk}\text{-}Savespec_{0}(as_{0}siglist)) angle$ in
21	$(specrest \frown spec', inputtot, sigq' \cup savetot, pritot))$
22	else
23	$(let \ sigq = transform - signallist(sigl)(dict)$ in
24	let (specrest, inputtot, savetot, pritot) =
25	$remove-asterisk$ -from-spec(tl speclist, sigset, saveset \cup sigq, priset, asterisk)(dict) in
26	$\mathbf{if} \ sigq \cap (sigset \cup saveset \cup priset) = \{\} \ \mathbf{then}$
27	$(specrest \frown \langle hd speclist angle, inputtot, savetot, pritot)$
28	else
29	exit("§2.6.3: Signals in state are not disjoint")),

177

ţ

30	mk-Priinput ₀ (inp,),
31	mk-Inputspec ₀ (inp, enab, trans)
32	\rightarrow if is-Starred ₀ (inp) then
33	if asterisk then
34	exit("§4.7: State has more than one asterisk input or save")
35	else
36	(let (specrest, inputtot, savetot, pritot) =
37	remove-asterisk-from-spec(tl speclist, sigset, saveset, pritot, true)(dict) in
38	let $sigq = all - input - signals(dict(SCOPEUNIT))(dict)$ in
39	let (expimpinput,) = import-export-signals(dict) in
40	let $sigg' = sigg \setminus inputtot \setminus savetot \setminus pritot \setminus expimpinput in$
41	let $inpvars = as_0 - inputvars(sigq')(dict)$ in
42	let $spec' = if inpvars = \langle \rangle$ then
43	$\langle \rangle$
44	else
45	$\langle (q, \mathbf{mk}-Input spec_0(input s, enab, trans)) \rangle$ in
46	$(specrest \frown spec', siga' \cup inputtot, savetot, pritot))$
47	else
48	(let $sigg = \{signal-gual(id)(dict) \mid mk-Input vars_0(id,) \in elems inp\}$ in
49	let (sigset', priset') = if is-Prinputo(spec) then
50	(sigset, priset) (signal)
51	else
52	(signet 1) sign priset) in
53	let (enecreet inputtot equetot pritot) -
54	remone-asterisk-from-enec(t) speciet signet' saveset priset' asterisk)(dict) in
55	if sign \cap (sinset 1) same set 1 nriset) \rightarrow {} then
56	$($ suggest \bigcirc (hd speciest) inputtot squetot pritot)
57	
58	evit ("62.6.3; Signals in state are not disjoint"))
59	$T \rightarrow remove-asterisk-from-spec(tl speciest, sigset, saveset, priset, asterisk)(dict))))$
type : Object	Statespec_0* Signalqual-set Signalqual-set Signalqual-set Bool \rightarrow Dict \rightarrow Statespec_0* Signalqual-set Signalqual-set Signalqual-setSiveRemove asterisk input and asterisk save from a state. In addition to
	the input nodes, the function also returns the set of signals mentioned in the input nodes, the set of signals mentioned in the save nodes and the set of signals mentioned in the priority input nodes
Param	eters
spe	The list of remaining inputs and saves to be dealt with (the function is recursive)
sig	set The Quals of the signals which have been recognized in an input node so far
saı	node so far
pri	set The Quals of the signals which have been recognized in an priority input node so far
ast	erisk A flag indicating whether an asterisk save or asterisk input has been recognized so far
Result	The modified list of inputs and saves constructed so far, the complete $Qual$ set of input signals, the complete $Qual$ set of save signals and the set of high priority signals received in the state,
Algori	thm
Lin	When through, return the complete Qual set of input signals, the complete Qual set of save signals and the set of high priority signals
Lin	Decompose the first Spec of the state.

178	Fascicle X.4 –	Rec.	Z.100 –	Annex F.2

.

Line 6-27	If the Statespec ₀ in the first Spec is a save node then
Line 6	If an asterisk is specified in the save node then
Line 8	If an asterisk save or asterisk input already has been encounted then it is an error.
Line 11	Remove the asterisk input and save from the rest of the input and save nodes. true indicates that an asterisk save (or input) now have been encounted. <i>inputtot</i> and <i>savetot</i> are the complete sets of input signals and save signals explicitly specified.
Line 13	Extract the <i>Quals</i> of the signals which are contained in the complete valid input signal set for the service or process.
Line 14-15	The set of signals to be specified in the save node are the signals in the complete valid input signal set $(sigq)$ minus the signals specified in the input nodes <i>inputtot</i> minus the signals specified in the other save nodes $(savetot)$ minus the priority input signals minus the signals implied from import/export.
Line 16	Convert the set of signal Quals to an AS ₀ list of identifiers.
Line 17	Construct the new save <i>Spec</i> provided there exist any signals to save.
Line 21	Return the Spec joined with the rest of the Specs, the complete set of input signals, the complete set of save signals and the set of high priority signals.
Line 23	If the save contains a signallist then transform the signallist to obtain the signals specified $(sigq)$.
Line 24	Remove the asterisk input and save from the rest of the input and save nodes where the set of save signals obtained so far is updated to include the signals of this save node.
Line 26	The signals in the save must be disjoint from the other signals in the state.
Line 27	Add the Spec to the resulting list of Specs (and leave it unchanged).
Line 31-59	If the Statespec ₀ in the first Spec is an input node then
Line 32	If an asterisk is specified in the input node then
Line 33	If an asterisk save or asterisk input already has been encounted then it is an error.
Line 36	Remove the asterisk input and save from the rest of the input and save nodes. true indicates that an asterisk input (or save) now have been encounted.
Line 38	Extract the <i>Quals</i> of the signals which are contained in the complete valid input signal set for the service or process.
Line 39-40	The set of signals to be specified in the input node are the signals in the complete valid input signal set $(sigq)$ minus the signals specified in the other input nodes <i>inputtot</i> minus the signals specified in the save nodes $(savetot)$ minus the priority input signals minus the signals implied from import/export.
Line 41	Convert the set of signal Quals to a list of $Inputvars_0s$ where the variables to receive the values are omitted (nil).
Line 42	Construct the new input <i>Spec</i> provided there are any signals not explicitly mentioned.
Line 46	Return the Spec joined with the rest of the Specs, the complete set of input signals and the complete set of save signals.
Line 48	If the input contains a list of $Inputvars_0$ s then extract the $Qual$ of the signals contained in them
Line 49	if the input is a priority input then add the signals to the priority input set (<i>priset</i>) else add the signals to the set of normal signals (<i>sigset</i>).
Line 53	Remove the asterisk input and save from the rest of the input and save nodes

Line 55	The signals in the input must be disjoint from the other signals in
	the state.
Line 56	Add the Spec to the resulting list of Specs (and leave it unchanged).
Line 59	If the $Statespec_0$ is a continuous signal, then continue with the next $Statespec_0$

as_0 -inputvars(starinput)(dict) \triangleq

(if $starinput = \{\}$ then 1 2 $\langle \rangle$ 3 else 4 (let $qual \in starinput$ in 5 let (nm,) = qual[len qual] in 6 let $id = \mathbf{mk} - Id_0(\langle \rangle, nm)$ in 7 let $t = cases \ dict(qual)$: $(\mathbf{mk}$ -Signal $D(tli,,) \rightarrow tli,$ 8 9 mk-Timer $D(tli,) \rightarrow tli)$ in 10 let vnum = len t in 11 let $inpu = mk-Inputvars_0(id, (nil | 1 \le i \le vnum))$ in

12 $(inpu) \frown as_0-inputvars(starinput \setminus \{qual\})(dict)))$

type: Signalqual-set \rightarrow Dict \rightarrow Inputvars₀^{*}

Objective	Construct the AS_0 variable lists for the signals which are received in an
	asterisk input node or received in implicit transitions.

Parameters

starinput	The set of valid input signals for a process which neither have been
	specified explicitly in an input node, priority input node nor in a
	save node

Algorithm

Line 1	When through, return nothing (the function is recursive).
Line 4	Let qual denote a signal Qual in the set.
Line 5	Extract the name of the signal.
Line 6	Construct the identifier of the signal.
Line 7-9	Let t denote the sort list of the signal or timer.
Line 10	Let vnum denote the number of values conveyed by the signal.
Line 11	Construct the AS_0 input variable list where every variable is nil (omitted) and
Line 12	Return it together with those for the rest of the signals

3.7.5 Expansion of Continuous Signals and Enabling Condition

 $remove-cont-enable-from-statelist(stateset)(dict, statedict) \triangleq$

1 (if stateset = $\{\}$ then

2 statedict

3 else

4 (let $state \in stateset$ in

5 **let mk**-StateD(speclist,) = statedict(state) in

6 let statedict' = remove-cont-enable-from-state(speclist, state)(dict, statedict) in

7 $remove-cont-enable-from-statelist(stateset \setminus {state})(dict, statedict')))$

type : Statename₀-set \rightarrow Dict Statedict \rightarrow Statedict

180 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.7.4.5)

(3.7.5.1)

Objective	Remove all continuous signal and enabling condition from <i>Statedict</i> by replacing the appropriate <i>StateD</i> descriptors by <i>ContenablestateD</i> descriptors and by adding new <i>StateD</i> descriptors for the implied states	
Parameters		
stateset	The names of the states which shall have the continuous signals and enabling conditions removed. Initially this set includes all states (the function is recursive)	
Result	The modified Statedict	
Algorithm		
Line 1	When through, return the modified Statedict.	
Line 4-5	Let speclist denote the Speclist of one of the remaining states.	
Line 6	Remove continuous signals and enabling conditions in that state.	
Line 7	Remove continuous signals and enabling conditions in the rest of the states	

(3.7.5.2)

 $remove-cont-enable-from-state(speclist, stnm)(dict, statedict) \triangleq$

1 (let $enable = (\exists (, sp) \in elems speclist)(is - Input spec_0(sp) \land s - Enabling_0(sp) \neq nil)$ in let $cont = (\exists (, sp) \in elems speclist)(is-Contspec_0(sp))$ in 2 3 if \neg enable $\land \neg$ cont then statedict 4 5 else 6 (let (emptyqid, formu1nm, formu2nm) = dict(GLOBALNAMES) in7 let $formu1 = \mathbf{mk} \cdot Id_0(\langle \rangle, formu1nm),$ 8 $formu2 = mk-Id_0(\langle \rangle, formu2nm)$ in 9 let ptrans = pretrans(emptyqid, formu1) in 10 let speclist' =11 if cont then expand-continuous(stnm, speclist, emptyqid, formu1, formu2)(dict) 12 13 else *speclist* in if \neg enable then 14 15 (let newstnm = create-unique-name() in let preterm = mk-Transition₀(ptrans, mk-Nextstate₀(newstnm)) in 16 \mapsto mk-ContenablestateD(preterm), 17 statedict + [stnm 18 $newstnm \mapsto \mathbf{mk}$ -State $D(speclist', \mathbf{nil})$]) 19 else 20 (let emptyqinput = 21 if cont then 22 $\langle \rangle$ 23 else 24 (let term = mk- $Termstmt_0(nil, mk$ - $Nextstate_0(stnm))$ in 25 $\langle emptyqtrans(term, emptyqid, formu1, formu2)(dict) \rangle$) in 26 let (mk-Transition₀(decision,), statedict') = 27 $expand-enable(speclist' \frown emptyqinput)(statedict)$ in let preterm = mk-Transition₀($ptrans \frown \langle decision \rangle$, nil) in 28 29 $statedict' + [stnm \mapsto mk-ContenablestateD(preterm)])))$

 $\textbf{type}: \quad Speclist \ Name_0 \rightarrow Dict \ Statedict \rightarrow Statedict$

Objective Remove continuous signals and enabling conditions from a state by modifying *Statedict*

Parameters

speclist	The Speclist containing the input transitions of the state	
stnm	The name of the state	

Result

The modified Statedict

Algorithm

If the priority is omitted in a continuous signal then no other con- tinuous signals may be specified.
If the state neither contains enabling conditions nor continuous signals then leave the <i>Statedict</i> unchanged.
Extract the AS_0 identifier of the empty queue signal and the AS_0 names of the two variables used in connection with the empty queue signals.
Construct AS_0 identifiers of the two variables.
Construct the AS ₀ action list which updates the "unique" variable (<i>formu1</i>) and which outputs the empty queue signal.
Expand continuous signals by modifying the Speclist (speclist).
If the state contains no enabling conditions then
Create a new name for the state (which contains continuous signals).
Construct the transition which must be interpreted in every next- state containing this state.
Update Statedict with two descriptors: The first is used in the transformation of nextstate nodes. When a nextstate node contains the name stnm then the nextstate node is replaced by preterm. The second one is used when the state containing continuous signals $(stnm)$ is transformed into AS ₁ .
Expand enabling conditions.
Construct the empty queue input unless it already is included in <i>speclist'</i> , i.e. unless the state contains continuous signals. When a state contains no continuous signals, the transition following the empty queue is considerable simpler since no decision nodes are present in that case (only a nextstate back to the same state is implied).
Expand the enabling condition. The result of this expansion is a composite decision action (<i>decision</i>) testing on the expressions in the enabling condition and the <i>Statedict</i> which is extended to include <i>StateD</i> descriptors of all the implicit states involved.
Construct the transition to be interpreted in the appropriate next- state nodes (as in line 16-17) and
Replace the <i>StateD</i> descriptor for the state, by a <i>ContenablestateD</i> in <i>Statedict</i> (as in line 16-17)

expand-continuous(statenm, speclist, emptyqid, formu1, formu2)(dict) \triangleq

(3.7.5.3)

1 if $(\exists (, stsp) \in elems \ speclist)(is - Contspec_0(stsp) \land s - Priority_0(stsp) = nil) \land$

2 $\operatorname{card} \{(stsp) \in \operatorname{elems} specifiet \mid \operatorname{is-Contspec}_0(stsp)\} > 1$ then

```
3 exit("§4.11: Only one continuous signal may be specified if the priority is omitted")
```

- 4 else
- 5 (let priomap = collect-priority-info(speclist, len speclist)(dict) in
- 6 let conttrans = build-cont-trans(speclist, statenm, priomap) in
- 7 let contterm = mk-Transition₀(conttrans, nil) in
- 8 let $normtrans = (speclist[i] \mid i \in ind speclist \land \neg is-Contspec_0(speclist[i]))$ in

9 let emptyqinput = emptyqtrans(contterm, emptyqid, formu1, formu2)(dict) in

10 $normtrans \frown \langle emptyqinput \rangle$)

 $\textbf{type}: \quad Statename_0 \ Speclist \ Sigid_0 \ Varid_0 \ Varid_0 \rightarrow Dict \rightarrow Speclist$

Objective Modify the input transition for a state containing continuous signals.

Parameters

statenm	The name of the state containing continuous signals
speclist	The list of Specs which contains the input transitions
emptyqid	The AS_0 identifier of the empty queue signal
formu1,formu2	The AS_0 identifiers of the variables used in the continuous signal model

Result

The modified list of Specs

Algorithm

Line 1	There
Line 5	Construct a map which contains the relation between the priority of a signal, and its position (index) in <i>speclist</i> .
Line 6-7	Construct the composite decision action which tests on the various expression in the order given by the priorities.
Line 8	Remove the input transitions, which contains continuous signals, from <i>speclist</i> .
Line 9	Construct the empty queue input transition which tests on whether it is the right empty queue signal (i.e. test whether <i>formu1</i> equals <i>formu2</i>) and which uses the composite decision (<i>contterm</i>) in the "true" branch.
Line 10	Add the empty queue input transition to the input transitions con- taining no continuous signals

 $pretrans(emptyqid, formu1id) \triangleq$

```
1 (let lit1 = mk-Name_0("1", nil),
```

2 $self = mk-Selfexpr_0()$ in

3 let $infix = mk-Infixexpr_0(formulid, PLUS, lit1)$ in

- 4 let $update = mk-Assignstmt_0(formulid, infix)$ in
- 5 let $task = mk Task_0(\langle update \rangle)$,
- 6 $outtoself = mk-Output_0(\langle mk-Outputsig_0(emptyqid, \langle formu1id \rangle) \rangle, self, \langle \rangle)$ in
- 7 $(\mathbf{mk} Actstmt_0(\mathbf{nil}, task), \mathbf{mk} Actstmt_0(\mathbf{nil}, outtoself)))$

type: Sigid₀ Varid₀ \rightarrow Actstmt₀⁺

\sim		٠				٠	
Ο	b	Ŀ	e	с	t	1	ve

Construct the action statements:

TASK formulid := formulid + 1; OUTPUT emptyqid(formulid) TO SELF;

Algorithm

Line 1	Construct the integer literal "1".
Line 2	Construct the PiD self expression.
Line 3	Construct formulid + 1.
Line 4	Construct formulid := formulid + 1.
Line 5	Construct TASK formulid := formulid + 1.
Line 6	Construct OUTPUT emptyqid(formu1id) TO SELF.
Line 7	Return the two actions as action statements (without labels)

1

2

(let $emptyginput = mk-Inputvars_0(emptygid, (formu2id))$ in

 $let \ ans 1 = mk-Answer_0(\langle mk-Condition_0(nil, mk-Name_0("TRUE", nil))\rangle, \ conttrans),$

```
3
            ans2 = mk-Answer_0(\langle mk-Condition_0(nil, mk-Name_0("FALSE", nil)) \rangle,
   4
                                     mk-Termstmt<sub>0</sub>(nil, mk-Nextstate<sub>0</sub>(nil))) in
   5
        let decision = mk-Decision_0(mk-Infixexpr_0(formulid, EQ, formulid),
   6
                                           \langle ans1, ans2 \rangle, nil) in
   7
        let emptytrans = mk-Transition<sub>0</sub>((mk-Actstmt<sub>0</sub>(nil, decision)), nil) in
   8
        (dict(\mathsf{SCOPEUNIT}), \mathsf{mk}\text{-}Inputspec_0(\langle emptyqinput \rangle, \mathsf{nil}, emptytrans)))
type: Transition<sub>0</sub> Sigid<sub>0</sub> Varid<sub>0</sub> Varid<sub>0</sub> \rightarrow Dict \rightarrow Spec
Objective
                        Construct the input transition:
                        INPUT emptyqid(formu2id);
                         DECISION (formulid = formulid)
                           (true) : conttrans;
                           (false) : NEXTSTATE(-);
                          ENDDECISION;
                        and return the Spec which contains the input transition
Parameters
                              The transition which correspond to the "true" branch. If the state
     conttrans
                              contains no continuous signals (but contains enabling conditions)
                              then it contains a nextstate to the original state, otherwise it con-
                              tains the composite decision constructed in build-cont-trans. The
                              nextstate in the "false" branch implies continuation at the implicit
                              state (not the original state) to which the input transition is asso-
                              ciated
     emptygid
                              The AS<sub>0</sub> identifier of the empty queue signal
     formulid, formulid The AS<sub>0</sub> identifiers of the variables used in continuous signal and
                              enabling condition
build-cont-trans(speclist, stnm, priomap) \triangleq
                                                                                                                          (3.7.5.6)
   1
       (let i \in \text{dom priomap} be s.t. \neg(\exists n \in \text{dom priomap})(n < i) in
   2
        let trans = if priomap \setminus \{i\} = []
   3
                        then mk-Transition<sub>0</sub>(\langle \rangle, mk-Termstmt<sub>0</sub>(nil, mk-Nextstate<sub>0</sub>(stnm)))
```

type: Speclist Statename₀ $(N_1 \implies N_1) \rightarrow Transition_0$ Objective Construct the composite decision which tests and branch on the expres-

else build-cont-trans(speclist, stnm, priomap $\setminus \{i\}$) in

let $decision = mk-Decision_0(mk-Scopeexpr_0(scope, expr), \langle yestrans, notrans \rangle, nil)$ in

let $(scope, mk-Contspec_0(expr, exittrans)) = speclist[index]$ in

let yestrans = mk-Answer₀((yesval), exittrans),

 $notrans = \mathbf{mk} \cdot Answer_0(\langle noval \rangle, trans)$ in

 \mathbf{mk} -Transition₀($\langle \mathbf{mk}$ -Actstmt₀(nil, decision) \rangle, nil))

let yesval = mk-Condition₀(nil, mk-Id₀($\langle \rangle$, mk-Name₀("TRUE", nil))),

 $noval = mk-Condition_0(nil, mk-Id_0(\langle \rangle, mk-Name_0("FALSE", nil)))$ in

sions in continuous signals in the order given by the priorities

Parameters

4

5 6

7

8

9

10

11

12

let index = priomap(i) in

speclist	The Specs which contains continuous signals
stnm	The name of the (explicit) state to which the continuous signals
	are attached

184 Fascicle X.4 – Rec. Z.100 – Annex F.2

priomap	The relation between the priority of continuous signals and the position (index) in <i>speclist</i>			
Result	The composite decision action statement			
Algorithm				
Line 1	Let i denote the entry in the priority map which has the lowest value (i.e. the highest priority among the remaining elements in priomap).			
Line 2-4	If this value has the lowest priority (i.e. if it is the only one left in the map) then let <i>trans</i> denote the terminator statement containing a nextstate to the old explicit state (line 3) else let <i>trans</i> denote the decision action for the rest of the priorities (line 4).			
Line 5-6	Let <i>scope</i> denote the <i>Qual</i> of the scopeunit which defined the state (recall that the <i>Statedicts</i> of services have been merged before this transformation takes place and that the evaluation of the expres- sion depends on the actual service), let <i>expr</i> denote the expression in the continuous signal and let <i>exittrans</i> denote the transition in the continuous signal			
Line 7-12	<pre>construct the transition containing the decision: DECISION (expr): (true) : exittrans; (false) : trans; ENDDECISION</pre>			
	where it is specified that $expr$ shall be transformed into AS_1 in the context of the scopeunit denoted by <i>scope</i> which either is a process, a procedure or a service			

collect-priority-info $(speclist, index)(dict) \triangleq$

1	(if index = 0 then
2	
3	else
4	(let $emap = collect-priority-info(speclist, index - 1)(dict)$ in
5	let (scope, inp) = speclist[index] in
6	$\textbf{let } dict' = [q \mapsto dict(q) \mid q \in \textbf{dom } dict \land \neg \textbf{is-} SynD(dict(q))] + [\texttt{SCOPEUNIT} \mapsto scope] \textbf{ in}$
7	cases inp:
8	$(\mathbf{mk}$ -Contspec ₀ $(, prio,)$
9	\rightarrow (let prio' = if prio = nil then 1 else eval-simple-expr(prio, "INTEGER")(dict') in
10	if $prio' \in dom emap$ then
11	exit("§4.11: Several continuous signals with the same priority")
12	else
13	$emap + [prio' \mapsto index]),$
14	$T \rightarrow emap)))$

(3.7.5.7)

type: Speclist $N_0 \rightarrow Dict \rightarrow (N_1 \implies N_1)$

Objective Construct a map containing the relation between the priority of a continuous signal and the index value of the *Spec* in a *Speclist* containing the continuous signal

Parameters

speclist	The Speclist which contains the continuous signals
index	The current index value into <i>speclist</i> . Initially, the index value equals the length of the list. The recursion terminates when the index value reaches zero
Result	The constructed priority map

Algorithm

Line 1	When through, return the empty map.
Line 4	Collect the priorities of the rest of the continuous signals.
Line 5	Extract the <i>Qual</i> of the scopeunit which defined the continuous signal and the input transition.
Line 6	Override <i>Dict</i> with the <i>Qual</i> of the scopeunit such that the priority expression can be evaluated in the right context. Also exclude synonyms from <i>Dict</i> because it is illegal to specify a synonym in the priority construct.
Line 8-13	If the input transition is a continuous signal then Determine the priority of the continuous signal. If the priority is omitted then set the priority to "1" else evaluate the simple expression.
Line 10-11	There must not exist another continuous signal which has the same value.
Line 13	Add the priority to the map containing the rest of the priorities.
Line 14	If the input transition is not a continuous signal then return the map containing the priorities of the rest of the continuous signals

$expand-enable(speclist)(statedict) \triangleq$

1	$(\texttt{let } \textit{enabset} = \{\textit{speclist}[i] \mid i \in \texttt{ind } \textit{speclist} \land \texttt{is-Inputspec}_0(\textit{speclist}[i]) \land \\$
2	s -Enabling ₀ (s -Statespec ₀ (speclist[i])) \neq nil} in
3	$\textbf{let norm} trans = \langle speclist[i] \mid 1 \leq i \leq \textbf{len speclist} \land speclist[i] \notin enabset \rangle \textbf{ in }$
4	build-enable-decision(normtrans, enabset)(statedict))

```
\textbf{type}: \quad Speclist \rightarrow Statedict \rightarrow Transition_0 \ Statedict
```

Objective	Construct the enclosed decision actions which models an enabling con-						
	dition state and update Statedict with the implied implicit states						

Parameters

speclist A Speclist containing the input transitions of a state

Result	A	transition	containing	the	nested	decision	action	and	the	updated
	St	atedict								

Algorithm

Line 1-2	Let <i>enabset</i> denote the set of <i>Specs</i> which contains enabling condi- tion and
Line 3	Let <i>normtrans</i> denote the set of <i>Specs</i> which contains no enabling condition.
Line 4	Construct the decision action and the implicit states

(3.7.5.8)

 $build-enable-decision(normtrans, enabset)(statedict) \triangleq$

- 1 (let $falsevalue = mk-Condition_0(nil, mk-Id_0(\langle \rangle, mk-Name_0("FALSE", nil)))$ in
- 2 let $truevalue = \mathbf{mk}$ -Condition₀(nil, mk-Id₀($\langle \rangle$, mk-Name₀("TRUE", nil))) in 3 let $enab \in enabset$ in
- 4 let $(scope, mk-Input spec_0(vl, expr, tr)) = enab$ in
- 5 let $sigl = \langle sigid \mid (\exists varl \in elems vl)(s Sigid_0(varl) = sigid) \rangle$ in
- 6 let newtrans = normtrans $\land \langle (scope, \mathbf{mk} Savespec_0(sigl)) \rangle$ in
- 7 let newtrans' = normtrans $\land \langle (scope, \mathbf{mk}-Inputspec_0(vl, \mathbf{nil}, tr)) \rangle$ in
- 8 let (trans0, statedict') =
- 9 if enabset $\setminus \{enab\} = \{\}$
- 10 then build-implicit-state(newtrans)(statedict)
- 11 else build-enable-decision(newtrans, enabset $\{enab\}$)(statedict) in
- 12 let (trans1, statedict'') =
- 13 if enabset $\setminus \{enab\} = \{\}$
- 14 then build-implicit-state(newtrans')(statedict')
- 15 else build-enable-decision(newtrans', enabset $\setminus \{enab\}$)(statedict') in
- 16 let $ans0 = mk-Answer_0(falsevalue, trans0)$ in
- 17 let $ans1 = mk-Answer_0(truevalue, trans1)$ in
- 18 let $decexpr = mk-Scopeexpr_0(scope, expr)$ in
- 19 let decision = mk-Decision₀(decexpr, $\langle ans0, ans1 \rangle$, nil) in
- 20 let $actstmt = mk-Actstmt_0(nil, decision)$ in
- 21 $(mk-Transition_0(\langle actstmt \rangle, nil), statedict''))$

type: Speclist Spec-set \rightarrow Statedict \rightarrow Transition₀ Statedict

Objective See *expand-enable*

Parameters

normtrans	A <i>Speclist</i> which contains the input transitions which does not con- tain an enabling condition.					
enabset	A set of <i>Specs</i> containing the input transitions which contains an enabling condition.					
Result	See expand-enable					
Algorithm						
Line 1	Construct the "false" case label					
Line 2	Construct the "true" case label					
Line 3	Extract a <i>Spec</i> from the <i>Spec</i> set representing the input transitions with an enabling condition					
Line 6	Decompose the Spec					
Line 5	Extract the signal identifiers from the input node					
Line 6	Form a new Speclist containing the old Speclist and a Savespec ₀ .					
Line 7	Form a new Speclist containing the old Speclist and an Inputspec ₀ .					
Line 8-11	Construct the decision tree for the "false" case.					
Line 10	If enab is the last enabling condition, construct a decision leading the $Next state_0 s$.					
Line 11	if <i>enab</i> is not the last enabling condition, construct a decision lead- ing to decisions.					
Line 12-15	Construct the decision tree for the "true" case.					
Line 16	Construct the "false" answer.					
Line 17	Construct the "true" answer.					
Line 18	Construct the decision expression.					
Line 19	Construct the decision.					
Line 20	Construct the action statement.					
Line 21	Return the new transition and the updated Statedict.					

187

build-implicit-state(alltrans)(statedict) \triangleq

(3.7.6.1)

1 (let stnm = create-unique-name() in

2 let trans = mk-Transition₀((), mk-Termstmt₀(nil, mk-Nextstate₀(stnm))) in

3 $(trans, statedict + [stnm \mapsto mk-StateD(alltrans, nil)]))$

 $\textbf{type}: \quad Speclist \rightarrow Statedict \rightarrow Transition_0 \ Statedict$

Objective	Create a new implicit state with the complete <i>Speclist</i> and update the <i>Statedict</i>				
Parameters					
alltrans	The complete Speclist.				
Result	See expand-enable				
Algorithm					
Line 1	Create an AS_0 name for the new implicit state.				
Line 2	Construct the transition containing the nextstate which is to the implicit state.				
Line 3	Return the transition and the updated Statedict				

3.7.6 Transformation of States and Input Nodes

transform-statelist $(transformedstates)(dict) \triangleq$

1	(let statedict = dict(STATEDICT) in
2	if dom $statedict = transformed states$ then
3	({}, dict)
4	else
5	$($ let $stnm \in ($ dom $statedict \setminus transformed states)$ in
6	if is- $ContenablestateD(statedict(stnm))$ then
7	$transform$ -statelist($transformedstates \cup \{stnm\}$)($dict$)
8	else
9	(let mk-StateD(speclist, importinf) = statedict(stnm) in
10	let $(current state, impact) = if importinf = nil then (stnm,)$ else importinf in
11	let $(saveset_1, inputset_1, dict') = transform-statespecl(currentstate, speclist)(dict)$ in
12	let $inputset'_1 =$
13	if $importinf = nil \lor impact = nil$
14	then <i>inputset</i> ₁
15	else $insert$ -importact $(impact, inputset_1)$ in
16	let $statenode = \mathbf{mk}$ -State-node ₁ (name-to-name ₁ (stnm), saveset ₁ , inputset' ₁) in
17	let (bodyrest, dict") = transform-statelist(transformed states $\cup \{stnm\})(dict')$ in
18	$({statenode} \cup bodyrest, dict"))))$

type: $Statename_0$ -set $\rightarrow Dict \rightarrow State-node_1$ -set Dict

Objective Transform the states of a process or procedure body into AS₁. The states are transformed by considering every state in *Statedict*. The implicit states implied from services, continuous signals and enabling conditions are already included in the AS₀ states that are to be transformed. During the transformation, new states implied by import expressions may be added to *Statedict*

Parameters

transformedstates The AS₀ names of the states which already have been transformed. When transform-statelist initially is applied, the set is empty

Fascicle X.4 – Rec. Z.100 – Annex F.2

188

Result	The AS_1 states and a <i>Dict</i> updated with information about the implicit variables (the IMPLIED entry) implied by import expressions used in the process or procedure and updated to include the output signals (the <i>OUTSIGNALS</i> entry) used in the process or procedure.					
Algorithm						
Line 1	Extract the Statedict from Dict					
Line 2	When the transformed states are all states in <i>Statedict</i> then return.					
Line 5	Let stnm denote a state which has not been transformed.					
Line 6-7	If the state contained continuous signals or enabling conditions then the state has been replaced by a number of implicit states and is therefore not transformed.					
Line 9	Decompose the <i>Statedict</i> descriptor of the state. If <i>importinf</i> is dif- ferent from nil then the state is an import state (see the definition of <i>Importstateinf</i>).					
Line 10	Let <i>currentstate</i> denote the state name to be inserted in the next- state dash of the input transitions. If the state in hand is an implicit state implied from an import expression then the state name is found in the <i>StateD</i> descriptor.					
Line 11	Transform the inputs and the save of the state.					
Line 12-14	If the state is an implicit state implied from import then the AS_1 ac- tion which uses the implicit import variable must be inserted in the transformed state. This action was not inserted while transform- ing the import expression because it is during the transformation of expressions that the import states are constructed.					
Line 16	Construct the AS ₁ state node.					
Line 17	Transform the rest of the states.					
Line 18	Join the constructed state with the rest of the states and also return the updated $Dict$					

(3.7.6.2)

transform-statespecl(stnm, statespeclist)(dict) \triangleq

```
(let (saveset, statespeclist') =
1
```

2 if $(\exists i \in ind statespeclist)(is-Savespec_0(s-Statespec_0(statespeclist[i])))$ then 3 (let i bes.t. (is-Savespec_0(s-Statespec_0(statespeclist[i]))) in 4 let mk-Savespec₀(sigl) = s-Statespec₀(statespeclist[i]) in 5 let sigqualset = transform-signallist(sigl)(dict) in 6 $(sigqualset, \langle statespeclist[n] | 1 \le n \le len statespeclist \land n \ne i \rangle))$ 7 else 8 ({},statespeclist) in 9 let $dict' = dict + [SCOPEUNIT \mapsto process-level(dict(SCOPEUNIT))]$ in 10 let $varset = \{qual \in dom \ dict \mid is \cdot VarD(dict(qual)) \land process \cdot level(qual) = dict'(SCOPEUNIT)\}$ in let $xtQUERYspec_0 = as_0 - xtQUERY - inputs(varset, stnm)(dict)$ in 11 let $(as_1 nodeset, dict') = transform-input(stnm, statespeclist' \frown xtQUERYspec_0)(dict)$ in 12 13 let $saveset_1 = mk-Save-signalset_1(make-as_1idset(saveset)(dict))$ in 14 $(saveset_1, as_1 nodeset, dict'))$

 $\texttt{type}: \quad Statename_0 \ Speclist \rightarrow Dict \rightarrow Save-signalset_1 \ Input-node_1\text{-set} \ Dict$

Objective Transform a state into AS₁

Parameters

Re

stnm	The name of the state. It is inserted in the nextstate dash in the state
states peclist	The Speclist containing the input transitions of the state
sult	The AS_1 save node and the AS_1 input nodes

Algorithm

Line 1-8	Let saveset denote the Signalqual set containing the signals which are saved in the state and let statespeclist' denote the modified Speclist where the save has been removed (if any).
Line 2	If there exist a save in the Speclist then
Line 3-4	Extract the save from the Speclist.
Line 5	Transform the signals in the save.
Line 6	Remove the save from the Speclist
Line 9-10	Update SCOPEUNIT to denote the surrounding process. <i>dict'</i> is only used for extracting the variables local to the process (line 10).
Line 11	Construct the AS_0 input transitions for the xtQUERY signals.
Line 12	Transform the input transitions where the xtQUERY inputs have been added.
Line 13	Construct the AS_1 save node from the set of Signal quals.
Line 14	Return the save node and the input nodes

as_0 -xtQUERY-inputs(exportset, stnm)(dict) \triangleq

```
(if exportset = \{\} then
 1
 2
           \langle \rangle
 3
          else
           (let qual \in exportset,
 4
                  term = \mathbf{mk} \cdot Next state_0(stnm),
 5
                  mk-VarD(tq,, export,,) = dict(qual) in
 6
 7
             if export = nil then
 8
                as_0-xtQUERY-inputs(exportset \setminus \{qual\}, stnm)(dict)
 9
               else
10
                (let (,nm) = qual[len qual],
                       mk-SignalnamesD(imp, xq, xr) = exportmap((tq, nm)) in
11
                 let sigelem = \langle \mathbf{mk}-Outputsig<sub>0</sub>(\mathbf{mk}-Id<sub>0</sub>(\langle \rangle, xr), \langle \mathbf{mk}-Id<sub>0</sub>(\langle \rangle, imp)\rangle) in
12
13
                 let xroutput = mk-Output_0(sigelem, mk-Senderexpr_0(), \langle \rangle) in
14
                 let xrtrans = mk-Transition_0(\langle mk-Actstmt_0(nil, xroutput) \rangle, term) in
                 \textbf{let } \textit{xqinput} = \textbf{mk-}\textit{Inputspec}_0(\langle \textbf{mk-}\textit{Inputvars}_0(\textbf{mk-}\textit{Id}_0(\langle \rangle,\textit{xq}), \langle \rangle) \rangle, \textbf{nil},\textit{xrtrans}) \textbf{ in}
15
                 \langle (dict(\mathsf{SCOPEUNIT}), xqinput) \rangle \frown as_0 \cdot xtQUERY \cdot inputs(exportset \setminus \{qual\}, stnm)(dict))) \rangle
16
```

(3.7.6.3)

```
type: Qual-set Name_0 \rightarrow Dict \rightarrow Speclist
```

Objective Create AS_0 input nodes for all the signals, implied from export, for a process as defined in §4.13 of Z.100

Parameters

exportset	The set of variable Quals defined in the exporting process	
stnm	The name of the state to which the implicit inputs are to be at- tached to.	
Result	See the definition of Speclist	
Algorithm		
Line 1	When through, return nothing (the function is recursive).	
Line 4	Let qual denote a variable Qual in the set.	
Line 5	Construct the AS ₀ nextstate node which follows the implicit inputs.	
Line 6	Decompose the descriptor of the variable.	
Line 7	If it is not an exported variable then continue to consider the next variable.	
Line 10	Extract the name of the exported variable.	

Line 11	Decompose the SignalnamesD descriptor (see the definition of $Exportmap$) common for all export variables in the system having that name (nm) and that sort (tq) . imp denotes the name of the implicit variable attached to the export variable, xq is the name of the xtQUERY signal and xr is the name of the xtREPLY signal.
Line 13	Create the AS ₀ output node which sends the xtREPLY signal.
Line 14	Create the transition which directly follows the input node.
Line 15	Create the input node which contains the xtQUERY signal.
Line 16	Return the <i>Spec</i> containing the complete input transition (<i>xqinput</i>) joined with the <i>Speclist</i> for the rest of the export variables

 $transform-input(stnm, statespecl)(dict) \triangleq$

1 (if statespec $l = \langle \rangle$ then 2 ({},*dict*) 3 else (let (scope, node) = hd statespecl in4 5 let labeldict' =if is-ServiceD(dict(scope)) 6 7 then s-Labeldict(dict(scope)) 8 else dict(LABELDICT) in let $dict' = dict + [SCOPEUNIT \mapsto scope]$, 9 10 LABELDICT \mapsto labeldict'] in 11 **cases** node: 12 (mk-Priinput₀(inputvars, trans), 13 **mk**-Inputspec₀(inputvars, , trans) \rightarrow (let (as₁ set', dict'') = transform-input-transition(stnm, inputvars, trans)(dict') in 14 let (as₁ rest, dict^{'''}) = transform-input(stnm, tl statespecl)(dict'') in 15

16 $(as_1 set' \cup as_1 rest, dict'')))))$

 $\textbf{type}: \quad Statename_0 \ Speclist \rightarrow Dict \rightarrow Input\text{-}node_1\text{-}\textbf{set} \ Dict$

Objective Transform the input transitions of a state and update *dict* with information about implicit variables and with output signals.

Parameters

stnm	The name of the state
statespecl	The Speclist for the state.
Result	The set of AS_1 input nodes for the state.
Algorithm	
Line 1	When through, return the empty set.
Line 4	Decompose the next Spec to be considered.
Line 5	Extract the <i>Labeldict</i> for the scopeunit. If the input transition originates from a service (before they were merged) then extract it from the service descriptor.
Line 9	Update SCOPEUNIT in <i>Dict</i> to denote the scopeunit from which the input transition originates and update LABELDICT to denote the <i>Labeldict</i> of the scopeunit.
Line 12-13	decompose the present input transition.
Line 14	Create a set of AS_1 input nodes for all signals in the AS_0 input node.
Line 15	Transform the rest of the input transitions
Line 16	Add the newly created input nodes to the rest.

(3.7.6.4)

 $transform-input-transition(stnm, inpvars, trans)(dict) \triangleq$

1 (if inpvars = $\langle \rangle$ then

- 2 $(\{\}, dict)$
- 3 else
- 4 $(let (vl_1, sigg) = transform-inputvars(hd inpvars)(dict) in$
- 5 let $as_1 sigid = make-as_1$ -identifier(sigg)(dict) in
- 6 let $(trans_1, dict') = transform-transition(stnm, trans, \langle \rangle)(dict)$ in
- 7 let inputnode = mk-Input-node₁ (as₁ sigid, vl₁, trans₁) in
- 8 let (inprest, dict'') = transform-input-transition(stnm, tl inpvars, trans)(dict') in
- 9 $(\{inputnode\} \cup inprest, dict'')))$

 $Statename_0 \ Input vars_0^+ \ Transition_0 \rightarrow Dict \rightarrow Input \text{-} node_1 \text{-} set \ Dict$ type :

Objective Transform an input transition into AS₁

Parameters

stnm	The name of the state
inpvars	The list of pairs of signal and parameters for the input
trans	The transition which follows the input
Result	The set of AS_1 input nodes. There are as many input nodes as there are pairs of signal and parameters in the AS_0 input nodes.
Algorithm	
Line 1	When through all the pairs of signal and parameters then return the empty set.
Line 4	Construct the AS_1 parameter list (vl_1) and the signal Qual from the first pair of AS_0 signal and parameters.
Line 5	Construct the AS_1 identifier of the signal.
Line 6	Transform the transition.

Line 7 Construct the AS_1 input node for the signal.

Line 8 Construct the AS₁ input nodes for the rest of pairs of signal

Line 9 Return the AS₁ input nodes joined with the rest of AS₁ input nodes. and parameters

 $transform-inputvars(mk-Inputvars_0(sigid, varl))(dict) \triangleq$

1 (let squal = signal-qual(sigid)(dict)) in let $tguallist = cases \ dict(squal)$: 2 3 $(\mathbf{mk}$ -SignalD $(tquallist, ,) \rightarrow tquallist,$ mk-TimerD(tquallist,) \rightarrow tquallist) in 4 $\mathbf{5}$ if (len varl = len tquallist) then 6 (let vl = transform-inputvarlist(varl, tquallist)(dict) in 7 (vl, squal))8 else 9 exit("§2.6.4: Wrong number of parameters in input node"))

type: $Inputvars_0 \rightarrow Dict \rightarrow [Variable-identifier_1]^*$ Signalqual

Objective Construct the AS₁ variable list of an input node and extract the Qual of the input signal

Parameters

sigid	The AS_0 signal identifier
varl	The AS ₀ variable list

(3.7.6.6)

Algorithm

Line 1	Let squal denote the Qual of the signal.
Line 2-4	Let <i>tquallist</i> denote the list of sorts for the parameters for the signal.
Line 5	The length of the sort list must be equal to the length of the vari- able list.
Line 6-7	Transform the variable list into AS_1 and return it together with the signal $Qual$

transform-inputvarlist(varl, sortlist)(dict) \triangleq

(if $varl = \langle \rangle$ then 1 2 $\langle \rangle$ 3 else 4 (let restvl = transform-inputvarlist(tl varl, tl sortlist)(dict) in 5 if hd varl = nil then(nil) ~ restvl 6 7 else 8 (let vqual = get-visible-variable(hd varl, {get-parent(hd sortlist)(dict)}, false)(dict) in 9 let mk-VarD(, , , , nqual) = dict(vqual) in 10 let $as_1 id = make - as_1 - identifier(nqual)(dict)$ in 11 $\langle as_1 id \rangle \frown restvl)))$

type: $[Varid_0]^*$ Sortqual^{*} \rightarrow Dict \rightarrow $[Variable-identifier_1]^*$

Objective Construct the AS₁ variable list to be attached to an input node

Parameters

varl	The AS ₀ variable list
sortlist	The sort list for the signal

Algorithm

Line 1	When through, return the empty list.
Line 4	Transform the tail of the list.
Line 5	If the first variable is omitted then return a nil object.
Line 8	Extract the Qual of the first identifier by looking at the context
Line 10	Construct the AS ₁ variable identifier
Line 11	Return the AS_1 variable identifier joined with the variable identifiers for the rest of the list

 $insert-importact(impact, signalset_1) \triangleq$

- $(let mk-Input-node_1(replyid, val, trans) \in signalset_1$ in 1
- let mk-Transition₁(nodes, term) = trans in 2
- 3 if is-Decision-node1 (impact) then
- 4 {**mk**-Input-node₁(replyid, val, **mk**-Transition₁(nodes, impact))}
- $\mathbf{5}$ else
- $\{mk-Input-node_1(replyid, val, mk-Transition_1(nodes \frown (impact), term))\})$ 6

type: $(Graph-node_1 | Decision-node_1)$ $Input-node_1$ -set \rightarrow $Input-node_1$ -set

Objective Insert an AS_1 action in an AS_1 input node containing the xtREPLY signal. This action was constructed in connection with the transformation of an expression which contain import expressions. As import expressions are expanded into AS₀ states, the action could not be inserted until the state has been transformed

(3.7.6.8)

(3.7.6.7)

Parameters

impact	The AS ₁ action to be inserted
$signalset_1$	The $\mathbf{AS_1}$ input node set which consist of the $\mathbf{xtREPLY}$ input node only
Result	The modified AS_1 input node set containing the xtREPLY input node
Algorithm	
Line 1	Decompose the AS ₁ input node.
Line 2	Decompose the contained transition.
Line 3	If the node to be inserted is an decision (in the case where a ques- tion contained import expression) then
Line 4	Replace the terminator by the decision action else
Line 6	Append the action to the action list

3.7.7 Transformation of Transition Strings

$transform$ - $transition(tnm, mk$ - $Transition_0(actl, term), nodes_1)(dict) \triangleq$	(3.7.7.1)
--	-----------

-1	$(if act l = \langle \rangle then$
2	(let mk- $Termstmt_0(, t) = term$ in
3	cases t:
4	$(\mathbf{mk}-Nextstate_0(stnm))$
5	\rightarrow if $tnm = nil \land stnm = nil$
6	then exit("§4.9: Dash nextstate in initial transition")
7	else (let $statedict = dict(STATEDICT)$ in
8	let $stnm' = if stnm = nil then tnm else stnm in$
9	let $next state =$
10	$\mathbf{if} \ tnm = \mathbf{nil} \land \mathbf{is} \text{-} ServiceD(dict(dict(SCOPEUNIT))) \land stnm' \notin \mathbf{dom} \ statedict \ \mathbf{then}$
11	(let (, servicelist) = dict(SERVICES) in
12	$extract-initial-state(servicelist, stnm', \langle \rangle)(dict))$
13	else
14	if is-Service $D(dict(dict(SCOPEUNIT))) \land stnm' \notin \mathbf{dom} \ statedict$
15	then extract-servicestate(tnm, stnm')(dict)
16	else <i>stnm'</i> in
17	if $next state \in dom statedict$ then
18	if is-ContenablestateD(statedict(nextstate)) then
19	(let $trans = s$ - $Transition_0(statedict(nextstate))$ in
20	$transform$ - $transition(tnm, trans, nodes_1)(dict))$
21	else
22	$(mk-Transition_1(nodes_1, mk-Nextstate-node_1(name-to-name_1(nextstate))), dict)$
23	
24	exit("§2.6.7.2.1: Name in nextstate must denote a defined state")),
25	\mathbf{mk} -Stop ₀ ()
26	$\rightarrow (\mathbf{mk}-Transition_1(nodes_1,\mathbf{mk}-Stop-node_1()),dict),$
27	$\mathbf{mk} \cdot \mathbf{Return}_{0}()$
20	$\rightarrow (\mathbf{mk} - Iransition_1(nodes_1, \mathbf{mk} - Return - node_1()), dict),$
29	$\frac{\operatorname{Ink} - J \operatorname{Om}_{0}(l)}{\operatorname{Ink} - \operatorname{Ink} - \operatorname$
30	$\Rightarrow (\text{let iddetaict} = dict(\text{LADEEDICT}) \text{ In }$ if $l \in \text{dom labeldict then}$
32	(let trans - labeldist(l)) in
33	transform-transition(trans nodes.)(dict))
34	alea
35	exit("\$2.6.7.2.2" Label in join is not defined"))))
36	else
37	$(let (tran_1, dict') = transform-act(tnm, actl, term, nodes_1)(dict) in$
38	cases tran:
39	$(\mathbf{mk}-Transition_1(,))$
40	\rightarrow (tran ₁ , dict'),
41	$T \rightarrow transform-transition(tnm, mk-Transition_0(tl actl, term), nodes_1 \frown tran_1)(dict'))))$
type :	$[Statename_0]$ Transition ₀ Graph-node ₁ * \rightarrow Dict \rightarrow Transition ₁ Dict
Objec	tive Transform a transition into AS ₁
Paran	neters
tn	The name of the state containing the transition. If <i>tnm</i> is nil then the transition is an initial transition

actl	The action list of the transition
term	The terminator of the transition
nodes ₁	The nodes (from the transition) which already have been trans- formed

Result The AS₁ transition

Algorithm

Line	1-35	When through the action list then transform the terminator.
Line	4	If the terminator is a nextstate then it must not contain a dash if
		it is contained in the initial transition.
Line	7	Let statedict denote the Statedict of the process.
Line	8	Let stnm' denote the name in the nextstate if it is specified, oth-
		erwise it denotes the name of the state leading to the nextstate.
Line	9-16	Let nextstate denote the name of the next state.
Line	9-12	If it is the initial transition and the scopeunit is a service and it is
		not a nextstate leading to an import state then extract the state
		name of the next state by considering the nextstate nodes in the
		initial terminator of all services.
Line	14	If the scopeunit is a service and the state name cannot be found
		in Statedict (because the explicit states in the services have been
		merged and each new state in statedict have a distinct new name)
		then extract the distinct new state by considering the old service
. .		state name and the new service state name.
Line	17	Ine name of the next state must be defined.
Line	18-20	If the nextstate leads to a state which has been replaced by a
		transition only and this transition replaces the nextstate node
Line	99	Construct the AS, transition containing the transformed actions
Dine	~~	(nodes,) and the nextstate node.
Line	25	If the terminator is a stop then construct the AS ₁ transition con-
11.00	~~	taining a stop node.
Line	27	If the terminator is a return then construct the AS ₁ transition
		containing a return node.
Line	29	If the terminator is a join then let <i>labeldict</i> denote the <i>Labeldict</i> for
		the scopeunit.
Line	31	The label must be defined.
Line	32	Extract the transition where the label is defined.
Line	33	Replace the join by that transition.
Line	37	If there are more actions in the transition then transform the first
		action in the action list. Note that although only the first action
_		is transformed, the full action list is given as parameter.
Line	39	If the result of transforming the first action is a full transition then
		the first action contains import expressions and the transition is
T in a	11	returned. Otherwise transform the rest of the actions
Line	4 J	Otherwise transform the rest of the actions

 $extract-initial-state(servicelist, next state, statelist)(dict) \triangleq$

1	(if $servicelist = \langle \rangle$ then
2	(let (statetuplemap,) = dict(SERVICES) in
3	if statelist \in dom statetuplemap then
4	statetuplemap(statelist)
5	else
6	exit("§2.6.7.2.1: Name in nextstate must denote a defined state"))
7	else
8	if hd $servicelist = dict(SCOPEUNIT)$ then
9	$extract$ -initial-state(tl servicelist,, statelist \frown (nextstate))(dict)
10	else
11	(let mk-ServiceD(trans, , , ,) = dict(hd servicelist) in
12	let mk -Transition ₀ (, mk -Termstmt ₀ (, mk -Nextstate ₀ (stnm))) = trans in
13	$extract-initial-state(tl servicelist, next state, statelist \frown (stnm))(dict)))$
type	: Servicetuple Statename ₀ Statename ₀ [*] \rightarrow Dict \rightarrow Statename ₀

(3.7.7.2)

Objective	Extract the first (composite) state in the case where the states con- sist of merged service states and one of the services contains an initial transition		
Parameters			
servicelist nextstate statelist	The list of service <i>Quals</i> matching the state name tuple (<i>statelist</i>) The name of the next service state The state name tuple		
Result	The deduced (unique) state name		
Algorithm			
Line 1	When having considered the initial nextstates of all services then		
Line 2	Let statetuplemap denote the relation between the state name tuples and the associated unique names.		
Line 3	The constructed state name tuple for nextstates must be included in <i>statetuplemap</i> , otherwise there is one of the nextstates which contains an undefined state name.		
Line 4	Return the unique state name corresponding to the service next- states.		
Line 8-9	If the service to be considered is the current one then add the nextstate name to the state name tuple before considering the rest of the services. The name in the nextstate of the current service in not used by the function any longer (therefore "").		
Line 11	Let trans denote the initial transition of the service to be considered (it has an empty action list).		
Line 12	Let stnm denote the name of the state in its initial nextstate node.		
Line 13	Add the state name to the state name tuple before considering the rest of the services		

 $extract-servicestate(oldstate, stnm)(dict) \stackrel{\Delta}{=}$

1 (let ((statetuplema	p, servicelist) = dict	(SERVICES)) in
-----	-------	---------------	----------------	----------	------------	------

- 2 let statelist be s.t. statelist \in dom statetuplemap \land statetuplemap(statelist) = oldstate in
- 3 let index bes.t. servicelist[index] = dict(SCOPEUNIT) in
- 4 let newstatelist = $\langle statelist[i] | 1 \leq i < index \rangle$
- 5 $\langle stnm \rangle$

```
6 \qquad \langle statelist[i] \mid index < i \leq len \ statelist \rangle \ in
```

- 7 if newstatelist \in dom statetuplemap then
- 8 statetuplemap(newstatelist)
- 9 else

10 exit("§2.6.7.2.1: Name in nextstate must denote a defined state"))

 $\mathbf{type}: \quad Statename_0 \ Statename_0 \rightarrow Dict \rightarrow Statename_0$

Objective From the name of an old (but unique) state and the name of a new service state extract the name of the unique state which is defined in *Statedict*

Algorithm

Line 1	Let statetuplemap denote the relation between the state name tu- ples and the unique state names. Let servicelist denote the list of service Quals which matched the state name tuples.
Line 2	Let <i>statelist</i> denote the state name tuple which correspond to the old state name.
Line 3	Let index denote the index to the current service.
Line 4-6	Overstrike the state name tuple with the new state name at the position indicated by index.

(3.7.7.3)

Line 7-8 If there exist a unique state name for this state name tuple then return the unique name else the new service state name is not defined

3.7.8 Transformation of Action Statements

In this subsection, action statements are transformed into AS_1 . To every transformation function the name of the state containing the action statement, the action statements following the action statement, the terminator following the rest of the action statements and the action statements which already have been transformed are given (see *transform-act*). The import expressions in the action statement are represented by an implicit variable in the AS_1 action statement. If the action statement contained any import expressions then a complete *Transition*₁ containing the previously transformed nodes and a nextstate to the implicit state is returned instead and *Statedict* is updated to include the *StateD* descriptor which contains information about the implicit state, the action statements following the action statement, the terminator following the action statements, the name of the state following the action statements and the transformed node (see the definitions of *StateD* and especially *Importstateinf*)

transform-act(tnm, actl, term, nodes₁)(dict) \triangleq

```
(3.7.8.1)
```

```
1 (let mk-Actstmt_0(, act) = hd actl in
```

2	cases act:	,
3	(mk-Task ₀ (stmtl)	\rightarrow transform-stmtlist(tnm, stmtl, tl actl, term, nodes ₁)(dict),
4	mk - $Output_0(,,)$	\rightarrow transform-output(tnm, act, tl actl, term, nodes ₁)(dict),
5	mk-Prioutput ₀ ()	\rightarrow transform-prioutput(tnm, act, tl actl, term, nodes ₁)(dict),
6	\mathbf{mk} -Create ₀ (,)	\rightarrow transform-create(tnm, act, tl actl, term, nodes ₁)(dict),
7	\mathbf{mk} -Decision ₀ $(,,)$	\rightarrow transform-decision(tnm, act, nodes ₁)(dict),
8	mk-Option ₀ (,,)	\rightarrow transform-option(tnm, act, nodes ₁)(dict),
9	\mathbf{mk} -Reset $_0()$	\rightarrow transform-reset(tnm, act, tl actl, term, nodes ₁)(dict),
10	\mathbf{mk} -Set ₀ ()	\rightarrow transform-set(tnm, act, tl actl, term, nodes ₁)(dict),
11	\mathbf{mk} -Export ₀ (idl)	$\rightarrow (\langle transform\text{-}export(idl[i])(dict) \mid 1 \leq i \leq \text{len } idl \rangle, dict),$
12	mk - $Call_0(,)$	\rightarrow transform-call(tnm, act, tl actl, term, nodes ₁)(dict)))

 $\textbf{type}: [Statename_0] \ Actstmt_0^+ \ [Termstmt_0] \ Graph-node_1^* \rightarrow Dict \rightarrow (Transition_1 \ | \ Graph-node_1^+) \ Dict$

Objective Transform an action statement into AS₁

Parameters

tnm	The name of the state to which the action statement belongs. The name is used for replacing nextstate dash
actl	The action statement list. The first action statement in this list is the one which is transformed. The rest is only used if the action statement contains import expressions
term	The terminator which follows the action statement list. The ter- minator is only used if the action statement contains import ex- pressions
$nodes_1$	The previous nodes which already have been transformed.
Result	A $Graph-node_1$ if the action statement contains no import expressions, otherwise a $Transition_1$ which terminates at the implicit import state. Dict is updated to include information about the output signals and the implicit variables
Algorithm	
Line 1-2	Transform an action (act) which is either.
Line 3	A task.

198 Fascicle X.4 – Rec. Z.100 – Annex F.2

Line 4	Or an output.
Line 5	Or a priority output.
Line 6	Or a create request.
Line 7	Or a decision.
Line 8	Or an option.
Line 9	Or a timer reset.
Line 10	Or a timer set.
Line 11	Or an export.
Line 12	Or a procedure call
	Note that the label in the $Actstmt_0$ is not used any longer as the association information about it is contains in the Labeldict

(3.7.8.2)

transform-stmtlist(tnm, stmtl, actl, term, nodes₁)(dict) \triangleq

1 (if $stmtl = \langle \rangle$ then 2 $(nodes_1, dict)$ 3 else 4 $(let (as_1 task, d) = cases hd stmtl:$ 5 $(\mathbf{mk}-Assignstmt_0(,))$ 6 \rightarrow transform-assign(hd stmtl)(dict), 7 mk-Text₀(text) 8 \rightarrow (transform-informal(text), dict)) in if $d(\mathsf{IMPORTLIST}) = \langle \rangle$ then 9 10 transform-stmtlist $(tnm, tl stmtl, actl, term, nodes_1 \frown as_1 task)(d)$ 11 else 12 (let $rest = if tl stmtl = \langle \rangle then \langle \rangle else \langle mk-Task_0(tl stmtl) \rangle in$ 13 let (outputtrans, d') = transform-import(tnm, as₁ task, rest \frown actl, term)(d) in transform- $transition(tnm, output trans, nodes_1)(d'))))$ 14

type :	$[Statename_0] (Assignstmt_0^* \mid Text_0^*) Actstmt_0^* [Termstmt_0] Graph-node_1^* \rightarrow \\$
	$Dict \rightarrow (Transition_1 \mid Graph-node_1^+) Dict$

Objective Transform a statement list into AS₁

Parameters

stmtl tnm, actl, tanm	The statement list to be transformed
$nodes_1$	See transform-act and the introduction to this subsection
Result	See transform-act and the introduction to this subsection
Algorithm	
Line 1	When through, return the list of AS_1 task nodes each containing a statement and return the updated <i>Dict</i> .
Line 4-7	Let as ₁ task denote the task of the first statement in the list.
Line 5	If the first statement is an assignment then transform it.
Line 7	If the first statement is informal text then transform it and leave <i>Dict</i> unchanged.
Line 9-10	If there are no import expressions in the statement then transform the rest of the statements else
Line 12	Construct a task which contains the rest of the statements (if there are any).
Line 13	Update Statedict to include information about the implicit state and construct the transition which contains the action statements

which previously have been transformed, the output of the xt-

QUERY signal and the nextstate to the implicit state.

Line 14

Transform the constructed transition

 $transform-informal(text) \triangleq$

```
1 (let mk-Text_0(t) = text in
```

```
2 mk-Task-node<sub>1</sub>(mk-Informal-text<sub>1</sub>(t)))
```

```
type: Text_0 \rightarrow Informal-text_1
```

Objective Transform informal text into its AS₁ representation.

transform-assign(mk-Assignstmt₀(vid, expr))(dict) \triangleq

1	(if is- $Id_0(vid)$ then
2	(let sortset = all-visible-sorts(dict)) in
3	let (, sortset',) = transform-expr(expr, EXPRESSION, sortset)(dict) in
4	let $qual = get$ -visible-variable(vid, sortset', false)(dict) in
5	let mk - $VarD(q,, vqual) = dict(qual)$ in
6	let $(as_1 tree, d) = transform-expr(expr, EXPRESSION, \{get-parent(q)(dict)\})(dict)$ in
7	let $as_1 id = make-as_1$ -identifier(vqual)(dict) in
8	let $as_1 assign = mk-Assignment-statement_1(as_1 id, as_1 tree)$ in
9	$(\mathbf{mk}\text{-}\mathit{Task}\text{-}\mathit{node}_1(\mathit{as}_1\mathit{assign}), d))$
10	else
11	transform-modify assign(vid, expr)(dict))

(3.7.8.3)

(3.7.8.4)

```
type: Assignstmt_0 \rightarrow Dict \rightarrow Task-node_1 Dict
```

Objective	Transform an assignment statement into AS_1
Parameters	The assignment statement containing
vid	The variable to be assigned
expr	The right-hand side expression

 \mathbf{Result}

The AS_1 assignment and a *Dict* updated to include information about import expressions in *expr* and implicit variables

Algorithm

Line 1	If the variable is an identifier then
Line 2-4	Construct its <i>Qual</i> by extracting the sorts which matches the expression (line 3) and by using those sorts when resolving the right- hand side by context (line 4).
Line 5	Decompose the variable descriptor. let q denote the qual of its sort and let vqual denote its unique Qual (differs in case of services).
Line 6	Transform the right-hand side expression which must be of the sort q .
Line 7	Construct the AS_1 identifier from its unique Qual.
Line 8	Construct the AS_1 assignment statement.
Line 9	Construct and return the task which contains the assignment state- ment.
Line 11	If the variable is not an identifier then the assignment is a short- hand notation for the MODIFY! or field modify operator

```
1
        (let makeexpr(var) =
   2
             if is-Indexedvar<sub>0</sub>(var) then
               mk-Operatorapp<sub>0</sub>(makeexpr(s-Variable<sub>0</sub>(var)), s-Exprlist<sub>0</sub>(var))
   3
   4
               else
   5
               if is-Fieldvar<sub>0</sub>(var) then
   6
                  mk-Selectexpr<sub>0</sub>(makeexpr(s-Expr<sub>0</sub>(var)), s-Name<sub>0</sub>(var))
   7
                 else
   8
                  var in
   9
         cases vid:
 10
          (mk-Indexedvar<sub>0</sub>(vid', exprlist)
              \rightarrow (let opid = mk - Id_0(\langle \rangle, mk - Name_0("MODIFY", EXCLAMATION)) in
 11
 12
                  let vid'' = makeexpr(vid') in
 13
                  let righthandside = mk-Operatorapp<sub>0</sub>(opid, \langle vid'' \rangle \frown exprlist \frown \langle expr \rangle) in
 14
                  let (as_1 node, dict') =
 15
                      (trap exit with (nil, dict) in
                        transform-assign(mk-Assignstmt_0(vid', righthandside))(dict)) in
 16
 17
                  let (as_1 node', dict'') =
 18
                      if is-Id_0(exprlist[len exprlist]) \land
 19
                        s-Qualifier<sub>0</sub>(exprlist[len exprlist]) = \langle \rangle then
 20
                         (let field = s-Name<sub>0</sub>(exprlist[len exprlist]) in
 21
                          let vid'' = if len exprlist = 1 then
 22
                                          vid'
 23
                                         else
 24
                                          mk-Indexedvar<sub>0</sub>(vid', \langle exprlist[i] | 1 < i < \text{len } exprlist - 1 \rangle) in
 25
                          let vid''' = mk-Fieldvar<sub>0</sub>(vid'', field) in
 26
                          trap exit with (nil, dict) in
 27
                          transform-assign(mk-Assignstmt_0(vid''', expr))(dict))
 28
                        else
 29
                         (nil, dict) in
 30
                  (as_1 node = nil \land as_1 node' \neq nil
 31
                      \rightarrow (as<sub>1</sub> node', dict''),
 32
                   as_1 node \neq nil \wedge as_1 node' = nil
 33
                      \rightarrow (as<sub>1</sub> node, dict'),
 34
                   T \rightarrow exit( "§5.5.3: None or multiple expansions of modify assignment" ))),
 35
           mk-Fieldvar<sub>0</sub>(vid', mk-Name<sub>0</sub>(str, ))
              \rightarrow (let opid = mk - Id_0(\langle \rangle, mk - Name_0(str \frown "MODIFY", EXCLAMATION)) in
 36
 37
                  let righthandside = mk-Operatorapp<sub>0</sub>(opid, \langle vid', expr \rangle) in
 38
                  transform-assign(mk-Assignstmt_0(vid', righthandside))(dict))))
           Variable_0 Expr_0 \rightarrow Dict \rightarrow Task-node_1 Dict
type:
Objective
                         Transform an assignment of an indexed variable or a field variable into
                         AS_1
Parameters
     vid
                               The left-hand side variable
                               The right-hand side expression
     expr
Result
                         The task node which contains the AS<sub>1</sub> representation of the assignment
                         shorthand
Algorithm
     Line 1-8
                               Construct a recursive function which converts an indexed left-hand
                               side to an indexed right-hand side (i.e. an operator application)
                               and a field left-hand side to a field right-hand side (a Selectexpr_0)
     Line 10-16
                               Expand the shorthand of an indexed variable assignment. For ex-
                               ample
```

	v(e1)(e2,e3) := e4
	is expanded into
	v(e1) := MODIFY!(v(e1),e2,e3,e4)
	which via transform-assign is expanded into
	<pre>v := MODIFY!(v,e1,MODIFY!(v(e1),e2,e3,e4))</pre>
	before it is transformed into AS_1 . If the transformation fails, the error is trapped because it may mean that the assignment is the other shorthand (constructed line 17-29).
Line 11	Construct the identifier of the MODIFY! operator and
Line 12	Let vid" denote the converted left-hand side.
Line 13	Construct the new right-hand side.
Line 16	Transform the new assignment statement.
Line 17-29	Expand the parenthesis form of a field select assignment. For ex- ample
	v(e1)(e2,e3) := e4
	is expanded into
	v(e1)(e2)!e3 := e4
	provided e3 is an unqualified identifier. This constructed $Fieldvar_0$ is transformed into AS ₁ and if the transformation fails, the error is trapped because it may mean that the assignment is the other shorthand (constructed line 11-16).
Line 17-19	Unless the last expression in the expression list is an unqualified identifier then this shorthand is not possible.
Line 20	Extract the name of the field
Line 21-24	If there are more expressions in the expression list then construct another $Indexedvar_0$ else return the $Variable_0$ (vid').
Line 25	Construct the field select construct.
Line 26-27	Try to transform the field select assignment.
Line 30-34	There must be one and only one of the two possible expansions which is well-formed.
Line 35-38	Expand a field select assignment for example
	a!b!c := e
	is expanded into
	a!b := cMODIFY!(a!b,e)
	which via transform-assign is expanded into
	a := bMODIFY!(a,cMODIFY!(a!b,e))
	before it is transformed into AS_1 .
Line 36	Construct the identifier of the modify operator, which modifies the field with the spelling <i>str</i> .
Line 37	Construct the new right-hand side.
Line 38	Transform the new assignment statement

transform-reset $(tnm, resetnode, actl, term, nodes_1)(dict) \triangleq$

1 ((let	mk-Reset ₀	(resetlist)) =	resetnode	in
-----	------	-----------------------	-------------	-----	-----------	----

- 2 let $(actl_1, d) = transform$ -reset-elems $(tnm, resetlist, actl, term, nodes_1)(dict)$ in
- 3 if tl resetlist = $\langle \rangle \lor is$ -Transition₁(actl₁) then
- 4 $(actl_1, d)$
- 5 else
- 6 transform-reset(tnm, mk-Reset $_0(tl resetlist), actl, term, nodes_1 \frown actl_1)(d)$
- **type**: [Statename₀] Reset₀ Actstmt₀* [Termstmt₀] Graph-node₁* \rightarrow Dict \rightarrow (Transition₁ | Graph-node₁*) Dict
- **Objective** Transform a reset action into AS₁

Parameters

tnm,	
actl,	
term,	
$nodes_1$	See transform-act
resetnode	The reset action to be transformed

Result

See transform-act

Algorithm

Line 1	Let resetlist denote the list of timers to be reset.
Line 2	Transform the first timer to be reset.
Line 3	If this timer reset is the last in the list (the function is recursive) or if a transition is returned (because of import export expressions in the expression list) then stop the transformation (if the expression list contains import expressions then the rest of the timers will be transformed when the implicit import state is transformed).
Line 6	Else transform the rest of the timer resets

transform-reset-elems $(tnm, resetlist, actl, term, nodes_1)(dict) \triangleq$

- 1 (let mk-Resetelem₀(timerid, actparm) = hd resetlist in
- 2 let squal = get-visible-qual(timerid, SIGNAL)(dict) in
- 3 if is-SignalD(dict(squal)) then
- 4 exit("§2.8: Identifier in reset action is not a timer")
- 5 else

6 (let mk-TimerD(tplist,) = dict(squal) in

7 if len actparm = len tplist then

8	$(let (as_1 a ctparm, d) = transform-actparms(tplist, a ctparm, EXPRESSION)(dict)$ in
9	let $as_1 id = make-as_1$ -identifier(squal)(dict) in
10	let $as_1 tree = \mathbf{mk}$ -Reset-node ₁ ($as_1 id$, $as_1 actparm$) in
11	$\mathbf{if} \ d(IMPORTLIST) = \langle \rangle \ \mathbf{then}$
12	$(\langle as_1 tree \rangle, d)$
13	else
14	$(ext{let } rest = ext{if tl } resetlist = \langle angle ext{ then } \langle angle ext{ else } \langle ext{mk-} Reset_0(ext{tl } resetlist) angle ext{ in }$
15	let (outputtrans, d') = transform-import(tnm, as ₁ tree, rest \frown actl, term)(d) in
16	$transform$ - $transition(tnm, output trans, nodes_1)(d')))$

10 transfe 17 else

18

exit("§2.8: Parameter list length in reset action must equal the length specified in the definition")))

type: [Statename₀] Resetelem₀* Actstmt₀* [Termstmt₀] Graph-node₁* \rightarrow Dict \rightarrow (Transition₁ | Graph-node₁*) Dict

Objective Transform a timer reset into AS₁

(3.7.8.7)
Parameters	See transform-reset
Result	See transform-reset
Algorithm	
Line 1	Decompose the Resetelem ₀ which is going to be transformed.
Line 2	Extract the Qual of the identifier specified.
Line 3	The identifier must denote a timer signal.
Line 6	Let <i>tplist</i> denote the sorts of the expression list specified for the timer.
Line 7	There must be as many expressions in the list as there are sorts for the timer.
Line 8	Transform the expressions.
Line 9	Construct the AS ₁ identifier of the timer.
Line 10	Construct the AS ₁ reset node.
Line 11	If there are no import expressions in the expression list then
Line 12	Return the AS ₁ reset node else
Line 14	Construct an AS_0 reset action of the rest of the timer resets. This action will be attached to the implicit import state.
Line 15	Update $Dict$ with the import state and construct the AS_0 transition which leads to the import state.
Line 16	Transform the transition

(3.7.8.8)

transform-set $(tnm, setnode, actl, term, nodes_1)(dict) \triangleq$

```
1 (let mk-Set<sub>0</sub>(setlist) = setnode in
```

2 le	t (aa	tl_1, a	() =	trans	form-set	elems	(tnm,	setlist,	actl	term	, nodes ₁)((dict) i :	n
------	--------------	-----------	------	-------	----------	-------	-------	----------	------	------	----------------------	----	-------	--------------	---

- 3 if tl setlist = $\langle \rangle \lor$ is-Transition₁(actl₁) then
- 4 $(actl_1, d)$
- 5 else

6 $transform-set(tnm, mk-Set_0(tl setlist), actl, term, nodes_1 \frown actl_1)(d))$

- **type**: [Statename₀] Set₀ Actstmt₀* [Termstmt₀] Graph-node₁* \rightarrow Dict \rightarrow (Transition₁ | Graph-node₁*) Dict
- **Objective** Transform a set action into AS₁

Parameters

tnm,	
actl,	
term,	
$nodes_1$	See transform-act
resetnode	The set action to be transformed

Result

See transform-act

Algorithm

Line 2	Transform the first timer to be set.
Line 3	If this timer set is the last in the list (the function is recursive) or if a transition is returned (because of import export expressions in the expression list) then stop the transformation (if the expression list contains import expressions then the rest of the timers will be transformed when the implicit import state is transformed).
Line 6	Else transform the rest of the timer sets

204 **Fascicle X.4** – Rec. Z.100 – Annex F.2

 $(let mk-Setelem_0(timeexpr, timerid, actparm) = hd setlist in$ 2 let timesort = get-predef-sort("TIME")(dict) in let $(as_1 expr, d) = transform - expr(time expr, EXPRESSION, {timesort})(dict)$ in 3 4 let squal = get-visible-qual(timerid, SIGNAL)(dict) in 5 if is-SignalD(dict(squal)) then exit("§2.8: Identifier in set action is not a timer") 6 7 else 8 (let mk-TimerD(tplist,) = dict(squal) in9 if len actparm = len tplist then 10 $(let (as_1 a ctparm, d') = transform-actparms(tplist, actparm, EXPRESSION)(d)$ in 11 let $as_1 id = make - as_1 - identifier(squal)(dict)$ in 12 let $as_1 tree = \mathbf{mk}$ -Set-node₁($as_1 expr$, $as_1 id$, $as_1 actparm$) in 13 if $d'(\mathsf{IMPORTLIST}) = \langle \rangle$ then 14 $(\langle as_1 tree \rangle, d')$ 15 else 16 (let rest = if tl setlist = $\langle \rangle$ then $\langle \rangle$ else $\langle mk-Set_0(tl setlist) \rangle$ in 17 let (outputtrans, d'') = 18 transform-import(tnm, as_1 tree, rest $\frown actl$, term)(d') in 19 transform- $transition(tnm, output trans, nodes_1)(d'')))$ 20 else 21

exit("§2.8: Parameter list length in set action must equals the length specified in the definition")))

type: [Statename₀] Setelem₀^{*} Actstmt₀^{*} [Termstmt₀] Graph-node₁^{*} \rightarrow $Dict \rightarrow (Transition_1 \mid Graph-node_1^*) Dict$

Objective	Transform a timer set into AS ₁
Parameters	See transform-set

Result See transform-set

Algorithm

1

Line 1	Decompose the Setelemo which is going to be transformed.
Line 2	Let timesort denote the Qual of the time sort.
Line 3	Transform the time expression specified.
Line 4	Extract the Qual of the identifier specified.
Line 5	The identifier must denote a timer signal.
Line 8	Let <i>tplist</i> denote the sorts of the expression list specified for the timer.
Line 9	There must be as many expressions in the list as there are sorts for the timer.
Line 10	Transform the expressions.
Line 11	Construct the AS ₁ identifier of the timer.
Line 12	Construct the AS ₁ set node.
Line 13	If there are no import expressions in the expression list or in the time expression then
Line 14	Return the AS ₁ set node else
Line 16	Construct an AS_0 set action of the rest of the timer sets. This action will be attached to the implicit import state.
Line 17	Update <i>Dict</i> with the import state and construct the AS_0 transition which leads to the import state.
Line 19	Transform the transition

transform-export(id)(dict) \triangleq

- 1 (let sortset = all-visible-sorts(dict) in
- 2 let qual = get-visible-variable(id, sortset, true)(dict) in
- 3 let mk-Signalnames $D(impnm, ,) = exportmap((s-Sortqual(dict(qual)), s-Name_0(id)))$ in
- 4 let $as_1 id = make-as_1$ -identifier(qual)(dict),
- 5 $as_1 id' = make-as_1 identifier(impnm)(dict)$ in
- 6 $(\mathbf{mk} Task node_1(\mathbf{mk} Assignment statement_1(as_1id', as_1id))))$

 $\mathbf{type}: \quad Varid_0 \rightarrow Dict \rightarrow Task-node_1$

Objective Parameters	Transform an export action into an AS ₁ assignment statement
id	The AS_0 identifier of the exported variable
Result	An AS ₁ task containing the constructed assignment statement
Algorithm	
Line 1-2	Construct the Qual of the exported variable by using the context.
Line 3	Let <i>impnm</i> denote the name of the implicit variable attached to the exported variable
Line 4-5	Construct the AS ₁ identifiers of the explicit export variable $(as_1 id)$ and of the implicit export variable $(as_1 id')$ and
Line 6	Return the task which assigns the explicit variable to the implicit variable

3.7.8.1 Transformation of Output Nodes

 $transform-prioutput(tnm, mk-Prioutput_0(outputsigs), actl, term, nodes_1)(dict) \triangleq (3.7.8.1.1)$

- 1 (let self = mk-Selfexpr₀() in
- 2 let $(actl_1, d) = transform-output-elems(tnm, outputsigs, self, \langle \rangle, actl, term, nodes_1, true)(dict)$ in
- 3 if the output sigs = $\langle \rangle \lor$ is Transition₁(actl₁) then
- 4 $(actl_1, d)$
- 5 else

```
6 transform-prioutput(tnm, mk-Prioutput_0(tl outputsigs), actl, term, nodes_1 \frown actl_1)(d))
```

type: [Statename₀] Prioutput₀ Actstmt₀^{*} [Termstmt₀] Graph-node₁^{*} \rightarrow Dict \rightarrow (Transition₁ | Graph-node₁^{*}) Dict

Objective	Transform a priority output action into a sequence of AS ₁ output ac-
	tions (one for each signal mentioned)

Parameters

tnm,	
actl,	
term,	
$nodes_1$	See transform-act
output sigs	A list of outputs contained in the priority output action
Result	See transform-act
Algorithm	

Line 1-6 The algorithm follows the same scheme as for transform-reset The argument true to the function transform-output-elems indicates that the signals are high priority signals

206 **Fascicle X.4** – **Rec. Z.100** – **Annex F.2**

transform-output(tnm, outnode, actl, term, nodes₁)(dict) \triangleq

(3.7.8.1.2)

- 1 (let mk-Output₀(outputsigs, expr, via) = outnode in
- 2 let $(actl_1, d) = transform-output-elems(tnm, outputsigs, expr., via, actl, term, nodes_1, false)(dict)$ in
- 3 if the output sigs = $\langle \rangle \vee is$ -Transition₁(actl₁) then
- 4 $(actl_1, d)$
- 5 else
- 6 $transform-output(tnm, mk-Output_0(tl outputsigs, expr, via), actl, term, nodes_1 \frown actl_1)(d))$
- type: [Statename₀] Output₀ Actstmt₀* [Termstmt₀] Graph-node₁* \rightarrow Dict \rightarrow (Transition₁ | Graph-node₁*) Dict

Objective	Transform a output action into a sequence of AS ₁ output actions (one
	for each signal mentioned)

Parameters

tnm, actl,	
nodes ₁ outputsigs	See transform-act A list of outputs contained in the output action
Result	See transform-act
Algorithm	
Line 1-3	The algorithm follows the same scheme as for <i>transform-reset</i> The argument false to the function <i>transform-output-elems</i> indicates

that the signals are not high priority signals

(3.7.8.1.3)

transform-output-elems $(tnm, sigs, expr, via, actl, term, nodes_1, is prioutput)(dict) \triangleq$

 $(let mk-Outputsig_0(sigid, actparm) = hd sigs in$ 1 let instsort = get-predef-sort("PID")(dict) in 2 3 let $(as_1 expr, d) =$ 4 if expr = nilthen (nil, dict) 5 6 else transform-expr(expr, EXPRESSION, {instsort})(dict) in let squal = signal-qual(sigid)(dict) in 7 8 let qual = process-or-service-level(dict(SCOPEUNIT)) in 9 let existreceiver = $(\exists q \in \text{dom } dict)(\text{is-}ServiceD(dict(q)) \land$ 10 get-sur(q) = get- $sur(qual) \land$ 11 $squal \in s$ -Priinputset(dict(q)) in 12 if (is-ProcessD(dict(qual)) \land is prioutput) \lor 13 $(is priout put \neq exist receiver)$ then 14 exit("§4.10: Illegal use of high priority signal") 15 else 16 (let qualset = transform-via(squal, via)(dict) in let $as_1 pathidset = make-as_1 idset(qualset)(dict)$ in 17 let $dict' = d + [OUTSIGNALS \mapsto dict(OUTSIGNALS) \cup \{squal\}]$ in 18 if is-TimerD(dict(squal)) then 19 20 exit("§2.7.4: Identifier in output action must denote a signal") 21 else 22 (let mk-SignalD(tplist, ,) = dict(squal) in23 if len actparm = len t plist then 24 $(let (as_1 actparm, d') =$ 25 transform-actparms(tplist, actparm, EXPRESSION)(dict') in 26 let $as_1 id = make-as_1$ -identifier(squal)(dict) in 27 let $as_1 tree = mk$ -Output-node₁($as_1 id$, $as_1 actparm$, $as_1 expr$, $as_1 pathidset$) in 28 if $d'(\mathsf{IMPORTLIST}) = \langle \rangle$ then 29 $(\langle as_1 tree \rangle, d')$ 30 else 31 (let $rest = if tl sigs = \langle \rangle$ then 32 $\langle \rangle$ 33 else 34 $\langle \mathbf{mk-Output_0(tl sigs, expr, via)} \rangle$ in 35 let (outputtrans, d'') = 36 transform-import(tnm, as_1 tree, rest \frown actl, term)(d') in . 37 transform- $transition(tnm, output trans, nodes_1)(d'')))$ 38 else exit("§2.7.4: Not the right number of arguments to output action")))) 39 $[Statename_0] Outputsig_0^* [Expression_1] Via_0 Actstmt_0^* [Termstmt_0] Graph-node_1^* Bool \rightarrow Outputsig_0^* [Termstmt_0] Graph-node_1^* [Termstmt_0] Graph-node_1^* [Termstmt_0] Gra$ type :

 $\begin{aligned} \textbf{type}: \quad [Statename_0] \ Outputsig_0^* \ [Expression_1] \ Via_0 \ Actistmt_0^* \ [Termstmt_0] \ Graph-node_1^* \ Bo \\ Dict \rightarrow (Transition_1 \ | \ Graph-node_1^*) \ Dict \end{aligned}$

Objective	Transform	an outp	ut or a	priority	output	into A	4S1
				,			

Parameters

tnm,	
actl,	
term,	
$nodes_1$	See transform-act
sigs	The list of outputs which were contained in the output action. Only the first element in this list is transformed in this function
expr	The destination expression. If the output is a priority output then $expr$ is SELF
via	The list of channel or signal route identifiers contained in the out- put node. If the output is a priority output then the list is empty

Result	See transform-act
Algorithm	
Line 1	Let <i>sigid</i> denote the signal identifier of the output to be trans- formed and let <i>actparm</i> denote the associated actual parameter list.
Line 2	Extract the Qual of the PiD sort.
Line 3-6	If the destination expression is specified then transform it into AS_1 . It must be of the PiD sort (<i>instsort</i>).
Line 7	Let squal denote the Qual of the signal.
Line 8	Let <i>qual</i> denote the <i>Qual</i> of the surrounding service or process (not procedure)
Line 9-11	existreceiver is true if there exist a service (q) in the same process (line 10) which can receive the signal in an high priority input node.
Line 12-13	If the output is contained in a process then it must not be a high priority output (line 12) and if it is a high priority signal then there must exist a receiving service and versa versa.
Line 16-17	Construct the AS ₁ VIA set.
Line 18	Update the OUTSIGNALS entry of <i>Dict</i> to include the output signal <i>squal</i> .
Line 19	The signal specified must not be a timer signal.
Line 22	Let tplist denote the sort list attached to the signal.
Line 23	The length of the actual parameter list must be equal to the length of the sort list.
Line 24	Transform the actual parameters.
Line 26	Construct the AS_1 identifier of the signal.
Line 27	Construct the AS ₁ output node.
Line 28-29	If there are no import expressions in the destination expression and in the actual parameters then return the output node else
Line 31	Construct an AS_0 output action of the rest of the outputs. This action will be attached to the implicit import state.
Line 35	Update $Dict$ with the import state and construct the AS ₀ transition which leads to the import state.
Line 37	Transform the transition

transform- $via(signalqual, pathlist)(dict) \triangleq$

(let processlevel = process-level(dict(SCOPEUNIT)) in 1 let servicelevel = process-or-service-level(dict(SCOPEUNIT)) in 2 3 let mk-ProcessD(, sset, , connectmap) = dict(processlevel) in 4 let explicit sigroutes = s-Explicit routes(dict(get-sur(processlevel))) in 5 if pathlist = $\langle \rangle$ then 6 if $\neg explicit signates$ then 7 {} 8 else 9 if $(\exists mk-Signal routeD(endp1, endp2, sigset1, sigset2) \in dom dict)$ 10 $((processlevel = endp1 \land signalqual \in sigset1) \lor$ 11 $(processlevel = endp2 \land signalgual \in sigset2))$ then 12 {} 13 else 14 if $signal qual \in sset$ then 15 {} 16 else 17 exit("§2.7.4: Signal in output has no possible receiver") 18 else 19 (let id = hd pathlist in20 let qual = (trap exit with get-visible-qual(id, CHANNEL)(dict) in get-visible-qual(id, SIGNALROUTE)(dict)) in 21 let $qualrest = if tl pathlist = \langle \rangle$ then 22 23 {} 24 else 25 transform-via(signalqual, tl pathlist)(dict) in 26 if $qual \in qualrest$ then 27 exit("§2.7.4: Signal route or channel specified twice in VIA set") 28 else 29 **cases** dict(qual): 30 (mk-SignalrouteD(endp1, endp2, sigset1, sigset2) 31 \rightarrow (if (processlevel = endp1 \land signalgual \in sigset1) \lor 32 $(processlevel = endp2 \land signalqual \in sigset2)$ then 33 if connectmap $\neq [] \land is$ -ServiceD(dict(servicelevel)) \land 34 $\neg(\exists q \notin connectmap(qual))$ 35 ((let mk-SignalrouteD(ep1, ep2, sigs1, sigs2) = dict(q) in 36 $(servicelevel = ep1 \land signalqual \in sigs1) \lor$ 37 $(servicelevel = ep2 \land signalqual \in sigs2)))$ then 38 exit("§4.10.2: No service signal routes are connected to signal route in VIA") 39 else 40 if is-ProcessD(dict(servicelevel)) \land connectmap $\neq []$ 41 then exit("§2.10.2: VIA illegal outside services when service signal routes defined") 42 else $\{qual\} \cup qualrest$ 43 else exit("§2.7.4: Illegal VIA set")), 44

45	mk-ChannelD(,,,,)
46	\rightarrow if explicit signates then
47	exit("2.7.4: If signal routes are specified then channels cannot be mentioned in VIA")
48	else
49 50	$(let blockqual = get-sur(processievel) ln$ $let mk_BlockD(a - cman) = dist(blockgual) in$
51	if gual \notin dom cmap
52	then exit("§2.7.4: Channel in VIA set is not connected to block")
53	else (let squalset =
54	$\{q \in cmap(qual) \mid (let mk-SignalrouteD(endp1, endp2, sigset1, sigset2) =$
55	dict(q) in
56 57	$(processlevel = endp1 \land signalqual \in sigset1) \lor$
57 58	$(processievel = enap2 \land signalqual \in sigsel2))\} \text{ in}$
59	then exit("§2.7.4: Signal cannot be conveyed by channel in VIA set")
60	else $squalset \cup qualrest)))))$
type: Sign	$alqual \ Via_0 ightarrow Dict ightarrow Qual-set$
Objective	Transform the list of channel or signalroute identifiers specified in the VIA construct into a signal route <i>Qual</i> set
Parameters	
signalqu	al The Qual of the signal specified in the output
pathlist	The AS ₀ via list
Result	The signal route Qual set
Algorithm	The order reason days and
Aigorithin	
Line 1	Let <i>processlevel</i> denote the <i>Qual</i> of the surrounding process (not procedure or service).
Line 4	Let <i>explicitsigroutes</i> equals true if signal routes are specified in the surrounding block.
Line 5	If no channel identifiers or signalroute identifiers are specified then
Line 6	if no signal routes are specified for the surrounding block then return the empty set else
Line 9-1	1 If there exist a signal route which includes the signal specified and which has the surrounding process as one of its endpoints then return the empty set indicating that the signal may follow any path else
Line 14	If explicit signal routes are specified and the signal is not contained in one of them then the signal must be part of the valid input signal set for the surrounding process.
Line 19-	59 If signal routes or channels are specified in the VIA then
Line 19	Let <i>id</i> denote the identifier of the first channel or signal route in the list.
Line 20-	21 Look up the identifier in <i>Dict</i> as a signal route. If it fails then it must denote a channel and look up the identifier in <i>Dict</i> as a channel.
Line 22	Transform the rest of the channels or signal routes in the via list.
Line 26	If the signal route or channel also occurs in the <i>Quals</i> of the rest of the via list then the channel or signal route has been specified twice.
Line 30-	44 If the <i>Qual</i> denotes a signal route then the signal must be included in the signal route, the surrounding process must be one of its endpoints and if service signal routes are specified (i.e. <i>connectmap</i> non-empty) then there must exist a service signal route connected to the service and to the signal route (line 33-38).

Line 40	If service signal routes are specified then VIA cannot be used in procedures on process level.
Line 45	If the <i>Qual</i> denotes a channel then
Line 46-47	It must be because no signal routes are specified explicit
Line 49	Let blockqual denote the Qual of the surrounding block.
Line 50	Let <i>cmap</i> denote the <i>BlockconnectionD</i> for the block.
Line 51-52	The channel in the VIA must be connected to the block.
Line 53-57	Let <i>squalset</i> denote the signal route <i>Quals</i> which are connected to the channel and for which the signal is outgoing.
Line 58-59	There must be at least one such signal route.
Line 60	Return the selected signal routes joined with the signal routes for the rest in the VIA set.

3.7.8.2 Transformation of Create Nodes

```
transform-create(tnm, mk-Create_0(pid, exprlist), actl, term, nodes_1)(dict) \triangleq
```

(3.7.8.2.1)

(let pqual = get-visible-qual(pid, PROCESS)(dict)) in 1 2 let bqual = get-sur(pqual) in 3 let $as_1 id = make - as_1 - identifier(pgual)(dict)$ in let mk-ProcessD(tplist, , ,) = dict(pqual) in 4 if get-sur(process-level(dict(SCOPEUNIT))) \neq bqual then 5 6 exit("§2.7.2: Created process must be defined in the same block") 7 else 8 (if len $tplist \neq len exprlist$ then 9 exit("§2.7.2: Actual parameter length must be equal to formal parameter list length") 10 else 11 (let (actparmlist, d) = transform-actparms(tplist, exprlist, EXPRESSION)(dict) in12 let $as_1 tree = \mathbf{mk}$ -Create-request-node₁($as_1 id$, actparmlist) in 13 **if** $d(\mathsf{IMPORTLIST}) = \langle \rangle$ **then** $(\langle as_1 tree \rangle, d)$ 14 15 else 16 $(let (output trans, d') = transform-import(tnm, as_1 tree, actl, term)(d)$ in 17 transform- $transition(tnm, output trans, nodes_1)(d')))))$ **type**: [Statename₀] Create₀ Actstmt₀^{*} [Termstmt₀] Graph-node₁^{*} \rightarrow $Dict \rightarrow (Transition_1 \mid Graph-node_1^+) Dict$ Objective Transform a create request action into AS₁ Parameters tnm, actl, term, $nodes_1$ See transform-act pid The process identifier contained in the create request action The list of actual parameters exprlist Result See transform-act Algorithm Let pqual denote the Qual of the process identifier. Line 1 Line 2 Let bqual denote the Qual of the surrounding block. Line 3 Construct the AS_1 identifier of the process identifier. Let tplist denote the sorts of the actual parameters. Line 4 Fascicle X.4 - Rec. Z.100 - Annex F.2 212

Line 5	The surroundings of the process where the create request node is placed must be the same (block) as the surrounding of the process identifier.
Line 8	The length of the sort list must be equal to the length of the actual parameter list.
Line 11	Transform the actual parameters.
Line 12	Construct the AS ₁ create request node.
Line 13-14	If the actual parameter list contains no import expressions then return the constructed AS_1 create request node.
Line 16	Else update $Dict$ with the import state and construct the AS_0 transition which leads to the import state.
Line 17	Transform the transition

(3.7.8.2.2)

transform-actparms(tplist, exprlist, context)(dict) \triangleq

1	$(if tplist = \langle \rangle then$
2	$(\langle \rangle, dict)$
3	else
4	$(let (as_1 expr,, d) =$
5	if hd $exprlist = nil$
6	then (nil, , <i>dict</i>)
7	else transform-expr(hd exprlist, context, {hd tplist})(dict) in
8	let $(as_1 rest, drest) = transform-act parms(tl tplist, tl exprlist, context)(d)$ in
٥	(/ac. ernn) (ac. neet dreet)))

```
9 (\langle as_1 expr \rangle \frown as_1 rest, drest)))
```

 $\mathbf{type}: \quad Parameter D^* \ Actparmlist_0 \ Context \rightarrow Dict \rightarrow [Term_1 \mid Expression_1]^* \ Dict$

Objective	Transform the actual parameters of an output action or a create request
	action or an operator argument list into AS_1

Parameters

tplist exprlist context	The sorts of the actual parameters The actual parameters The context in which the expressions are transformed. In the case of output action or create request action, the context is always EXPRESSION.		
Result	A list of optional expressions in the case of output action or create request action, and a list of terms or expressions in the case of operator actual parameters. <i>Dict</i> possibly updated to include information about import expressions in the actual parameter list		
Algorithm			
Line 1-2	When through, return the empty list and the (unchanged) Dict.		
Line 4-7	Transform the first actual parameter if it is present in the actual parameter list.		
Line 8	Transform the rest of the actual parameters.		
Line 9	Return the first actual parameter joined with the rest of the actual parameters		

3.7.8.3 Transformation of Call Nodes

 $transform-call(tnm, mk-Call_0(procid, actparmlist), actl, term, nodes_1)(dict) \triangleq$

1 (let pqual = get-visible-qual(procid, PROCEDURE)(dict) in

- 2 let mk-ProcedureD(formparmlist, nqual) = dict(pqual) in
- 3 let $as_1 id = make-as_1$ -identifier(nqual)(dict) in
- 4 if len actparmlist = len formparmlist then
- 5 (let (as₁ actparm, d) = transform-actparmlist(formparmlist, actparmlist)(dict) in
- 6 let $as_1 tree = mk-Call-node_1(as_1 id, as_1 actparm)$ in
- 7 if $d(\mathsf{IMPORTLIST}) = \langle \rangle$ then
- 8 $(\langle as_1 tree \rangle, d)$
- 9 else
- 10 (let (outputtrans, d') = transform-import(tnm, as₁ tree, actl, term)(d) in
- 11 $transform-transition(tnm, output trans, nodes_1)(d')))$
- 12 else

```
13 exit("§2.7.3: Length of procedure parameter list must equals the length of formal parameter list"))
```

```
type: [Statename<sub>0</sub>] Call<sub>0</sub> Actstmt<sub>0</sub>* [Termstmt<sub>0</sub>] Graph-node<sub>1</sub>* \rightarrow
Dict \rightarrow (Transition<sub>1</sub> | Graph-node<sub>1</sub>*) Dict
```

Ob	ective	Transform a	procedure	call into AS ₁
~~.		Transformer d	procoudic	0000 1100 1101

Parameters

procid	The identifier of the procedure
actparmlist	The actual parameter list
tnm,	
actl,	
term,	
$nodes_1$	See transform-act

See transform-act

Result

Algorithm

Line 1	Construct the Qual of the procedure.
Line 2	Let formparmlist denote the descriptors of the formal parameters and nqual denote the unique Qual (see the definition of Newqual).
Line 3	Construct the AS ₁ identifier of the procedure.
Line 4	The length of the formal parameter list must be equal to the length of the actual parameter list.
Line 5	Transform the actual parameters.
Line 6	Construct the AS_1 call node.
Line 7-8	If there are no import expressions in the actual parameters then return the call node else
Line 10	Update Statedict to include the implicit import states and return the AS_0 transition leading to the implicit state.
Line 11	Transform the constructed transition

٠

 $transform-actparmlist(formparmlist, actparmlist)(dict) \triangleq$

(if formparmlist = $\langle \rangle$ then 1 2 $(\langle \rangle, dict)$ 3 else 4 (let (actparm, dict') =5 if hd actparmlist = nil then 6 $(\langle nil \rangle, dict)$ 7 else 8 cases hd formparmlist: 9 (mk-InDescr(tqual) 10 \rightarrow (let $(as_1 expr, , d) =$ 11 transform-expr(hd actparmlist, EXPRESSION, {tqual})(dict) in 12 $(as_1 expr, d)),$ 13 **mk**-InoutDescr() 14 → transform-inoutactparm(hd formparmlist, hd actparmlist)(dict)) in 15 let (actparmrest, drest) = transform-actparmlist(tl formparmlist, tl actparmlist)(dict') in 16 $(\langle actparm \rangle \frown actparmrest, drest)))$

type: Formparm D^* Actparm $list_0 \rightarrow Dict \rightarrow [Expression_1]^*$ Dict

Objective Transform an actual procedure parameter list into a list of AS₁ expressions

Parameters

formparmlist	The list of formal parameter descriptors
actparmlist	The list of actual parameters
nlt	The list of AS, expressions and a <i>Dict</i> possibly undated to

Result The list of AS_1 expressions and a *Dict* possibly updated to include information of contained import expressions (see *transform-act*)

Algorithm

Line 1-2	When through, return the empty parameter list (the function is recursive).
Line 4-14	Let actparm denote the AS_1 expression denoting the first actual parameter.
Line 5-6	If the actual parameter is omitted then actparm is nil else
Line 9-12	If the parameter is an IN parameter then transform the expression which is the actual parameter. It must be of the sort denoted by <i>tqual</i> .
Line 13-14	If the parameter is an IN/OUT parameter then transform the IN/OUT parameter.
Line 15-15	Transform the rest of the actual parameters.
Line 16	Return the first actual parameter joined with the rest of the actual parameters

 $transform-inoutactparm(mk-InoutDescr(tqual), expr)(dict) \triangleq$

1 (if is- $Id_0(expr)$ then 2 (let vqual = get-visible-variable(expr, {get-parent(tqual)(dict)}, false)(dict) in 3 let mk-VarD(tq, ..., nqual) = dict(vqual) in 4 let $as_1 id = make-as_1$ -identifier(ngual)(dict) in 5 if tq = tqual then 6 $(as_1 id, dict)$ 7 else exit("§2.7.3: Same sort must be specified for formal and actual IN/OUT parameter")) 8 9 else 10 exit("§2.7.3: Actual IN/OUT parameter must be a variable identifier"))

type: InoutDescr $Expr_0 \rightarrow Dict \rightarrow Expression_1 Dict$

Objective	Transform an actual IN/OUT parameter into AS ₁
Parameters	An IN/OUT descriptor containing

	,	•
tqual	the Qual o	of its sort

expr	The a	ctual	parameter

Result

The AS_1 actual parameter

Algorithm

Line 1	The actual parameter must be an identifier.
Line 2	Construct the Qual of the identifier.
Line 3	Let tq denote its sort or syntype and let nqual denote its Newqual.
Line 4	Construct its AS ₁ identifier
Line 5-8	The sort of the variable (tq) must be equal to the sort of the formal parameter. In this case the same sort reference identifier must be specified, that is a sort is not compatible with syntypes of the sort.

216 Fascicle X.4 – Rec. Z.100 – Annex F.2

3.7.8.4 Transformation of Decision Nodes

```
transform-decision(tnm, decision, nodes<sub>1</sub>)(dict) \triangleq
```

```
(let mk-Decision_0(quest, anslist, elsepart) = decision in
   1
   2
        let isinformalanswers =
   3
            (\forall \mathbf{mk} - Condition_0(v1, v2) \in \mathbf{elems} \ anslist)(v1 = \mathbf{nil} \land \mathbf{is} - Stringterm_0(v2) \land \mathbf{s} - Qualifier_0(v2) = \langle \rangle) in
   4
        let is informal question = is-Stringterm<sub>0</sub>(quest) \land s-Qualifier<sub>0</sub>(quest) = () in
   5
        let is informal decision = is informal answers \wedge is informal question in
   6
        let qualset = all - visible - sorts(dict) in
   7
        let (,tpset,) = transform-expr(quest, EXPRESSION, qualset)(dict) in
   8
        let tp = if is informal decision then
   9
                     nil
 10
                    else
 11
                     if isinformal question then
 12
                        (trap exit with get-answer-sort(anslist, qualset)(dict) in
 13
                         get-answer-sort(anslist, tpset)(dict))
 14
                       else
 15
                        get-answer-sort(anslist, tpset)(dict) in
 16
        let (as_1 trans, d'') = transform-answers(tnm, anslist, tp)(dict) in
        let (els, d''') =
 17
 18
            if elsepart = nil then
               (nil, d'')
 19
 20
              else
 21
               (let mk-Elsepart_0(trans) = elsepart in
 22
                let (trans_1, dict') = transform-transition(tnm, trans, \langle \rangle)(d'') in
 23
                (mk-Else-answer<sub>1</sub>(trans<sub>1</sub>), dict')) in
        let (as_1 quest', d) =
 24
 25
            if isinformal question then
               (let mk-String_0(str) = s-String_0(quest) in
 26
 27
                if isinformaldecision then
                  (mk-Informal-text_1(str), \{\}, dict)
 28
 29
                  else
 30
                  (trap exit with (mk-Informal-text_1(str), \{\}, dict) in
 31
                    transform-expr(quest, EXPRESSION, \{tp\})(d''')))
 32
              else
 33
               transform-expr(quest, EXPRESSION, \{tp\})(d''') in
 34
        let decisionnode_1 = \mathbf{mk}-Decision-node<sub>1</sub>(as_1 quest', as_1 trans, els) in
 35
        if d(\mathsf{IMPORTLIST}) = \langle \rangle then
 36
          (mk-Transition_1(nodes_1, decisionnode_1), d)
 37
          else
          (let (outputtrans, d') = transform-import(tnm, decisionnode<sub>1</sub>, \langle \rangle, nil)(d) in
 38
            transform-transition(tnm, output trans, nodes_1)(d')))
 39
type: [Statename<sub>0</sub>] Decision<sub>0</sub> Graph-node<sub>1</sub><sup>*</sup> \rightarrow Dict \rightarrow Transition<sub>1</sub> Dict
Objective
                         Transform a decision node into AS<sub>1</sub>
```

(3.7.8.4.1)

Parameters

tnm,	
decision,	
nodes ₁	See transform-act. As opposed to the other action transforming functions, transform-decision does not take the action list following the decision as argument as a decision terminates a transition and because all answers at this stage contains terminators
Result	A transition containing $nodes_1$ and either leading to the decision node or leading to an implicit import state
Algorithm	

Line 1	Decompose the decision action.
Line 2	Let <i>isinformalanswers</i> be true if all answers consist of an unquali- fied character string.
Line 4	Let <i>isinformalquestion</i> be true if the expression in the question consist of an unqualified character string.
Line 5	Let <i>isinformaldecision</i> be true if the decision consist solely of in- formal text (character strings).
Line 6	Let <i>qualset</i> denote the <i>Quals</i> of all the sorts which are visible at this place.
Line 7	Extract the possible sorts for the decision question.
Line 8-15	Let tp denote the sort of the answers. If it is an informal decision then tp equals nil otherwise the sort is derived by looking at the answers and thereby restricting the set of sorts allowed for the question. Furthermore, if the question is a character string (line 11), then any visible sort may match the set of answers (line 12) if it fails to derive the answer sort from the set of sorts matching the question.
Line 16	Transform the answers given their sort $(tp$ which is nil if the whole decision is informal).
Line 17-23	Transform the else part.
Line 21	Let trans denote the transition in the else part.
Line 22-23	Transform the transition and construct the AS_1 else part.
Line 24-33	Transform the question.
Line 24	If the question is an unquantified character string then it denotes informal text if the whole decision is informal (line 27) or if the transformation of the question as a character string literal fails given the answer sort tp (line 31).
Line 34	Construct the AS ₁ decision node.
Line 35-36	If the question contains no import expressions then return the tran- sition containing the preceding nodes and the decision node else
Line 38	Update Statedict to include the implicit import states and con- struct the AS_0 transition leading to the implicit import node.
Line 39	Transform the constructed transition

get-answer-sort(anslist, tpset)(dict) \triangleq

1	(if $anslist = \langle \rangle$ then
2	if card $tpset eq 1$ then
3	exit("§2.2.2: No appropriate sort exist for decision action")
4	else
5	(let $tp \in Qual$ be s.t. $tp \in tpset$ in
6	tp)
7	else
8	$(\mathbf{let} \ \mathbf{mk}$ -Answer $_0(vlist,) = \mathbf{hd} \ anslist \ \mathbf{in}$
9	let $isinformal' =$
10	len $vlist = 1 \land$
11	$(\texttt{let mk-}Condition_0(v1, v2) = \texttt{hd } vlist \texttt{ in }$
12	$v1 = \mathrm{nil} \wedge \mathrm{is}$ -Stringterm $_0(v2) \wedge \mathrm{s}$ -Qualifier $_0(v2) = \langle angle)$ in
13	let $(tset,) = if is informal' then (tpset,) else transform-valueset(tpset, vlist)(dict) in$
14	get-answer-sort(tl anslist, tset)(dict)))

(3.7.8.4.2)

type: Answer₀⁺ Sortqual-set \rightarrow Dict \rightarrow [Sortqual]

Objective Extract the sort of a decision answers

Parameters

218 Fascicle X.4 – Rec. Z.100 – Annex F.2

anslist	The list of answers attached to the decision action (excluding the elsepart)		
tpset	The possible sorts of the answers. During each recursive call of get- answer-sort this set is restricted by the allowed sorts for the answer in hand. When initially applied, tpset denotes the possible sorts for the decision question or if the decision question is informal, all visible sorts.		
Result	The Qual of the sort for the decision action		
Algorithm			
Line 1-5	When through the answer list, the set of possible sorts must contain only one element and this element is returned.		
Line 8	Decompose the first answer in the list.		
Line 9-12	Let <i>isinformal'</i> be true if the answer consist of an unqualified char- acter string.		
Line 13	Let <i>tset</i> denote the set of sorts possible for the answers after having considered the first (next) answer. If the answer is an unqualified character string, it is not considered when determining the answer sort.		
Line 14	Consider the rest of the answers.		

transform-answers $(tnm, anslist, tp)(dict) \triangleq$

(if $anslist = \{\}$ then 1 2 $(\{\}, dict)$ 3 else 4 $(let mk-Answer_0(vlist, trans) = hd anslist in$ 5 let $(, as_1 tree) =$ 6 if tp = nil then 7 $(\{\}, nil)$ 8 else 9 (trap exit with ({},nil) in 10 transform-valueset({tp}, vlist)(dict)) in 11 let $(trans_1, dict') = transform-transition(tnm, trans, \langle \rangle)(dict)$ in 12 let (restrans, dict'') = transform-answers(tnm, tl anslist, tp)(dict') in 13 if $as_1 tree = nil$ then 14 $(let mk-Condition_0(, mk-Stringterm_0(, lit)) = hd vlist in$ 15 $({\mathbf{mk-Informal-text_1}(lit)} \cup restrans, dict''))$ 16 else 17 $({\mathbf{mk-Decision-answer}_1(as_1 tree, trans_1)} \cup restrans, dict'')))$ type: $[Statename_0] Answer_0^* [Sortqual] \rightarrow Dict \rightarrow Decision-answer_1-set Dict$ Objective Transform the answers of a decision or option into AS₁ **Parameters** See transform-act tnmanslist The list of answers to be transformed The sort of the answers. If tp equals nil then the question and all tp answers consist of character strings (i.e. the decision is informal) Result The set of AS₁ answers Algorithm Line 1 When through the answer list, return the empty set (the function is recursive). Let vlist and trans denote the conditions and the transition of the Line 4 first answer in the list.

(3.7.8.4.3)

Line 5-10	Try to transform the conditions. If it fails then the conditions must contain informal text as <i>vlist</i> already has been checked for consistency (in <i>get-answer-sort</i>).
Line 11	Transform the transition of the first answer.
Line 12	Transform the rest of the answers.
Line 13-15	If the transformation of the condition list in hand failed then the condition list must denote informal text.
Line 15	Transform the condition as informal text and return the resulting answer joined with the rest of the AS_1 answers.
Line 17	Else return the transformed answer joined with the rest of the AS_1 answers

3.7.8.5 Transformation of Options

transform-option(tnm, mk-Option $_0(quest, anslist, elsepart), nodes_1)(dict) \triangleq$

```
1 (let qualset = all-visible-sorts(dict) in
```

2 let (,tpset,) = transform-expr(quest, CONSTANT, qualset)(dict) in

- 3 let tp = get-answer-sort(anslist, tpset)(dict) in
- 4 let trans = eval-option-trans(tp, quest, anslist, elsepart)(dict) in
- 5 $transform-transition(tnm, trans, nodes_1)(dict))$

 $\textbf{type}: \quad [Statename_0] \ Option_0 \ Graph-node_1^* \rightarrow Dict \rightarrow Transition_1 \ Dict$

Objective Evaluate an option action and return	n the resulting transition
---	----------------------------

Parameters

tnm,	
nodes ₁	See transform-act

Algorithm

Line 1	Let <i>qualset</i> denote the <i>Quals</i> of all the sorts which are visible at this place.
Line 2	Transform the option question. <i>tpset</i> denotes the sorts which are allowed for the question.
Line 3	Let tp denote the sort of the option. It is deduced by inspecting the answers (in the same way as done in <i>transform-decision</i>).
Line 4	Select the transition which matches the question.
Line 5	Transform the selected transition

(3.7.8.5.1)

 $eval-option-trans(tp, question, anslist, elsepart)(dict) \triangleq$

1	(if $anslist = \langle \rangle$ then
2	if $elsepart = nil$ then
3	exit("§4.3.4: No option answer matches the option question")
4	else
5	s-Transition ₀ (elsepart)
6	else
7	$(let mk-Answer_0(vlist, trans) = hd anslist in$
8	if match-option-answer(tp, vlist, question)(dict) then
9	if $(\exists ans \in elems \ tl \ anslist)(match-option-answer(tp, s-Conditionlist_0(ans), question)(dict))$ then
10	exit("§4.3.4: More than one option answer matches the question")
11	else
12	trans
13	else
14	eval-option-trans(tp, question, tl anslist, elsepart)(dict)))
type	: Sortqual $Expr_0$ Answero [*] [Elsepart_0] \rightarrow Dict \rightarrow Transition ₀

Objective Select the answer of an option action which matched the option question

Parameters

tp	The Qual of the question sort
question	The option question
anslist	The list of option answers
elsepart	The option else part
Result	The transition contained in the matching answer

Algorithm

Line 1-5	If none of the answers matches the question then an else part must be specified and if so, return the transition contained in the else part.
Line 7	Decompose the first (the next) answer in the list.
Line 8	If it matches the question then
Line 9-12	It must be the only matching answer and if so, the transition con- tained in the answer is returned.
Line 14	Else continue searching for a matching answer

 $match-option-answer(tp, vlist, question)(dict) \triangleq$

1 (let as₀ operator = build-answer-operator(tp, vlist, question) in

2 eval-simple-expr(asooperator, "BOOLEAN")(dict))

 $\textbf{type}: \quad Sortqual \ Conditionlist_0 \ Expr_0 \rightarrow Dict \rightarrow Bool$

Objective Test whether an option condition list matches the option question

Parameters

tp	The sort of the question and conditions
vlist	The condition list
question	The option question

Result True if the condition list matches the question

Algorithm

Line 1	From the question and the condition list, construct a boolean op- erator application which delivers true if the condition list matches the question.
Line 2	Evaluate the operator application

build-answer-operator(tp, vlist, question) \triangleq

1 (let mk-Condition₀(op, const) = hd vlist in let $orop = \mathbf{mk}$ - $Qualop_0(\langle \rangle, \mathbf{mk}$ - $Quotedop_0(\mathsf{OR}))$ in 2 let op' = if op = nil then EQ else op in3 let $as_0 op = if op' \in {NE, EQ, GT, LT, LE, GE}$ then 4 mk-Operatorapp₀(mk-Qualop₀(tp, mk-Quotedop₀(op')), (question, const)) 5 6 else 7 (let $andop = \mathbf{mk}$ - $Qualop_0(\langle \rangle, \mathbf{mk}$ - $Quotedop_0(AND)$) in 8 let $lesseqop = mk-Qualop_0(tp, mk-Quotedop_0(LE))$ in 9 mk-Operatorapp₀(andop, (mk-Operatorapp₀(lesseqop, (op', question)), 10 mk-Operatorapp₀(lesseqop, (question, const)))) in 11 if tl vlist = $\langle \rangle$ 12 then $as_0 op$ 13 else mk-Operatorapp₀(orop, (as₀ op, build-answer-operator(tp, tl vlist, question))))

(3.7.8.5.4)

type: Sortqual Conditionlist₀ $Expr_0 \rightarrow Operatorapp_0$

Objective	Construct a boolean operator which delivers the boolean literal true if
	an option answer matches the option question

Parameters

tp	The sort of the question
vlist	The condition list which is contained in the answer
question	The option question
Result	The constructed AS_0 operator application
Algorithm	
Line 1	Decompose the first condition in the condition list.
Line 2	Construct the prefix "OR" operator name.
Line 3	If no operator or expression is specified as the first element in the condition then it is the same as specifying the equality operator (EQ) .
Line 4	If the first element in $Condition_0$ is an relational operator then construct the operator
	tp op'(question,const)
	where tp is the qualifier of the operator, op' is the relational oper- ator and (question,const) is the argument list.
Line 7-10	If the first element in $Condition_0$ is an expression then the condition reflects a range and the constructed operator is then
	"AND"(tp "<="(op',question),tp "<="(question,const)).
	where tp is the qualifier, op ' is the lower bound and const is the upper bound.
Line 11	If this was the last condition in the list then return the constructed operator application else
Line 13	Construct an operator application which "OR"s the result from the previous operator application with the result of the operator application constructed from the rest of the condition list

General AS₁ Creating Functions 3.8

 $make-as_1$ -identifier $(q)(dict) \triangleq$

- (let qual = make-new-qual(q)(dict)) in 1
- 2 let nameq = get-sur(qual) in
- let (,nm) = qual[len qual] in 3
- let $as_1 nameq = make-as_1-qual(nameq)$ in 4
- mk-Identifier₁(as₁ nameq, name-to-name₁(nm))) 5

type: $Qual \rightarrow Dict \rightarrow Identifier_1$

Objective From a Qual(q) construct and return the corresponding AS_1 identifier

Algorithm

Line 1	Extract the <i>Newqual</i> (see the definition of <i>Newqual</i>) from the <i>Dict</i> descriptor, i.e. insert unique names in the <i>Qual</i> .
Line 2	Let <i>nameq</i> denote its qualifier (i.e. the <i>Qual</i> of the surrounding scopeunit).
Line 3	Extract the name part of the entity.
Line 4	Transform the $Qual$ into an AS_1 qualifier.
Line 5	Construct the AS_1 identifier containing the AS_1 representation of the name, string or infix operator

 $make-as_1-qual(qual) \triangleq$

if tl qual = $\langle \rangle$ then 1 2 $\langle \rangle$ 3 else 4 (let (q, nm) = hd qual in5 let $as_1 nm = name - to - name_1(nm)$ in 6 let $as_1q = cases q$: 7 (SYSTEM 8 \rightarrow mk-System-qualifier₁(as₁nm), 9 BLOCK 10 \rightarrow mk-Block-qualifier₁(as₁nm), 11 PROCESS \rightarrow mk-Process-qualifier₁(as₁nm), 12 PROCEDURE 13 \rightarrow **mk**-*Procedure*-qualifier₁(as₁nm), 14 15TYPE \rightarrow mk-Sort-qualifier₁(as₁nm), 16 17 SIGNAL \rightarrow mk-Signal-qualifier₁(as₁nm), 18 SUBSTRUCTURE 19 \rightarrow mk-Block-substructure-qualifier₁(as₁ nm)) in $\mathbf{20}$ 21 let $q' = make - as_1 - qual(tl qual)$ in 22

 $(as_1 q \frown q'))$

type: $Qual \rightarrow Qualifier_1$

Objective	Construct and return an AS_1 qualifier from a <i>Qual</i> (<i>qual</i>)	
Algorithm		
Line 1	When through, return the empty qualifier (the function is recursive).	
Line 4	Let q and nm denote the entity class and the name of the first element in the qual.	

(3.8.2)

Line 5	Let $as_1 nm$ denote the AS ₁ representation of the name.
Line 7	If the entity class is the system then construct an AS_1 system qualifier element.
Line 9	If the entity class is a block then construct an AS_1 block qualifier element.
Line 11	If the entity class is a process then construct an AS_1 process qualifier element.
Line 13	If the entity class is a procedure then construct an AS_1 procedure qualifier element.
Line 15	If the entity class is sort then construct an AS_1 sort qualifier element.
Line 17	If the entity class is a signal then construct an AS_1 signal qualifier element.
Line 19	If the entity class is a block sub-structure then construct an AS_1 block sub-structure qualifier The two other entity classes services and channel sub-structure have been removed from the <i>Qual</i> in the function <i>make-new-qual</i> .
Line 21-22	Transform the rest of the $Qual$ into AS_1 and join it with this element

```
make-new-qual(qual)(dict) \triangleq
```

(let level = dict(SCOPEUNIT) in1 2 let $qual' = cases \ dict(qual)$: 3 $(\mathbf{mk} - TimerD(, q))$ 4 $\rightarrow q$, 5 \mathbf{mk} -ProcedureD(, q)6 $\rightarrow q$, 7 \mathbf{mk} -SortD(,,,q)8 $\rightarrow q$, 9 mk-SyntypeD(, q, ,) 10 $\rightarrow q$, 11 \mathbf{mk} -VarD(, , , , q)12 $\rightarrow q$, 13 mk-OperatorD(,, q,)14 $\rightarrow q$, **mk**-ChannelD(,,,,sub) 15 16 \rightarrow if sub = nil then qual else convert-channel-qual(sub, level), 17 **mk**-ChannelsubD(bqual) 18 \rightarrow bqual $\frown \langle qual[len qual] \rangle$, 19 \mathbf{mk} -ServiceD(, , , ,) $\rightarrow get-sur(qual), \\ \mathsf{T} \rightarrow qual) \text{ in }$ 20 21 22 let qualelem = qual' [len qual'] in if $tl qual' = \langle \rangle$ then 23 $\langle qualelem \rangle$ 24 25 else 26 (let qualrest =27 if is- $OperatorD(dict(qual)) \lor is-LiteralD(dict(qual))$ 28 then get-sur(get-sur(qual')) 29 else get-sur(qual') in 30 $make-new-qual(qualrest)(dict) \frown \langle qualelem \rangle))$

 $\mathbf{type}: \quad Qual \rightarrow Dict \rightarrow Qual$

ObjectiveInsert unique names in the Qual of an entity. Unique names are necessary because of services and because of operator overloading

Result The new unique qual

224 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.8.3)

Algorithm

Line 1	Let level denote the Qual of the scopeunit defining the entity
Line 3-21	In the descriptor of the entity, the new Qual is found. Only enti- ties which may be defined in services, channels and channel sub- structure are renamed (channels are renamed if they contain a sub-structure $(sub \neq nil)$ and channel sub-structures are renamed to a block sub-structure). For the Qual of a service, the Qual of the enclosing process is returned.
Line 22-29	Take the qual of the scopeunit (qualrest) which defined the entity and rename that Qual. If the old Qual denotes an operator or a literal then do not use the TYPE qualifier element in the new Qual.
Line 30	Return the renamed scopeunit joined with the pair of entity class and name for the entity

convert-channel- $qual(sub, level) \triangleq$

1 (let (b1, c1, b2, c2) = sub in 2 if $(\exists q)(level = b1 \frown q)$ then 3 get-sur $(b1) \frown \langle (CHANNEL, c1) \rangle$ 4 else 5 get-sur $(b2) \frown \langle (CHANNEL, c2) \rangle \rangle$

 $\textbf{type}: Newchannels Qual \rightarrow Qual$

Objective	Channels which contains a sub-structure are represented by two new channels, each leading to the sub-structure which is represented by a block sub-structure. When the name of the channel is used (in an identifier in a VIA set) it is replaced by the name of one of the new channels depending of where the channel is used. <i>convert-channel-qual</i> return the <i>Qual</i> of such a new channel. Note that it is not allowed to refer to the old channel name inside the channel sub-structure
Parameters	
sub	The information about the two new channels. This information is extracted from the channel descriptor
level	The scopeunit where the channel is used
Result	The Qual of the new channel
Algorithm	
Line 1	Let $b1$ denote one of the block endpoints, $c1$ the new channel connected to that endpoint, $b2$ the other endpoint and $c2$ the new channel connected to that endpoint.
Line 2-5	If <i>level</i> indicates a scopeunit which is contained in $b1$ then return the <i>Qual</i> of the channel connected to that block, else return the <i>Qual</i> of the other endpoint

$make-as_1idset(idset)(dict) \triangleq$

1 $\{make-as_1-identifier(id)(dict) \mid id \in idset\}$

```
\textbf{type}: \quad \textit{Qual-set} \rightarrow \textit{Dict} \rightarrow \textit{Identifier}_1\text{-set}
```

Objective From a set of *Quals* construct the corresponding set of AS₁ identifiers

(3.8.4)

(3.8.5)

 $make-as_1 tree(node, name, as_1 set, parm1, parm2, parm3)(dict) \triangleq$

1	(let as ₁ name =	$= name-to-name_1(name),$
2	data = dic	t (DATATYPEDEF) in
3	if sorts-have-	values(data)(dict) then
4	(let blocks =	$= \{ elem \mid elem \in as_1 set \land is Block-definition_1(elem) \},$
5	channe	$s = \{elem \mid elem \in as_1 set \land is Channel-definition_1(elem)\},\$
6	signals	$= \{ elem \mid elem \in as_1 set \land is-Signal-definition_1(elem) \},$
7	sigroute	$es = \{elem \mid elem \in as_1 set \land is Signal-route-definition_1(elem)\},\$
8	syntype	$s = \{elem \mid elem \in as_1 set \land is - Syn - type - definition_1(elem)\},\$
9 10	proceau	$res = \{elem \mid elem \in as_1 set \land ls \cdot Proceaure - aefinition_1(elem)\},$
10	process	$s = \{elem \mid elem \in as_1 set \land ls \cdot Process \cdot definition_1(elem)\},$
11	views =	$= \{elem \mid elem \in as_1 set \land ls = v tew - definition_1(elem)\},$ = $\{elem \mid elem \in as_1 set \land ls = Timen definition_1(elem)\}$
12	timers	$= \{elem \mid elem \in as_1 set \land ls = 1 imer - aejinition_1(elem)\},$
10	vars =	$\{eiem \mid eiem \in as_1 set \land is - variable - aefinition_1(eiem)\}$
15	(SVSTEN	
16	(JIJILN	-Sustem-definition (as name blocks channels signals data syntynes)
17		-system-aejinition1(as1name, otoens, channels, signais, aata, syntypes),
18		-Rlock-definition (as name process signals parm) signautes data suptupes parm?).
19	SUBSTR	UCTURE
20	→ mk	Block-substructure-definition (as name, blocks, parm1, channels, signals, data, suptypes).
21	PROCES	S
22	→ mk	Process-definition1 (as1 name, parm1, parm2, procedures, signals, data,
23		syntypes, vars, views, timers, parm3),
24	PROCE	DURE
25	$\rightarrow \mathbf{mk}$	-Procedure-definition1(as1 name, parm1, procedures, data, syntypes, vars, parm2)))
2 6	else	
27	exit("§5.2.1	: Sort in data type definition have no values"))
type	: Quot [Name Number-of	e0] Decl1-set [Channel-to-route-connection1 Channel-connection1 instances1 Procedure-formal-parameter1*]
	[Process-for [Process-gro	$mal-parameter_1^* \mid Procedure-graph_1 \mid Block-substructure-definition_1] \ mph_1] \rightarrow Dict \rightarrow Decl_1$
Obje	ective	Construct the AS_1 representation of a scopeunit, that is of a system, a block, a block sub-structure a process or a procedure.
Para	meters	
1	node	The kind of scopeunit to be constructed
1	name	The name of the scopeunit
	ne, set	The set of definitions contained in the scopeunit
		The set of deminious contained in the scope and
1	parmi,parmz,pa	For instance, if the scopeunit is a process then narm 1 is Number-
		of-instances ₁
Rest	ılt	The AS_1 system, block, block sub-structure, process or procedure definition
Algo	orithm	
	Line 1	Extract the AS_1 representation of the name.
	Line 2	Extract the Data-type-definition of the scopeunit.
-	Line 3	Every sort in the Data-tune-definition, must have at least one value.
-	Line 1 19	Destition the set of definitions into a set of block definitions
	Line 4-15	
	Line 5	A set of channel definitions.
-	Line 6	A set of signal definitions.
-	Line 7	A set of signal route definitions.

Line 8 A set of syntype definitions.

,

Line 9	A set of procedure definitions.
Line 10	A set of process definitions.
Line 11	A set of view definitions.
Line 12	A set of timer definitions.
Line 13	A set of variable definitions.
Line 15-16	Construct a system definition.
Line 17-18	Construct a block definition.
Line 19-20	Construct a block sub-structure definition.
Line 21-23	Construct a process definition.
Line 24-25	Construct a procedure definition.

sorts-have-values (mk-Data-type-definition $(,, snmset, signatureset,))(dict) \triangleq$

(3.8.7)

```
1 (let level = dict(SCOPEUNIT) in
```

```
2 (\forall nm \in snmset)
```

```
3 ((\exists sign \in signatureset))
```

```
4 ((\text{let mk-Identifier}_1(qual, signm) = s-Result_1(sign) \text{ in})
```

```
5 (level = qual \land nm = signm))))
```

 $\textbf{type}: \quad Data-type-definition_1 \rightarrow Dict \rightarrow Bool$

Objective	Test whether a data type definition for a scopeunit has values for every sorts i.e. whether there exist at least one literal of the sort or one operator which returns a value of the sort
Parameters	The data type definition containing
snmset signatureset	The set of sorts defined by the data type definition The set of literal and operator signatures for the data type defini- tion
Result Algorithm	True if success
Line 2	For all sort names in the set of sorts it must hold that there exist a signature in the set of signatures such that
Line 4-5	The result sort is locally defined and its name is the same as the sort name (nm)

 $make-as_1-concarioms(qualset)(dict) \triangleq$

1	(if $qualset = \{\}$ then
2	
3	else
4	(let $qual \in qualset$ in
5	let (,nm) = qual[len qual] in
6	let $sort = get-sur(qual)$ in
7	if is- $Name_0(nm)$ then
8	$make-as_1-concarioms(qualset \setminus \{qual\})(dict)$
9	else
10	$(let mk-String_0(str) = nm in$
11	if len $str \leq 1$ then
12	$make-as_1$ -concaxioms(qualset $\setminus \{qual\})(dict)$
13	else
14	$(let \ ch = str[len \ str] \ in$
15	let $rest = \mathbf{mk}$ -String $_0(\langle str[i] \mid 1 \leq i \leq \operatorname{len} str - 1 \rangle)$ in
16	if sort $\frown \langle (LITERAL, rest) angle \notin \operatorname{dom} dict \ \operatorname{then}$
17	$make-as_1$ -concavioms(qualset $\setminus \{qual\})(dict)$
18	else
19	$(let \ concop = mk-Qualop_0(sort, mk-Quotedop_0(CONC))$ in
20	let $strexpr1 = mk$ -Stringterm ₀ ($\langle \rangle$, rest),
21	$strexpr2 = \mathbf{mk}$ - $Stringterm_0(\langle \rangle, \mathbf{mk}$ - $String_0(\langle ch \rangle)),$
22	$strexpr3 = mk-Stringterm_0(\langle \rangle, nm)$ in
23	let $equation =$
24	$\mathbf{mk} ext{-}Equation_0(\mathbf{mk} ext{-}Operatorterm_0(concop, \langle strexpr1, strexpr2 angle), strexpr3)$ in
25	let $equation_1 =$
2 6	(trap exit with {} in
27	{transform-axiom(equation, AXIOMS)(dict)}) in
28	$equation_1 \cup make-as_1$ -concaxioms $(qualset \setminus \{qual\})(dict))))))$
type	: $Qual\text{-set} \rightarrow Dict \rightarrow Equations_1$
Obje	ctive Construct the AS ₁ representation of the implied concatenation axioms attached to character string literals, for example 'abc' have the implied axioms:

'ab'//'c' == 'abc';
'a'//'b' == 'ab';

provided the equations are statically well-formedParametersThe set of literal Quals defined in a partial data type definitionResultThe constructed AS1 equations

Algorithm

Line 1	When through, return the empty set of equations (the function is recursive).
Line 4	Consider the next literal.
Line 5	Let nm denote the name of the literal.
Line 6	Let sort denote its sort.
Line 7-8	If the literal is represented by a normal name then continue with the rest of the literals else
Line 10	Let str denote the characters in the string.
Line 11-12	Unless the number of character is greater than one then continue with the rest of the literals.
Line 14	Let ch denote the last character in the string.
Line 15	Let rest denote the string containing all but the last character.

(3.8.8)

Line 16-17	If the string where the last character has been removed is not defined for the sort then continue with the rest of the literals.
Line 19	Construct the "//" operator.
Line 20	Construct a string term containing the rest of the characters and containing no qualifier (<i>strexpr1</i>).
Line 21	Construct a string term containing the last character and contain- ing no qualifier (<i>strexpr2</i>).
Line 22	Construct a string term containing the string literal (strexpr3).
Line 23	Construct the equation : strexpr1 // strexpr2 == strexpr3
Line 25-27	Try to transform the equation into AS_1 . If it fails then the equation is not well-formed and is therefore not implied.
Line 28	Join the equation with the equations implied from the rest of the literals

 as_0 -id(qual) \triangleq

- 1 if qual = ENV then
- 2 ENV
- 3 else
- 4 (let (,nm) = qual[len qual] in
- 5 let qualifier = get sur(qual) in
- 6 \mathbf{mk} -Id₀(qualifier, nm))

 $\mathbf{type}: \quad (Qual \mid \mathsf{ENV}) \rightarrow (Id_0 \mid \mathsf{ENV})$

Objective Retrieve an AS_0 identifier from a *Qual*. This function is used in the expansion of short-hands.

Parameters

qual	The Qual to be converted to an AS_0 identifier. As the function also is applied channel and signal route endpoints, the function may take ENV as argument.
Result	The constructed AS ₀ identifier
Algorithm	
Line 1	If it is ENV then do not change it else
Line 4	Extract the name part.
Line 5	Extract the qualifier which is the <i>Qual</i> of the surrounding scopeu- nit.

Line 6

make-implicit-vardecl(dict) \triangleq

1 (let $(f_{1nm}, f_{2nm}) = dict(GLOBALNAMES)$ in

- 2 let $as_0 id = as_0 \cdot id(get-predef-sort("INTEGER")(dict))$ in
- 3 let $init = mk Id_0(\langle \rangle, mk Name_0("0", nil))$ in
- 4 let formudecl = mk- $Vardef_0(nil, nil, \langle mk$ - $Vardefelem_0(\langle f1nm, f2nm \rangle, as_0id, init) \rangle)$ in

Return the composed identifier

- 5 let closureset = dict(IMPLIED) in
- 6 let $as_0 defs = formudecl \frown (make-implicit-import-vardef(closure) | closure \in closureset)$ in
- 7 transform-vardef $(as_0 defs)(dict))$

 $\mathbf{type}: \quad Dict \rightarrow Variable\text{-}definition_1\text{-}\mathbf{set} \ Dict$

ObjectiveConstruct the AS_1 variable definitions for the two implicit variables
used in enabling condition and continuous signal and construct the AS_1
variable definitions for the implicit import variables in a process

(3.8.10)

(3.8.9)

Algorithm

Line 1	Let f_{1nm} and f_{2nm} denote the AS ₀ names of the two implicit variables used in enabling condition and continuous signal.
Line 2	Let $as_0 id$ denote the AS ₀ identifier of the INTEGER sort.
Line 3	Construct the initiation expression. The variables are initialized to zero.
Line 4	Construct the AS_0 variable definitions for the two variables.
Line 5	Extract the set of pairs of variable name and variable sort contain- ing the implicit variables used in the transformation of the import expressions.
Line 6	Let aso defs denote all the implicit definitions.
Line 7	Transform the definitions into AS_1

make-implicit-import-vardef $((t, nm)) \triangleq$

(3.8.11)

- 1 (let $as_0 tid = as_0 id(t)$ in 2 mk-Vardef_0(nil, nil, $\langle mk$ -Vardefelem_0($\langle nm \rangle$, $as_0 tid$, nil) \rangle))

type : $Name closure D \rightarrow Vardef_0$

Objective	Construct the AS_0 variable definition for an implicit import variable
Parameters	The pair of variable sort t and variable name (nm)
Line 1	Construct the AS ₀ identifier of the variable sort.
Line 2	Construct the AS_0 variable definition. The variable is not initialized as the first use of it always is in an input node

 $transform-import(tnm, original node_1, actl, term)(dict) \triangleq$

```
(let importlist = dict(IMPORTLIST) in
   1
   2
              let (impnm, qual, expr) = hd importlist,
   3
                       statenm = create-unique-name() in
   4
              let (, (nm, )) = qual[len qual] in
   5
              let mk-ImportD(tq) = dict(qual) in
   6
              let mk-SignalnamesD(, xq, xr) = exportmap((tq, nm)) in
   7
              let lev = dict(SCOPEUNIT) in
              let osig = mk-Outputsig_0(mk-Id_0(\langle \rangle, xq), \langle \rangle) in
  8
  9
              let outputnode = \mathbf{mk} \cdot Actstmt_0(\mathbf{nil}, \mathbf{mk} \cdot Output_0(\langle osig \rangle, expr, \langle \rangle)) in
              let sigset = all-input-signals(lev)(dict) \setminus \{lev \frown \langle (SIGNAL, xr) \rangle \} in
10
11
              let savenode = mk-Savespec_0(\langle as_0 - id(sig) | sig \in sigset \rangle),
12
                       statedict = dict(STATEDICT) in
13
              let termstmt' = mk \cdot Termstmt_0(nil, mk \cdot Nextstate_0(mk \cdot Id_0(\langle \rangle, statenm))) in
14
              let outputtrans = mk-Transition<sub>0</sub>(outputnode, termstmt') in
15
              let impdict = [IMPLIED]
                                                                                       \mapsto (dict(\mathsf{IMPLIED}) \cup \{(tq, impnm)\}),\
16
                                                    IMPORTLIST in the important of the impor
17
              if tl importlist = \langle \rangle then
18
                   (let inputtrans = mk-Transition<sub>0</sub>(actl, term) in
19
                     let inpvars = \langle \mathbf{mk} - Inputvars_0(\mathbf{mk} - Id_0(\langle \rangle, xr), \langle \mathbf{mk} - Id_0(\langle \rangle, impnm) \rangle) \rangle in
20
                     let inputnode = mk-Inputspec_0(inpvars, nil, inputtrans) in
21
                     let stated = mk-StateD(\langle (lev, inputnode), (lev, savenode) \rangle, (tnm, originalnode_1)) in
22
                     let statedict' = statedict + [statenm \mapsto stated] in
23
                     let dict' = dict + [STATEDICT \mapsto statedict'] in
                     (outputtrans, dict' + impdict))
24
25
                 else
                   (let (termstmt'', dict'') = transform-import(tnm, original node_1, actl, term)(dict + impdict) in
26
27
                     let inpvars = \langle \mathbf{mk} - Inputvars_0(\mathbf{mk} - Id_0(\langle \rangle, xr), \langle \mathbf{mk} - Id_0(\langle \rangle, impnm) \rangle) \rangle in
28
                     let inputnode = mk-Inputspec_0(inpvars, nil, termstmt'') in
29
                     let statedict' =
30
                              statedict + [statenm \mapsto mk-StateD(\langle (lev, inputnode), (lev, savenode) \rangle, (tnm, nil))] in
31
                     let dict''' = dict'' + [STATEDICT \mapsto statedict'] in
32
                     (outputtrans, dict''')))
```

type: Statename₀ (Graph-node₁ | Decision-node₁) $Actstmt_0^+$ [Termstmt₀] \rightarrow Dict \rightarrow Transition₀ Dict

Objective Update Statedict in Dict to include the import states implied from an expression and construct the transition leading to the implicit state

Parameters

tnm	The name of the state to which the action containing the expres- sion belongs. The name is saved in the <i>StateD</i> descriptor of the import state such that during the transformation of the transi- tion following the import state, dashed nextstate can be properly substituted
$original node_1$	The AS_1 version of the action which contained the import expres- sion. This node is also saved in the import state (the two objects forms the <i>Importstateinf</i> defined in <i>Quotdict</i>) as it must be included in the AS_1 transition following the import state
actl,term	The AS_0 actions and terminator which followed the action contain- ing import expression(s). The transition which follows the xtRE- PLY input contains these two objects. When the import state has been transformed, <i>originalnode</i> ₁ is added to the transition (see <i>insert-importact</i>). If the action contained more than one import expression then the transition following the xtREPLY input for the other import states consist of an output of the xtQUERY signal and a nextstate to the next import state.

Result	An AS_0 transition containing an output of the xtQUERY signal associ- ated to the first import state and a <i>Dict</i> updated to include descriptors for the implicit import states
Algorithm	
Line 1	Extract the information about the import expressions which oc- curred in the expression.
Line 2	Extract information about the first import expression. <i>impnm</i> denotes the name of the implicit variable replacing the import expression, <i>qual</i> denotes the <i>Qual</i> of the import variable used in the import expression and <i>expr</i> denotes the AS_0 pid expression from the import expression.
Line 3	Construct a name for the implicit state.
Line 4	Extract the name of the import variable.
Line 5	Extract the Qual of the result sort of the import expression.
Line 6	Decompose the Signalnames D associated to the pair of result sort and import variable name. xq is the name of the xtQUERY signal and xr is the name of the xtREPLY signal.
Line 7	Let <i>lev</i> denote the current scopeunit, that is the process, a service or a procedure.
Line 8-9	Construct the output action containing the xtQUERY signal and the PiD expression.
Line 10	Let <i>sigset</i> denote the <i>Quals</i> of the signals which must be saved in the implicit state.
Line 11	Construct the AS_0 save node.
Line 13-14	Construct the transition containing the output of the xtQUERY signal and which terminates in the implicit state.
Line 15	Add the new import variable to the set of implicit variables con- tained in the IMPLIED entry in <i>Dict</i> and remove the information about the import expression from the list contained in the IM- PORTLIST entry.
Line 17	If this import expression was the last (or the only one) in the expression then
Line 18	Construct the transition containing the actions and terminator which followed the action containing the expression.
Line 20	Construct the input of the xtREPLY signal.
Line 22-23	Add the implicit state to <i>Statedict. lev</i> indicates that the input node and the save node shall be transformed in the same context as the one in which the import expression occurred (recall that the states are transformed after services have been merged).
Line 24	Return the transition containing the output and return the up- dated <i>Dict</i> .
Line 26	If there are more import expressions then construct the output transition leading to the next import state and update <i>Dict</i> to include the rest of the import states and to include the new implicit variable.
Line 28	Construct the input containing the transition leading to the next import state.
Line 29-31	Update Statedict to include the new implicit state. The Import- state inf descriptor in the StateD descriptor do not contain the AS_1 action (original node ₁) since this state is not the last of the states implied by the import expressions in the action.
Line 32	Return the transition containing the output and return the up- dated <i>Dict</i>

•

3.9 Expansion of Services

build-service-descriptor(mk-Servicedef₀(id, sigset, dcll, body, tid))(dict) \triangleq (3.9.1) $(\text{let mk-}Id_0(q, snm) = id \text{ in }$ 1 2 let $squal = dict(SCOPEUNIT) \frown \langle (SERVICE, snm) \rangle$ in 3 let $dict' = dict + [SCOPEUNIT \mapsto squal]$ in 4 if $q \neq \langle \rangle$ then 5 exit("§2.4.1: Defining names may only be qualified in remote definitions") 6 else 7 if $tid \in \{id, nil\}$ then (let sigqualset = transform-validinputset(sigset)(dict') in 8 9 let $(as_1 dclset, dict'') = transform-decllist(dcll)(dict')$ in 10 let (starttrans, labeldict, statedict, priinput) = 11 build-service-statedict(body)(dict) in $(as_1 dclset, dict'' + [squal \mapsto mk-ServiceD(starttrans, labeldict, statedict, sigqualset, priinput)]))$ 12 13else exit("§2.2.2: Ending name in service definition is different from defining name")) 14

type: Servicedef₀ \rightarrow Dict \rightarrow Decl₁-set Dict

Objective	Transform the definitions contained in a service definition into AS_1 and construct a service descriptor which contains the service graph in the form of a <i>Statedict</i> and a <i>Labeldict</i>
Parameters	The service definition containing
id	The identifier of the service
sigset	The valid input signal set for the service
dcll	The local definitions
body	The service graph
tid	The identifier ending the service definition
Result	The AS_1 definitions of the local definitions and a <i>Dict</i> containing the service descriptor and the descriptors of the local definitions
Algorithm	
Line 2-3	Update SCOPEUNIT in <i>Dict</i> to denote the service
Line 4-7	The service identifier must not be qualified (line 4) and if the end- ing identifier is specified then it must be the same as the service identifier (line 7)
Line 8	The signals which may be received in an input or a priority input in the service are the signals specified in the valid input signal set or specified in the service signal route joined with the timers defined in the service.
Line 9	Transform the local definitions.
Line 10	Extract the initial transition (<i>starttrans</i>), construct the <i>Statedict</i> (<i>statedict</i>) and the <i>Labeldict</i> (<i>labeldict</i>) from the service graph and extract the signals which are high priority.
Line 12	Return the AS_1 version of the local definitions and the <i>Dict</i> up- dated to include their descriptors and the descriptor of the service

build-service-statedict(mk-Body_0(trans, statelist))(dict) \triangleq

- 1 (let trans' = insert-trans-term(trans) in
- 2 let $statelist' = \langle insert-state-term(statelist[i]) | 1 \le i \le \text{len } statelist \rangle$ in
- 3 let labeldict = build-trans-labeldict(trans')([]) in
- 4 let labeldict' = build-state-labeldict(statelist')(labeldict) in
- 5 let statedict = build-statedict(statelist', dict(SCOPEUNIT))([]) in
- 6 let statedict' = remove-asterisk-input-and-save(statedict)(dict) in
- 7 let priinput = extract-priinput(statedict')(dict) in
- 8 (trans', labeldict', statedict', priinput))

 $\textbf{type}: \quad Body_0 \rightarrow Dict \rightarrow Transition_0 \ Labeldict \ Statedict \ Signal qual-set$

Objective	Construct the Statedict and the Labeldict for a service
Parameters	The body of a service containing
\cdot trans	The initial transition
statelist	The states of the service
Result	The initial transition where terminators have been inserted in decision answers, the constructed <i>Labeldict</i> , the constructed <i>Statedict</i> and the <i>Quals</i> of the high priority signals
Algorithm	r
Line 1	Insert terminators in the initial transition.
Line 2	Insert terminators in the states of the service.
Line 3	Construct the Labeldict for the initial transition.
Line 4	Extend the Labeldict to include the whole service body.
Line 5	Construct the Statedict.
Line 6	Remove the asterisk inputs and asterisk saves from the states in <i>Statedict.</i>
Line 7	Extract the Quals of the high priority signals.
Line 8	Return the initial transition, the <i>Labeldict</i> , the <i>Statedict</i> and the high priority signals

 $extract-priinput(statedict)(dict) \triangleq$

```
(if statedict = [] then
 1
 2
         {}
 3
        else
 4
         (let stnm \in dom statedict in
 5
          let mk-StateD(speclist,) = statedict(stnm) in
          let inputset = \{inp \mid (, inp) \in elems \ speclist \land is-Priinput_0(inp)\} in
 6
 7
          let inpvars = \{inpv \mid (\exists mk-Priinput_0(inpl,) \in inputset)(inpv \in elems inpl)\} in
 8
          let priset = \{signal-qual(id)(dict) \mid
 9
                          (\exists \mathbf{mk}\text{-}Inputvars_0(id', ) \in inpvars)(id' = id)\} in
          priset \cup extract-priinput(statedict \setminus {stnm})(dict)))
10
```

type: Statedict \rightarrow Dict \rightarrow Signal qual-set

Objective	Extract the high priority signals from the states of a service by inspect- ing the input nodes
Parameters	The Statedict containing the service states
Result	The high priority signals of the service
Algorithm	
Line 1	When through statedict, return the empty set (the function is re- cursive).

234 Fascicle X.4 – Rec. Z.100 – Annex F.2

(3.9.3)

Line 4	Take some state in Statedict.
Line 5	Extract the inputs of the state.
Line 6	Extract the priority input nodes from the state.
Line 7-8	Extract the high priority signals from the priority inputs.
Line 10	Return the high priority signals together with the high priority signals from the rest of the state

transform-decomposition-body(dict) \triangleq

1 (let servicelist = $(squal \in dom dict | is-local(squal)(dict) \land$ 2 is-ServiceD(dict(squal)) in 3 if servicelist = $\langle \rangle$ then 4 exit("§4.10: A decomposition must contain at least one service definition") 5 else 6 (let statetuplemap = merge-states(servicelist, $\langle \rangle, \langle \rangle, 1$)(dict) in 7 let $statetuplenamemap = [statetuple \mapsto create-unique-name()]$ 8 statetuple \in dom statetuplemap] in 9 let $statedict = [statetuplenamemap(tuple) \mapsto (statetuplemap(tuple), nil, nil) |$ 10 $tuple \in \mathbf{dom} \ statetuplemap]$ in 11 let statedict' = double-states(statedict, servicelist)(dict) in 12 let statedict'' = remove-cont-enable-from-statelist(dom statedict')(dict, statedict') in 13 let $dict' = dict + [SERVICES \mapsto (statetuplenamemap, servicelist),$ STATEDICT \mapsto statedict"] in 14 let (firststate, firstservice) = extract-firststate-or-service(servicelist, $\langle \rangle$, nil)(dict) in 15 16 if firstservice = nil then 17 (let $term_1 = mk$ -Nextstate-node₁(name-to-name₁(firststate)) in 18 let $trans_1 = add$ -service-varinit(mk-Transition₁($\langle \rangle, term_1$), elems servicelist)(dict) in let $(statebody_1, dict''') = transform-statelist({})(dict')$ in 19 20 $(mk-Process-graph_1(mk-Process-start-node_1(trans_1), statebody_1), dict'''))$ 21 else 22 (let mk-ServiceD(trans, labeldict, , ,) = dict(firstservice) in 23 let $dict'' = dict' + [LABELDICT \mapsto labeldict,$ 24 SCOPEUNIT \mapsto firstservice] in let $(trans_1, dict''') = transform-transition(first state, trans, \langle \rangle)(dict'')$ in 25 26 let $trans_1' = add$ -service-varinit $(trans_1, elems servicelist)(dict)$ in let $(statebody_1, dict''') = transform-statelist({})(dict''')$ in 27 $(mk-Process-graph_1(mk-Process-start-node_1(trans'_1), statebody_1), dict'''))))$ 28

type: $Dict \rightarrow Process-graph_1$ Dict

Objective

Parameters The Dict which contains the descriptors of the services Result The AS_1 process graph and a *Dict* which contains information about output signals used in the services and about implicit variables (same as for *transform-body*) Algorithm Line 1-2 Create a list of service Quals. This list is essential in the transformation of services. The positions in the list correspond to the positions in the state name tuples as also mentioned in the transformation model in §4.10.2 of Z.100. Line 3 There must exist at least one service in a decomposition Line 6 Merge the states of the services. The result is a special Statedict where the entries are state name tuples instead of state names. Line 7-8

Transform a service decomposition into an AS_1 process graph

ine 7-8 Construct a map which defines a unique state name for each state name tuple in the special *Statedict*.

Line 9	Construct a normal <i>Statedict</i> where the name tuples are replaced by the associated unique names.
Line 11	Construct a new <i>Statedict</i> where each state is split into two states: The state receiving the priority inputs and the state receiving all other inputs. The second of these states are given a unique name.
Line 12	Remove enabling conditions and continuous signals from the State- dict in the same way as done for a normal process graph.
Line 13	Make the servicelist and the relation between the state name tuples and the unique state names available for the state transforming functions by including the information in <i>Dict</i> . Also include the <i>Statedict</i> in <i>Dict</i> in the same way as done for a normal process graph.
Line 15	Extract the Qual of the service which contains the initial actions or extract the first state in the case where there is no service which contains an initial transition i.e. either <i>firststate</i> is nil or <i>firstser-</i> vice is nil .
Line 16	If there is no service which contains an initial transition then
Line 17	Construct the AS ₁ nextstate to the first state.
Line 18	Construct the AS_1 action list which initiates the variables of the services and which terminates with the nextstate to the first state.
Line 19	Transform the states.
Line 20	Return the process graph where the initial transition contains the initiation of the variables and the constructed nextstate node.
Line 22	If there is a service containing an initial transition then extract it $(trans)$. Also extract the <i>Labeldict</i> to be used in the transformation of the initial transition.
Line 23	Make Labeldict and the context in which the initial transition is transformed in, available for the transformation function by including them in <i>Dict</i> .
Line 25	Transform the initial transition.
Line 26	Add the AS_1 action list which initiates the variables of the services to the initial transition.
Line 27	Transform the states.
Line 28	Return the process graph

•

236

(if statedict = [] then 1 2 Π 3 else 4 (let $stnm \in dom statedict$ in 5 let mk-StateD(speclist,) = statedict(stnm) in 6 let (priinput, norminput) be s.t. priinput \cup norminput = elems speclist \wedge 7 $(\forall (,inp) \in priinput)(is-Priinput_0(inp)) \land$ 8 $(\forall (,inp) \in norminput)(\neg is-Priinput_0(inp))$ in 9 if $priinput = \{\}$ then 10 $[stnm \mapsto statedict(stnm)] + double-states(statedict \setminus \{stnm\}, servicelist)(dict)$ 11 else 12(let saveset =13 $\{(servicelist[i], \mathbf{mk}\text{-}Savespec_0(siglist)) \mid i \in \mathbf{ind} \ servicelist \land$ 14 (let sigset =15all-input-signals(servicelist[i])(dict) in 16 $siglist = \langle as_0 - id(sig) \mid sig \in sigset \rangle \}$ in 17 let $qual \in elems$ servicelist in 18 let newstnm = create-unique-name() in 19 let continput = $(qual, mk-Contspec_0(mk-Id_0(\langle\rangle, mk-Name_0("TRUE", nil)), nil,$ 20 mk-Termstmt₀(nil, mk-Nextstate₀(newstnm)))) in let firstspec = $(spec \mid spec \in (priinput \cup saveset)) \frown ((continput, nil)),$ 21 22 $secondspec = \langle spec \mid spec \in norminput \rangle$ in 23 let firststate = $[stnm \mapsto mk-StateD(firstspec, nil)],$ 24 $secondstate = [newstnm \mapsto mk-StateD(secondspec, (stnm, nil))]$ in 25 $first state + second state + double - states(statedict \setminus \{stnm\}, servicelist)(dict))))$

type: Statedict Servicequal⁺ \rightarrow Dict \rightarrow Statedict

Objective Replace every state in Statedict by two states where the first state has the priority signals as inputs and the second state has the other signals as inputs.

Parameters

statedict	The (rest of) the old <i>Statedict</i> (the function is recursive)
servicelist	The list of service Quals (see transform-decomposition)
Result	The expanded Statedict
Algorithm	

Algorithm

Line 1	When through, return the empty map.
Line 4	Take the next state to be dealt with.
Line 5	Let <i>speclist</i> denote the list of inputs.
Line 6-8	Split the inputs into priority inputs and other inputs.
Line 9-10	If there is no priority inputs then do not modify the state.
Line 12-16	Construct the <i>Specs</i> which each contains a save of all the normal signals. There is one <i>Spec</i> for each service.
Line 17	Take some arbitrary service Qual from the service list. This service is used in the constructed Spec (line 19) which contains the contin- uous signal to the second state, that is, the constructed continuous signal is transformed in the context of an arbitrary service because the continuous signal do not use any identifiers which are context dependent.
Line 18	Create a unique name for the second state.
Line 19	Construct the continuous signal which leads to the second state. The condition in the continuous signal is "true". Note that contin- uous signal has not been mentioned explicit in the model of services

237

·	in Z.100. However, SAMETOKEN (see §4.11 of Z.100) correspond to the implicit variable (called "n" in §4.12) and XCONT corre- spond to the implicit signal emptyq.
Line 21	Construct the <i>Speclist</i> for the first state. It includes the continuous signal.
Line 22	Construct the Speclist for the second state.
Line 23	Construct the Statedict contribution for the first state.
Line 24	Construct the Statedict contribution for the second state.
Line 25	Continue to double the rest of the states

(3.9.6)

extract-firststate-or-service(servicelist, statelist, firstservice)(dict) \triangleq

1	(if servicelist = $\langle \rangle$ then
2	if firstservice \neq nil then
3	(nil, firstservice)
4	else
5	(let (statetuplenamemap,) = dict(SERVICES) in
6	(statetuplenamemap(statelist), firstservice))
7	else
8	$(let mk-ServiceD(mk-Transition_0(actl, term), stdict,) = dict(hd servicelist) in$
9	if $actl = \langle \rangle \wedge is$ -Nextstate ₀ (s-Terminator ₀ (term)) then
10	$(let mk-Termstmt_0(, mk-Nextstate_0(stnm)) = term in$
11	if $stnm \in \mathbf{dom} \ stdict$ then
12	$extract$ -first state-or-service(tl servicelist, statelist \frown (stnm), first service)(dict)
13	else
14	exit("§2.6.7.2.1: Name in nextstate must denote a defined state"))
15	else
16	if firstservice \neq nil then
17	exit(``§4.10.2: More than one service contains an initial transition string")
18	else
19	extract -first state - or - $service$ (tl $servicelist$, nil, hd $servicelist$) $(dict)$))

 $\textbf{type}: \quad Servicequal^* \; [Statename_0^*] \; [Servicequal] \rightarrow Dict \rightarrow [Statename_0] \; [Servicequal]$

Objective	Extract either the initial state of the composite states in Statedict or
	the service which contains an initial transition.

Parameters

servicelist	The list of services (see transform-decomposition)
statelist	A state name tuple which is constructed during the recursive call of the function. When all the services in <i>servicelist</i> have been considered, this name tuple defines the unique state name to be returned (via the state tuple map, see <i>transform-decomposition</i>)
firstservice	If a service containing an initial transition has been found then firstservice contains the Qual of that service. As soon as such a service has been found, the recursion could stop and the service returned, but for the sake of checking that there is only one such service, the service is taken as parameter to the next recursion call
Result	If there exist a service which contains an initial transition then the <i>Qual</i> of that service (<i>Servicequal</i>) else the name of the unique starting state
Algorithm	
Line 1-2	When having considered all the services then if a service containing an initial transition has been found then return the <i>Qual</i> of that service (<i>firstservice</i>) else
Line 5-6	the starting state is the state which correspond to the initial next- states in the services (<i>statelist</i> contains those initial service states).

Fascicle X.4 - Rec. Z.100 - Annex F.2 238

Line 8	Decompose the descriptor of the next service to be considered.
Line 9	If the start transition contains a nextstate only then
Line 10	Let stnm denote the name of the state in the nextstate.
Line 11	If the state is defined in the service (i.e. if it can be found in the <i>Statedict</i> local to the service) then
Line 12	Continue with considering the next service. Add the state name to the state name list such that eventually the new unique state can be found if none of the services contains an initial transition string (line 6).
Line 16-19	If a service containing an initial transition string has not already been found then consider the next service. As a service containing an initial transition has been found the state name list is of no use (i.e. it is nil)

add-service-varinit(trans, squalset)(dict) \triangleq

1	(if squalset	$= \{\}$ then
---	--------------	---------------

- 2 add-varinit(trans, dict)
- 3 else
- 4 (let squal \in squalset in
- 5 let $dict' = dict + [SCOPEUNIT \mapsto squal]$ in
- 6 let trans' = add-varinit(trans, dict') in
- 7 add-service-varinit(trans', squalset $\{squal\})(dict)))$

type: Transition₁ Servicequal-set \rightarrow Dict \rightarrow Transition₁

Objective Add the AS_1 initiations of the service variables to the initial transition.

Parameters

trans squalset	The initial transition The <i>Quals</i> of the services of a service decomposition	
Result	The updated transition	
Algorithm		
Line 1	When through all the services then add the initiations of the ables defined on process level to the transition.	
Line 4	Let squal denote one of the (remaining) services.	
Line 5	Let SCOPEUNIT in <i>Dict</i> denote that service.	

2000 0		
Line 6	Let <i>trans'</i> denote the transition updated the variable initiations for	
	that service. The function add-varinit is also used when construct-	
	ing the initial transition attached to a process or procedure.	
Line 7	Add the initiations for the remaining services	

 $merge-states(servicelist, statenmtuple, statelist, index)(dict) \triangleq$

1 (if index > len servicelist then2 $[statenmtuple \mapsto mk-StateD(statelist, nil)]$ 3 else (let mk-ServiceD(,, statedict,,) = dict(servicelist[index]) in 4 merge { merge-states(servicelist, 5 statenmtuple $\frown \langle statenm \rangle$, 6 $statelist \frown s$ -Speclist(statedict(statenm)), 7 $index + 1)(dict) \mid statenm \in dom statedict\}))$ 8

type: Servicequal⁺ Statename₀^{*} Speclist $N_1 \rightarrow Dict \rightarrow (Statename_0^+ \implies StateD)$

(3.9.7)

(3.9.8)

vari-
Objective	Merge ("STATE EXPLODE") the Statedicts of the services into a State- dict like map where the entries are state name tuples (same kind of state name tuples as defined in the model-part of §4.10.2 of Z.100). The function transform-decomposition-body, where this function is ap- plied, introduces a unique state name for each of the tuples and thereby converts the map into an ordinary Statedict
Parameters	
servicelist	The list of <i>Servicequals</i> of the services. The positions of a service in this list equals the position of its states in the state name tuples
statenmtuple	
statelist	The state name tuple (<i>statenmtuple</i>) and the inputs (<i>statelist</i>) for a resulting state is creating recursively. When <i>merge-states</i> initially is applied, they are empty.
index	The index to <i>servicelist</i> which indicates which service to be treated at this recursion level.
Algorithm	
Line 1	When having constructed a (complete) state name tuple ($staten-mtuple$) then return the contribution for this particular tuple.
Line 4	Let statedict denote the Statedict of the service corresponding to index.
Line 5-9	For this service, form the map which includes all the state tuples which have <i>statenmtuple</i> as the first elements (formed from the services which already have been treated) and which have a state (<i>statenm</i>) from the service as the next element. The contributions from the various states of the service are unified into a single map by means of the merge operator
is-wf-servicesign	$als(dict) \triangleq$
$\begin{array}{ccc}1 & (let \ process\\2 & \{squal\\3\\4 & (\exists d1, d2 \in 5\\6\\7\end{array}$	signals = (∃mk-SignalrouteD(p1, p2, s1, s2) ∈ rng dict) ((p1 = dict(SCOPEUNIT) ∧ squal ∈ s2) ∨ (p2 = dict(SCOPEUNIT) ∧ squal ∈ s1))} in dom dict)(is-ServiceD(dict(d1)) ∧ is-ServiceD(dict(d2)) ∧ get-sur(d1) = dict(SCOPEUNIT) ∧ get-sur(d2) = dict(SCOPEUNIT) ∧ s-Validinputset(dict(d1)) ∩ s-Validinputset(dict(d2)) ≠ {} ⊃ (d1 = d2 ∧ s-Priinputset(dict(d1)) ∩ processignals = {})))
type: $Dict \rightarrow D$	Bool
Objective	Check that the input signals of the services are disjoint and that no priority signals are external to the enclosing process
Result	True if the signals are well-formed
Algorithm	
Line 1-3	Let <i>process signals</i> denote the signals contained in a signal route (implicit or explicit).
Line 4	For every two Quals $d1$ and $d2$ of entities defined in a process it must hold that if they denote services (line 4) and they are defined in the surrounding process (line 5) and they have input signals in common (line 6) then they must denote the same service and that service must have no high priority signals leading to the environment of the surrounding process (line 7).

(3.9.9)

.

 $transform\text{-}services igrouted ef(\mathbf{mk}\text{-}Sigroutedef_0(nm, path, opath))(dict) \triangleq$

1	(let mk-Sigr	$outepath_0(endpoint1, endpoint2, siglist) = path$ in	
2	let sigroutequal = $dict(SCOPEUNIT) \frown \langle (SIGNALROUTE, nm) \rangle$ in		
3	let $sigset = transform-signallist(siglist)(dict)$ in		
4	let $s1 = get$	-visible-qual(endpoint1, SERVICE)(dict),	
5	s2 = get	-visible-qual(endpoint2, SERVICE)(dict) in	
10 77	iet osigset =	= - n'i Aban	
8	II opain	= mithen	
9	्र else		
10	(let m	k-Signoutepath (orig', dest', osiglist) = opath in	
11	let s1	' = get-visible-gual(orig', SERVICE)(dict).	
12	s2' = get - visible - gual(dest', SERVICE)(dict), s2' = get - visible - gual(dest', SERVICE)(dict) in		
13	if s1 =	$s2' \wedge s2 = s1'$ then	
14	tran	nsform-signallist(osiglist)(dict)	
15	else		
16	exit	t(" $4.10.1$: The endpoints in the directions of a bidirectional signal route must match")) in	
17	if $s1 \neq s2$ th	ien	
18	(let descr	= mk-SignalrouteD(s1, s2, sigset, osigset) in	
19	$\{\{\}, [signore]\}$	$putequal \mapsto descr]))$	
20		0.1. The ordering of combined in the state $(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	
21	exit(34.1	0.1. The endpoints of service signal route must be different ()	
type :	Sigroutede	$f_0 \rightarrow Dict \rightarrow Decl_1$ -set Dict	
Objec	tive	Construct the Dict descriptor of a service signal route	
Paran	neters	The service signal route containing	
nı	m	The name of signal route	
po	ath	The first path	
op	oath	The second optional path	
Resul	t	An empty set of AS_1 definitions (because all the functions which trans- forms AS_1 definitions returns AS_1 definitions) and the <i>Dict</i> contribution containing the descriptor	
Algor	ithm		
L_{i}	ine 1	Decompose the first path in the service signal route.	
L_{1}	ine 2	Construct the Qual which denotes the service signal route.	
L_1	ine 3	Construct the Quals for the signals in the first path.	
	ine 1-5	Construct the Ougl of the endpoints	
L	$ine \ 4 \ 0$	If the second nath is omitted then arigest is empty else asignst	
1	<i>inc</i> 0-10	denotes the signals in the second path (the opposite directions as sigset).	
Li	ine 10	Decompose the second path.	
Li	ine 11-12	Construct the Qual of the endpoints in the second path	
Lı	ine 12-13	The first endpoint of the first path must be equal to the second endpoint of the second path and the second endpoint of the first path must be equal to the first endpoint of the second path	
Li	ine 17	The same service must not be specified in both endpoints.	
Li	ine 18	Construct the service signal route descriptor	
		· · · · · · · · · · · · · · · · · · ·	

3.10 Creation of Implicit Channels and Signal Routes

This section contains the functions which for a block create:

- The implicit channels which are connected to the block if it contains exporting processes (for importing processes, it is the other block endpoint containing exporting processes which creates the channels)
- The implicit sub-channels which are connected to the block if it contains importing or exporting processes
- The connect definitions if the block contains a sub-structure which imports from- or exports to its environment
- The implicit signal routes and their associated connect definitions implied by import/export and implied by the valid input signal sets in the case where no signal routes are specified in AS_0
- The *ExpimpchanD* descriptors to be contained in the *BlockD* descriptor. These descriptors contains information about how the block should be interfaced such that implicit sub-channels can be created for the other block endpoint

(3.10.1)

The entry function which is applied in transform-block is implicit-channels-and-signalroutes.

```
implicit-channels-and-signal-routes(decllist)(dict) \triangleq
```

```
(let (exportset, importset) = imp-exp-in-processes(dict) in
  1
  2
       let sigroutes = implicit - signalroutes(decllist)(dict),
  3
           blockimport = all-importeurs(dict),
  4
           blockexporteurs = all-exporteurs(dict).
  5
           (fatherimpm, fatherexpm) = father-block-import-export(dict) in
  6
       let export to env = \{ closure \mid closure \in (export set \cap dom father expm) \},\
  7
           import from block = \{ closure \mid closure \in (importset \cap dom block exporteurs) \},\
           importfromenv = \{ closure \mid closure \in (importset \cap dom fatherimpm) \} in
  8
  9
       let importblockmap = [closure \mapsto blockexporteurs(closure) | closure \in importfromblock],
 10
           importenvmap = [cl \mapsto \langle (ENV, create-unique-name()) | 1 \le i \le len fatherimpm \rangle |
                              cl \in import from env],
 11
 12
           exportblockmap = [cl \mapsto \langle (bqual, create-unique-name()) \mid cl \in (exportset \cap blockimport(bqual)) \rangle \mid
 13
                                bqual \in \mathbf{dom} \ blockimport],
           exportenvmap = [cl \mapsto ((ENV, create-unique-name()) | 1 \le i \le len fatherexpm) |
 14
 15
                              cl \in export to env] in
 16
       let importenvchannels = as_0-channels(importenvmap, false)(dict),
 17
           exportblock channels = as_0 - channels(exportblock map, true)(dict),
           exportenvchannels = as_0-channels(exportenvmap, true)(dict) in
 18
 19
       let connects = implicit-connects(importblockmap, exportblockmap)(dict) in
 20
       let decll = importenvchannels \frown exportblockchannels \frown exportenvchannels in
 21
       (decll, sigroutes, connects, importblockmap, exportblockmap))
type: Decl_0^* \rightarrow Dict \rightarrow Decl_0^* Decl_0^* Decl_0^* ExpimpchanD ExpimpchanD
                      Construct the implicit channels, connect definitions and signal routes
Objective
                      for a block
Parameters
     decllist
                           The definition list of the block. It is used for used for testing on
                           whether there are explicit signal routes in the block
Result
                      The channels to be defined at the same level as the block, the signal
                      routes and the signal route connections to be defined in the block, the
                      block sub-structure connections to be defined in the sub-structure (if
                      any), the relation between the implicit channel names and the import
                      signals it conveys (the channel name is deduced from the ExpimpchanD
                      defined for the exporting block) and the relation between the implicit
                      channel names and the export signals
```

242 Fascicle X.4 – Rec. Z.100 – Annex F.2

Algorithm

Line 1	Let <i>exportset</i> denote the set of pairs of sort <i>Qual</i> and export name (<i>NameclosureDs</i>) for the processes in the block and let <i>importset</i> denote the <i>NameclosureDs</i> corresponding to export in the block.
Line 2	Let sigroutes denote the implicit signal routes created for the block.
Line 3	Let blockimport denote the relation between the block Quals and the NameclosureDs for the imported names in the block.
Line 4	Let <i>blockexporteurs</i> denote the <i>ExpimpchanD</i> containing the exported names in all the other blocks and their names.
Line 5	Let fatherimpm denote the import ExpimpchanD descriptor for the block which contains this block and let fatherexpm denote the ex- port ExpimpchanD descriptor for the block which contains this block
Line 6	The NameclosureDs for the names which are exported from this block to the environment of the scopeunit is the intersection be- tween the NameclosureDs for the names exported from this block (exportset) and the NameclosureDs for the names also exported in the surrounding block
Line 7	The NameclosureDs for the names which are imported to this block from another block is the intersection between the NameclosureDs for the names imported from this block (<i>importset</i>) and the Name- closureDs for the names exported in another block
Line 8	The NameclosureDs for the names which are imported to this block from the environment of the scopeunit is the intersection between the NameclosureDs for the names imported from this block (<i>im-</i> <i>portset</i>) and the NameclosureDs for the names exported in the surrounding block.
Line 9	Construct the <i>ExpimpchanD</i> descriptor which contains information about the channel names conveying import signal names. The channel names are deduced from the descriptor contained in the <i>BlockD</i> for the exporting block.
Line 10-11	Construct the <i>ExpimpchanD</i> descriptor which contains information about the sub-channel names conveying import signal names to the environment of the block. In this case the channel names are created since the other endpoint is ENV.
Line 12-12	Construct the <i>ExpimpchanD</i> descriptor which contains information about the channel names conveying export signal names to other blocks (in the same scopeunit).
Line 14-15	Construct the <i>ExpimpchanD</i> descriptor which contains information about the sub-channel names conveying export signal names to the environment of the scopeunit.
Line 16	Construct the AS_0 sub-channels for the imported names in the block.
Line 17	Construct the \mathbf{AS}_0 channels for the names which are exported to another block
Line 18	Construct the AS_0 channels for the names which are exported to the surrounding scopeunit.
Line 19	Construct the connect definitions for all the implicit sub-channels in the sub-structure of the block.
Line 20	Let <i>decll</i> denote the definitions which are to be defined at the same level as where the block is defined, that is, all the constructed channels.
Line 21	Return the channel definitions, the signal route definitions and the two <i>ExpimpchanD</i> maps

3.10.1 Creation of Implicit Channels

 as_0 -channels(map, isexport)(dict) \triangleq

(if map = [] then1

2 $\langle \rangle$

- 3 else
- 4 (let $clos \in dom map$ in
- 5 $(as_0-channeldefs(map(clos), is export, dict(clos))(dict))$
- 6 as_0 -channels(map \ {clos}, isexport)(dict)))

type: ExpimpchanD Bool \rightarrow Dict \rightarrow Chandef₀*

Objective Construct the implicit channels associated to either import from the environment of a block or export to the environment of a block or export from a block to another block

Parameters

map	An <i>ExpimpchanD</i> containing information about the channel name and the name of one of the endpoint. The second endpoint is the current block, i.e. constructed from <i>dict</i> (SCOPEUNIT)
is export	True if channels for export names in the current block are to be created
Result	The constructed list of AS_0 channel definitions
Algorithm	
Line 1	When through all the imported or exported names then return the empty list.
Line 4	Take the next NameclosureD for an imported or exported name.
Line 5	Construct the channel definition for that imported or exported name.
Line 6	Construct the channel definitions for the rest of the <i>NameclosureD</i> s

 as_0 -channeldefs(list, is export, signal names)(dict) \triangleq

```
1
      (if list = \langle \rangle then
 2
          \langle \rangle
 3
          else
          (let level = dict(SCOPEUNIT),
 4
 5
                blkid = as_0 - id(level),
 6
                mk-SignalnamesD(, xq, xr) = signalnames in
 7
           let signallist 1 = \langle \mathbf{mk} \cdot Id_0(\langle \rangle, xr) \rangle,
 8
                signallist 2 = \langle \mathbf{mk} - Id_0(\langle \rangle, xq) \rangle,
 9
                 (bqual, chan) = hd list in
10
           let blkid' = as_0 - id(bqual) in
11
            let (from block, toblock) = if is export then (blkid, blkid') else (blkid', blkid) in
            let direction1 = \mathbf{mk}-Chanpath<sub>0</sub>(fromblock, toblock, signallist1),
12
13
                 direction 2 = \mathbf{mk}-Chanpath<sub>0</sub>(toblock, fromblock, signallist2) in
14
            \langle \mathbf{mk-Chandef_0}(chan, direction1, direction2, \mathbf{nil}, chan) \rangle \frown
            as<sub>0</sub>-channeldefs(tl list, isexport, signalnames)(dict)))
15
```

type: $(Otherend \ Channame_0)^* \ Bool \ Signalnames D \rightarrow Dict \rightarrow Chandef_0^*$

Objective For a given SignalnamesD, the two endpoint of channels and the channel names, the channel definitions conveying the xtREPLY signal and the xtQUERY signal are constructed

Parameters

Fascicle X.4 - Rec. Z.100 - Annex F.2 244

(3.10.1.1)

(3.10.1.2)

list	A list of pairs each consisting of the other endpoint than the current one and the channel name. The list of pairs defines the channels to be created
isexport	True if the current block is the exporting block
signalnames	The <i>SignalnamesD</i> descriptor containing the xtREPLY and the xtQUERY signals corresponding to some <i>NameclosureD</i>
Result	The list of AS_0 channel definitions
Algorithm	
Line 1	When through, return the empty list (the function is recursive).
Line 4-14	Construct a channel definition for the next item in the list.
Line 4	Let level denote the current block Qual.
Line 5	Let blkid denote the identifier of the current block.
Line 6	Let <i>xq</i> and <i>xr</i> denote the xtQUERY signal and the xtREPLY signal to be conveyed by the channel.
Line 7-8	Construct the two signal lists which contain the signals.
Line 9	Let <i>bqual</i> denote the <i>Qual</i> of the other end block and let <i>chan</i> denote the channel name.
Line 10	Construct the identifier of the other end.
Line 11-11	If the current block is the exporter then <i>fromblock</i> denotes that block, otherwise <i>fromblock</i> denotes the other endpoint (in the case of a sub-channel).
Line 12-13	Construct the paths for the two signal lists.

Line 14Construct the channel definition.Line 15Construct channel definitions for the rest of the list (list)

$father-block-import-export(dict) \triangleq$

(let level = dict(SCOPEUNIT) in
 if len level > 2 then
 (let fatherlevel = get-sur(get-sur(level)) in
 let mk-BlockD(exp, imp, ,) = dict(fatherlevel) in
 (exp, imp))
 else
 ([],]))

 $\mathbf{type}: \quad Dict \rightarrow ExpimpchanD \ ExpimpchanD$

Objective	Extract the two <i>ExpimpchanDs</i> for the block which contains the current block	
Result	The <i>ExpimpchanD</i> for the export channels and the <i>ExpimpchanD</i> for the import channels	
Algorithm		
Line 1	Let level denote the Qual of the current block.	
Line 2	If the block is contained in a sub-structure then	
Line 3	Let fatherlevel denote the Qual of the block containing the sub- structure.	

Line 4-5Return the ExpimpchanDs for that block.Line 8If the current block is defined at the system level then the maps
are empty as it is not possible to import/export from/to the envi-
ronment of the system

(3.10.1.3)

 $(let \ level = dict(SCOPEUNIT) in$ 1 let $pquals = \{qual \mid qual \in dom \ dict \land$ 2 3 is-Process $D(dict(qual)) \land$ 4 get-sur(qual) = level} in $\mathbf{5}$ if $pquals = \{\}$ then 6 (let subblockquals = { qual | qual \in dom dict \wedge 7 is-BlockD(dict(qual)) \land 8 get-sur(get-sur(qual)) = level} in let $eiset = \{imp - exp - in - processes(dict + [SCOPEUNIT \mapsto qual]) \mid qual \in subblockquals\}$ in 9 $(\text{union} \{imp \mid (imp,) \in eiset\}, \text{union} \{exp \mid (, exp) \in eiset\}))$ 10 11 else 12 (let $eset = \{vqual \mid vqual \in dom dict \land$ 13 is- $VarD(dict(vqual)) \land$ get-sur $(vqual) \in pquals\},$ 14 15 $iset = \{vqual \mid vqual \in \mathbf{dom} \ dict \land \mathbf{is} \text{-} ImportD(dict(vqual)) \land \}$ 16 get- $sur(vqual) \in pquals$ } in 17 let expset = 18 $\{closure \mid (\exists q \in eset)\}$ 19 ((let mk-VarD(t, , exp, ,) = dict(q),20 (vnm) = q[len q] in 21 $exp = \mathsf{EXPORTED} \land closure = (t, vnm)))\},$ 22 impset =23 $\{closure \mid (\exists q \in iset)\}$ 24 ((let mk-ImportD(t) = dict(q),25 $(vnm) = q[\operatorname{len} q]$ in $closure = (t, vnm)))\}$ in 26 27 (expset, impset)))

type : $Dict \rightarrow Name closureD$ -set Name closureD-set

Objective Extract the pairs of sort and variable names (*NameclosureDs*) for the export variables and for the import variables defined in the processes in a block- or - if the block contains no processes then for the processes in the contained sub-structure

Result The NameclosureDs for the exported variables and the NameclosureDs for the imported variables

Algorithm

Line 1	Let level denote the Qual of the current block.
Line 2-4	Let pquals denote the Quals of the processes defined in the block.
Line 5	If there are no processes in the block then
Line 6-8	Let subblockquals denote the Quals of the blocks contained in the sub-structure.
Line 9	Extract the set of pairs of <i>NameclosureD</i> for exported variables and for imported variables for the sub-blocks.
Line 10	Join all the export <i>NameclosureDs</i> in the set and join all the import <i>NameclosureDs</i> in the set.
Line 12-14	If the block contains processes then let <i>eset</i> denote the set of vari- able <i>Quals</i> for the variables defined in the processes.
Line 15-16	Let <i>iset</i> denote the set of variable <i>Quals</i> for the import variables defined in the processes.
Line 17-21	Let <i>expset</i> denote the <i>NameclosureDs</i> for the exported variables, i.e. the set of pairs of sort (t) and exported $(exp = EXPORTED)$ variable name (vnm) .
Line 22-26	Let <i>impset</i> denote the <i>NameclosureDs</i> for the imported variables.

Line 27 Return the two sets

 $all-importeurs(dict) \triangleq$

(let level = dict(SCOPEUNIT) in
 let sur = get-sur(level) in
 let blockqset = {qual | qual ∈ dom dict ∧
 is-BlockD(dict(qual)) ∧
 get-sur(qual) = sur} \ {level} in
 let expimpmap = [q → imp-exp-in-processes(dict + [SCOPEUNIT → q]) | q ∈ blockqset] in

7 $[q \mapsto closset \mid q \in dom expimpmap \land (, closset) = expimpmap(q)])$

 $[q \mapsto closser \mid q \in dom explorement \wedge (, closser) = explorement \langle q \rangle$

 $\mathbf{type}: \quad Dict \rightarrow (Blockqual \implies Name closureD\mathsf{-set})$

Objective Extract information about the relation between the *NameclosureDs* for import and the importing block. The current block is excluded in the relation (map)

Algorithm

Line 1	Let level denote the current block.
Line 2	Let sur denote the Qual of the surrounding block sub-structure.
Line 3-5	Construct a set consisting of all blocks in the sub-structure except the current one.
Line 6	Construct a map from importing blocks to the pairs of <i>Nameclo-sureDs</i> sets for the block.
Line 7	Return a map from importing blocks to the <i>NameclosureD</i> for the imported variables in the blocks

$all-exporteurs(dict) \triangleq$

(let level = dict(SCOPEUNIT) in
 let sur = get-sur(level) in
 let blockqset = {qual | qual ∈ dom dict ∧
 is-BlockD(dict(qual)) ∧
 get-sur(qual) = sur} \ {level} in
 get-exporteurs(blockqset)(dict))

type: $Dict \rightarrow ExpimpchanD$

Objective Construct the (composite) *ExpimpchanD* which includes the exported variables in all the other blocks (except the current one) which exports.

Algorithm

Line 1	Let level denote the Qual of the current block.
Line 2	Let sur denote the Qual of the surrounding block sub-structure.
Line 3-5	Let <i>blockqset</i> denote the set of <i>Quals</i> for all the other blocks in the sub-structure.
Line 6	Traverse recursively through the set of <i>Quals</i> while joining the <i>ExpimpchanDs</i> for the blocks

(3.10.1.6)

1	(if blockqset	$= \{\}$ then
2	0	
3	else	
4	$(\mathbf{let}q\in b$	lockqset in
5	let blkqu	al = dict(SCOPEUNIT) in
6	let mk- <i>l</i>	BlockD(expm, , ,) = dict(q) in
7	let expm	$' = [closure \mapsto tup \mid closure \in dom expm \land$
8		(let tup' = expm(closure) in
9		if $(\exists i \in ind tup')(s - Otherend(tup[i]) = blkqual)$ then
10		(let $i \in ind tup'$ be s.t. s-Otherend $(tup[i]) = blkqual$ in
11		$tup = \langle tup[i] \rangle)$
12		else
13		false) in
14	let rest =	$= get - exporteurs(blockqset \setminus \{q\})(aict) in$
10	$[clos \mapsto ($	$(rest + expm)(clos) clos \in (dom rest - dom expm)] +$
10	$[cios \mapsto]$	$new nst \mid clos \in (\text{dom rest} \mid \text{dom exp} m) \land new nst = rest(clos) \land exp m (clos)]))$
type	: Blockqual	-set $\rightarrow Dict \rightarrow ExpimpchanD$
Obje	ctive	Construct the composite <i>ExpimpchanD</i> which includes the information about export in all blocks
Obje Para	ctive meters	Construct the composite <i>ExpimpchanD</i> which includes the information about export in all blocks
Obje Para b	ctive meters lockqset	Construct the composite <i>ExpimpchanD</i> which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive)
Obje Para b Resu	ctive meters lockqset lt	Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD
Obje Para b Resu Algo	ctive meters lockqset lt rithm	Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD
Obje Para b Resu Algo	ctive meters lockqset lt rithm	Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD When having dealt with all the blocks, return the empty map.
Obje Para b Resu Algo	ctive meters lockqset lt rithm Jine 1 Jine 4	 Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD When having dealt with all the blocks, return the empty map. Let q denote the next block Qual in the set.
Obje Para b Resu Algo 1 1 1	ctive meters lockqset lt rithm Jine 1 Jine 4 Jine 5	 Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD When having dealt with all the blocks, return the empty map. Let q denote the next block Qual in the set. Let blkqual denote the Qual of the current block.
Obje Para b Resu Algo 1 1 1 1 1	ctive meters lockqset lt rithm Dine 1 Dine 4 Dine 5 Dine 6	 Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD When having dealt with all the blocks, return the empty map. Let q denote the next block Qual in the set. Let blkqual denote the Qual of the current block. Let expm denote the ExpimpchanD corresponding to export from the block.
Obje Para b Resu Algo 1 1 1 1 1 1 1 1 1	ctive meters lockqset lt rithm Jine 1 Jine 4 Jine 5 Jine 6 Jine 7-13	 Construct the composite ExpimpchanD which includes the information about export in all blocks The set of (remaining) blocks to be dealt with (the function is recursive) The constructed composite ExpimpchanD When having dealt with all the blocks, return the empty map. Let q denote the next block Qual in the set. Let blkqual denote the Qual of the current block. Let expm denote the ExpimpchanD corresponding to export from the block. Restrict the ExpimpchanD map such that it only includes the elements where the other endpoint is the current block.

Line 15-16 Return the ExpimpchanD where the lists in the two maps (expm' and rest) have been concatenated. Line 15 defines the unchanged entries and line 16 defines the entries which are constructed by concatenating the lists for two entries from the maps

۰

...

3.10.2 Creation of Implicit Signalroutes

implicit-signalroutes(decll)(dict) \triangleq

1 (let exist explicit = $(\exists d \in decll)$ (is-Sigroutedef₀(d)) in 2 if $\neg exist explicit \land (\exists mk-Prdef_0(, inst, , , , ,) \in elems decll)(inst = nil) then$ 3 exit("§2.5.2: Valid input signal set must be specified when no signal routes are specified") 4 else 5 (let bgual = dict(SCOPEUNIT) in6 let cqualset = $\{cqual \in dom \ dict \mid is-ChannelD(\ dict(\ cqual)) \land$ 7 8 (let mk-ChannelD(endp1, endp2, , ,) = dict(cqual) in 9 $bqual \in \{endp1, endp2\})\}$ in 10 let $pathset = \{p \in \text{dom } dict \mid is \cdot ProcessD(dict(p)) \land is \cdot local(p)(dict)\}$ in 11 let pathpairset \in (Processqual-set)-set be s.t. ($\forall e \in$ pathpairset)(card e = 2) \land 12 union $path pairs et = path set \land$ 13 $(\forall p1, p2 \in pathset)(p1 \neq p2 \supset \{p1, p2\} \in pathpairset)$ in 14 $make-as_0$ -local-signalroutes(pathpairset, existexplicit)(dict) \frown 15 make-as_0-env-signalroutes(cqualset, existexplicit)(dict)))

type: $Decl_0^* \rightarrow Dict \rightarrow Decl_0^*$

Objective Construct the AS₀ implicit signal routes for a block

Algorithm

Line 1	Let <i>existexplicit</i> be true if there are specified any signal routes in the block.
Line 2-3	If no explicit signal routes are specified for the block then all con- tained process definitions must contain a valid input signal set.
Line 5	Extract the Qual of the block.
Line 6-9	Extract the descriptors for those channels which have the block as one of the endpoints.
Line 10	Construct a set containing the <i>Qual</i> of all the processes in the block.
Line 11-13	Construct a set of <i>Processqual</i> sets where each contained set con- tains two elements (line 11), the sets contains only those process <i>Quals</i> which are defined in the block (line 12) and the set contains all possible combinations of sets (line 13).
Line 14	Construct the signal routes between processes in the block and
Line 15	Construct the signal routes connected to the environment of the block

Fascicle X.4 – Rec. Z.100 – Annex F.2

249

 $make-as_0-local-signal routes(pathset, exist explicit)(dict) \triangleq$

•

1	(if path	$set = \{\}$ then
2	$\langle \rangle$	
3	else	
4	(let	$\{p1, p2\} \in pathset$ in
5	let	\mathbf{mk} -Process $D(, insig1, outsig1,) = dict(p1),$
6		\mathbf{mk} -Process $D($, insig2, outsig2, $) = dict(p2)$ in
7	let	(insig1', outsig1') = if existexplicit then
8		import - $export$ - $signals(dict)$
9		else
10		(insig1, outsig1),
11		(insig2', outsig2') = if existexplicit then
12		import - $export$ - $signals(dict)$
13		else
14		(insig2, outsig2) in
15	let	$as_0plid = as_0 \cdot id(pl),$
16	. .	$as_0p2id = as_0 \cdot id(p2)$ in
17	let	$(com 1sig, com 2sig) = (insig1' \cap outsig2', insig2' \cap outsig1')$ in
10	1et	$as_0 sigset 1 = \{as_0 \cdot ia(ia) \mid ia \in com 1 sig\},$
19	1.4	$as_0 sigset 2 = \{as_0 - ia(ia) \mid ia \in com 2 sig\}$ in
20	ter	$com 1 = n \ com 1 \ sig = \{\}$
41 22		then mi
22		ense $\operatorname{Ink-Sigvoule public(us_0p_1)u}, us_0p_2)u, us_0sigse(1),$
23		then nil
25		else mk-Sigroutepatho(ason2id, ason1id, asosigset2) in
26	let	(com', com'') = if $com1 = $ nil then $(com2, com1)$ else $(com1, com2)$ in
27	let	$route_0 =$
28		if $com' = nil \wedge com'' = nil$
2 9	9 then $\langle \rangle$	
30		else (let $nm_0 = create - unique - name()$ in
31		$(\mathbf{mk}$ -Sigroutepath ₀ $(nm_0, com', com'')))$ in
32	rot	$te_0 \frown make-as_0-local-signal routes(pathset \setminus \{\{p1, p2\}\}, exist explicit)(dict)))$
type	: (Property)	$pcessqual-set$)-set $Bool \rightarrow Dict \rightarrow Sigroutedef_0^*$
Obje	ective	Construct AS_0 signal routes which leads between processes in a block
Para	meters	i
	atheat	The set of poirs (sets containing two elements) of process
1	. ,	The set of parts (sets containing two elements) of process
(existexp	1 True if there are specified signal routes for the block in AS_0
Resu	ılt	A list of AS_0 signal routes
Alac	rithm	
AIGO		
Ļ	Line 1	When through, return the empty list (the function is recursive).
	Line 4	Let $p1$ and $p2$ denote a combination of processes to be dealt with.
	Line 5-1	Decompose the descriptors of the processes.
_	Line 7	If signal routes are specified for the process in ASs then signal
-		routes are only constructed for the import /export signals
	T :	<i>the Mater the AS identifiers for the processor</i>
		10 Make the A50 identifiers for the processes.
د	Line 17	Let comising denote the signals which leads from $p2$ to $p1$ and let comising denote the signals which leads from $p1$ to $p2$.
	Line 18	Construct the AS_0 identifier set corresponding to com1sig.
	Line 19	Construct the AS_0 identifier set corresponding to com2sig.
-	Line ON	25 Let com1 and com2 denote the AS ₀ communication paths from n^2
ن.	<i>une 20</i>	to $p1$ respectively from $p1$ to $p2$ (nil if a path contains no signals).

.

Line 26-31	Let route ₀ denote a signal route which contains the signal between
	the two processes.
Line 32	Join the signal route definition with those for the rest of pairs of
	processes

$make-as_0-env-signal routes(cqualset, exist explicit)(dict) \triangleq$

(if $cqualset = \{\}$ then

1 2

 $\langle \rangle$

(3.10.2.3)

```
3
        else
 4
         (let \ bqual = dict(SCOPEUNIT) in
 5
          let cqual \in cqualset in
 6
          let pqualset = \{pqual \mid pqual \in dom dict \land is-local(pqual)(dict)\} in
 7
          let sigroutes = make-as_0-channel-signalroutes(cqual, pqualset, existexplicit)(dict) in
 8
          if sigroutes = \{\} then
 9
            make-as_0-env-signal routes(cqualset \setminus \{cqual\}, exist explicit)(dict)
10
            else
11
            (let as_0 chanid = as_0 - id(cqual),
                  routenameset = {nm \mid (\exists mk-Sigroutedef_0(nm', ,) \in sigroutes)(nm' = nm)} in
12
13
             let as_0 list = (as_0 - id(bqual \frown ((SIGNALROUTE, nm))) | nm \in routenameset) in
              \langle sigroute \mid sigroute \in sigroutes \rangle
14
15
              \langle \mathbf{mk-}Connect_0(as_0 chanid, as_0 list) \rangle \frown
```

```
16 make-as_0-env-signal routes(cqualset \setminus \{cqual\}, exist explicit)(dict))))
```

```
\textbf{type}: \quad Channel qual-set \ Bool \rightarrow Dict \rightarrow Decl_0^*
```

definitions

Objective Construct the implicit AS_0 signal routes which are connected to the environment of the block

Parameters

cqualset	The set of channels to which the block is connected
existexplicit	True if signal routes are specified in the concrete syntax for the block
Result	The constructed list of AS ₀ signal routes and the appropriate connect

Algorithm

Line 1	When through, return the empty list (the function is recursive).
Line 4	Let bqual denote the Qual of the block.
Line 5	Take a next channel Qual to be dealt with.
Line 6	Let pqualset denote the Quals of the processes in the block.
Line 7	Construct the signal routes connected to the channel.
Line 8	If there are no signal routes connected to the channel (this is an error, but it is checked when the signal routes are transformed into AS_1) or signal routes already exist for the channel then continue to consider the rest of the channels.
Line 11	Construct the AS_0 identifier of the channel.
Line 12	Extract the names of the constructed signal routes.
Line 13	Turn the names into identifiers.
Line 14	Return the signal routes and
Line 15	Their associated connect definition and
Line 16	The signal routes and connects corresponding to the rest of the channels

 $make-as_0$ -channel-signalroutes(cqual, pqualset, existexplicit)(dict) \triangleq

.

1 (i	if $pqualset = \{\}$ the	en	
2	$\langle \rangle$		
3	else		
4	(let mk-Channel.	lD(end1, , sigset1, sigset2,) = dict(cqual) in	
5	let $pqual \in pqua$	alset in	
6	let mk-ProcessL	D(, insig, outsig,) = dict(pqual) in	
7	let (insig', outsig	(g') = if existexplicit then	
8		import- $export$ - $signals(dict)$	
9		else	
10		(insig, outsig) in	
11	let $bqual = dict($	(SCOPEUNIT) in	
12	let (fromprocess	ssignals, to process signals) = if bqual = end1 then	
13		$(sigset 1 \cap outsig', sigset 2 \cap ins$	sig')
14		else	·
15	10.6	(sigset2() outsig', sigset1() in:	sig') in
10	11 jromprocesssig	$gnals \cup to process signals = \{\} then$	
10	make-as ₀ -chai	nnei-signalroutes(cqual, pqualset \ {pqual}, existexplicit)(alc	:t)
10	else	- create unique name() in	
20	(let routenm =	= create-unique-name() in $d(nmul)$ in	
20	let $as_0 piu = 1$	$as_0 - ia(pqual)$ in isometry $as_0 - ia(id) \mid id \in from processionals$	
21	iet asofromsi	$a_{le} = \{a_{s_0}, a_{le}\} \mid id \in topposessignals\};$	
22	$us_0 to signit$	$uis = \{us_0 - iu(iu) \mid u \in ioprocess signals \} m$	
23	let $paint = 1$	$\frac{1}{1} \int \frac{1}{1} \int \frac{1}$	
25		else mk-Sigroutenatho(asopid, ENV, asofromsignals)	
26	path 2 = if	$f to process signals = \{\}$	
27	P	then nil	
28		else mk-Sigroutepatho(ENV, aso pid, aso tosignals) in	
29	let (path', pat	tth'') = if path1 = nil then (path2, path1) else (path1, path2)	in
30	(mk-Sigroute	$edef_0(routenm, path', path'')\rangle$	
31	make-aso-cho	$annel-signal routes(cqual, pqual set \setminus \{pqual\}, exist explicit)(display="block")$	ct))))
type :	Channelqual Proc	cessqual-set Bool \rightarrow Dict \rightarrow Sigroutedef ₀ *	
Objec	tive Const	struct the implicit signal routes corresponding to a given cha	annel
Param	neters		
ca	ual]	The <i>Qual</i> of the channel	
7 70	ualset 7	The Quals of the processes in the block	
F 1	ieternlicit r	True if signal routes are specified in the block	
C.#	isicapiicii .	are in signal foures are specified in the block	
Result	t The c	constructed list of AS ₀ signal routes	
Algori	thm		
Li	ne 1	When through, return the empty list (the function is recurs	ive).
Li	ne 4 I	Let end1 denote the endpoint of the channel from which t	he sig-
	Ĩ	nals <i>sigset1</i> can be sent and from which the signals <i>sigset2</i> received.	can be
Li	ne 5 I	Let pqual denote the next process to be considered.	
· Li	ne 6 I	Let <i>insig</i> denote the input signals of the process and let denote the output signals of the process.	outsig
Li	ne7 I	If signal routes are specified in the concrete syntax then the in signal routes are only those implied from import/export.	nplicit
Li	ne 11 I	Let bqual denote the Qual of the surrounding block.	
Li	ne 12-15 I	Let fromprocesssianals denote the signals which are sent fro	om the
20	I	process via the channel and let <i>toprocessignals</i> denote the swhich are received through the channel.	signals

.

Line 16-17	If there are no signals sent or received through the channel then continue to consider the rest of the processes.
Line 19	Create an implicit name for the signal route to be constructed.
Line 20	Construct the AS_0 identifier of the process.
Line 21	Turn the output signals into AS_0 signal identifiers.
Line 22	Turn the input signals into AS_0 signal identifiers.
Line 23-25	If there are any signals sent from the process through the channel then construct the appropriate <i>Sigroutepath</i> ₀ .
Line 26-28	If there are any signals received by the process through the channel then construct the appropriate <i>Sigroutepath</i> ₀ .
Line 29	Let <i>path'</i> denote the path which contains signals (the first path) and let <i>path''</i> denote the second optional path.
Line 30	Construct and return a signal route connected to the channel and construct signal routes for the rest of the processes connected to the channel

3.10.3 Creation of Implicit Connect Statements

implicit-connects $(exp, imp)(dict) \triangleq$

```
(let level = dict(SCOPEUNIT) in
 1
 2
      let expset =
 3
           \{expmap \mid (\exists qual \in dom dict)\}
 4
                         (is-BlockD(dict(qual)) \land
 5
                          get-sur(qual) = level \land
                          dict(qual) = \mathbf{mk} \cdot BlockD(expmap, , , )) in
 6
 7
      let impset =
 8
           {impmap \mid (\exists qual \in \mathbf{dom} \ dict)
 9
                          (is-BlockD(dict(qual)) \land
10
                           get-sur(qual) = level \land
                           dict(qual) = \mathbf{mk} \cdot BlockD(, impmap, ,)) in
11
12
      let outconnect =
          if exp = [] then
13
14
             \langle \rangle
15
             else
16
             (let closure \in dom exp in
17
              gen-connect(expset, closure, exp(closure), exp \setminus \{closure\})),
18
           inconnect =
19
           if imp = [] then
20
             \langle \rangle
21
            else
22
             (let closure \in \mathbf{dom} \ imp in
              gen-connect(impset, closure, imp(closure), imp \setminus \{closure\})) in
23
24
       outconnect \frown inconnect)
```

type: ExpimpchanD ExpimpchanD \rightarrow Dict \rightarrow Connect₀*

Objective	Construct the AS ₀ channel connections for the implicit channels implied
	by import/export

Parameters

exp	The <i>ExpimpchanD</i> export map for the block containing the blocks to which the implicit sub-channels are associated
imp	The <i>ExpimpchanD</i> import map for the block containing the blocks to which the implicit sub-channels are associated
Result	The list of AS_0 channel connections

Fascicle X.4 – Rec. Z.100 – Annex F.2 253

(3.10.3.1)

Algorithm

Line 1	Let level denote the Qual of the current block sub-structure.
Line 2-6	Construct a set of export <i>ExpimpchanD</i> maps. There is one map for each sub-block in the sub-structure.
Line 7-11	Construct a set of import <i>ExpimpchanD</i> map. There is one map for each sub-block in the sub-structure.
Line 12-17	Construct the channel connections for the channels implied from export from the sub-structure. <i>closure</i> denotes the first <i>Nameclo-sureD</i> to be treated.
Line 18-23	Construct the channel connections for the channels implied from import to the sub-structure. <i>closure</i> denotes the first <i>Nameclo-sureD</i> to be treated

gen-connect(mapset, closure, list, map) \triangleq

(3.10.3.2)

(if $list = \langle \rangle$ then 1 2 if map = [] then 3 $\langle \rangle$ 4 else 5 (let $closure' \in dom map$ in 6 $gen-connect(mapset, closure', map(closure'), map \setminus \{closure'\}))$ 7 else (let (mapset', chanlist) = gen-connect-elem(mapset, closure, $\langle \rangle$) in 8 let (, channame) = hd list in9 let $connect = mk-Connect_0(channame, chanlist)$ in 10 $(connect) \frown gen-connect(mapset', closure, tl list, map)))$ 11

 $\texttt{type}: \quad \textit{ExpimpchanD-set Name closureD} \ (\textit{Otherend Channame}_0)^* \ \textit{ExpimpchanD} \rightarrow \textit{Connect}_0^+$

Objective	Construct the channel connections implied from import or export of a variable to/from a block sub-structure
Parameters	
expimpset	The set of export <i>ExpimpchanDs</i> or import <i>ExpimpchanDs</i> for the blocks in the block sub-structure, i.e. information about export or import in the sub-blocks
closure	The NameclosureD to be treated
list	Contains the list of implicit channels connected to the sub-structure which conveys the implicit signals corresponding to the <i>Nameclo-</i> <i>sureD</i> (<i>closure</i>)
map	The <i>ExpimpchanD</i> for the rest of the <i>nameclosureDs</i> to be treated for the sub-structure
Result	A list of AS_0 channel connections
Algorithm	
Line 1	When through the channels connected to the block sub-structure which correspond to <i>closure</i> then
Line 2	If there are no more NameclosureDs to be treated then return else
Line 5	Let closure denote the next NameclosureD to be treated.
Line 6	Create the channel connections for the implied sub-channels cor- responding to <i>closure</i> and create the channel connections for the rest of the <i>NameclosureDs</i> .
Line 8	Update the set of <i>ExpimpchanD</i> maps (mapset') for the sub-blocks such that the entries corresponding to <i>closure</i> which leads to the environment of the sub-structure are excluded. Also construct the AS_0 sub-channel identifier list to be used in the channel connection.

Line 9	Let <i>channame</i> denote the name of the implicit channel connected to the sub-structure.
Line 10	Construct the channel connection.
Line 11	Join the channel connection with the channel connections for the rest of the implicit sub-channels

 $gen-connect-elem(mapset, closure, chanlist) \triangleq$

1	$(if mapset = \{\} then$
2	$(\{\}, chanlist)$
3	else
4	(let $map \in mapset$ in
5	let $(mapset', chanlist') = gen-connect-elem(mapset \setminus \{map\}, closure, chanlist)$ in
6	let $clist = map(closure)$ in
7	$if (\exists index \in ind \ clist)(s - Otherend(\ clist[index]) = ENV) \ then$
8	(let index bes.t.s-Otherend(clist[index]) = ENV in
9	$let \ clist' = \langle clist[i] \mid 1 \leq i \leq len \ clist \land i \neq index angle \ in$
10	let $map' = map + [closure \mapsto clist']$ in
11	let (, chan) = clist[index] in
12	$(mapset' \cup \{map'\}, chanlist' \frown \langle mk-Id_0(\langle \rangle, chan) \rangle))$
13	else
14	(mapset', chanlist')))

type: ExpimpchanD-set NameclosureD $Id_0^* \rightarrow ExpimpchanD$ -set Id_0^*

Objective Extract the channel identifiers to be used in a channel connection which is implied by a certain import or export variable. The channel identifiers are found in the *ExpimpchanD* descriptors of the various subblocks. After having extracted a channel identifier, the information is removed from the *ExpimpchanD* descriptor. The function also returns the modified *ExpimpchanD* descriptors

Parameters

mapset	The set of <i>ExpimpchanD</i> maps. There is one map for each sub- block
closure	The NameclosureD to which the implicit sub-channels are attached
chanlist	The list of channel identifiers which is created recursively

Result The modified set of *ExpimpchanD* maps and the constructed sub-channel identifier list

Algorithm

Line 1	When through all the <i>ExpimpchanD</i> descriptors then return the constructed channel identifier list.
Line 4	Let map denote a next ExpimpchanD descriptor to be considered.
Line 5	Modify the set of <i>ExpimpchanD</i> maps corresponding to the rest of the sub-blocks and construct the appropriate sub-channels leading to the rest of the sub-blocks
Line 6	<i>clist</i> contains information about all the sub-channel connected to a sub-block conveying implicit signals corresponding to the <i>Name-</i> <i>closureD</i> (<i>closure</i>)
Line 7	If one of the sub-channels are leading to the environment of the sub-structure then
Line 8	Let <i>index</i> be an index to the element containing the name of the channel leading to the environment.
Line 9	Exclude that element from the list.
Line 10	Modify the ExpimpchanD map with the new list.
Line 11	Let chan denote the sub-channel name.

255

(3.10.3.3)

Line 12	Return the modified <i>ExpimpchanD</i> map set and the channel iden- tifier list
Line 14	If there is no sub-channel leading to the environment of the sub- structure then return the <i>ExpimpchanD</i> map and the channel iden- tifier list unchanged

3.11 Utility Functions

get-predef-a	sort(quot)(dict) ≙
--------------	-----------	----	------	-----

1	(let	nm	=	mk-l	V	ame ₀	quot	t, n	il)	١,
---	------	----	---	------	---	------------------	------	------	-----	----

- 2 level = dict(SCOPEUNIT) in
- 3 let sys = level[1] in
- 4 sys $\land \langle (\mathsf{TYPE}, nm) \rangle \rangle$

type: $Char^* \rightarrow Dict \rightarrow Sortqual$

Ob	iective	Extract the	Qual of a	predefined sort
~ ~.				PAUMULALUM DUAU

Parameters *quot*

The sequence of characters representing the spelling of the sort name

Algorithm

Line 1	Construct an AS_0 name from the spelling.
Line 2-3	Let sys denote the Qual of the system level.
Line 4	Return the Qual for the predefined sort (defined at system level)

get-parent(qual)(dict) \triangleq

1 (if qual \in dom dict then 2 (if is-SortD(dict(qual)) then 3 qual 4 else (let mk-SyntypeD(q, , ,) = dict(qual) in5 6 get-parent $(q)(dict \setminus \{qual\})))$ 7 else 8 exit("§5.4.1.9: Syntype is defined in terms of itself"))

type: Sortqual \rightarrow Dict \rightarrow Sortqual

Objective From a *Qual* denoting either a sort or a syntype, extract the parent sort (in the case of a syntype)

Algorithm

Line 1	If the Qual is in the Dict then
Line 2-3	If the Qual denotes a sort then return the Qual else
Line 5-6	If the Qual denotes a syntype then extract the parent sort, but
	exclude the syntype Quan nom Dict such that it can be detected if
	the syntype is recursively defined

$is-local(qual)(dict) \triangleq$

1 $qual = ENV \lor$

2 dict(SCOPEUNIT) = get-sur(qual)

```
type: (Qual | ENV) \rightarrow Dict \rightarrow Bool
```

(3.11.1)

(3.11.2)

Objective	Return true if a Qual is defined local to a scopeunit	
Algorithm		
Line 1	If <i>qual</i> is the quotation ENV (used in connection with channels and signal routes) or	
Line 2	They are defined in the same scopeunit then return true	
process-level(qual)	$\stackrel{\Delta}{=}$	(3.11.4)
$\begin{array}{ll}1 & (\operatorname{let}(q,) = qu\\ 2 & \operatorname{if} q \in \{\operatorname{PROG}\\ 3 & process-lev\\ 4 & \operatorname{else}\\ 5 & qual)\end{array}$	ual[len qual] in CEDURE, SERVICE} then pel(get-sur(qual))	
type: $Qual \rightarrow Qq$	ual	
Objective	From a Qual denoting a process, procedure or service extract the Qual of the surrounding process	
Algorithm		
Line 1-5	If the <i>Qual</i> denotes a procedure or a service then apply the function on the <i>Qual</i> of the surrounding scopeunit	
process-or-service-l	$evel(qual) \triangleq$	(3.11.5)
1 (let (q,) = qu) $2 if q = PROC$ $3 process-or$ $4 else$ $5 qual)$	al[len qual] in EDURE then -service-level(get-sur(qual))	
type: $Qual \rightarrow Qu$	ual	
Objective	From a Qual denoting a process, procedure or service extract the Qual of the surrounding process or service	
Algorithm		
Line 1-5	If the <i>Qual</i> denotes a procedure then apply the function on the <i>Qual</i> of the surrounding scopeunit	
$get-sur(qual) \triangleq$		(3.11.6)
$1 \langle qual[i] \mid 1 \leq$	$i \leq ext{len } qual - 1 angle$	
type: $Qual \rightarrow Qu$	ual	
Objective	From a <i>Qual</i> , return the <i>Qual</i> of the surrounding scopeunit by removing the last element.	

.

1 ($f qual \in \mathbf{dom} \ dict \ \mathbf{then}$
2	cases dict(qual):
3	$(\mathbf{mk}$ -Sort $D(, pqual, ,)$
4	\rightarrow if $pqual =$ nil then qual else get-inherited-parent(pqual)(dict \ {qual}),
5	\mathbf{mk} -SyntypeD(pqual,,,)
6	\rightarrow get-inherited-parent(pqual)(dict \ {qual}))
7	else
8	exit("§5.4.1.9: Syntype is defined in terms of itself"))
type :	$Sortqual \rightarrow Dict \rightarrow Sortqual$
Objec	ive From a <i>Qual</i> denoting either a sort or a syntype, extract the parent sort for an inheriting sort.
Algor	hm
L_{z}	e 1 If the Qual is in the Dict then
L_{2}	e 3 If the Qual denotes a none-inheriting sort then return the Qual else

Line 3	If the Qual denotes a none-inheriting sort then return the Qual else if the Qual denotes an inheriting sort then extract the parent sort, but exclude the sort Qual from Dict such that it can be detected
	if the sort inherits from itself.
Line 5	If the <i>Qual</i> denotes a syntype then extract the parent sort, but exclude the syntype <i>Qual</i> from <i>Dict</i> such that it can be detected if the sort inherits from itself.

3.12 Generation of Auxiliary Information

This section contains the functions which generates the Auxiliary information to be used by the underlying system. The entry function is generate-auxiliary-information

generate-auxiliary-information(extparms)(dict) \triangleq

- 1 (let (starttime, timeunit) = derive-time-inf(extparms)(dict) in
- 2 let tick = make-tick-function(timeunit)(dict) in
- 3 let terminf = make-term-inf(dict) in
- 4 let expired = make-expired-function(dict) in
- 5 let delayf = derive-delay-inf(extparms)(dict) in
- 6 ((tick, starttime), terminf, expired, delayf))

 $\textbf{type}: \quad \textit{External-Information} \rightarrow \textit{Dict} \rightarrow \textit{Auxiliary-Information}$

Objective	Derive the auxiliary information to be used by the underlying system (annex F.3)
Parameters	
extparms	The external information from which the required objects are ex- tracted
Result	The Auxiliary-Information
Algorithm	
Line 1	Derive the TIME literal denoting the starttime and the DURA- TION literal denoting the atomic time unit
Line 2	Construct the function which is used for updating the current time (i.e. it adds <i>timeunit</i> to the current time)
Line 3	Construct the identifier for the PID sort and for the three literals NULL, TRUE and FALSE

258	Fascicle	X.4 –	Rec.	Z.100 -	Annex	F.2
298	rascicie	л.4 —	nec.	<i>L</i>.100 –	Annex	r . 4

(3.12.1)

Line 4	Construct the function which is used for testing whether a given timer has expired (i.e. it compares two TIME values)
Line 5	Derive the function which is used in the model of indeterministic delay in channels
Line 6	Construct and return the Auxiliary-Information

```
make-tick-function(timeunit)(dict) \triangleq
```

(3.12.2)

1 (let durationq = get-predef-sort("DURATION")(dict),

2 timeq = get-predef-sort("TIME")(dict) in

- 3 let mk-Operator $D(, nq,) = dict(timeq \land ((OPERATOR, (PLUS, (timeq, durationq), timeq))))$ in
- 4 let $as_1 id = make-as_1-identifier(nq)(dict)$ in
- 5 let $f(value) = \mathbf{mk}$ -Ground-term₁(($as_1 id, \langle value, timeunit \rangle$)) in

6 f

type: Literal-operator-identifier₁ \rightarrow Dict \rightarrow (Ground-term₁) \rightarrow Ground-term₁)

Objective	Construct a function which updates the time with a given atomic time- unit. The function is used in the abstract SDL machine. The current value of NOW is applied and the new value is returned
Parameters	
timeunit	The timeunit represented by an AS_1 literal.
Algorithm	
Line 1	Construct the Qual of the DURATION sort.
Line 2	Construct the Qual of the TIME sort.
Line 3	Decompose the descriptor of the "+" operator defined for the TIME sort. The Qual of the operator is formed by concatenat- ing the TIME Qual with the element containing the entity class (OPERATOR), the name of the operator (PLUS), the argument sorts (timeq and durationq) and the result sort (timeq). Refer to the definition of Operatorqualelem.
Line 4	Construct the AS_1 identifier of the operator.

Line 5-6 Construct and return a Meta-IV function which when given an SDL value, adds the timeunit to the value

 $make-term-inf(dict) \triangleq$

(3.12.3)

1 (let bqual = get-predef-sort("BOOLEAN")(dict) in

- 2 let pidqual = get-predef-sort("PID")(dict) in
- 3 let $pid_1 = make-as_1$ -identifier(pidqual)(dict),

```
4 null_1 = make - as_1 - identifier(pidqual \land ((LITERAL, mk-Name_0("NULL", nil))))(dict),
```

5 $true_1 = make-as_1-identifier(bqual \frown ((LITERAL, mk-Name_0("TRUE", nil))))(dict),$

```
6 false_1 = make-as_1-identifier(bqual \frown ((LITERAL, mk-Name_0("FALSE", nil))))(dict) in
```

```
7 (pid_1, null_1, true_1, false_1)
```

```
type: Dict \rightarrow Term-Information
```

Objective	Construct the <i>Term-Information</i> to be used in the Dynamic Semantics (see the domain definition of <i>Term-Information</i>)	
Result	The <i>Term-Information</i> consisting of the identifiers for the PID sort, the NULL literal, the TRUE literal and the FALSE literal	

- 1 (let bqual = get-predef-sort("BOOLEAN")(dict) in
- 2 let $geop = mk-Qualop_0(bqual, mk-Quotedop_0(GE))$ in
- 3 let expiredf(currenttime, expiredtime) =
- eval-simple-expr(mk-Operatorapp₀(geop, (currenttime, expiredtime)), "BOOLEAN")(dict) in
 expiredf)

type: $Dict \rightarrow Is$ -expiredF

Line 3-5

Objective	Construct a function which tests on whether a given time value exceeds an expiration time value, i.e. make the function which returns the Meta-IV value true if		
	currenttime >= expiredtime		
	where currenttime and expiredtime are formal parameters.		
	The function is to be used in the Dynamic Semantics		
Algorithm			
Line 1	Construct the Qual of the BOOLEAN sort.		
Line 2	Construct the AS_0 identifier of the ">=" operator		

Construct and return the Is-Expired function (expiredf)

3.13 Global Constant Mappings

In the following, two global mappings name-to-name, and exportmap are defined.

3.13.1 Relation between AS₀ names and AS₁ names

Names in AS_1 does not have the same representation as in AS_0 , since the spelling etc. of names is of no concern for the interpretation. Therefore, AS_0 names (*Name*₀), character strings (*String*₀) and Quoted operators (*Quotedop*₀) are transformed into AS_1 names (*Name*₁) by means of a global mappings (*name-to-name*₁).

- let name-to-name₁ be s.t. $(\forall nm_1 \in rng name-to-name_1)(is-Name_1(nm_1)) \land$ $(\forall (nm1, nm2) \in (Name_0 \mid String_0 \mid Quotedop_0))$ $((\{nm1, nm2\} \subset dom name-to-name_1) \land$ $(nm1 \neq nm2 \supset name-to-name_1(nm1) \neq name-to-name_1(nm2)))$ in
- **Objective** Construct a map which converts AS_0 names, strings and quoted operators to AS_1 names.
- Algorithm Construct the map that every possible AS_0 name, string or quoted operator is in the domain of the map and every two entities maps onto different AS_1 names.

3.13.2 Relation between import/export names and implicit signal names

In SDL, some implicit signals are attached to each export variable. Two export variables have the same implicit signals attached if they have the same name (spelling) and they are of the same data sort. In order to manage this "sharing" of signals, a special constant mapping *exportmap* is used, which maps pairs of export variable sort and export variable name into a descriptor of the attached signal names:

260 Fascicle X.4 – Rec. Z.100 – Annex F.2

 $let \ exportmap = [closure \mapsto mk-SignalnamesD(create-unique-name(), create-unique-name(), create-unique-name(), create-unique-name()) | closure \in NameclosureD] in$

The domain of *exportmap* is defined in the following:

1	Exportmap	=	$NameclosureD \implies SignalnamesD$
2	Name closure D	=	Sortqual Name ₀
3	Signal names D	::	Impliednm Xquerynm Xreplynm
4	Impliednm	=	$Name_0$
5	X querynm	=	$Name_0$
6	Xreplynm	=	Name ₀

The signal descriptor (SignalnamesD) consists of

Impliednm The implicit variable attached to each export variable.

X querynm	The xtQUERY signal send by an importer.
Xreplynm	The xtREPLY signal send by the exporter and carrying a value of sort
	Sortqual.

3.14 Informal Functions

 $apply-generic-parameters(genericsystem, extparameters) \triangleq$

1 /* Turn a generic system definition into a concrete system definition */

type: Sys_0 External-Information $\rightarrow Sys_0$

SDL does not define how generic parameters are applied. This informal function takes an AS_0 system definition and the external information which includes some actual generic parameters and returns an AS_0 system definition containing no generic parameters, that is, a system definition which contains no external synonyms and no informal text in the answers of the option actions

 $derive-time-inf(extparms)(dict) \triangleq$

1 /* Derive the start time and the unit for time from the external information */

 $\textbf{type:} \quad \textit{External-Information} \rightarrow \textit{Dict} \rightarrow \textit{Literal-operator-identifier}_1 \ \textit{Literal-operator-identifier}_1$

This informal function returns the *Literal-operator-identifier*₁ of the sort TIME denoting the starting time of the system and the *Literal-operator-identifier*₁ of the sort DURATION denoting the increment value of the absolute time (both used in the model for the NOW expression, see Annex F.3)

 $derive-delay-inf(extparms)(dict) \triangleq$

1 /* Derive the delay function from the external information */

type: External-Information \rightarrow Dict \rightarrow DelayF

This informal function derives from the external information the imperative function (De-layF) used in Annex F.3 for modelling the indeterministic delay in channels.

 $eval-expr(expr, sort)(dict) \triangleq$

1 /* Evaluate the expression */

type: Ground-expression₁ $Char^+ \rightarrow Dict \rightarrow (Intg \mid Bool)$

Fascicle X.4 – Rec. Z.100 – Annex F.2 261

(3.14.1)

(3.14.3)

(3.14.2)

(3.14.4)

Objective	Evaluate an AS ₁ simple expression	
Parameters		
expr	The AS ₁ simple expression	
sort	The spelling of the sort of the expression	
Result	The Meta-IV types <i>Intg</i> if the SDL sort is "Integer" and the Meta-IV domain <i>Bool</i> if the SDL sort is "Boolean".	
Algorithm	For reason of economy in space, this function is not included in the formal definition. Refer to §5.6 of Z.100 for a formal specification of the predefined sorts and to Annex F.3 for a formal definition of the SDL data model.	

select-consistent-subset(system definition, generic parameters) \triangleq

1 /* By means of AS_1 and the actual subset parameters, select a consistent subset */

type: System-definition₁ External-Information \rightarrow Block-identifier₁-set

This informal function returns the set of block identifiers denoting the consistent subset. It is used in Annex F.3 for selecting the blocks which should be interpreted. In Annex F.3 it is also checked, that the consistent subset conforms to the properties defined in §3.2.1 of Z.100.

create-unique-name() \triangleq

1 /* Create a new mk-Name₀(Token, nil) */

type: () $\rightarrow Name_0$

This informal function returns an AS_0 Name₀ which has not previously been used. Note that this function by nature is imperative. A global variable keeping track of the used names is assumed used by the function

 $check-name-syntax(string) \triangleq$

1 /* Convert a character string to uppercase letters */

type: $Char^* \rightarrow Char^*$

First, any sequence of underline character followed by spaces is removed, then any sequence of spaces are replaced by an underline character then the spelling is converted to uppercase and finally it is checked that the resulting spelling conforms to the lexical rules for names as defined in §2.2.1 of Z.100.

4 Deviations From Z.100

After the final approval of the Z.100 recommendation text by SG X (Marts 1988) some few inconsistencies or omissions have been found in the recommendation text. For reasons of completeness of the Formal Definition some decisions in these situations have been taken:

1. §2.7.4 in Z.100 the sentence:

"However, order is preserved if the two signals are conveyed by identical path connecting the Originating-process with the Destination-process."

is interpreted as

"However, order is preserved if the two signals are conveyed by identical channels connecting the *Originating-process* with the *Destination-process* or if they are defined in the same block."

262 **Fascicle X.4 – Rec. Z.100 – Annex F.2**

(3.14.5)

(3.14.6)

(3.14.7)

2. §2.7.5 in Z.100 the sentence:

"The Decision-answers must be mutually exclusive." is interpreted as

"The Decision-answers must be mutually exclusive and they must be of the same sort. If the Decision-question contains an Expression then it must be of the same sort as the Decision-answers."

3. §2.7 in Z.100 a new sentence before *Model* is added in order to avoid a circular definition:

"The context of the decision (i.e. the sort) is determined without regard to <answer>s which are <character string>.

4. §3.3 in Z.100 the sentence:

"If the consistent partitioning subset contains a block definition communicating with sub-signals, then the blocks with which it communicates must use the same subsignals"

is interpreted as

"When selecting the consistent subset, the set of signals on signalroutes connected to an endpoint of a channel must not contain parent signals of contained sub-signals and unless the other endpoint is the system ENVIRONMENT, the set of signals for the first endpoint must be equal to the set of signals on signalroutes connected to the other endpoint."

5. §4.3.3 in Z.100 the sentence:

"The $<\underline{boolean}$ simple expression> must not be dependent on any definition within the <select definition>.

is modified as follows (in order to guarantee a unique selection and a unique binding of synonyms):

A Synonym used directly or indirectly (via other synonyms) in $\leq \underline{boolean}$ simple expression> of a \leq select definition> must satisfy the following conditions:

- It must conform to the visibility rules stated in §2.2.2 even if the synonym definition is not selected.
- The sort in the <synonym definition> must be qualified with the system level if there exist a visible redefinition of that (predefined) sort, even if the redefinition is local and not selected.
- There must exist an order of selection which allows all <simple expression>s to be evaluated.

6. §4.10.2 in Z.100 the sentence:

" A signal is a high priority signal if and only if it is mentioned in a <priority input> of a <service definition>."

is interpreted as

" A signal is a high priority signal in a process if and only if it is mentioned in a <priority input> of a <service definition> in the process."

7. §4.10.2 in Z.100 the sentence:

" A <procedure definition> must not have <state>s when the enclosing <process definition> contains a <service definition>."

is extended as

" A <procedure definition> must not have <state>s when the enclosing <process definition> contains a <service definition>. <procedure definition>s visible to more than one service must not contain a VIA construct"

8. §5.6.7.1 in Z.100 the equations:

r > 1 == True => a * r > a == True; r > 1 == True => a / r < a == True;

should be

r > 1 == True => a * r >= a == True;r > 1 == True => a / r <= a == True;

to cover the case where a equals zero.

Domain Index

Acto 7, 8 Activeexpro 18, 149, 152 Actparmlist₀ 8, 213, 215 Actstmto 7, 166, 167, 168, 170, 183, 184, 187, 190, 198, 199, 203, 204, 205, 206, 207, 208, 212, 214, 231 Andregexp₀ 16, 97 Answero 9, 11, 167, 171, 184, 187, 218, 219, 221 Assignment-statement, **Z.100**, 164, 200, 206 Assignstmt₀ 8, 18, 183, 199, 200, 201 Auxiliary-Information 30, 33, 258 Axiom₀ 12, 13, 17, 85, 100, 101, 106, 107, 109, 110, 113, 114, 115 BlockD 21, 22, 23, 52, 54, 63, 211, 245, 246, 247, 248, 253 Block-definition₁ **Z.100**, 30, 226 Block-identifier₁ Z.100, 262 Block-qualifier, Z.100, 223 Block-substructure-definition₁ **Z.100**, 226 Block-substructure-qualifier₁ Z.100, 223 BlockconnectionD 23, 125 Blockdecl₀ $\mathbf{3}$ $Blockdef_0$ 3, 10, 11, 33, 35, 37, 38, 41, 48, 52, 54, 58 Blockid₀ 3, 5, 37 Blockname₀ 3Blockqual 23, 24, 247, 248 Blockref₀ 3, 10, 11, 37 BlocksubD 22, 23, 54 Blocksuba 3, 10 Blocksubdecl₀ 10Blocksubdef₀ 10, 38, 39, 43, 44, 48, 54, 58 Blocksubid₀ 10 Blocksubname₀ 10 Blocksubref₀ 10, 38 Body₀ 4, 5, 7, 11, 39, 48, 161, 162, 234 Bool 22, 23, 27, 30, 39, 41, 44, 47, 69, 70, 74, 97, 98, 99, 100, 127, 130, 131, 160, 178, 208, 221, 227, 240, 244, 250, 251, 252, 256, 261 Call-node₁ Z.100, 214 Call₀ 8, 198, 214 Chandef₀ 3, 5, 10, 11, 38, 41, 48, 52, 57, 58, 128, 244 Channame₀ 5, 23, 24, 60, 244, 254 ChannelD 21, 22, 24, 57, 58, 125, 126, 128, 129, 130, 211, 224, 249, 252 Channel-connection₁ **Z.100**, 128, 129, 226 Channel-definition₁ **Z.100**, 30, 57, 226 Channel-path₁ Z.100, 57 Channel-to-route-connection, Z.100, 125, 126, 226

Channelqual 23, 126, 128, 129, 130, 251, 252 ChannelsubD 22, 23, 59, 224 Chanpath₀ 5, 57, 58, 128, 244 Chansub₀ 5, 10 Chansubdecl₀ 10Chansubdef₀ 3, 10, 35, 38, 39, 48, 58, 59 Chansubid₀ 10, 38 Chansubname₀ 10 Chansubref₀ 10, 38 Char 2, 3, 44, 96, 97, 98, 99, 100, 256, 261, 262 Closed-range, Z.100, 92 Composite-term₁ Z.100, 83, 141, 147 Condequation₀ 13, 14, 85, 101, 105, 107 Condexpr₀ 17, 135, 154 Condition-item₁ Z.100, 92 Condition₀ 14, 91, 184, 187, 217, 218, 219, 222 Conditional-equation₁ Z.100, 82, 105 Conditional-expression₁ **Z.100**, 154 Conditional-term₁ **Z.100**, 83, 154 Conditionlist₀ 9, 12, 14, 221, 222 Condterm₀ 13, 85, 135 $Connect_0$ 3, 6, 10, 11, 41, 48, 60, 125, 126, 128, 129, 132, 133, 251, 253, 254 Connectpoint₀ $\mathbf{6}$, 48 ContenablestateD 28, 181, 188, 195 Context 30, 100, 101, 102, 103, 104, 105, 134, 135, 139, 140, 143, 144, 146, 147, 148, 149, 152, 153, 154, 155, 213 Contspec₀ 7, 12, 165, 181, 182, 184, 185, 237 Create-request-node1 Z.100, 212 Create₀ 8, 198, 212 Data-type-definition₁ **Z.100**, 28, 30, 33, 56, 73, 94, 227 Datadef₀ 3, 4, 5, 10, 11, **17**, 32, 33 Decision-answer₁ **Z.100**, 164, 219 Decision-node₁ Z.100, 28, 164, 193, 217, 231 Decision₀ 8, 9, 166, 170, 184, 187, 198, 217 $Decl_0$ 11, 35, 39, 41, 43, 44, 45, 46, 48, 49, 50, 51, 52, 60, 125, 128, 242, 249, 251 $Decl_1$ **30**, 51, 52, 54, 57, 59, 70, 71, 72, 121, 123, 161, 226, 233, 241 Decomposition₀ 4, 11, 38, 39, 43, 44, 48, 161 $Decomposition decl_0$ 11, 132 DelayF 30, 261 Descr 21 Descriptordict 20, 21

Fascicle X.4 – Domain Index

265

Dest₀ 5 Destination₀ 5 Destination process 25 Dict 20, 22, 33, 43, 44, 45, 46, 47, 48, 51, 52, 54, 56, 57, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 84, 90, 91, 92, 93, 94, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 137, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 174, 175, 178, 180, 181, 182, 184, 185, 188, 189, 190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206, 207, 208, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 223, 224, 225, 226, 227, 228, 229, 231, 233, 234, 235, 237, 238, 239, 240, 241, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 256, 258, 259, 260, 261 Else-answer₁ Z.100, 164, 217 Elsepart₀ 9, 11, 167, 171, 217, 221 Emptyqid 28 Enabling₀ 7, 12, 181, 186 Endpoint 24, 59, 60 Entity 21 Equation₀ 13, 85, 101, 102, 105, 107, 109, 114, 115, 228 Equation₁ **Z.100**, 82, 104, 105 Equations, Z.100, 26, 81, 100, 101, 102, 106, 228 ErrorD 22, 28, 43, 46, 70, 93, 123, 124, 158 Error-term₁ **Z.100**, 83, 103 Errorterm₀ 13, 14, 103, 105, 135 ExpimpchanD 23, 242, 244, 245, 247, 248, 253, 254, 255 Explicit 27, 77, 104 Explicitroutes 23, 210 Export₀ 8, 12, 198 Exportchannels 23 Exportmap, 261 Expro 4, 8, 9, 11, 12, 14, 17, 18, 26, 28, 44, 47, 92, 118, 135, 139, 145, 149, 150, 151, 153, 201, 216, 221, 222 Expression, Z.100, 26, 135, 139, 143, 147, 149, 150, 152, 153, 154, 155, 208, 213, 215, 216 Exprlist₀ 18, 145, 146, 147, 201 External-Information 30, 32, 33, 258, 261, 262 Extproperties₀ 12, 14

Fieldname₀ 15, 113, 114, 115 Fieldspec₀ 15, 113 Fieldvar₀ 18, 201 FormparmD 25, 68, 69, 215 Formuniquenm 28 Genactparm₀ 16, 89 GeneratorD 21, 22, 26, 70, 84 Generatorid₀ 16 Generatorname₀ 15 Geninst₀ 16, 84 Geninstlist₀ 14, 15, 16, 71 Genparm₀ 15, 26, 70, 89 Globalnames 28, 35 Graph-node₁ Z.100, 28, 193, 195, 198, 199, 203, 204, 205, 206, 207, 208, 212, 214, 217, 220, 231 Ground-expression₁ Z.100, 135, 261 Ground-term₁ Z.100, 30, 83, 135, 139, 141, 142, 147, 154, 259 Id_0 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16, 17, 35, 37, 38, 39, 48, 54, 58, 60, 61, 66, 69, 71, 84, 85, 87, 89, 102, 107, 109, 110, 112, 114, 115, 120, 124, 135, 137, 139, 140, 141, 142, 144, 145, 148, 150, 151, 152, 153, 156, 158, 159, 160, 180, 181, 184, 187, 190, 200, 201, 216, 229, 231, 233, 237, 244, 255 Identifier₁ Z.100, 73, 83, 223, 225, 227 Impliednm , 261 Impoperator₀ 17, 18 ImportD 21, 22, 27, 121, 150, 231, 246 Importchannels 23 Import def₀ 4, 11, **12**, 41, 52, 121 Importelem₀ 12, 121Importexpr₀ 12, 18, 149 Importgualelem 21 Importstateinf 28 InDescr 25, 69, 215 In-parameter, **Z.100**, 69 Indexedvar₀ 18, 201 Infixexpro 17, 135, 155, 183, 184 Infixop₀ 14, 17, 18 Infixterm₀ 13, 14, 85, 107, 109, 110, 135 Informal-text₁ **Z.100**, 101, 200, 217, 219 Inherited₀ 14, 15, 71, 73 Initial₀ 4 Initialvalue₀ 12, 14, 16, 18 InoutDescr 25, 69, 215, 216 Inout-parameter₁ **Z.100**, 69 Inoutparm₀ 5, 68 Inparmo 5, 68 Input-node₁ **Z.100**, 189, 191, 192, 193 Inputset₀ 4, 11, 63Inputspec₀ 7, 165, 175, 178, 181, 184, 186, 187, 190, 191, 231 Inputvars₀ 7, 11, 178, 180, 184, 190, 192, 231, 234

Instances₀ 4, 41, 61 Intg 44, 99, 261 Is-expired F 30, 260 Join₀ 8, 168, 195 Kind 21, 160 Label₀ 7, 8, 28 Labeldict 23, 28, 169, 170, 171, 191, 234 LiteralD 21, 22, 27, 71, 75, 94, 106, 139, 224 Literal-operator-identifier₁ Z.100, 30, 75, 81, 82, 83, 259, 261 Literal-signature, Z.100, 73, 94 Literal₀ 12, 85, 87, 89, 110 Literalaxiom₀ 17 Literalpair₀ 15, 76 Literalrenaming₀ 15, 75, 76Litparmo 15, 70, 89 Mappingaxiom₀ 12, 17, 85, 101, 106 Mapvalue 27, 104, 148 Maximum₀ 4 Monadexpro 17, 109, 135, 155 $Monadterm_0$ 13, 14, 85, 107, 135 Name₀ 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 28, 35, 37, 43, 44, 45, 46, 48, 49, 50, 59, 69, 70, 73, 78, 84, 85, 87, 89, 94, 96, 98, 99, 100, 102, 107, 109, 110, 112, 113, 114, 115, 118, 144, 145, 148, 152, 153, 181, 183, 184, 187, 190, 201, 206, 226, 228, 229, 237, 256, 259, 260, 261, 262 Name₁ **Z.100**, 260 NameclosureD, 23, 28, 230, 246, 247, 254, 255, **261** Newchannels 24, 225 Newliteral₀ 15Newoperator₀ 15, 79 Newqual 24, 25, 26, 27, 73 Nextstate-node, Z.100, 195, 235 Nextstate₀ 8, 175, 181, 184, 188, 190, 195, 196, 231, 237, 238 Nmclass₀ 12, 16, 87, 89, 96, 110 *Now-expression*₁ **Z.100**, 151 *Nowexpr*₀ **18**, 149 Number-of-instances₁ **Z.100**, 61, 226 No 185 N1 113, 114, 115, 184, 185, 239 Offspring-expression₁ Z.100, 153 $Offspringexpr_0$ 18, 153 Oldliteral₀ 15 Oldoperator₀ 15 Op₀ 12, 85, 113, 114, 115 *Open-range*¹ **Z.100**, 92 OperatorD 21, 22, 27, 71, 77, 78, 79, 80, 92, 111, 224, 259

Operator-application₁ **Z.100**, 147 Operator-identifier₁ **Z.100**, 77, 81, 82, 83 Operator-signature₁ **Z.100**, 77, 78, 111 $Operatorapp_0$ 17, 18, 135, 142, 143, 145, 152, 153, 155, 201, 222, 260 Operatorname₀ 12, 15 Operatorpair₀ 15, 77, 78 Operatorgual 30, 144, 146, 147 **Operatorgualelem 21** Operatorrenaming₀ 15, 77, 78 Operatorterm₀ 13, 85, 114, 115, 135, 144, 155, 228 Opparm₀ 15, 70, 89 Opspec₀ 12, 85, 107, 108, 110, 111, 113, 114, 115 Option₀ 8, 11, 166, 170, 198, 220 Ordering₀ 12, 17, 108 $Orig_0$ 5 $Origin_0$ 5 Originprocess 25 Orregexp. 16, 97 Otherend 23, 244, 248, 254, 255 Output-node₁ **Z.100**, 208 Output₀ 8, 183, 190, 198, 207, 208, 231 Outputset 25 Outputsig₀ 8, 11, 183, 190, 208, 231 ParameterD 25, 213 $Parenregexp_0$ 16, 97 Parent-expression₁ Z.100, 153 Parentexpr_o 18, 153 Parentido 14, 15 Parentqual 26 $Parm_0$ 4, 64 Partialtypedef₀ 12, 17, 50, 52, 71 $Partregexp_0$ 16 Pid-expression₁ Z.100, 153 Piexpr₀ 8 $Prdecl_0$ 4 Prdef₀ 3, 4, 11, 35, 37, 39, 41, 48, 52, 54, 61, 249 Prid₀ 4, 8, 37 Priinputo 7, 11, 165, 178, 191, 234, 237 Priinputset 23, 208, 240 Priority₀ 12, 182 Prioutput₀ 8, 11, 198, 206 $Prname_0$ 4 $Procdecl_0$ 5 Procdef₀ 3, 4, 5, 11, 35, 37, 39, 41, 52, 66, 67 ProcedureD 21, 22, 25, 67, 162, 214, 224 Procedure-definition₁ **Z.100**, 30, 67, 226 Procedure-formal-parameter, **Z.100**, 68, 69, 226 Procedure-graph₁ **Z.100**, 67, 162, 226 Procedure-qualifier₁ **Z.100**, 223 Procedure-start-node₁ Z.100, 162 ProcessD 21, 22, 25, 61, 117, 156, 175, 208, 210, 212, 246, 249, 250, 252

Fascicle X.4 – Domain Index

267

Process-definition₁ **Z.100**, 30, 61, 226 Process-formal-parameter, Z.100, 64, 226 Process-graph₁ **Z.100**, 161, 162, 226, 235 Process-qualifier₁ Z.100, 223 Process-start-node, Z.100, 162, 235 Processbody₀ 4, 161 ProcessconnectionD 25, 132, 161 Processgual 25, 30, 249, 250, 252 Procido 5, 8, 37 Procname₀ 4, 5 $Procparm_0$ 5, 68 Procref₀ 4, 5, 11, 37 Properties₀ 12, 15, 26, 73, 84, 94, 96, 108, 112 Prref₀ 3, 4, 11, 37 Qual 21, 23, 24, 25, 27, 28, 30, 35, 39, 41, 76, 78, 79, 80, 93, 106, 118, 120, 125, 126, 127, 132, 133, 140, 144, 151, 155, 156, 158, 160, 164, 172, 190, 211, 218, 223, 224, 225, 228, 229, 256, 257 Qualelem 21 Qualifiero 2, 8, 13, 17, 18, 37, 49, 89, 101, 145, 201, 217, 218 Qualifier₁ **Z.100**, 223 Qualifierelem₀ 2 $Qualop_0$ 13, 18, 87, 142, 144, 145, 155, 158, 222, 228, 260 Quantequation₀ 13, 85, 101, 104, 107, 109 Quantified-equations₁ Z.100, 82, 104 Question₀ 9, 11 Quot 158, 226 Quotdict 20, 28 Quotedop₀ 12, 16, 18, 21, 85, 87, 89, 144, 155, 222, 228, 260 Range-condition, Z.100, 26, 91, 164 Refdeclo 3, 39 Refinement₀ 6, 10, 65 Regexpexp₀ 16, 98, 99, 100 Regularexp₀ 16, 97, 100 Relop₀ 14, 92 Remoted ef_0 3 Reset-node1 Z.100, 203 Reset₀ 8, 9, 198, 203 Resetelem₀ 9, 203 Result 27, 71, 143, 144 Result₁ Z.100, 227 Return-node₁ **Z.100**, 195 Return₀ 8, 195 $Rngregexp_0$ 16, 97 Save-signalset, Z.100, 189 Savespec₀ 7, 169, 177, 187, 189, 231, 237 $Scope_0$ 8 Scopeexpro 8, 9, 135, 184, 187 Scopeunit₀ 2, 21 Select₀ 3, 4, 5, 10, 11, 39, 44, 49, 50 Selectexpro 17, 145, 149, 152, 201

Self-expression, Z.100, 153 Selfexpro 18, 153, 183, 206 Sender-expression₁ Z.100, 153 Senderexpr₀ 18, 153, 190 ServiceD 22, 23, 63, 66, 67, 69, 90, 94, 116, 117, 156, 175, 191, 195, 196, 208, 210, 224, 233, 235, 238, 239, 240 Servicedecl₀ 11 Servicedef₀ 3, 11, 35, 37, 39, 48, 52, 233 Serviceid₀ 11, 37 Servicename₀ 11Servicegual 28, 237, 238, 239 Serviceref₀ 11, 37 Servicetuple 28, 196 Set-node1 Z.100, 205 Set₀ 8, 9, 198, 204, 205 Setelem₀ 9, 205 Sigdef₀ 3, 4, 6, 10, 11, 35, 41, 52, 65, 73 Sigelem₀ 6, 35, 65, 73Sigid₀ 6, 7, 8, 159, 182, 183, 184, 187 SignalD 21, 22, 24, 63, 65, 131, 180, 192, 203, 205, 208 Signal-definition₁ **Z.100**, 30, 65, 226 Signal-qualifier₁ Z.100, 223 Signal-refinement₁ Z.100, 65 Signal-route-definition₁ Z.100, 30, 122, 226 Signal-route-path₁ Z.100, 122 SignallistD 21, 22, 25, 123, 124 Signallist₀ 4, 5, 6, 7, 25, 63, 124 Signallistdef₀ 3, 4, 6, 10, 11, 41, 52, 123 Signallistid₀ $\mathbf{6}$, 124 Signallistname₀ $\mathbf{6}$ SignalnamesD, 73, 118, 157, 158, 190, 206, 231, 244, 261 Signalqual 23, 24, 25, 28, 59, 63, 66, 124, 127, 130, 131, 156, 157, 158, 159, 160, 175, 178, 180, 192, 211, 234 SignalrouteD 21, 22, 25, 63, 122, 127, 132, 133, 210, 211, 240, 241 $Signame_0$ 6 Sigroutedef₀ 3, 5, 11, 41, 48, 52, 54, 122, 125, 132, 241, 249, 250, 251, 252 Sigroutename₀ 5 Sigroutepath₀ 5, 122, 125, 132, 241, 250, 252 Singregexp₀ 16, 97 SortD 21, 22, 26, 46, 73, 74, 90, 92, 94, 116, 155, 224, 256, 258 Sort-identifier1 Z.100, 30, 82 Sort-qualifier₁ Z.100, 223 Sortgenerator₀ 15, 17, 52, 70 Sortid₀ 4, 5, 6, 9, 12, 13, 15, 16, 17, 113, 114, 115 Sortname₀ 12 Sortparmo 15, 70, 89 Sortqual 21, 24, 25, 26, 27, 64, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 91, 92,

94, 106, 107, 108, 109, 110, 134, 135, 137, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 160, 193, 206, 218, 219, 221, 222, 256, 258, 261 Spec 28, 184, 187 Speclist 28, 173, 175, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 239 Spellingterm₀ 13, 17, 85, 135, 148 Starred₀ 7, 177, 178 Starredlist₀ 7, 172 StateD 28, 173, 175, 180, 181, 188, 231, 234, 237, 239 State-node1 Z.100, 188 Statebody₀ 7, 165, 169, 172 Statedict 23, 28, 172, 173, 174, 180, 181, 186, 187, 188, 234, 237 Statename₀ 7, 8, 28, 180, 182, 184, 188, 189, 191, 192, 195, 196, 197, 198, 199, 203, 204, 205, 206, 207, 208, 212, 214, 217, 219, 220, 231, 238, 239 Statenamelist₀ 7, 172, 173 Statespec₀ 7, 28, 165, 169, 178, 186, 189 Statetuplemap 28 Stop-node 1 Z.100, 195 Stop₀ 8, 195 String₀ 3, 12, 13, 15, 16, 21, 87, 89, 96, 98, 99, 217, 228, 260 Stringterm₀ 13, 17, 87, 101, 110, 135, 142, 148, 156, 158, 217, 218, 219, 228 Struco 14, 15, 71, 112 Subsignal-definition₁ Z.100, 66 Subsignal₀ 10, 66 SynD 21, 22, 26, 46, 93, 139, 140, 160, 185 Syn-type-definition₁ **Z.100**, 30, 90, 226 Synonymdef₀ 16, 17, 46, 49, 52, 93 Synonymname₀ 16SyntypeD 21, 22, 26, 74, 90, 117, 164, 224, 256, 258 Syntypedef₀ 14, 17, 50, 52, 71, 90 Syntypename₀ 14 Syso 3, 32, 33, 261 Sysdecl₀ 3 Sysdef₀ 3, 33 Sysname₀ 3SystemD 21, 22, 23, 33 System-definition₁ **Z.100**, 33, 226, 262 System-qualifier₁ Z.100, 223 Tailid₀ 3, 4, 5, 10, 11 Tailname₀ 3, 5, 7, 12, 14, 15 Task-node1 Z.100, 164, 200, 201, 206 Tasko 8, 183, 198, 199 Term-Information 30, 259

Term-Information **30**, 259 Term₀ **13**, 14, 16, 85, 87, 89, 103, 134, 135, 147

Term, Z.100, 83, 103, 134, 135, 137, 141, 144, 147, 148, 154, 155, 213 Terminator₀ 8, 238 Termparm₀ 15, 70, 89 Termstmt₀ 7, 8, 167, 168, 170, 175, 181, 184, 188, 195, 196, 198, 199, 203, 204, 205, 206, 207, 208, 212, 214, 231, 237, 238 Text₀ 3, 8, 199, 200 Time-information 30 TimerD 21, 22, 24, 63, 116, 152, 180, 192, 203, 205, 208, 224 Timer-active-expression₁ Z.100, 152 Timer-definition, Z.100, 30, 116, 226 Timerdef₀ 4, 9, 11, 41, 52, 116 Timerelem₀ 9, 116Timerid₀ 9, 18Timername₀ 9 Transition₀ 7, 9, 11, 12, 23, 28, 166, 167, 169, 170, 175, 181, 182, 184, 186, 187, 188, 190, 192, 195, 196, 221, 231, 234, 238 Transition₁ Z.100, 163, 164, 193, 195, 198, 199, 203, 204, 205, 206, 207, 208, 212, 214, 217, 220, 235, 239 Tupleexpro 17, 149, 153 $Unguanteguation_0$ 13, 14, 102, 105 Unguantified-equation, **Z.100**, 82, 102, 105 Validinputset 23, 25, 240 Value₀ 6, 14 ValueidD 21, 22, 27, 104, 106, 137, 141, 148 Valuename₀ 13, 17 VarD 21, 22, 26, 69, 117, 120, 140, 158, 160, 163, 164, 189, 190, 193, 200, 216, 224, 246 Vardef₀ 4, 5, 6, 11, 41, 52, 64, 116, 117, 118, 229, 230 Vardefelem₀ 6, 64, 116, 118, 229, 230 Variable-definition₁ Z.100, 30, 117, 118, 226, 229 Variable-identifier₁ **Z.100**, 192, 193 Variable₀ 18, 201 Varido 6, 7, 12, 18, 151, 182, 183, 184, 193, 206 $Varname_0$ 4, 5, 6, 12 Via₀ 8, 208, 211 ViewD 21, 22, 27, 120 View-definition, Z.100, 30, 119, 120, 226 View-expression, Z.100, 151 Viewdef₀ 4, 6, 11, 41, 52, 119 Viewdefelem₀ 6, 119 Viewexpro 18, 149 Viewqualelem 21

Xquerynm , **261** Xreplynm , **261**

Fascicle X.4 – Domain Index

269

Function Index

add-default-assign, 163, 164 add-equality, 94, 107 add-ordering, 94, 108 add-service-varinit, 235, 239 add-varinit, 162, 163, 239 all-exporteurs, 242, 247 all-importeurs, 242, 247 all-input-signals, 156, 177, 178, 231, 237 all-variables-and-synonyms, 139, 140, 160 all-visible-literals, 137, 139, 141, 142, 156 all-visible-operators, 92, 143, 144 all-visible-sorts, 81, 93, 103, 155, 200, 206, 217, 220 apply-generic-parameters, 33, 261 as_0 -channeldefs , 244 as_0 -channels , 242, 244 as₀-extract-properties, 113, 115 as₀-global-entities 33, 35 as_{0} -id, 58, 73, 107, 109, 110, 118, 141, 177, 229, 230, 231, 237, 244, 250, 251, 252 as₀-implicit-transitions, 175 as₀-inputvars, 175, 178, 180 as₀-modify-properties, 113, 114 as_0 -order , 108, **110** as₀-ordering-axioms, 108, 109 as_0 -ordering-typing, 108, **110** aso-xtQUERY-inputs, 189, 190 block-connect, 125, 126 build-answer-operator, 221, 222 build-answerlist-labeldict, 170, 171 build-cont-trans, 182, 184 build-enable-decision, 186, 187 build-exported-vardef, 117, 118 build-extract-operator, 143, 145 build-field-operator, 143, 145 build-implicit-operators, 77, 80 build-implicit-state, 187, 188 build-literal-renaming, 75, 76 build-operator-renaming, 77, 78 build-quant-equation, 102, 104, 105 build-service-descriptor, 52, 233 build-service-statedict, 233, 234 build-spec-labeldict, 169 build-state-labeldict, 162, 169, 234 build-statedict, 162, 172, 234 build-trans-labeldict, 162, 169, 170, 171, 234 check-name-syntax, 96, 262 collect-genparms, 84, 89 collect-illegal-synonyms, 43, 49 collect-priority-info, 182, 185 collect-sorts, 43, 50 collect-synonyms, 45, 46

252, 261, 262 definition-of-SDL 32 derive-delay-inf, 258, 261 derive-time-inf, 258, 261 double-states, 235, 237 emptyqtrans, 181, 182, 184 eval-expr , 44, 261 eval-option-trans, 220, 221 eval-simple-expr , 44, 61, 185, 221, 260 expand-continuous, 181, 182 expand-enable, 181, 186 extract-exports, 157, 158 extract-firststate-or-service, 235, 238 extract-inherited-axioms, 73, 81 extract-initial-state, 195, 196 extract-legal-operators, 143, 144, 146 extract-priinput, 234 extract-servicestate, 195, 197 father-block-import-export, 242, 245 form-integer, 98, 99, 100 form-names-and-strings, 96 gen-connect, 253, 254 gen-connect-elem, 254, 255 gen-formparm-unique, 70 generate-auxiliary-information, 33, 258 get-answer-sort, 217, 218, 220 get-exporteurs, 247, 248 get-inherited-parent, 73, 258 get-parent, 46, 64, 69, 79, 80, 90, 93, 111, 116, 119, 121, 139, 140, 143, 144, 150, 151, 156, 193, 200, 216, 256 get-predef-sort, 44, 47, 91, 92, 107, 109, 110, 148, 151, 152, 153, 154, 205, 208, 229, 256, 259, 260 get-sur, 63, 67, 71, 78, 116, 120, 128, 129, 131, 137, 139, 142, 144, 150, 155, 157, 158, 160, 163, 208, 210, 211, 212, 223, 224, 225, 228, 229, 240, 245, 246, 247, 253, 256, 257 get-visible-qual, 46, 57, 60, 64, 65, 69, 73, 84, 90, 93, 104, 106, 111, 116, 119, 121, 122, 124, 126, 129, 133, 139, 152, 158, 159, 203, 205, 210, 212, 214, 241 get-visible-variable, 160, 193, 200, 206, 216 imp-exp-in-processes, 242, 246, 247

convert-channel-qual, 126, 129, 224, 225

create-unique-name, 33, 35, 56, 58, 66,

69, 71, 79, 80, 90, 94, 107, 109,

111, 114, 115, 116, 117, 150, 168,

181, 188, 231, 235, 237, 242, 250,

convert-term, 82, 83

70 Fascicle X.4 – Function Index

convert-axiom, 81, 82

implicit-channels-and-signal-routes, 54, 242 implicit-connects, 242, 253 implicit-signalroutes, 242, 249 import-export-signals, 63, 157, 175, 177, 178, 250, 252 initialdatadef, 54, 56, 61, 67 insert-answer-term, 166, 167 insert-equals-true, 101, 102, 105 insert-genparms, 84, 85 insert-importact, 188, 193 insert-join, 167, 168 insert-parm, 85, 87 insert-spec-term . 165 insert-starred, 172, 173 insert-state-names , 172, 173 insert-state-term , 162, 165, 234 insert-trans-term , 162, 165, 166, 167, 234 is-consistent-Dict 22 is-in-regular-expr, 96, 97, 100 is-in-regular-par, 97, 100 is-in-regular-range, 97, 98 is-in-regular-single, 97, 99 is-local, 57, 63, 122, 139, 235, 249, 251, 256 is-recursive-sort, 73, 74, 90 is-wf-connectchannels, 129, 130 is-wf-connectsignalroutes, 126, 127, 133 is-wf-entities, 39, 41 is-wf-refinement, 130, 131 is-wf-servicesignals, 161, 240 is-wf-simple-expr, 44, 47 make-as₀-channel-signalroutes, 251, 252 make-as₀-env-signalroutes, 249, 251 make-as₀-local-signalroutes, 249, 250 make-as₁-concarioms, 73, 94, 228 make-as1-identifier, 56, 57, 64, 65, 69, 73, 75, 77, 78, 81, 90, 91, 92, 94, 104, 111, 116, 117, 120, 122, 126, 129, 139, 141, 142, 147, 150, 151, 152, 164, 192, 193, 200, 203, 205, 206, 208, 212, 214, 216, 223, 225, 259 make-as1-qual, 223 $make-as_1$ -typing, 77, 78 make-as1 idset, 57, 122, 189, 208, 225 make-as1 tree, 33, 54, 61, 67, 226 make-expired-function, 258, 260 make-implicit-decl, 72, 73 make-implicit-import-vardef, 229, 230 make-implicit-sigdecls, 71, 72 make-implicit-vardecl, 61, 229 make-new-qual, 223, 224 make-term-inf , 258, 259 make-tick-function, 258, 259 match-option-answer, 221 merge-states , 235, 239

212, 257 process-or-service-level, 67, 150, 151, 156, 175, 208, 210, 257 remove-asterisk-from-spec, 175, 177, 178 remove-asterisk-from-state, 174, 175 remove-asterisk-input-and-save, 162, 174, 234 remove-cont-enable-from-state, 180, 181 remove-cont-enable-from-statelist, 162, 180, 235 remove-references, 35, 37, 38, 39 remove-select, 33, 43, 48 remove-select-in-decllist, 43, 44 remove-select-in-enclosed-scopeunit, 43, 48 rename-operator, 78, 79 repeat-collecting-synonyms, 43, 44, 45 replace-connects, 58, 60 replace-references, 33, 35 select-consistent-subset, 32, 262 select-remote-number-of-instances, 37, 41 service-connect, 132, 133 service-connectmap, 132, 161 signal-qual, 124, 159, 178, 192, 208, 234 signaldeflevel, 159, 160 sorts-have-values, 226, 227 transform-act, 195, 198 transform-activeexpr, 149, 152 transform-actparmlist, 214, 215 transform-actparms, 147, 152, 203, 205, 208, 212, 213 transform-answers, 217, 219 transform-assign, 199, 200, 201 transform-axiom, 100, 101, 228 transform-axiom-id, 135, 137 transform-axiom-id-of-this-sort, 137, 141 transform-axioms, 94, 100, 104, 106 transform-block-connect, 54, 125 transform-block-substructure-connect, 128, 129 transform-blockdef, 52, 54 transform-body, 67, 161, 162 transform-build-in-expression, 135, 149 transform-call, 198, 214 transform-channel-sub, 57, 58 transform-channeldef, 52, 57 transform-condequation, 101, 105 transform-condexpr, 135, 154 transform-create, 198, 212 transform-decision, 198, 217 transform-decl, 51, 52 transform-decllist, 33, 51, 54, 59, 61, 67, 72, 161, 233 transform-decomposition-body, 161, 235 transform-equation, 101, 102

pretrans, 181, 183

process-level, 63, 150, 157, 158, 189, 210,

Fascicle X.4 – Function Index

271

transform-export, 198, 206 transform-expr , 44, 46, 47, 90, 92, 93, 94, 117, 134, 135, 139, 151, 152, 153, 154, 155, 200, 205, 208, 213, 215, 217, 220 transform-field, 113 transform-fields, 112, 113 transform-geninst, 70, 71, 84 transform-id, 135, 139 transform-import, 199, 203, 205, 208, 212, 214, 217, 231 transform-import def, 52, 121 transform-importexpr, 149, 150 transform-infixexpr, 135, 155 transform-informal, 199, 200 transform-inherited, 71, 73 transform-inoutactparm . 215. 216 transform-input, 189, 191 transform-input-transition, 191, 192 transform-inputvarlist, 192, 193 transform-inputvars, 192 transform-lhs-rhs, 102, 103, 105 transform-literal-renaming, 73, 75 transform-mapping, 101, 108 transform-mappingaxioms, 106 transform-modifyassign, 200, 201 transform-monadexpr, 135, 155 transform-nameclass, 94, 96 transform-nowexpr, 149, 151 transform-operator-renaming, 73, 77 transform-operatorexpr, 135, 142, 143 transform-operatorterm, 135, 144 transform-option, 198, 220 transform-output, 198, 207 transform-output-elems, 206, 207, 208 transform-partial-typedef, 52, 71 transform-pid-build-in, 149, 153 transform-prioutput, 198, 206 transform-procedured ef, 52, 66 transform-procedure parml, 67, 68 transform-process-body, 61, 161 transform-process def , 52, 61 transform-processparm, 61, 64 transform-qual-operator, 143, 144, 146, 147 transform-quantequation, 101, 104 transform-refinement, 65, 66 transform-reset, 198, 203 transform-reset-elems, 203 transform-restrictions, 105 transform-selectexpr, 143, 149, 152 transform-servicesigroutedef, 52, 241 transform-set, 198, 204 transform-set-elems, 204, 205 transform-signaldef, 52, 65, 66 transform-signallist, 57, 63, 122, 123, 124, 177, 189, 241 transform-signallistdef, 52, 123 transform-signalroutedef, 52, 122

transform-sortdef, 71, 73, 94, 112 transform-sortgenerator, 52, 70 transform-spelling, 135, 148 transform-statelist, 162, 188, 235 transform-statespect, 188, 189 transform-stmtlist, 198, 199 transform-stringexpr, 135, 142, 148 transform-struc, 71, 112 transform-substructure-connect, 54, 128 transform-synonymdef, 52, 93 transform-syntype, 52, 71, 90 transform-system 32, 33 transform-term, 103, 134 transform-timerdef, 52, 116 transform-transition, 162, 192, 195, 199, 203, 205, 208, 212, 214, 217, 219, 220, 235 transform-tupleexpr, 149, 153 transform-typing, 94, 111 transform-validinputset, 61, 63, 233 transform-valuerange, 91, 92 transform-valueset, 90, 91, 218, 219 transform-vardef, 52, 64, 116, 117, 118, 229 transform-varparm, 68, 69 transform-via, 208, 210 transform-view, 119, 120 transform-viewdef, 52, 119 transform-viewexpr, 149, 151

processor system Annex F.3, 32

Quotation Index

ALL 15, 77 AND 14, 92, 107, 109, 222 AXIOMS 30, 94, 135, 147, 154, 155, 228 BLOCK 2, 21, 22, 38, 41, 48, 54, 57, 58, 60, 223, 226 CHANNEL 21, 22, 57, 58, 126, 128, 129, 210, 225 CONC 14, 228 CONSTANT 30, 44, 46, 47, 90, 92, 93, 94, 117, 139, 140, 220 DATATYPEDEF 28, 33, 54, 56, 61, 67, 73, 94, 226 **DIV** 14 ENV 5, 6, 23, 24, 25, 41, 57, 122, 125, 127, 128, 130, 132, 158, 229, 242, 252, 255, 256 **ENVIRONMENT 57, 122** EQ 14, 92, 107, 109, 184, 222 EXCLAMATION 113, 114, 115, 145, 152, 153, 201 **EXCLAMATIONMARK 2 EXPORT** 160 EXPORTED 6, 26, 158, 246 EXPRESSION 30, 139, 149, 151, 152, 160, 200, 203, 205, 208, 212, 215, 217 GE 14, 92, 109, 110, 222, 260 **GENERATOR 21, 22, 70, 84** GLOBALNAMES 28, 33, 157, 181, 229 GT 14, 92, 109, 110, 222 IMPLIED 28, 61, 150, 229, 231 IMPLY 14, 107, 109 IMPORT 21, 22, 121, 150, 157 IMPORTLIST 28, 150, 199, 203, 205, 208, 212, 214, 217, 231 IN 14 LABELDICT 28, 162, 191, 195, 235 LE 14, 92, 109, 110, 222 **LEVEL 52** LITERAL 21, 22, 76, 94, 156, 228, 259 LT 14, 92, 109, 110, 222 MAPPING 30, 94, 106, 135, 147, 148, 154, 155 **MINUS 14, 17 MOD** 14 MULT 14, 16, 98, 99, 100 NE 14, 92, 107, 222 NOT 14, 17, 18, 107, 109 OPERATOR 21, 22, 79, 80, 91, 92, 111, 144, 259

OR 14, 91, 109, 222 **OUTSIGNALS 28, 61, 208** PLUS 14, 16, 99, 100, 183, 259 PROCEDURE 2, 22, 39, 41, 66, 67, 214, 223, 226, 257 PROCESS 2, 22, 39, 41, 48, 61, 122, 212, 223, 226 **REM** 14 **REVEALED** 6, 26, 120 **REVERSE** 10 SCOPEUNIT 28, 33, 43, 46, 48, 54, 56, 57, 58, 61, 63, 65, 66, 67, 69, 70, 71, 90, 92, 93, 94, 102, 104, 106, 111, 112, 116, 117, 120, 121, 122, 123, 125, 126, 128, 129, 132, 133, 135, 137, 139, 140, 141, 143, 144, 150, 151, 155, 157, 158, 159, 162, 163, 175, 177, 178, 184, 185, 189, 190, 191, 195, 196, 197, 208, 210, 212, 224, 227, 231, 233, 234, 235, 239, 240, 241, 244, 245, 246, 247, 248, 249, 251, 252, 253, 256 SERVICE 2, 22, 39, 41, 48, 233, 241, 257 SERVICES 28, 195, 196, 197, 235, 238 SIGNAL 2, 21, 22, 65, 116, 152, 157, 158, 159, 160, 203, 205, 223, 231 SIGNALLIST 21, 22, 123, 124 SIGNALROUTE 21, 22, 122, 125, 126, 132, 133, 210, 241, 251 STATEDICT 28, 162, 188, 195, 231, 235 SUBSTRUCTURE 2, 22, 38, 39, 41, 48, 54, 58, 223, 226 SYSTEM 2, 21, 22, 33, 41, 49, 223, 226 TYPE 2, 22, 46, 56, 64, 65, 69, 71, 73, 90, 93, 94, 104, 106, 111, 114, 115, 116, 119, 121, 223, 256 VALUE 21, 22, 43, 46, 69, 93, 104, 106, 117, 120, 137, 139, 140, 141, 148, 150, 151, 158 VIEW 21, 22, 120, 151 **XOR** 14

273

Error Messages

§2.10.2: VIA illegal outside services when service signal routes defined 210 §2.2.2: Character string is not of appropriate sort 142 §2.2.2: Conditional expression does not match the context 154 §2.2.2: Ending name in block definition is different from defining name 54 Ending name in block sub-structure definition is different from defining name 54 §2.2.2: Ending name in channel definition is different from defining name 57 §2.2.2: Ending name in channel sub-structure definition is different from defining name 58 §2.2.2: §2.2.2: Ending name in procedure definition is different from defining name 67 §2.2.2: Ending name in process definition is different from defining name 61 §2.2.2: Ending name in service definition is different from defining name 233 §2.2.2: Ending name in system definition is different from defining name 33 §2.2.2: Identifier is not visible 158 Local synonym or variable is not of right sort 139 §2.2.2: §2.2.2: Multiple appearence of operator definition 111 §2.2.2: Names of formal parameters must be distinct from variable names 61, 67 No appropriate sort exist for decision action 218 §2.2.2: §2.2.2: No import variable matches the context 150 §2.2.2: No sort can be used for value identifier 137 No synonym, variable or literal matches the sort of the context 139 §2.2.2: §2.2.2: One and only one revealed variable must match the view expression 151 One and only one variable must match the context 160 §2.2.2: §2.2.2: Ordering operators are multiple defined 108 §2.2.2: Result sort of operator is illegal for the context 147 Several variables and synonyms are possible for the context 139 §2.2.2: §2.2.2: Signal identifier denotes more than one (sub) signal 159 §2.2.2: Synonym or generator or signal list is recursive defined 158 The operator term cannot be used in this context 143, 144 §2.2.2: §2.2.2: Two definitions in the same scopeunit and same entity class define the same name 51, 66 §2.2.2: Two definitions in the same scopeunit use the same name 64, 65, 68, 69, 117, 119, 121 §2.2.3: Initial number is greater than maximum number of instances 61 Initial number of instances is less than zero 61 §2.2.3: §2.2.3: Maximum number of instances equals zero 61 §2.4.1: Defining names may only be qualified in remote definitions 54, 58, 61, 67, 233 §2.4.1: Ending and starting identifier in the definition are different 37, 38 §2.4.1: No remote definition matches reference 37, 38 §2.4.1: Remote definition is not referenced in the system definition 35 §2.4.1: Remote definitions are not unique 35 §2.4.2: System definition must contain at least one block 33 §2.4.3: Block must contain either one or more processes or a sub-structure definition 54 §2.4.4: Remote number of instances specification does not match process reference 41 §2.4.5: Variable in procedure (or service) cannot be EXPORTED or REVEALED 117 §2.5.2: The endpoints of the signal route are not different 122 §2.5.2: The endpoints of the signal route are not locally defined 122 §2.5.2: The second path must denote reverse direction of the first path 122 Valid input signal must contain all local signals and no timers 63 §2.5.2: §2.5.2: Valid input signal set must be specified when no signal routes are specified 249 Channel to signal route connection appears twice 125 §2.5.3: Channel to signal route connection is not well-formed 126 §2.5.3: §2.5.3: No connection for channel connected to block 125 §2.5.3: Signal route does not appear in exactly one connect 125 §2.5.3: Signal route mentioned in more than one connection 125 §2.5.5: Signal identifiers in signal list are not distinct 124 §2.5: Endpoint of channel is defined in another scopeunit than the channel 57 §2.5: Endpoints of channel must be different 57 §2.5: Second path in channel definition must denote reverse direction of first path 57 No unique corresponding revealed variable of that sort 120 §2.6.1.2:

- §2.6.3: Ending name of state must be the same as starting name 172
- §2.6.3: Ending state name is not allowed in asterisk state 172
- §2.6.3: Signals in state are not disjoint 177, 178
- §2.6.3: Signals in state node are not well-formed 175
- §2.6.3: State names in state must be distinct 173
- §2.6.4: Wrong number of parameters in input node 192
- §2.6.6: Labels are not distinct 170
- §2.6.7.1: Terminator missing in transition 166, 168
- §2.6.7.2.1: Name in nextstate must denote a defined state 195, 196, 197, 238
- §2.6.7.2.2: Label in join is not defined 195
- §2.7.2: Actual parameter length must be equal to formal parameter list length 212
- §2.7.2: Created process must be defined in the same block 212
- §2.7.3: Actual IN/OUT parameter must be a variable identifier 216
- §2.7.3: Length of procedure parameter list must equals the length of formal parameter list 214
- §2.7.3: Same sort must be specified for formal and actual IN/OUT parameter 216
- §2.7.4: Channel in VIA set is not connected to block 211
- §2.7.4: Identifier in output action must denote a signal 208
- §2.7.4: If signal routes are specified then channels cannot be mentioned in VIA 211
- §2.7.4: Illegal VIA set 210
- §2.7.4: Not the right number of arguments to output action 208
- §2.7.4: Signal cannot be conveyed by channel in VIA set 211
- §2.7.4: Signal in output has no possible receiver 210
- §2.7.4: Signal route or channel specified twice in VIA set 210
- §2.8: Identifier in reset action is not a timer 203
- §2.8: Identifier in set action is not a timer 205
- §2.8: Identifier in timer active expression does not denote a timer 152
- §2.8: Illegal timer active expression 152
- §2.8: Parameter list length in reset action must equal the length specified in the definition 203
- §2.8: Parameter list length in set action must equals the length specified in the definition 205
- §3.2.2: Block sub-structure does not contain a block definition 54
- §3.2.2: Channel connection appears twice 128
- §3.2.2: Channel connection is not well-formed 129
- §3.2.2: No connection for channel connected to block substructure 128
- §3.2.2: Sub-channel does not appear in exactly one connect 128
- §3.2.2: Sub-channel mentioned in more than one connection 128
- **§3.2.3:** The block identifiers in the connects do not denote channel endpoints 60
- §3.2.3: There must be exactly two channel endpoint connects 60
- §3.3: Process uses signals on different refinement levels of the same signal 61
- §4.10.1: Service signal route identifier occurs twice in service signal route connection 133
- §4.10.1: Signals in service signal routes must be the same as for the connected signal route 133
- §4.10.1: The endpoints in the directions of a bidirectional signal route must match 241
- §4.10.1: The endpoints of service signal route must be different 241
- §4.10.2: All service signal routes must be mentioned in a connect 132
- §4.10.2: Illegal service signal route connection 132
- §4.10.2: Missing signal route connection in process 132
- §4.10.2: More than one service contains an initial transition string 238
- §4.10.2: No service signal routes are connected to signal route in VIA 210
- **§4.10.2:** Procedure in decomposition or service has states or import expressions 67
- §4.10.2: Process contains both service definitions and timer definitions 116
- §4.10.2: Service signals not well-formed 161
- §4.10: A decomposition must contain at least one service definition 235
- §4.10: Illegal use of high priority signal 208
- §4.11: Only one continuous signal may be specified if the priority is omitted 182
- §4.11: Several continuous signals with the same priority 185
- §4.2.3: The two terms in equation must be of the same sort 103

275
- §4.3.2: Simple expression is not of a predefined sort or contains undefined identifiers 44
- §4.3.3: The definitions in select are not allowed in that scopeunit 39
- §4.3.3: The selected definition is not allowed in that scopeunit 48
- §4.3.4: More than one option answer matches the question 221
- §4.3.4: No option answer matches the option question 221
- §4.4: Illegal asterisk state 173
- §4.7: State has more than one asterisk input or save 177, 178
- §4.9: Dash nextstate in initial transition 195
- **§5.2.1:** Ending name in partial type definition is different from defining name 71
- §5.2.1: Sort in data type definition have no values 226
- §5.2.1: There exist no operators which returns a value of that sort 71
- §5.2.2: Literal defined twice in a partial type definition 94
- §5.2.2: Operator or literal both defined explicit and by inheritance 73
- §5.2.3: Inconsistent use of implicitly quantified value name 141
- §5.2.3: Value identifier must not be qualified 141
- §5.2: Length of parameter list is not correct for an operator 147
- §5.4.1.10: Two structure fields have the same name 113
- **§5.4.1.11:** Literal defined twice in renaming 76
- **§5.4.1.11:** Literal in literal renaming is not defined in the parent sort 76
- §5.4.1.11: Literal renamed twice 76
- **§5.4.1.11:** Operator in operator renaming is not defined in the parent sort 78
- §5.4.1.11: Operator renamed twice 78
- **§5.4.1.11:** Operator with an exclamation is mentioned in an operator renaming 78
- §5.4.1.11: Sort is based on itself 73
- §5.4.1.12.2: CONSTANT actual generator parameter must be a term 89
- **§5.4.1.12.2:** LITERAL actual generator parameter must be a literal signature 89
- §5.4.1.12.2: Lengths of actual and formal parameter lists in generator must be the same 84
- §5.4.1.12.2: OPERATOR actual generator parameter must be an operator signature 89
- §5.4.1.12.2: TYPE actual generator parameter must be a identifier 89
- **§5.4.1.12:** Ending name in generator definition is different from defining name 70
- §5.4.1.12: Generator constant parameter used in literal signature 87
- §5.4.1.12: Generator formal name is qualified 87
- §5.4.1.12: Name class cannot be used in equations 87
- §5.4.1.13: Sort of synonym cannot be uniquely determined 93
- **§5.4.1.14:** Length of character strings in regular interval is not equal to one 98
- **§5.4.1.14:** Repetition name in name class must denote a natural number 98, 99, 100
- §5.4.1.15: Illegal use of the SPELLING operator 148
- §5.4.1.7: Error term is part of restriction 105
- §5.4.1.7: Error term is used in a composite term 135
- **§5.4.1.9.1:** Ordering operator is not defined for the sort of the range condition 92
- **§5.4.1.9:** Ending name in syntype definition is different from defining name 90
- **§5.4.1.9:** Syntype is based on itself 90
- §5.4.1.9: Syntype is defined in terms of itself 256, 258
- §5.5.3.3: More than one default assignment 84
- §5.5.3: None or multiple expansions of modify assignment 201
- §5.5.4.1: NOW expression must be used where TIME values are allowed 151
- §5.5.4.3: PID expression is used in wrong context 153
- §5.5.4: Imperative operator cannot be used in constant expression 149

ISBN 92-61-03781-X