

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME X - FASCICLE X.1

FUNCTIONAL SPECIFICATION
AND DESCRIPTION LANGUAGE (SDL)
CRITERIA FOR USING FORMAL
DESCRIPTION TECHNIQUES (FDTs)

RECOMMENDATION Z .100 AN D AN NE XE S A, B, C A N D E,
RECOMMENDATION Z.11Q

IXTH PLENARY ASSEM BLY
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1 989

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME X - FASCICLE X.1

FUNCTIONAL SPECIFICATION
AND DESCRIPTION LANGUAGE (SDL)
CRITERIA FOR USING FORMAL
DESCRIPTION TECHNIQUES (FDTs)

RECOMMENDATION Z.100 AN D ANNEXES A, Bf C A N D E,
RECOMMENDATION Z.110

IXTH PLENARY ASSEMBLY
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1 989

ISBN 92-61-03751-8

Printed in Sw itzerland

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

Volume I

FASCICLE 1.1

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume II

FASCICLE II.l

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

FASCICLE II.5

FASCICLE II.6

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

BLUE BOOK

— Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

— Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

— Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

— Index of Blue Book.

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study Group II).

— Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study Group II).

— Telegraph and mobile services — Operations and quality of service. Recommenda­
tions F.1-F.140 (Study Group I).

— Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study Group I).

— Message handling and directory services — Operations and definition of service. Recom­
mendations F.400-F.422, F.500 (Study Group I).

— General characteristics of international telephone connections and circuits. Recommenda­
tions G.100-G.181 (Study Groups XII and XV).

— International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).

— Transmission media — Characteristics. Recommendations G.601-G.654 (Study Group XV).

— General aspects of digital transmission systems; terminal equipments. Recommenda­
tions G.700-G.795 (Study Groups XV and XVIII).

— Digital networks, digital sections and digital line systems. Recommendations G.801-G.961
(Study Groups XV and XVIII).

Ill

FASCICLE III.6 — Line transmission of non-telephone signals. Transmission of sound-programme and televi­
sion signals. Series H and J Recommendations (Study Group XV).

FASCICLE III.7

FASCICLE III.8

FASCICLE III.9

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4 *

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VI.4

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI. 10

Integrated Services Digital Network (ISDN) — General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Overall network aspects and functions,
ISDN user-network interfaces. Recommendations 1.310-1.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) — Internetwork interfaces and maintenance
principles. Recommendations 1.500-1.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

M aintenance of international telegraph, phototelegraph and leased circuits. M aintenance of
the international public telephone network. M aintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

M aintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and inform a­
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q.180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study
Group XI).

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

IV

FASCICLE V I.ll

FASCICLE VI.12

FASCICLE VI. 13

FASCICLE VI.14

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

FASCICLE VII.3

FASCICLE VII.4

FASCICLE VII.5

FASCICLE VII.6

FASCICLE VII.7

Volume VIII

FASCICLE VIII.l

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VI11.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

FASCICLE VIII.8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage­
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda­
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda­
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.1100-Q.1152 (Study
Group XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip­
ment. Series S Recommendations (Study Group IX).

Telegraph^switching. Series U Recommendations (Study G roup IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study G roup VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study G roup VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda­
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Model and nota­
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica­
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study G roup VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).

Data communication networks: directory. Recommendations X.500-X.521 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements o f outside plant. Series L Recom­
mendations (Study Group VI).

V

Volume X

FASCICLE X.l

FASCICLE X.2

FASCICLE X.3

FASCICLE X.4

FASCICLE X.5

FASCICLE X.6

FASCICLE X.7

— Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z.110 (Study Group X).

— Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

— Annex F.l to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

— Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X).

— Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
Group X).

— CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

— M an-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

VI

TABLE OF CONTENTS OF FASCICLE X .l OF THE BLUE BOOK

Recommendation Z.100 and Annexes A, B, C and E

Recommendation Z.110

Functional specification and description language (SDL)

Criteria for using formal description techniques (FDTs)

Rec. No Page

Z.100 Specification and description language (S D L) .. 3

Annex A — SDL Glossary 207

Annex B — Abstract syntax s u m m a ry .. 236

Annex Cl — Concrete graphical syntax s u m m a ry 245

Annex C2 — SDL PR syntax s u m m a r y 266

Annex E — State-oriented representation and pictorial e lem ents... 314

Z.110 Criteria for the use and applicability of formal Description T echniques............................. 327

PRELIMINARY NOTES

1 The Questions entrusted to each Study Group for the Study Period 1989-1992 can be found in
Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression “Administration” is used for shortness to indicate both a telecommunica-

Contribution No. 1 to that Study Group.

tion Administration and a recognized private operating agency.

Fascicle X.l — Contents VII

FASCICLE X.l

Recommendation Z.100 and Annexes A, B, C and E
Recommendation Z.110

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

CRITERIA FOR USING FORMAL DESCRIPTION
TECHNIQUES (FDTs)

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

TABLE OF CONTENTS OF Z.100

Recommendation Z.100

Specification and
Description Language (SDL)

1 Introduction to SDL 8

1.1 Introduction 8
1.1.1 Objectives 8
1.1.2 Applications 8
1.1.3 System specification 9

1.2 SDL grammars 9

1.3 Basic definitions 10
1.3.1 Type, definitions and instance 10
1.3.2 Environment 11
1.3.3 Errors 12

1.4 Presentation style 12
1.4.1 Division of text 12
1.4.2 Titled enumeration items 12

1.5 Metalanguages 15
1.5.1 Meta IV 15
1.5.2 BNF 16
1.5.3 Metalanguage for graphical grammar 17

2 Basic SDL 19

2.1 Introduction 19
2.2 General rules 20
2.2.1 Lexical rules 20
2.2.2 Visibility rules and identifiers 25
2.2.3 Informal text 28
2.2.4 Drawing rules 28
2.2.5 Partitioning of diagrams 29
2.2.6 Comment 29
2.2.7 Text extension 30
2.2.8 Text symbol 30

2.3 Basic Data concepts 31
2.3.1 Data type definitions 31

Fascicle X .l - Rec. Z.100 3

2.3.2 Variable 31
2.3.3 Values and literals 31
2.3.4 Expressions 31

2.4 System structure 32
2.4.1 Remote definitions 32
2.4.2 System 33

2.4.3 Block 35
2.4,4 Process 37
2.4.5 Procedure 41

2.5 Communication 44
2.5.1 Channel 44
2.5.2 Signal route 46
2.5.3 Connection 48
2.5.4 Signal 49
2.5.5 Signal list definition 49

2.6 Behaviour 50
2.6.1 Variables 50
2.6.1.1 Variable definition 50
2.6.1.2 View definition 51
2.6.2 Start 51
2.6.3 State 52
2.6.4 Input 53
2.6.5 Save 55
2.6.6 Label 56
2.6.7 Transition 57
2.6.7.1 Transition body 57
2.6.7.2 Transition terminator 59
2.6.7.2.1 Nextstate 59
2.6.7.2.2 Join 59
2.6.7.2.3 Stop 60
2.6.7.2.4 Return 61

2.7 Action 62
2.7.1 Task 62
2.7.2 Create 63
2.7.3 Procedure Call 64
2.7.4 Output 65
2.7.5 Decision 67

2.8 Timer 69

2.9 Examples 71

3 Structural concepts in SDL 81

3.1 Introduction 81

3.2 Partitioning 81
3.2.1 General 81
3.2.2 Block partitioning 82

4 Fascicle X.l — Rec. Z.100

3.2.3 Channel partitioning 86

3.3 Refinement 89

4 Additional concepts in SDL 92

4.1 Introduction 92

4.2 Macro 92
4.2.1 Lexical rules 92
4.2.2 Macro definition 93
4.2.3 Macro call 96

4.3 Generic systems 100
4.3.1 External synonym 100
4.3.2 Simple expression 100
4.3.3 Optional definition 101
4.3.4 Optional transition string 104

4.4 Asterisk state 106

4.5 Multiple appearance of state 106

4.6 Asterisk input 106

4.7 Asterisk save 107

4.8 Implicit transition 107

4.9 Dash nextstate 107

4.10 Service 108
4.10.1 Service decomposition 108
4.10.2 Service definition 110

4.11 Continuous signal 120

4.12 Enabling condition 121

4.13 Imported and exported value 124

5 Data in SDL 126

5.1 Introduction 126
5.1.1 Abstraction in data types 126
5.1.2 Outline of formalisms used to model data 126
5.1.3 Terminology 127
5.1.4 Division of text on data 127

5.2 The data kernel language 128
5.2.1 Data type definitions 128
5.2.2 Literals and parameterised operators 131

Fascicle X.l — Rec. Z.100 5

5.2.3
5.2.4

Axioms
Conditional equations

133
137

5.3 Initial algebra model (informal description) 138
5.3.1 Introduction 139
5.3.1.1 Representations 139
5.3.2 Signatures 142
5.3.3 Terms and expressions 143
5.3.3.1 Generation of terms 143
5.3.4 Values and algebras 144
5.3.4.1 Equations and quantification 145
5.3.5 Algebraic specification and semantics (meaning) 146
5.3.6 Representation of values 147

5.4 Passive use of SDL data 147
5.4.1 Extended data definition constructs 147
5.4.1.1 Special operators 148
5.4.1.2 Character string literals 150
5.4.1.3 Predefined data 151
5.4.1.4 Equality 151
5.4.1.5 Boolean axioms 152
5.4.1.6 Conditional terms 152
5.4.1.7 Errors 154
5.4.1.8 Ordering 154
5.4.1.9 Syntypes 155
5.4.1.9.1 Range condition 157
5.4.1.10 Structure sorts 159
5.4.1.11 Inheritance 160
5.4.1.12 Generators 163
5.4.1.12.1 Generator definition 163
5.4.1.12.2 Generator instantiation 164
5.4.1.13 Synonyms 166
5.4.1.14 Name class literals 167
5.4.1.15 Literal mapping 168
5.4.2 Use of data 171
5.4.2.1 Expressions 171
5.4.2.2 Ground expressions 171
5.4.2.3 Synonym 174
5.4.2.4 Indexed primary 174
5.4.2.5 Field primary 174
5.4.2.6 Structure primary 175
5.4.2.7 Conditional ground expression 176

5.5 Use of data with variables 177
5.5.1 Variable and data definitions 177
5.5.2 Accessing variables 177
5.5.2.1 Active expressions 177
5.5.2.2 Variable access 178
5.5.2.3 Conditional expression 179
5.5.2.4 Operator application 180
5.5.3 Assignment statement 181
5.5.3.1 Indexed variable 181
5.5.3.2 Field variable 182
5.5.3.3 Default assignment 183

6 Fascicle X.l — Rec. Z.100

5.5.4 Imperative operators 184
5.5.4.1 NOW 184
5.5.4.2 IMPORT expression 185
5.5.4.3 PId expression 185
5.5.4.4 View expression 186
5.5.4.5 Timer active expression 187

5.6 Predefined data 188
5.6.1 Boolean sort 188
5.6.1.1 Definition 188
5.6.1.2 Usage 189
5.6.2 Character sort 189
5.6.2.1 Definition 189
5.6.2.2 Usage 191
5.6.3 String generator 191
5.6.3.1 . Definition 191
5.6.3.2 Usage 192
5.6.4 Charstring sort 192
5.6.4.1 Definition 192
5.6.4.2 Usage 193
5.6.5 Integer sort 193
5.6.5.1 Definition 193
5.6.5.2 Usage 194
5.6.6 Natural syntype 194
5.6.6.1 Definition 194
5.6.6.2 Usage 194
5.6.7 Real sort 194
5.6.7.1 Definition 194
5.6.7.2 Usage 196
5.6.8 Array generator 196
5.6.8.1 Definition 196
5.6.8.2 Usage 197
5.6.9 Powerset generator 197
5.6.9.1 Definition 197
5.6.9.2 Usage 198
5.6.10 PId sort 198
5.6.10.1 Definition 198
5.6.10.2 Usage 198
5.6.11 Duration sort 198
5.6.11.1 Definition 198
5.6.11.2 Usage 199
5.6.12 Time sort 199
5.6.12.1 Definition 199
5.6.12.2 Usage 199

PRELIMINARY NOTE

This Recommendation replaces Recommendations Z.100 to Z.104 and Recommendation X.250
of the CCITT RED BOOK.

Fascicle X.l — Rec. Z.100 7

1 Introduction to SDL

1.1 Introduction

The purpose of recommending SDL (Specification and Description Language) is to provide
a language for unambiguous specification and description of the behaviour of telecommunications
systems. The specifications and descriptions using SDL are intended to be formal in the sense that
it is possible to analyse and interpret them unambiguously.

The terms specification and description are used with the following meaning:

a) a specification of a system is the description of its required behaviour, and

b) a description of a system is the description of its actual behaviour.

Note - Since there is no distinction between use of SDL for specification and its use for
description, the term specification is in the subsequent text used for both required behaviour and
actual behaviour.

A system specification, in a broad sense, is the specification of both the behaviour and a
set of general parameters of the system. However SDL aims only to specify the behavioural
aspects of a system; the general parameters describing properties like capacity and weight have to
be described using different techniques.

1.1.1 Objectives

The general objectives when defining SDL have been to provide a language that:

a) is easy to learn, use and interpret;

b) provides unambiguous specification for ordering and tendering;

c) may be extended to cover new developments;

d) is able to support several methodologies of system specification and design, without
assuming any one of these.

1.1.2 Applications

The main area of application for SDL is the specification of the behaviour of aspects of real
time systems. Applications include:

a) call processing (e.g. call handling, telephony signalling, metering) in switching
systems;

b) maintenance and fault treatment (e.g. alarms, automatic fault clearance, routine tests) in
general telecommunications systems;

c) system control (e.g. overload control, modification and extension procedures);

d) operation & maintenance functions, network management;

8 Fascicle X.l — Rec. Z.100

e) data communication protocols.

SDL can, of course, be used for the functional specification of the behaviour of any object
whose behaviour can be specified using a discrete model; i.e. the object communicates with its
environment by discrete messages.

SDL is a rich language and can be used for both high level informal (and/or formally
incomplete) specifications, semi-formal and detailed specifications. The user must choose the
appropriate parts of SDL for the intended level of communication and the environment in which the
language is being used. Depending on the environment in which a specification is used then many
aspects may be left to the common understanding between the source and the destination of the
specification.

Thus SDL may be used for producing:

a) facility requirements,

b) system specifications,

c) CCITT Recommendations,

d) system design specifications,

e) detailed specifications,

f) system design (both high level and detailed),

g) system testing

and the user organization can choose the appropriate level of application of SDL.

1.1.3 System specification

An SDL specification defines a system behaviour in a stimulus/response fashion, assuming
that both stimuli and responses are discrete and carry information. In particular a system
specification is seen as the sequence of responses to any given sequence of stimuli.

The system specification model is based on the concept of communicating extended finite
state machines.

SDL also provides structuring concepts which facilitate the specification of large and/or
complex systems. These constructs allow the partitioning of the system specification into
manageable units that may be handled and understood independently. Partitioning may be
performed in a number of steps resulting in a hierarchical structure of units defining the system at
different levels.

1.2 SDL grammars

SDL gives a choice of two different syntactic forms to use when representing a system; a
Graphic Representation (SDL/GR), and a textual Phrase Representation (SDL/PR). As both are
concrete representations of the same SDL semantics, they are equivalent. In particular they are both
equivalent to an abstract grammar for the corresponding concepts.

Fascicle X .l — Rec. Z.100 9

A subset of SDL/PR is common with SDL/GR. This subset is called common textual
grammar.

Figure 1.1 shows the relationships between SDL/PR, SDL/GR, the concrete grammars and
the abstract grammar.

FIGURE 1.1
SDL grammars

Each of the concrete grammars has a definition of its own syntax and of its relationship to
the abstract grammar (i.e. how to transform into the abstract syntax). Using this approach there is
only one definition of the semantics of SDL; each of the concrete grammars will inherit the
semantics via its relations to the abstract grammar. This approach also ensures that SDL/PR and
SDL/GR are equivalent.

A formal definition of SDL is also provided which defines how to transform a system
specification into the abstract syntax and define how to interpret a specification, given in terms of
the abstract syntax.

1.3 Basic definitions

Some general concepts and conventions are used throughout this Recommendation, their
definitions are given in the following:

1.3.1 Type, definition and instance

In the Recommendation, the concepts of type, type instance and their relationship are
fundamental. The schema and terminology defined below and shown in Figure 1.2 are used.

10 Fascicle X.l - Rec. Z.100

FIGURE 1.2

The type concept

Types are defined by means of definitions. A definition of a type defines all properties
associated with that type. A type may be instantiated in any number of instances. Any instance of
a particular type has all the properties defined for that type.

This schema applies to several SDL concepts, e.g. system definitions and system instances,
process definitions and process instances.

Data type is a special class of type (see § 2.3 and § 5).

Note - To avoid cumbersome text, the convention is used that the term instance may be
omitted. For example "a system is interpreted " means "a system instance is interpreted....".

1.3.2 Environment

Systems specified in SDL behave according to the stimuli received from the external world.
This external world is called the environment of the system being specified.

It is assumed that there are one or more process instances in the environment, and therefore
signals flowing from the environment toward the system have associated identities of these process
instances. These processes have PId values different from any PId value in the system (see §
5.6.10)

Although the behaviour of the environment is nondeterministic, it must obey the constraints
given by the system specification.

Fascicle X .l — Rec. Z.100 11

1.3.3 Errors

A system specification is a valid SDL system specification only if it satisfies the syntactic
rules and the static conditions of SDL.

If a valid SDL specification is interpreted and a dynamic condition is violated then an error
occurs. An interpretation of a system specification which leads to an error means that the
subsequent behaviour of the system cannot be derived from the specification.

1.4 Presentation style

1.4.1 Division of text

In § 2, 3, 4, 5 the Recommendation is organised by topics described by an optional
introduction followed by titled enumeration items for:

a) Abstract grammar — described by abstract syntax and static conditions for
well-formedness.

b) Concrete textual grammar — both the common textual grammar used for SDL/PR and
SDL/GR and the grammar used only for SDL/PR. This grammar is described by the
textual syntax, static conditions and well formedness rules for the textual syntax, and the
relationship of the textual syntax with the abstract syntax.

c) Concrete graphical grammar — described by the graphical syntax, static conditions
and well-formedness rules for the graphical syntax, the relationship of this syntax with the
abstract syntax, and some additional drawing rules (to those in § 2.2.4).

d) Semantics — gives meaning to a type, provides the properties it has, the way in which
an instance of that type is interpreted and any dynamic conditions which have to be fulfilled
for the instance of that type to be well behaved in the SDL sense.

e) Model — gives the mapping for shorthand notations expressed in terms of previously
defined strict concrete syntax constructs.

f) Examples

1.4.2 Titled enumeration items

Where a topic has an introduction followed by a titled enumeration item then the
introduction is considered to be an informal part of the Recommendation presented only to aid
understanding and not to make the Recommendation complete.

If there is no text for a titled enumeration item the whole item is omitted.

The remainder of this section describes the other special formalisms used in each titled
enumeration item and the titles used. It can also be considered as an example of the typographical
layout of first level titled enumeration items defined above where this text is part of an introductory
section.

12 Fascicle X.l - Rec. Z.100

Abstract grammar

The abstract syntax notation is defined in § 1.5.1.

If the titled enumeration item Abstract grammar is omitted, then there is no additional
abstract syntax for the topic being introduced and the concrete syntax will map onto the abstract
syntax defined by another numbered text section.

The rules in the abstract syntax may be referred to from any of the titled enumeration items
by use of the rule name in italics.

The rules in the formal notation may be followed by paragraphs which define conditions
which must be satisfied by a well-formed SDL definition and which can be checked without
interpretation of an instance. The static conditions at this point refer only to the abstract syntax.
Static conditions which are only relevant for the concrete syntax are defined after the concrete
syntax. Together with the abstract syntax the static conditions for the abstract syntax define the
abstract grammar of the language.

Concrete textual grammar

The concrete textual syntax is specified in the extended Backus-Naur Form of syntax
description defined in Recommendation Z.200 paragraph 2.1 (see also § 1.5.2).

The textual syntax is followed by paragraphs defining the static conditions which must be
satisfied in a well-formed text and which can be checked without interpretation of an instance.
Static conditions (if any) for the abstract grammar also apply.

In many cases there is a simple relationship between the concrete and abstract syntax as a
concrete syntax rule is simply represented by a single rule in the abstract syntax. When the same
name is used in the abstract and concrete syntax in order to signify that they represent the same
concept, then the text "<x> in the concrete syntax represents X in the abstract syntax" is implied in
the language description and is often omitted. In this context case is ignored but underlined
semantic sub-categories are significant.

Concrete textual syntax which is not a shorthand form (derived syntax modelled by other
SDL constructs) is strict concrete textual syntax. The relationship from concrete textual syntax to
abstract syntax is defined only for the strict concrete textual syntax.

The relationship between concrete textual syntax and abstract syntax is omitted if the topic
being defined is a shorthand form which is modelled by other SDL constructs (see Model below).

Concrete graphical grammar

The concrete graphical syntax is specified in the extended Backus-Naur Form of syntax
description defined in § 1.5.3.

The graphical syntax is followed by paragraphs defining the static conditions which must
be satisfied in well-formed SDL/GR and which can be checked without interpretation of an
instance. Static conditions (if any) for the abstract grammar also apply.

The relationship between concrete graphical syntax and abstract syntax is omitted if the topic
being defined is a shorthand form which is modelled by other SDL constructs (see Model below).

Fascicle X .l — Rec. Z.100 13

In many cases there is a simple relationship between concrete graphical grammar diagrams
and abstract syntax definitions. When the name of a non-terminal ends in the concrete grammar
with the word "diagram" and there is a name in the abstract grammar which differs only by ending
in the word definition, then the two rules represent the same concept. For example, <system
diagram> in the concrete grammar and System-definition in the abstract grammar correspond.

Expansion in the concrete syntax arising from such facilities as remote definitions (§ 2.4.1),
macros (§ 4.2) and literals mappings (§ 5.4.1.15) etc., must be considered before the
correspondence between the concrete and the abstract syntax.

Semantics

Properties are used in the well-formedness rules which involve either the type or other types
which refer to that type.

An example of a property is the set of valid input signal identifiers of a process. This
property is used in the static condition "For each state-node, all input signal-identifiers (in the valid
input signal set) appear in either a Save-signalset or an Input-node."

All instances have an identity property but unless this is formed in some unusual way this
identity property is determined as defined by the general section on identities in § 2. Therefore this
is not usually mentioned as an identity property. Also it has not been necessary to mention
sub-components of definitions contained by the definition since the ownership of such
sub-components is obvious from the abstract syntax. For example it is obvious that a block
definition "has" enclosed process definitions and/or a block substructure definition.

Properties are static if they can be determined without interpretation of an SDL system
specification and are dynamic if an interpretation of the same is required to determine the property.

The interpretation is described in an operational manner. Whenever there is a list in the
Abstract Syntax, the list is interpreted in the order given. That is, the Recommendation describes
how the instances are created from the system definition and how these instances are interpreted
within an "abstract SDL machine".

Dynamic conditions are conditions which must be satisfied during interpretation and cannot
be checked without interpretation. Dynamic conditions may lead to errors (see § 1.3.3).

Model

Some constructs are considered to be "derived concrete syntax" (or a shorthand) for other
equivalent concrete syntax constructs. For example omitting an input for a signal is derived
concrete syntax for an input for that signal followed by a null transition back to the same state.

Sometimes such "derived concrete syntax", if expanded, would give rise to an extremely
large (possibly infinite) representation. Nevertheless, the semantics of such a specification can be
determined.

Examples

The titled enumeration item Examples contains examples.

14 Fascicle X.l — Rec. Z.100

1.5 Metalanguages

For the definition of properties and syntaxes of SDL different metalanguages have been
used according to the particular needs.

In the following an introduction of the metalanguages used is given; where appropriate only
references to textbooks or specific ITU publications are given.

1.5.1 M etaN

The following subset of Meta IV is used to describe the abstract syntax of SDL.

A definition in the abstract syntax can be regarded as a named composite object (a tree)
defining a set of sub-components.

For example the abstract syntax for variable definition is

Variable-definition :: Variable-name Sort-reference-identifier

which defines the domain for the composite object (tree) named Variable-definition. This object
consists of two sub-components which in turn might be trees.

The Meta IV definition

Sort-reference-identifier = Identifier

expresses that a Sort-reference-identifier is an Identifier and cannot therefore syntactically be
distinguished from other identifiers.

An object might also be of some elementary (non-composite) domains. In the context of
SDL these are:

a) Integer objects

example

Number-of-instances :: Intg Intg

Number-of-instances denotes a composite domain containing two integer (Intg) values
denoting the initial number and the maximum number of instances.

b) Quotation objects

These are represented as any bold face sequence of uppercase letters and digits,

example

Destination-process = Process-identifier I ENVIRONMENT

The Destination-process is either a Process-identifier or the environment which is denoted
by the quotation ENVIRONMENT.

Fascicle X.l — Rec. Z.100 15

c) Token objects

Token denotes the domain of tokens. This domain can be considered as consisting of a
potentially infinite set of distinct atomic objects for which no representation is required.

example

Name :: Token

A name consists of an atomic object such that any Name can be distinguished from any
other name.

d) Unspecified objects

An unspecified object denotes domains which might have some representation, but for
which the representation is of no concern in this Recommendation.

example

Informal-text ::

Informal-text contains an object which is not interpreted.

The following operators (constructors) in BNF (see §1.5.2) are also used in the abstract syntax:
for possible empty list,"+" for non-empty list, "I" for alternative, and "[" "]" for optional.

Parentheses are used for grouping of domains which are logically related.

Finally, the abstract syntax uses another postfix operator "-set" yielding a set (unordered collection
of distinct objects). Example

Process-graph :: Process-start-node State-node-set

A Process-graph consists of a Process-start-node and a set of State-nodes

1.5.2 BNF

In the Backus Naur Form a terminal symbol is either indicated by not enclosing it within
angular brackets (that is the less-than sign and greater-than sign, < and >) or it is one of the two
representations <name> and ccharacter string>. Note that the two special terminals <name> and
<character string> may also have semantics stressed as defined below.

The angular brackets and enclosed word(s) are either a non-terminal symbol or one of the
two terminals ccharacter string> or <name>. Syntactic categories are the non-terminals indicated by
one or more words enclosed between angular brackets. For each non-terminal symbol, a
production rule is given either in concrete textual grammar or in graphical grammar. For example

cview expression>
VIEW (cvanable identifier^ <expression>)

A production rule for a non-terminal symbol consists of the non-terminal symbol at the

16 Fascicle X.l — Rec. Z.100

left-hand side of the symbol and one or more constructs, consisting of non-terminal and/or
terminal symbol(s) at the right-hand side. E.g. <view expressions cvariable identifier> and
<expression> in the example above are non-terminals; VIEW, the parentheses and the comma are
terminal symbols.

Sometimes the symbol includes an underlined part. This underlined part stresses a semantic
aspect of that symbol. E.g. cvariable identifier is syntactically identical to <identifier>, but
semantically it requires the identifier to be a variable identifier.

At the right-hand side of the ::= symbol several alternative productions for the non-terminal
can be given, separated by vertical bars (I). For example

cblock area> ::=
cgraphical block reference>

I cblock diagram>

expresses that a cblock area> is either a cgraphical block reference> or a cblock diagram>.

Syntactic elements may be grouped together by using curly brackets ({ and }), similar to the
parentheses in Meta IV (see § 1.5.1). A curly bracketed group may contain one or more vertical
bars, indicating alternative syntactic elements. For example

cblock interaction area> ::=
{cblock area> I cchannel definition area>}+

Repetition of curly bracketed groups is indicated by an asterisk (*) or plus sign (+). An
asterisk indicates that the group is optional and can be further repeated any number of times; a plus
sign indicates that the group must be present and can be further repeated any number of times. The
example above expresses that a cblock interaction area> contains at least one cblock area> or
cchannel definition area> and may contain several more cblock area>s and cchannel definition
area>s.

If syntactic elements are grouped using square brackets ([and]), then the group is optional.
For example

cprocess heading> ::=
PROCESS cprocess identified [cformal parameters>]

expresses that a cprocess heading> may, but need not, contain cformal parameters>.

1.5.3 Metalanguage for graphical grammar

For the graphical grammar the metalanguage described in § 1.5.2 is extended with the
following metasymbols:

a) contains
b) is associated with
c) is followed by
d) is connected to
e) set

The set metasymbol is a postfix operator operating on the immediately preceding syntactic
elements within curly brackets, and indicating an (unordered) set of items. Each item may be any

Fascicle X .l — Rec. Z.100 17

group of syntactic elements, in which case it must be expanded before applying the set
metasymbol.

Example:

{{<system text area>}* {cmacro diagram>}* cblock interaction area>) set

is a set of zero or more csystem text area>s, zero or more cmacro diagram>s and one cblock
interaction area>.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as
the left-hand argument. The right-hand argument is either a group of syntactic elements within curly
brackets or a single syntactic element. If the right-hand side of a production rule has a graphical
non-terminal symbol as the first element and contains one or more of these infix operators, then the
graphical non-terminal symbol is the left-hand argument of each of these infix operators. A
graphical non-terminal symbol is a non-terminal having the word "symbol" immediately before the
greater than sign >.

The metasymbol contains indicates that its right-hand argument should be placed within
its left-hand argument and the attached ctext extension symbol>, if any. Example:

cgraphical block reference> ::=
cblock symbol> contains cblock name>

cblock symbol> ::=

means the following

c block name >

The metasymbol is associated with indicates that its right-hand argument is logically
associated with its left-hand argument (as if it were "contained" in that argument, the unambiguous
association is ensured by appropriate drawing rules).

The metasymbol is followed by means that its right-hand argument follows (both
logically and in drawing) its left-hand argument.

The metasymbol is connected to means that its right-hand argument is connected (both
logically and in drawing) to its left-hand argument.

18 Fascicle X.l — Rec. Z.100

2 Basic SDL

2.1 Introduction

An SDL system has a set of blocks. Blocks are connected to each other and to the
environment by channels. Within each block there are one or more processes. These processes
communicate with one another by signals and are assumed to execute concurrently.

§ 2 has been been divided into eight main topics:

a) General rules

basic SDL concepts such as lexical rules and identifiers, visibility rules, informal text,
partitioning of diagrams, drawing rules, comments, text extensions, text symbols.

b) Basic data concepts

basic SDL data concepts such as values, variables, expressions.

c) System structure

contains SDL concepts dealing with the general structuring concepts of the language. Such
concepts are system, block, process, procedure.

d) Communication

contains communication mechanisms used in SDL such as channel, signal route, signal.

e) Behaviour

the constructs that are relevant to the behaviour of a process: general connectivity rules of a
process or procedure graph, variable definition, start, state, input, save, label, transition.

f) Action

active constructs such as task, process create, procedure call, output, decision.

g) Timers

Timer definition and Timer primitives.

h) Examples

examples referred to from the other topics.

Fascicle X .l — Rec. Z.100 19

2.2 General rules

2.2.1 Lexical rules

Lexical rules define lexical units. Lexical units are the terminal symbols of the Concrete
textual syntax.

<lexical unit>
<name>

I <character string>
I <special>
I <composite special>
I <note>
I <keyword>

<name> ::=
<word> {<underline> <word> }*

<word>
{<alphanumeric> I <full stop>}*
<alphanumeric>
{<alphanumeric> I <full stop>}*

<alphanumeric> ::=
<letter>

I <decimal digit>
I <national>

<letter> ::=
A 1B 1 C 1 D 1 El FI G 1 HI I 1 Jl Kl LIM
N 1Ol PI Ql Rl SI Tl Ul V 1 W 1 XI Yl Z
a 1b 1 c 1dl e 1 fl gl hi1 il jl kl 11 m
nl o 1 p 1 ql rl si tl ul vl w 1 :< 1 y 1 z

<decimal digit> ::=
Oi l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

<national> ::=
#I V

I □
I @
I <left square bracket>
I \
I <right square bracket>
I <left curly bracket>
I <vertical line>
I <right curly bracket>
I <overline>
I <upward arrow head>

20 Fascicle X.l — Rec. Z.100

<left square bracket> ::=
[

<right square bracket> ::=
]

<left curly bracket> ::=
{

<vertical lin o ::=

<right curly bracket> ::=
i

<overline> ::=

<up ward arrow head> ::=
A

<full stop> ::=

<underline> ::=

<character string> ::=
<apostrophe> {<alphanumeric>

I <other character>
I <special>
I <full stop>
I <underline>
I <space>
I <apostrophe> <apostrophe> }* <apostrophe>

<text> ::=
{<alphanumeric>

I cother character>
I <special>
I <full stop>
I <underline>
I <space>
I <apostrophe>}*

<apostrophe> ::=

<other character> ::=
? I &l%

<special> ::=
+ l- l ! l / l > l * l (l) l " l , l ; l <l

Fascicle X .l - Rec. Z.100 21

<composite special> ::=

/=

//

I (.
I .)

<note> ::=
/* <text> */

<keyword> ::=
ACTIVE

I ADDING
I ALL
I ALTERNATIVE
I AND
I AXIOMS
I BLOCK
I CALL
I CHANNEL
I COMMENT
I CONNECT
I CONSTANT
I CONSTANTS
I CREATE
I DCL
I DECISION
I DEFAULT
I ELSE
I END ALTERNATIVE
I ENDBLOCK
I ENDCHANNEL
I ENDDECISION
I ENDGENERATOR
I ENDMACRO
I ENDNEWTYPE
I ENDPROCEDURE
I ENDPROCESS
I ENDREFTNEMENT
I ENDSELECT
I ENDSERVICE
I ENDSTATE
I ENDSUBSTRUCTURE
I ENDSYNTYPE
I ENDSYSTEM
i ENV
I ERROR
I EXPORT
I EXPORTED

22 Fascicle X.l — Rec. Z.100

EXTERNAL
FI
FOR
FPAR
FROM
GENERATOR
IF
IMPORT
IMPORTED
IN
INHERITS
INPUT
JOIN
LITERAL
LITERALS
MACRO
MACRODEFDSnTION
MACROID
MAP
MOD
NAMECLASS
NEWTYPE
NEXTSTATE
NOT
NOW
OFFSPRING
OPERATOR
OPERATORS
OR
ORDERING
OUT
OUTPUT
PARENT
PRIORITY
PROCEDURE
PROCESS
PROVIDED
REFERENCED
REFINEMENT
REM
RESET
RETURN
REVEALED
REVERSE
SAVE
SELECT
SELF
SENDER
SERVICE
QFT
SIGNAL
SIGNALLIST
SIGNALROUTE
SIGNALSET
SPELLING

Fascicle X.l — Rec. Z.100 23

START
STATE
STOP
STRUCT
SUBSTRUCTURE
SYNONYM
SYNTYPE
SYSTEM
TASK
THEN
TIMER
TO
TYPE
VIA
VIEW
VIEWED
WITH
XOR

The <space> represents the CCITT Alphabet No 5 character for a space.

The <national> characters are represented above as in the International Reference Version of
CCITT Alphabet No. 5 (Recommendation T.50). The responsibility for defining the national
representations of these characters lies with national standardisation bodies.

All <letter>s are always treated as if uppercase, except within <character stringx (The
treatment of <national>s may be defined by national standardisation bodies.)

A <lexical unit> is terminated by the first character which cannot be part of the clexical unit>
according to the syntax specified above. When an <underline> character is followed by one or
more control characters (control characters are defined as in Recommendation T.50) or spaces, all
of these characters (including the <underline>) are ignored, e.g. A_ B denotes the same <name>
as AB. This use of <underline> allows clexical unit>s to be splitted over more than one line.

When an <underline> character is followed by a <word> in a <name>, it is allowed to
specify one or more control characters or spaces instead of the <underline> character, as long as
one of the <word>s enclosing the <underline> character does not form a <keyword>, e.g. A B
denotes the same <name> as A_B.

However, there are some cases where the absence of <underline> in <name>s is
ambiguous. The following rules therefore apply:

1. The <underline>s in the <name> in a <path item> must be specified explicitly.

2. When one or more <name>s or <identifier>s may be followed directly by a <sort> (e.g.
cvariable definitions, cview definitions) then the cunderlines in these cnam es or
cidentifiers must be specified explicitly.

3. When a cdata definition> contains cgenerator instantiations> then the cunderlines in the
csort name> following the keyword NEWTYPE must be specified explicitly.

A control character has the same meaning of a space.

24 Fascicle X.l — Rec. Z.100

Control characters and spaces may appear any number of times between two dexical
unit>s. Any number of control characters and spaces between two dexical unit>s has the same
meaning as one space.

The character / immediately followed by the character * always starts a <note>.The
character * immediately followed by the character / in a <note> always terminates the <note>. A
<note> may be inserted before or after any dexical unit>.

Special lexical rules apply within a cmacro body> (see § 4.2.1).

2.2.2 Visibility rules and identifiers

Abstract grammar

Identifier
Qualifier
Path-item

System-qualifier

Block-qualifier
Block-substructure-qualifier
Process-qualifier
Procedure-qualifier
Signal-qualifier
Sort-qualifier
Name

Concrete textual grammar

ddentifier> ::=
[<qualifier>] <name>

<qualifier> ::=
cpath item> {/cpath item>}*

cpath item> ::=
cscope unit class> <name>

cscope unit class> ::=
SYSTEM

I BLOCK
I SUBSTRUCTURE
I SIGNAL
I PROCESS
I PROCEDURE

Qualifier Name
Path-item +
System-qualifier I
Block-qualifier I
Block-substructure-qualifier I
Signal-qualifier I
Process-qualifier I
Procedure-qualifier I
Sort-qualifier

System-name

Block-name
Block-substructure-name
Process-name
Procedure-name
Signal-name
Sort-name
Token

Fascicle X .l - Rec. Z.100 25

TYPE
SERVICE

There is no corresponding abstract syntax for the <scope unit class > denoted by SERVICE. The
<name>s and <identifier>s of entities defined in a <service definition> are transformed into unique
<name>s respectively <identifier>s defined in the <process definition> containing the <service
definition>.

The <qualifier> reflects the hierarchical structure from the system level to the defining context, and
such that the system level is the textual leftmost part.

It is allowed to omit some of the leftmost <path item>s (except for <remote definition>s, see
§ 2.4.1), or the whole <qualifier>. When the whole <qualifier> is omitted and the <name> denotes
an entity of the entity class containing variables, synonyms, literals and operators (see Semantics
below), the binding of the <name> to a definition must be resolvable by the actual context. In other
cases the <identifier> is bound to an entity that has its defining context in the nearest enclosing
scope unit in which the <qualifier> of the <identifier> is the same as the rightmost part of the full
<qualifier> denoting this scope unit. If the <identifier> does not contain a <qualifier>, then the
requirement on matching of <qualifier>s is omitted.

A subsignal must be qualified by its parent signal unless no other visible signal exists at that place
which have the same <name>.

Resolution by context is possible in the following cases:

a) The scope unit in which the <name> is used is not a <partial type definition> and it
contains a definition having that <name>. The <name> will be bound to that definition.

b) The scope unit in which the <name> is used does not contain any definition having that
<name> or the scope unit is a <partial type definitions and in the whole <system
defmition> there exists exactly one visible definition of an entity that has the same <name>
and to which the <name> can be bound without violating any static properties (sort
compatibilty etc) of the construct in which the <name> occurs. The <name> will be bound
to that definition.

Only visible identifiers may be used, except for the cvariable identifier in a cview definition> and
for the <identifier> used in place of a <name> in a referenced definition (that is a definition taken
out from the csystem defmition>).

Semantics

Scope units are defined by the following schema:

Concrete textual grammar

csystem definition>

cblock definition>

cprocess definition>

cprocedure definition>

cblock substructure definition>

Concrete graphical grammar

csystem diagram>

cblock diagram>

cprocess diagram>

cprocedure diagram>

cblock substructure diagram>

26 Fascicle X.l - Rec. Z.100

cchannel substructure definition> cchannel substructure diagram>

cservice definition> cservice diagram>

cpartial type definition>

csignal refinement

A scope unit has a list of definitions attached. Each of the definitions defines an entity belonging
to a certain entity class and having an associated name. For a cpartial type definition^ the attached
list of definitions consists of the coperator signatures, the cliteral signatures and any coperator
signature> and cliteral signatures inherited from a parent sort, from a generator instance or
implied by the use of shorthand notations such as the keyword ORDERING (see § 5.4.1.8). Note,
that a cview definition> does not define an entity.

Although cinfix operators, coperators with an exclamation and ccharacter strings have their
own syntactical notation they are in fact cnam es, they are in the Abstract syntax represented by a
name. In the following, they are treated as if they (also syntactically) were cnam es. However
estate nam es, cconnector nam es, cgenerator formal nam es, cvalue identifiers in equations,
cmacro formal nam es and cmacro nam es have special visibility rules and cannot therefore be
qualified, e state nam es and cconnector nam es are not visible outside a cprocess body>,
cprocedure body> or cservice body> respectively. Other special visibility rules are explained in the
appropriate sections.

Each entity is said to have its defining context in the scope unit which defines it. Entities are
referenced by means of cidentifiers.

The cqualifier within an cidentifier specifies uniquely the defining context of the cname>.

The following entity classes exist:

a) system
b) blocks
c) channels, signal routes
d) signals, timers
e) processes
f) procedures
g) variables (including formal parameters), synonyms, literals, operators
h) sorts
i) generators
j) imported entities
k) signal lists
1) services
m) block substructures, channel substructures

An cidentifier> is said to be visible in a scope unit

a) if the name part of the cidentifier> has its defining context in that scope unit, or
b) if it is visible in the scope unit which defined that scope unit, or
c) if the scope unit contains a <partial type definition> in which the <identifier> is defined,
or
d) if the scope unit contains a <signal definition> in which the <identifier> is defined.

No two definitions in the same scope unit and belonging to the same entity class can have the same
<name>. An exception is coperator signature> and cliteral signature> definitions in the same

Fascicle X.l - Rec. Z.100 27

cpartial type definition> (see § 5.2.2): two or more operators and/or literals can have the same
cname> with different carguments sort>s or different cresult> sort.
Another exception is imported entities. For this entity class the pairs of (cimport name>,csort>) in
cimport definitions in the scope unit must be distinct.

In the concrete textual grammar, the optional name or identifier in a definition after the ending
keywords (ENDSYSTEM, ENDBLOCK, etc.) must be syntactically the same as the name or
identifier following the corresponding commencing keyword (SYSTEM, BLOCK, etc.
respectively).

2.2.3 Informal text

Abstract grammar

Informal-text ::

Concrete textual grammar

cinformal text> ::=
ccharacter string>

Semantics

If informal text is used in an SDL system specification, it means that this text is not formal SDL,
i.e., SDL does not give it any semantics. The semantics of the informal text can be defined by some
other means.

2.2.4 Drawing rules

The size of the graphical symbols can be chosen by the user.

Symbol boundaries must not overlay or cross. An exception to this rule applies for line
symbols, i.e. cchannel symbol>, csignal route symbol>, ccreate line symbol>, cflow line
symbol>, csolid association symbol> and cdashed association symbol>, which may cross each
other. There is no logical association between symbols which do cross.

The metasymbol is followed by implies a cflow line symbol>.

Line symbols may consist of one or more straight line segments.

An arrowhead is required on a cflow line symbol>, when it enters another cflow line
symbol>, an cout-connector symbol> or a cnextstate symbol>. In other cases, arrowheads are
optional on cflow line symbol>s. The cflow line symbol>s are horizontal or vertical.

Vertical mirror images of cinput symbol>, coutput symbol>, ccomment symbol> and
ctext extension symbol> are allowed.

The righthand argument of the metasymbol is associated with must be closer to the
lefthand argument than to any other graphical symbol. The syntactical elements of the righthand
argument must be distinguishable from each other.

Text within a graphical symbol must be read from left to right, starting from the upper left
comer. The righthand edge of the symbol is interpreted as a newline character, indicating that the
reading must continue at the leftmost point of the next line (if any).

28 Fascicle X.l — Rec. Z.100

2.2.5 Partitioning o f diagrams

The following definition of diagram partitioning is not part of the Concrete graphical
grammar, but the same metalanguage is used.

<page>::=
<frame symbol> contains
{cheading area> <page number area>
{<syntactical unit>} *}

<heading area> ::=
<implicit text symbol> contains <heading>

<page number area> ::=
<implicit text symbol> contains [<page number> [(<number of pages>)]]

<pagenumber> ::=
<literal name>

<number of pages>
<natural literal name>

The <page> is a starting non-terminal, therefore it is not referred to in any production rule.
A diagram may be partitioned into a number of <page>s, in which case the <frame symbol>
delimiting the diagram and the diagram <heading> are replaced by a <frame symbol> and a
<heading> for each <page>.

The user of SDL may choose <frame symbol>s to be implied by the boundary of the media
on which diagrams are reproduced.

The <implicit text symbol> is not shown, but implied, in order to have a clear separation
between <heading area> and <page number area>. The cheading area> is placed at the upper left
comer of the cframe symbol>. cpage number area> is placed at the upper right comer of the
cframe symbol>. <heading> and csyntactical unit> depends on the type of diagram.

2.2.6 Comment

A comment is a notation to represent comments associated with symbols or text.

In the Concrete textual grammar two forms of comments are used. The first form is the
<note> defined in § 2.2.1.

Examples are shown in Figure 2.9.1 and in Figure 2.9.3.

The concrete syntax of the second form is:

<end> ::=
[<comment>];

<comment> ::=
COMMENT ccharacter string>

An example is shown in Figure 2.9.2.

In the Concrete graphical grammar the following syntax is used:

Fascicle X.l - Rec. Z.100 29

ccomment area> ::=
<comment symbol> contains <text>
is connected to <dashed association symbol>

<comment symbol> ::=

<dashed association symbol> ::=

One end of the <dashed association symbol> must be connected to the middle of the vertical
segment of the ccomment symbol>.

A ccomment symbol> can be connected to any graphical symbol by means of a cdashed
association symbol>. The ccomment symbol> is considered as a closed symbol by completing (in
imagination) the rectangle to enclose the text. It contains comment text related to the graphical
symbol.

An example is shown in Figure 2.9.4 in § 2.9.

2.2.7 Text extension

ctext extension area> ::=
ctext extension symbol> contains ctext>
is connected to csolid association symbol>

ctext extension symbol> ::=
ccomment symbol>

csolid association symbol> ::=

One end of the csolid association symbol> must be connected to the middle of the vertical
segment of the ctext extension symbol>.

A ctext extension symbol> can be connected to any graphical symbol by means of a csolid
association symbol>. The ctext extension symbol> is considered as a closed symbol by completing
(in imagination) the rectangle.

The text contained in the ctext extension symbol> is a continuation of the text within the
graphical symbol and is considered to be contained in that symbol.

2.2.8 Text symbol

ctext symbol> is used in any cdiagram>. The content depends on the diagram.

30 Fascicle X.l — Rec. Z.100

ctext symbol> ::=

2.3 Basic data concepts

The concept of data in SDL is defined in §5; that is the SDL data terminology, the facility to
define new data types and predefined data facilities.

Occurrences of data are in data type definitions, expressions, the application of operators,
variables, values and literals.

2.3.1 Data type definitions

Data in SDL is principally concerned with data types. A data type defines sets of values, a
set of operators which can be applied to these values, and a set of algebraic rules (equations)
defining the behaviour of these operators when applied to the values. The values, operators and
algebraic rules collectively define the properties of the data type. These properties are defined by
data type definitions.

SDL allows the definition of any needed data type, including composition mechanisms
(composite types), subject only to the requirement that such a definition can be formally specified.
By contrast, for programming languages there are implementation considerations which require that
the set of available data types and, in particular, the composition mechanisms provided (array,
structure, etc.) be limited.

2.3.2 Variable

Variables are objects which can be associated with a value by assignment. When the
variable is accessed, the associated value is returned.

2.3.3 Values and literals.

A set of values with certain characteristics is called a sort. Operators are defined from and to
values of sorts. For instance the application of the operator for summation ("+") from and to values
of the Integer sort is valid, whereas summation of the Boolean sort is not.

All sorts have at least one value. Each value belongs to one and only one sort, that is sorts
never have values in common.

For most sorts there are literal forms to denote values of the sort (for example for Integers
"2" is used rather than "1 + 1". There may be more than one literal to denote the same value (for
example 12 and 012 can be used to denote the same Integer value). The same literal denotation may
be used for more than one sort; for example A 1 is both a character and a character string of length
one. Some sorts may have no literals; for example, a composite value often has no literals of its
own but has its values defined by composition operations on values of its components.

2.3.4 Expressions

An expression denotes a value. If an expression does not contain a variable, for instance if it
is a literal of a given sort, each occurrence of the expression will always denote the same value. An
expression which contains variables may be interpreted as different values during the interpretation

Fascicle X .l 5— Rec. Z.100 31

of an SDL system depending on the value associated with the variables.

2.4 System structure

2.4.1 Remote definitions

A <remote definition> is a definition that has been removed from its defining context to gain
overview. It is similar to a macro definition (see § 4.2), but it is "called" from exactly one place (the
defining context) using a reference.

Concrete grammar

<remote definition> ::=
<definition> I <diagram>

< system definition> ::=
{ctextual system definition> I <system diagram>)
{<remote definition>) *

<definition> ::=

cblock definition>
I cprocess definition>
I cprocedure definition>
I cblock substructure definition>
I cchannel substructure definition>
I cservice definition>
I cmacro definition>

cdiagram> ::=
cblock diagram>

I cprocess diagram>
I cprocedure diagram>
I cblock substmcture diagram>
I cchannel substructure diagram>
I cservice diagram>
I cmacro diagram>

For each cremote definition^ except for cmacro definition> and cmacro diagram> there
must be a reference in the csystem definition^ the csystem diagram>, or another cremote
definition>.

For each reference there must be a corresponding cremote definitions

In each cremote definition> there must be an cidentifier> immediately after the initial
keyword. The cqualifier> in this cidentifier> must be either complete, or omitted. If the
cqualifier> is omitted, the cname> must be unique in the system definition, within the entity class
for the cremote definitions It is not allowed to specify a cqualifier> in the cidentifier> after the
initial keyword for definitions which are not cremote definitions (i.e. a cname> must be
specified for normal definitions).

32 Fascicle X.l — Rec. Z.100

Semantics

Before a cconcrete system definitions can be analyzed, each reference must be replaced by the
corresponding cremote definitions In this replacement the cidentifier> of the cremote definition>
is replaced by the cname> in the reference.

2.4.2 System

Abstract grammar

System-definition :: System-name
B lock-definition-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set

System-name = Name

A System-definition has a name which can be used in qualifiers.

There must be at least one Block-definition contained in the System-definition.

The definitions of all the signals, channels, data types, syntypes, used in the interface with the
environment and between blocks of the system are contained in the System-definition.
All predefined data are regarded to be defined at system level.

Concrete textual grammar

ctextual system definition> ::=
SYSTEM csvstem name> cend>
{cblock definition>
I ctextual block reference>
I cchannel definition>
I csignal definition>
I csignal list definition>
I cselect definition>
I cmacro definition>
I cdata definition>}+

ENDSYSTEM [csystem name>] cend>

ctextual block reference> ::=
BLOCK cblock name> REFERENCED cend>

The cselect definition> is defined in § 4.3.3, cmacro definition> in § 4.2, cdata definition> is
defined in § 5.5.1, cblock definition> is defined in § 2.4.3 cchannel definition> is defined in §
2.5.1. csignal definition> is defined in § 2.5.4. csignal list definition> is defined in § 2.5.5.

An example of csystem definition> is shown in Figure 2.9.5 in § 2.9. /

Fascicle X .l — Rec. Z.100 33

Concrete graphical grammar

<system diagram> ::=
<frame symbol> contains

{<system heading>
{ {<system text area>} *

{<macro diagram>} *
cblock interaction area> }set }

cframe symbol> ::=

csystem heading> ::=
SYSTEM csystem name>

csystem text area> ::=
ctext symbol> contains

{ csignal definition>
I csignal list definition>
I cdata definition>
I cmacro definition>
I cselect definition>} *

cblock interaction area>
{cblock area>

I cchannel definition area>}+

cblock area> ::=
cgraphical block reference>

I cblock diagram>

cgraphical block reference>
cblock symbol> contains cblock name>

cblock symbol> ::=

The cselect definition> is defined in § 4.3.3, cmacro definition> and cmacro diagram> in § 4.2,
cdata definition> is defined in § 5.5.1, cblock diagram> is defined in § 2.4.3 cchannel definition
area> is defined in § 2.5.1. csignal definition> is defined in § 2.5.4. csignal list definition> is
defined in § 2.5.5.

The Block-definition-set in the Abstract grammar corresponds to the cblock area>s, the
Channel-definition-set corresponds to the cchannel definition area>.

An example of a csystem diagram> is shown in Figure 2.9.6.

34 Fascicle X.l — Rec. Z.100

Semantics

A System-definition is the SDL representation of a specification or description of a system.

A system is separated from its environment by a system boundary and contains a set of blocks.
Communication between the system and the environment or between blocks within the system can
only take place using signals. Within a system, these signals are conveyed on channels. The
channels connect blocks to one another or to the system boundary.

Before interpreting a System-definition a consistent subset (see § 3.2.1) is chosen. This subset is
called an instance of the System-definition. A system instance is an instantiation of a system type
defined by a System-definition.The interpretation of an instance of a System-definition is
performed by an abstract SDL machine which thereby gives semantics to the SDL concepts. To
interpret an instance of a System-definition is to:

a) to initiate the system time
b) to interpret the blocks and their connected channels which are contained in the

consistent partitioning subset selected.

2.4.3 Block

Abstract grammar

Block-definition :: Block-name
Process-definition-set
Signal-definition-set
Channel-to-route-connection-set
Signal-route-definition-set
Data-type-definition
Syn-type-definition-set
[Block-substructure-definition]

Block-name = Name

Unless a Block-definition contains a Block-substructure-definition there must be at least one
Process-definition and Signal-route-definition within the block.

It is possible to perform partitioning activities on the blocks specifying
Block-substructure-definition; this feature of the language is treated in § 3.2.2

Concrete textual grammar

cblock definition> ::=
BLOCK f cblock name>lcblock identifier>} cend>

{csignal definition>
I csignal list definition>
I cprocess definition>
I ctextual process reference>
I csignal route definition>
I cmacro definition>
I cdata definition>
I cselect definition>
I cchannel to route connection>} *

[cblock substrucure definition>lctextual block substructure reference>]
ENDBLOCK [cblock name>l cblock identifier] cend>

Fascicle X.l — Rec. Z.100 35

<textual process reference> ::=
PROCESS <process name> [<number of instances>] REFERENCED <end>

<signal definition> is defined in § 2.5.4, <signal list definition> in § 2.5.5, <process definition> in
§ 2.4.4, <signal route definition> in § 2.5.2, <channel to route connection> in § 2.5.3. cblock
substructure definition> and ctextual block substructure reference> are defined in § 3.2.2, cmacro
definition> in § 4.2.2 and cdata definition> in § 5.5.1.

An example of cblock definition> is shown in Figure 2.9.7 in § 2.9.

Concrete graphical grammar

cblock diagram> ::=
cframe symbol>
contains {cblock heading>

{ {cblock text area>}* {cmacro diagram>}*
[cprocess interaction area>] [cblock substructure area>] }set }

is associated with {cchannel identifier}*

The cchannel identifier identifies a channel connected to a signal route in the cblock diagram>. It
is placed outside the cframe symbol> close to the endpoint of the signal route at the cframe
symbol>. If the cblock diagram> does not contain a cprocess interaction area>, then it must
contain a cblock substructure area>.

cblock heading> ::=
BLOCK fcblock name> I cblock identifier }

cblock text area> ::=
csystem text area>

cprocess interaction area> ::=
{ cprocess area>

I ccreate line area>
I csignal route definition area>}+

cprocess area> ::=
cgraphical process reference> I cprocess diagram>

cgraphical process reference> ::=
cprocess symbol> contains { cprocess name> [cnumber of instances>]}

cprocess symbol> ::=

/ \

\ /

cnumber of instances> is defined in § 2.4.4.

ccreate line area> ::=
ccreate line symbol>
is connected to {cprocess area> cprocess area>}

36 Fascicle X.l - Rec. Z.100

<create line symbol> ::=
. *

The arrowhead on the ccreate line symbol> indicates the cprocess area> upon which the create
action is performed.

The cprocess diagram> is defined in § 2.4.4, csignal route definition area> in § 2.5.2, cblock
substructure area> in § 3.2.2, cmacro diagram> in § 4.2.2.

An example of cblock diagram> is shown in Figure 2.9.8 in § 2.9.

Semantics

A block definition is a container for one or more process definitions of a system and/or a block
substructure. Purpose of the block definition is the grouping of processes that as a whole perform a
certain function, either directly or by a block substructure.

A block definition provides a static communication interface by which its processes can
communicate with other processes.In addition it provides the scope for process definitions.

To interpret a block is to create the initial processes in the block.

2.4.4 Process

Abstract grammar

Process-definition

Number-of-instances

Process-name

Process-graph

Process-formal-parameter

Process-name
Number-of-instances
Process-formal-parameter *
Procedure-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
View-definition-set
Timer-definition-set
Process-graph

Intg Intg

Name

Process-start-node
State-node-set

Variable-name
Sort-reference-identifier

Fascicle X .l — Rec. Z.100 37

Concrete textual grammar

<process definition> ::=
PROCESS (<process identifier>l <process name> }

[<number of instances>] <end>
[<formal parameters> <end>] [cvalid input signal set>]

{csignal definition>
I <signal list definition>
I <procedure definition>
I <textual procedure reference>
I <macro definition>
I <data definition>
I <variable definition>
I <view definition>
I <select definition>
I <import definition>
I ctimer definition>} *

{<process body>
I <service decomposition>}

ENDPROCESS [<process name>l <process identifier] <end>

ctextual procedure reference> ::=
PROCEDURE cprocedure name> REFERENCED cend>

cvalid input signal set> ::=
SIGNALSET [csignal list>] cend>

cprocess body> ::=
cstart> {cstate>} *

cformal parameters> ::=
FPAR cvariable name> {, cvariable name>} *csort>

{.cvariable name> {, cvariable name>} *csort>} *

cnumber of instances> ::=
([cinitial number], [cmaximum number])

cinitial num ber ::=
cnatural simple expression>

cmaximum num ber ::=
cnatural simple expression>

The initial number of instances and maximum number of instances contained in
Number-of-instances are derived from cnumber of instances>. If cinitial num ber is left out then
cinitial num ber is 1. If cmaximum num ber is omitted then cmaximum num ber is unbounded.

The cnumber of instances> used in the derivation is the following:

a) If there is no ctextual process reference> for the process then the cnumber of instances> in
the cprocess definition> is used. If it does not contain a cnumber of instances> then the
cnumber of instances> where both c initial num ber and cmaximum num ber are omitted
is used.

38 Fascicle X.l — Rec. Z.100

b) If both the cnumber of instances> in cprocess definition> and the cnumber of instances> in
a ctextual process reference> are omitted then the cnumber of instances> where both
cinitial number> and cmaximum number> are omitted is used.

c) If either the cnumber of instances> in cprocess definition> or the cnumber of instances> in
a ctextual process reference> are omitted then the cnumber of instances> is the one which
is present.

d) If both the cnumber of instances> in cprocess definition> and the cnumber of instances> in
a ctextual process reference> are specified then the two cnumber of instances> must be
equal lexically and this cnumber of instances> is used.

Similar relation applies for cnumber of instances> specified in cprocess diagram> and in
cgraphical process reference> as defined below.

The csignal definition > is defined in § 2.5.4, csignal list definition> in § 2.5.5, cview definition>
in § 2.6.1.2, cvariable definition> in § 2.6.1.1, cprocedure definition> in § 2.4.5, ctimer
definition> in § 2.8, cmacro definition> in § 4.2.2, cimport definition> in § 4.1.3, cselect
definition> in § 4.3.3, csimple expression> in § 4.3.2 cservice decomposition> in § 4.10.1,
cdata definition> in § 5.5.1.

The cinitial number> of instances must be less than or equal to cmaximum number> and
cmaximum number> must be greater than zero.

The use of cvalid input signal set> is defined in § 2.5.2 Model.

An example of cprocess definition> is shown in Figure 2.9.9 in § 2.9.

Concrete graphical grammar

cprocess diagram> ::=
cff ame symbol>
contains {cprocess heading>

{ {cprocess text area>}*
{cprocedure area>} *
{cmacro diagram> }*
{cprocess graph area> I cservice interaction area> } }set }

[is associated with f csignal route identifier}+]

The csignal route identifier identifies an external signal route connected to a signal route in the
cprocess diagram>. It is placed outside the cframe symbol> close to the endpoint of the signal
route at the cframe symbol>.

cprocess text area> ::=
ctext symbol> contains {

[cvalid input signalset>]
{csignal definition>

I csignal list definition>
I cvariable definition>
I cview defmition>
I cimport definition>
I cdata definition>
I cmacro definition>
I ctimer definition>
I cselect definition> }* }

Fascicle X .l — Rec. Z.100 39

<process heading> ::=
PROCESS f<process name>kprocess identifier)
[<number of instances> [<end>]]
[<formal parameters>]

<process graph area> ::=
<start area> { <state area> kin-connector area> }*

The <signal definition > is defined in § 2.5.4, <signal list definition> in § 2.5.5, <view definition>
in § 2.6.1.2, <variable definition> in § 2.6.1.1, <procedure area> in § 2.4.5, <timer definition> in
§ 2.8, <macro definition> and <macro diagram> in § 4.2.2, cimport definition> in § 4.1.3, cselect
definition> in § 4.3.3, cdata definition> in § 5.5.1, cstart area> in § 2.6.2, estate area> in §
2.6.3, cin-connector area> in § 2.6.6, and cservice interaction area> in § 4.10.1

An example of cprocess diagram> is shown in Figure 2.9.10 § 2.9.

Semantics

A process definition introduces the type of a process which is intended to represent a dynamic
behaviour.

In the Number-of-instances the first value represents the Number-of-instances of the process which
exist when the system is created, the second value represents the maximum number of simultanous
instances of the process type.

A process instance is a communicating extended finite state machine performing a certain set of
actions, denoted as transitions, accordingly to the reception of a given signal, whenever it is in a
state. The completion of the transition results in the process waiting in another state, which is not
necessarily different from the first one.

The concept of finite state machine has been extended in that the state resulting after a transition,
besides the signal originating the transition, may be affected by decisions taken upon variables
known to the process.

Several instances of the same process type may exist at the same time and execute asynchronously
and in parallel with each other, and with other instances of different process type in the system.

When a system is created, the initial processes are created in a random order. The signal
communication between the processes commences only when all the initial processes have been
created.The formal parameters of these initial processes are initialized to an undefined value.

Process instances exist from the time that a system is created or can be created by create request
actions which start the processes being interpreted; their interpretation start when the start action is
interpreted; they may cease to exist by performing stop actions.

Signals received by process instances are denoted as input signals, and signals sent to process
instances are denoted as output signals.

Signals may be consumed by a process instance only when it is in a state. The complete valid input
signal set is the union of the set of signals in all signal routes leading to the process, the <valid
input signal set>, the implicit signals and timer signals.

One and only one input port is associated with each process instance. When an input signal arrives
at the process, it is put into the input port of the process instance

40 Fascicle X.l — Rec. Z.100

The process is either waiting in a state or active performing a transition. For each state, there is a
save signal set (see also § 2.6.5). When waiting in a state, the first input signal whose identifier is
not in the save signal set is taken from the queue and consumed by the process.

The input port may retain any number of input signals, so that several input signals are queued for
the process instance. The set of retained signals are ordered in the queue according to their arrival
time. If two or more signals arrive on different paths "simultaneously", they are arbitrarily ordered.

When the process is created, it is given an empty input port, and local variables are created with
values assigned to them.

The formal parameters are variables which are created either when the system is created (but no
actual parameters are passed to and therefore they are not initialized) or when the process instance is
dynamically created.

To all process instances four expressions yielding a PId (see § 5.6.10) value may be used: SELF,
PARENT, OFFSPRING and SENDER. They give a result for:

a) the process instance (SELF);

b) the creating process instance (PARENT);

c) the most recent process instance created by the process (OFFSPRING);

d) the process instance from which the last input signal has been consumed (SENDER)
(see also § 2.6.4).

These expressions are further explained in § 5.5.4.3

SELF, PARENT, OFFSPRING and SENDER can be used in expressions inside the process
instances.

For all process instances present at system initialization, the predefined PARENT expression
always has the value NULL.

For all newly created process instances the predefined SENDER and OFFSPRING expressions
have the value NULL.

2.4.5 Procedure

Procedures are defined by means of procedure definitions. The procedure is invoked by means of
a procedure call referencing the procedure definition. Parameters are associated with a procedure
call: these are used both to pass values, and also to control the scope of variables for the procedure
execution. Which variables are affected by the interpretation of a procedure is controlled by the
parameter passing mechanism.

Abstract grammar

Procedure-definition :: Procedure-name
Procedure-formal-parameter*
Procedure-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
Procedure-graph

Fascicle X .l — Rec. Z.100 41

Procedure-name Name

Procedure-formal-parameter =

In-parameter

Inout-parameter

Procedure-graph

Procedure-start-node

Concrete textual grammar

<procedure definition> ::=
PROCEDURE {<procedure identifier^ <procedure name> } <end>

[cprocedure formal parameters> <end>]
{ <data definition >

I <variable definition>
I <textual procedure reference>
I <procedure definition>
I <select definition>
I <macro definition> }*

<procedure body>
ENDPROCEDURE r<procedure name>kprocedure identifier^ <end>

<procedure formal parameters> ::=
FPAR <formal variable parameter>

{, <formal variable parameter> }*
<formal variable parameter> ::=

[IN/OUT
I IN]
cvariable name> {, cvariable name>} * csort>

c procedure body> ::=
cprocess body>

The cvariable definition> is defined in § 2.6.1.1, ctextual procedure reference> in § 2.4.4, cmacro
definition> is defined in § 4.2, cselect definition> in § 4.3.3, cdata definition>in § 5.5.1, csort>
in § 5.2.2.

In a cprocedure definitions Cvariable definition> cannot contain REVEALED, EXPORTED,
REVEALED EXPORTED, EXPORTED REVEALED cvariable name>s (see § 2.6.1)
An example of cprocedure definition> is shown in Figure 2.9.11.

In-parameter I
Inout-parameter

Variable-name
Sort-reference-identifier

Variable-name
Sort-reference-identifier

Procedure-start-node
State-node-set

Transition

42 Fascicle X.l — Rec. Z.100

Concrete graphical grammar

<procedure diagram>

<procedure area> ::=

<procedure text area> ::=

eframe symbol> contains {<procedure heading>
{ {<procedure textarea>

I <procedure area>
I cmacro diagram> }*

<procedure graph area> }set }

<graphical procedure reference>
<procedure diagram>

<text symbol> contains
{•cvariable definition>

I cdata definition>
I cselect definition>
I cmacro definition> }*

cgraphical procedure reference> ::=
cprocedure symbol> contains cprocedure name>

cprocedure symbol> ::=

cprocedure heading> ::=
PROCEDURE (cprocedure name>l cprocedure identifier }

[cprocedure formal parameters>]

cprocedure graph area> ::=
cprocedure start area>

{estate area> I cin-connector area> }*

cprocedure start area> ::=
cprocedure start symbol> is followed by ctransition area>

cprocedure start symbol> ::=

The cvariable definition> is defined in § 2.6.1.1, ctransition area> in § 2.6.7.1, estate area> in §
2.6.3, cin-connector area> in § 2.6.6, cmacro definition> and cmacro diagram> are defined in §
4.2, cselect definition> in § 4.3.3, cdata definition>in § 5.5.1.

An example of cprocedure diagram> is shown in Figure 2.9.12 in § 2.9.

Fascicle X.l — Rec. Z.100 43

Semantics

A procedure is a means of giving a name to an assembly of items and representing this assembly
by a single reference. The rules for procedures impose a discipline upon the way, in which the

assembly of items is chosen, and limit the scope of the name of variables defined in the
procedure.
A procedure variable is a local variable within the procedure that can neither be revealed nor
viewed, nor exported, nor imported. It is created when the procedure start node is interpreted, and
it ceases to exist when the return node of the procedure graph is interpreted.

When a procedure definition is interpreted, its procedure graph is interpreted.

A procedure definition is interpreted only when a process instance calls it, and is interpreted by
that process instance.

The interpretation of a procedure definition causes the creation of a procedure instance and the
interpretation to commence in the following way:

a) A local variable is created for each In-parameter, having the Name and Sort of the
In-param eter. The variable is assigned the value of the expression given by the
corresponding actual parameter, which may be undefined.

b) If an actual parameter is empty the corresponding formal parameter is given the value
undefined.

c) A formal parameter with no explicit attribute, has an implicit IN attribute.

d) A local variable is created for each Variable-definition in the Procedure-definition,
having the Name and Sort of the Variable-definition .

e) Each Inout-parameter denotes a synonym name for the variable which is given in the
actual parameter expression. This synonym name is used throughout the interpretation of
the Procedure-graph when referring to the value of the variable or when assigning a new
value to the variable.

f) The Transition contained in the Procedure-start-node is interpreted.

2.5 Communication

2.5.1 Channel

Abstract grammar

Channel-definition •• Channel-name
Channel-path
[Channel-path]

Channel-path •• Originating-block
Destination-block
Signal-identifier-set

Originating-block = Block-identifier 1
ENVIRONMENT

Destination-block = Block-identifier 1
ENVIRONMENT

Block-identifier = Identifier

44 Fascicle X.l — Rec. Z.100

Signal-identifier
Channel-name

The Signal-identifier-set must contain the list of all signals that may be conveyed on the
channel-path(s) defined by the channel.

At least one of the end points of the channel must be a block.
If both end points are blocks, the blocks must be different.

The block end point(s) must be defined in the same scope unit as the channel is defined.

Concrete textual grammar

cchannel definition> ::=
CHANNEL cchannel name>

cchannel path>
[cchannel path>]

[cchannel substructure definition>
I ctextual channel substructure reference>]

ENDCHANNEL [cchannel name>] cend>

cchannel path> ::=
{ FROM cblock identified TO cblock identified
I FROM cblock identified TO ENV
I FROM ENV TO cblock identified }
WITH csignal list> cend>

The csignal list> is defined in § 2.5.5, cchannel substructure definition> and ctextual channel
substructure reference> in § 3.2.3.

Where two cchannel path>s are defined one must be in the reverse direction to the other.

Concrete graphical grammar

cchannel definition area> ::=
cchannel symbol>
is associated with {c channel name>

{ [{cchannel identified I cblock identified}]
csignal list area> [csignal list area>]}set }

is connected to { cblock area> {cblock area> I cframe symbol>)
[cchannel substructure association area>] }set

The cchannel identified identifies an external channel connected to the cblock substructure
diagram> delimited by the cframe symbol>. The cblock identified identifies an external block
being a channel endpoint for the cchannel substructure diagram> delimited by the cframe symbolx

cchannel symbol> ::=
cchannel symbol 1>

I cchannel symbol 2>
I cchannel symbol 3>

cchannel symbol 1> ::=
 ; >--------------

Fascicle X .l - Rec. Z.100 45

<channel symbol 2> ::=
 >-------- f

<channel symbol 3> ::=

The <signal list area> is defined in § 2.5.5, cblock area> and cframe symbol> in § 2.4.1,
cchannel substructure association area> in § 3.2.3.

For each arrowhead on the cchannel symbol>, there must be a csignal list area>. A csignal list
area> must be unambiguously close enough to the arrowhead to which it is associated.

Semantics

A channel represents a transportation route for signals. A channel can be considered as one or two
independent unidirectional channel paths between two blocks or between a block and its
environment.

Signals conveyed by channels are delivered to the destination endpoint.

Signals are presented at the destination endpoint of a channel in the same order they have been
presented at its origin point. If two or more signals are presented simultaneously to the channel,
they are arbitrarily ordered.

A channel may delay the signals conveyed by the channel. That means that a First-In-First-Out
(FIFO) delaying queue is associated with each direction in a channel. When a signal is presented to
the channel, it is put into the delaying queue. After an indeterminant and non-constant time interval,
the first signal instance in the queue is released and given to one of the channels or signal routes
which is connected to the channel.

Several channels may exist between the same two endpoints. The same signal type can be conveyed
on different channels.

2.5.2 Signal route

Abstract grammar

Signal-route-definition :: Signal-route-name
Signal-route-path
[Signal-route-path]

Signal-route-path :: Originating-process
Destination-process
Signal-identifier-set

Originating-process = Process-identifier I
ENVIRONMENT

Destination-process = Process-identifier I
ENVIRONMENT

Signal-route-name = Name

At least one of the end points of the Signal-route-path must be a process.

If both end points are processes, the Process-identifiers must be different.

46 Fascicle X.l - Rec. Z.100

The process endpoint(s) must be defined in the same scope unit as the signal route is defined.

Concrete textual grammar

<signal route definition> ::=
SIGNALROUTE <signal route name>
<signal route path>
[<signal route path>]

<signal route path>::=
{ FROM <process identified TO <process identified

I FROM <process identified TO ENV
I FROM ENV TO <process identified }
WITH <signal list> <end>

The <signal list> is defined in § 2.5.5.

Where two <signal route path>s are defined one must be in the reverse direction to the other.

Concrete graphical grammar

<signal route definition area> ::=
<signalvroute symbol>
is associated with f<signal route name>

{r<channel identified] <signal list area> [<signal list area>] }set }
is connected to

{<process area> {<process area> I <frame symbol>) }set

<signal route symbol> ::=
<signal route symbol 1> I <signal route symbol 2>

<signal route symbol 1> ::=
 ►

<signal route symbol 2> ::=
4---------------------- ►

A signal route symbol includes an arrowhead at one end (one direction) or one arrowhead at each
end (bidirectional) to show the direction of the flow of signals.

For each arrowhead on the <signal route symbol>, there must be a <signal list area>. A <signal list
area> must be unambiguously close enough to the arrowhead to which it is associated.

When the <signal route symbol> is connected to the <frame symbol>, then the <channel identified
identifies a channel to which the signal route is connected.

Semantics

A signal route represents a transportation route for signals. A signal route can be considered as one
or two independent unidirectional signal route paths between two processes or between a process
and its environment.

Signals conveyed by signal routes are delivered to the destination endpoint.

Fascicle X.l - Rec. Z.100 47

No signal route connects process instances of the same type. In this case, interpretation of the
Output-node implies that the signal is put directly in the input port of the destination process.

Several signal routes may exist between the same two endpoints. The same signal type can be
conveyed on different signal routes.

Model

A cvalid input signal set> contains signals that the process is allowed to receive. A cvalid input
signal set>, however, must not contain timer signals. If a cblock definition> contains csignal route
definitions then the cvalid input signal set>, if any, need not contain signals in signal routes
leading to the process.

If a cblock definition> contains no csignal route definitions, then all cprocess definitions in that
cblock definition> must contain a cvalid input signal set>. In that case the csignal route
definitions and the cchannel to route connections are derived from the cvalid input signal se ts ,
coutputs and channels terminating at the blocks boundary. The signals corresponding to a given
direction between two processes in the implied signal route is the intersection of the signals
specified in the cvalid input signal set> of the destination process and the signals mentioned in an
output of the originating process. If one of the endpoints is the environment then the input
set/output set for that endpoint is the signals conveyed by the channel in the given direction.

A signal route does not introduce any delay in conveying the signals.

2.5.3 Connection

Abstract grammar

Channel-to-route-connection :: Channel-identifier
Signal-route-identifier-set

Signal-route-identifier = Identifier

Other connect constructs are contained in § 3.

Each Channel-identifier connected to the enclosing block must be mentioned in exactly
omChannel-to-route-connection.. The Channel-identifier in a Channel-to-route-connection must
denote a channel connected to the enclosing block.

Each Signal-route-identifier in a Channel-to-route-connection must be defined in the same block as
where the Channel-to-route-connection is defined and it must have the boundary of that block as
one of its endpoints. Each Signal-route-identifier defined in the surrounding block and which has
its environment as one of its endpoints, must be mentioned in one and only one
Channel-to-route-connection.

For a given direction, the union of the Signal-identifier sets in the signal routes in a
Channel-to-route-connection must be equal to the set of signals conveyed by the Channel-identifier
in the same Channel-to-route-connection and corresponding to the same direction.

Concrete textual grammar

cchannel to route connection> ::=
CONNECT cchannel identifier

AND csignal route identifier {.csignal route identifier} *
cend>

48 Fascicle X.l — Rec. Z.100

No csignal route identifier> in a <channel to route connection> may be mentioned twice.

Concrete graphical grammar

Graphically the connect construct is represented by the cchannel identifier associated to the signal
route and contained in the csignal route definition area > (see § 2.5.2 Concrete graphical grammar).

2.5.4 Signal

Abstract grammar

Signal-definition :: Signal-name
Sort-reference-identifier*
[Signal-refinement]

Signal-name = Name

The Sort-reference-identifier, is defined in § 5.2.2.

Concrete textual grammar

csignal definitions :=
SIGNAL f csignal name>rcsort list>] [csignal refinement] }
{.csignal name> [csort list>] [csignal refinement]} * cend>

csort l i s t ::=
(c so r t {, csort}*)

csignal refinement is defined in § 3.3, c s o r t is defined in § 5.2.2.

Semantics

A signal instance is a flow of information between processes, and is an instantiation of a signal
type defined by a signal definition. A signal instance can be sent by either the environment or a
process and is always directed to either a process or the environment.

Two PId values (see § 5.6.10) denoting the origin and the destination processes, the csignal
identifier specified in the corresponding output, and other values, whose sorts are defined in the
signal definition, are associated with each signal instance.

2.5.5 Signal list definition

A csignal list identifier may be used in cchannel definitions csignal route definitions
csignal list definition>,cvalid input signal set> and csavelists as a shorthand to list signal
identifiers and timer signals.

Concrete textual grammar

csignal list definition> ::=
SIGNALLISTcsignal list name>= csignal list>cend>

csignal list> ::=
csignal item> { , csignal item>}

Fascicle X .l — Rec. Z.100 49

c signal identifier I <prioritv signal identifier> I (<signal list identifier)
I <timer identifier

The csignal list> which is constructed by replacing all <signal list identifiers in the list by the
<signal identifiers they denote, corresponds to a Signal-identifier-set in the Abstract grammar. In
every such constructed <signal list>, every csignal identifier must be distinct.

Concrete graphical grammar

csignal list area> ::=
csignal list symbol> contains csignal list>

csignal list symbol> ::=

[
2.6 Behaviour

2.6.1 Variables

2.6.1.1 Variable definition

Abstract grammar

Variable-definition

<signalitem> ::=

Variable-name

Concrete textual grammar

cvariable definition> ::=
DCL [REVEALEDI EXPORTED I REVEALED EXPORTED I EXPORTED REVEALED]
cvariable name> {, cvariable name>} csort> [:= cground expression>]
Lcvariable name>(. cvariable name>l csort> [:=cground expression>] } cend>

Exported variable is defined in § 4.13.

Semantics

The semantics of variables is defined in § 2.3.2. The value of a variable can only be modified by
its owner. The owner of a variable is the process (or procedure) where the variable is declared.
The value of a variable is only known to its owner unless the variable has the REVEALED
attribute. The REVEALED attribute allows all the other processes of the same block to view the
variable, provided they have the view definition in declaring the variable.

Model

The cground expression> in a cvariable definition> or default value in a csort> has no
corresponding abstract syntax. It is derived syntax for specifying a sequence of assignment
statements in the initial transition of the surrounding scope unit. The assignment statements assigns
the cground expression> to all the cvariable name> mentioned in the cvariable definitions If both

]

Variable-name
Sort-reference-identifier
[REVEALED]
Name

50 Fascicle X.l — Rec. Z.100

a default value in a <sort> and a <ground expression> in the cvariable definition >is specified, the
cground expression> in the cvariable definition> applies.

2.6.1.2 View definition

Abstract grammar

View definition :: Variable-identifier
Sort-reference-identifier

The Variable-definition designated by Variable-identifier must have the REVEALED attribute, and
it must be of the same sort as the Sort-reference-identifier denoted.

Concrete textual grammar

cview definition> ::=
VIEWED
cvariable identifier {, cvariable identifier}* <sort>
{.cvariable identifier {, Cvariable identifier} csort>} * cend>

The qualifier in cvariable identifier in cview definition> may be omitted only if there exist one
and only one cprocess definition> in the block, which have a cvariable definition> defining a
cvariable name> which is the same as the cvariable name> mentioned in cview definition> and
which have the REVEALED attribute, and which is of the same csort> as denoted by the csort> in
the cview definition>.

Semantics

The view mechanism allows a process instance to see the viewed variable value continuously as if it
were locally defined. The viewing process instance doesn't however have any right to modify it.

2.6.2 Start

Abstract grammar

Process-start-node :: Transition

Concrete textual grammar

cstart> ::=
START cend> ctransition>

Concrete graphical grammar

cstart area> ::=
cstart symbol> is followed by ctransition area>

cstart symbol> ::=

o
Semantics

The Transition of the Process-start-node is interpreted.

Fascicle X.l — Rec. Z.100 51

2.6.3 State

Abstract grammar

State-node :: State-name
Save-signalset
Input-node-set

State-name = Name

State-node s within a process-graph respectively procedure-graph have different State-name s.

For each State-node, all Signal-identifiers (in the complete valid input signal set) appear in either a
Save-signalset or an Input-node.

The Signal-identifier s in the Input-node-set must be distinct.

Concrete textual grammar

<state> ::=
STATE <state list> <end>

{<inputpart>
I <priority input>
I <save part>
I continuous signal>)
[ENDSTATE [estate name>] <end>]

<state list> ::=
I <state name> { , <state name> }*)

I <asterisk state list>

The <input part> is defined in § 2.6.4, <save part> in § 2.6.5, continuous signal> in § 4.11,
easterisk state list> in § 4.4 and <priority input> in § 4.10.2.

When the <state list> contains one <state name> then the <state name> represents a State-node. Foi
each State-node, the Save-signalset is represented by the <save part> and any implicit signal saves.
For each State-node , the Input-node set is represented by the cinput part> and any implicit input
signals.

The optional estate name> ending a <state> may be specified only if the estate list> in the estate>
consists of a single estate name> in which case it must be the same estate name> as in the estate
list>.

52 Fascicle X.l — Rec. Z.100

Concrete graphical grammar

<state area> ::=
<state symbol> contains <state list> is associated with
{<input association area>
I <priority input association area>
I <continuous signal association area>
I <save association area> }*

<state symbol> ::=

CD
cinput association area>

<solid association symbol> is connected to <input area>

<save association area> ::=
<solid association symbol> is connected to <save area>

The <input area> is defined in § 2.6.4, <save area> in § 2.6.5, <continuous signal association
area> in § 4.11, <priority input association area> in § 4.10.2.

A <state area> represents one or more State-node s.

The <solid association symbol>s originating from a <state symbol> may have a common
originating path.

Semantics

A state represents a particular condition in which a process instance can consume a signal instance
resulting in a transition. If there are no retained signal instances then the process waits in the state
until a signal instance is received.

Model

When the <state list> of a certain <state> contains more than one <state name>s, a copy of the
<state> is created for each such estate name>. Then the <state> is replaced by these copies.

2.6.4 Input

Abstract grammar

Input-node

Variable-identifier

Signal-identifier
[Variable-identifier] *
Transition

Identifier

The length of the [Variable-identifier]* must be the same as the number of
Sort-reference-identifiers in the Signal-definition denoted by the Signal-identifier.

Fascicle X .l - Rec. Z.100 53

The sorts of the variables should correspond by position to the sorts of the values that can be
carried by the signal.

It is not allowed to specify more variables to receive than the number of values conveyed by the
signal instance.

Concrete textual grammar

<inputpart> ::=
INPUT cinput list> <end>

[cenabling condition>]<transition>

cinput list> ::=

casterisk input list>
I <stimulus> { ,<stimulus> }

<stimulus> ::=
{ csignal identified

I ctimer idendfier>l T(rcvariable identifier>l f J cvariable identifier^ 1)]

The ctransition> is defined in § 2.6.7, cenabling condition> in § 4.12, and casterisk input list> in
§ 4.6.

When the cinput list > contains one cstimulus>, then the cinput part> represents an cinput node>.
In the Abstract grammar, timer signals (ctimer identifier^ are also represented by Signal-identifier.
Timer signals and ordinary signals are distinguished only where appropriate, as in many respects
they have similar properties. The exact properties of timer signals are defined in § 2.8.

A ctransition> must have a transition terminator as defined in § 2.6.1.2

Concrete graphical grammar

cinput area> ::=
cinput symbol> contains cinput list>
is followed by {[cenabling condition area>] ctransition area>}

cinput symbol> ::=

a
The ctransition area> is defined in § 2.6.7, cenabling condition area> in § 4.12.

An cinput area> whose cinput list> contains one cstimulus> corresponds to one Input-node. Each
of the c signal identifiers> contained in an cinput symbol> gives the name of one of the
Input-nodes which this cinput symbol> represents.

54 Fascicle X.l — Rec. Z.100

Semantics

An input allows the consumption of the specified input signal instance. The consumption of the
input signal instance makes the information conveyed by the signal available to the process. The
variables associated with the input are assigned the values conveyed by the consumed signal. If
there is no variable associated with the input for a sort specified in the signal, the value of this sort
is discarded.

The SENDER expression of the consuming process is given the PId value of the originating
process instance, carried by the signal instance.

Signal instances flowing from the environment to a process instance within the system will always
have a PId value different from any in the system. This is accessed using the SENDER
expression.

Model

When the <stimulus>s list of a certain cinput part> contains more than one <stimulus>, a copy of
the cinput part> is created for each such cstimulus>. Then the cinput part> is replaced by these
copies.

2.6.5 Save

A save specifies a set of signal identifiers whose instances are not relevant to the process in the state
to which the save is attached, and which need to be saved for future processing.

Abstract grammar

Save-signalset :: Signal-identifier-set

In each State-node the Signal-identifiers contained in the Save-signalset must be different.

Concrete textual grammar

csavepart> ::=
SAVE csave list> cend>

csave list> ::=
{csignal list> I casterisk save list>)

A csave list> represents the Signal-identifier-set. The casterisk save list> is a shorthand notation
explained in § 4.8.

Concrete graphical grammar

csave area> ::=

csave symbol> contains csave list>

Fascicle X.l - Rec. Z;100 55

<save symbol> ::=

e h
Semantics

The saved signals are retained in the input port in the order of their arrival.

The effect of the save is valid only for the state to which the save is attached. In the following state,
signal instances that have been "saved" are treated as normal signal instances.

2.6.6 Label

Concrete textual grammar

<label> ::=
cconnector name>:

All the cconnector name>s defined in a cprocess body> must be distinct.

A label represents the entry point of a "jump" from the corresponding join statements with the same
cconnector name>s in the same cprocess body>.

"Jumps" are only allowed to labels within the same cprocess body>.

Concrete graphical grammar

cin-connector area> ::=
cin-connector symbol> contains cconnector name> is followed by
ctransition area>

cin-connector symbol> ::=

O
ctransition area> is defined in § 2.6.7.1.

An cin-connector area> represents the continuation of a cflow line symbol> from a corresponding
cout-connector area> with the same cconnector name> in the same cprocess graph area> or
cprocedure graph area>.

56 Fascicle X.l — Rec. Z.100

2.6.7 Transition

2.6.7.1 Transition body

Abstract grammar

Transition Graph-node *
CTerminator I Decision-node)

Graph-node Task-node I
Output -node I
Create-Request-node I
Call-node I
Set-node I
Reset-node I

Terminator Nextstate-node I
Stop-node I
Return-node

Concrete textual grammar

<transition> ::=
{ctransition string> [cterminator statement>] }

I cterminator statement>

ctransition string>
{caction statement>}+

caction statement> ::=
[clabel>] caction> cend>

caction> ::=
ctask>
coutput>
cpriority output>
ccreate request>
cdecision>
ctransition option>
cset>
creset>
cexport>
cprocedure call>

cterminator statement>
[clabel>] cterminator> cend>

cterminator>
cnextstate>
cjoin>

Fascicle X .l - Rec. Z.100 57

I <stop>
I <return>

The <task> is defined in § 2.7.1, <output> in § 2.7.4, ccreate request> in § 2.7.2, <decision> in §
2.7.5, <set> and <reset> in § 2.8, cprocedure call> in § 2.7.3, cnextstate> in § 2.6.7.2.1, cjoin>
in § 2.6.7.2.2, cstop> in § 2.6.7.2.3, creturn> in § 2.6.7.2.4, cpriority output> in §
4.10.2,ctransition option> in § 4.3.4, and cexport> in § 4.13.

If the cterminator> of a ctransition> is omitted then the last action in the ctransition> must contain
a terminating cdecision> (see § 2.7.5) or terminating ctransition option>, except for all
ctransition>s contained in cdecision>s and ctransition option>s (ctransition option> is defined in
§ 4.3.4)

No cterminator> or caction> may follow a cterminator>, a terminating ctransition option> or a
terminating cdecision>.

Concrete graphical grammar

ctransition area>
[ctransition string area>] is followed by

{estate area>
I cnextstate area>
I cdecision area>
I estop symbol>
I emerge area>
I cout connector area>
I cretum symbol>
I ctransition option area> }

ctransition string area> ::=
{etask area>

I coutput area>
I cpriority output area>
I cset area>
I creset area>
I eexport area>
I ccreate request area>
I cprocedure call area> }

[is followed by ctransition string area>]

The ctask area> is defined in § 2.7.1, coutput area> in § 2.7.4, ccreate request area> in § 2.7.2,
cdecision area> in § 2.7.5, cset area> and creset area> in § 2.8, cprocedure call area> in § 2.7.3,
cnextstate area> in § 2.6.7.2.1, emerge area> in § 2.6.7.2.2, estop symbol> in § 2.6.7.2.3,
cretum symbol> in § 2.6.7.2.4, cpriority output area> in § 4.10.2,ctransition option area> in §
4.3.4, eexport area> in § 4.13, and cout-connector area> in § 2.6.7.2.2.

A transition consists of a sequence of actions to be performed by the process.

The ctransition area> corresponds to Transition and ctransition string area> corresponds to
Graph-node*.

58 Fascicle X.l — Rec. Z.100

Semantics

A transition performs a sequence of actions. During a transition, the data of a process may be
manipulated and signals may be output. The transition will end with the process entering a state,
with a stop or with a return.

2.6.7.2 Transition terminator

2.6.7.2.1 Nextstate

Abstract grammar

Nextstate-node :: State-name

The State-name specified in a nextstate must be the name of a state within the same Process-graph
or Procedure-graph.

Concrete textual grammar

<nextstate>::=
NEXTSTATE cnextstate body>

cnextstate body> ::=
(estate name>lcdash nextstate>)

cdash nextstate> is defined in § 4.9.

Concrete graphical grammar

cnextstate area> ::=
estate symbol> contains cnextstate body>

Semantics

A nextstate represents a terminator of a transition. It specifies the state the process instance will
assume when terminating the transition.

2.6.7.2.2 Join

A join alters the flow in a cprocess diagram> or cprocess body> by expressing that the next
caction statement> to be interpreted is the one which contains the same cconnector name>.

Concrete textual grammar

cjoin> ::=
JOIN cconnector name>

There must be one and only one cconnector name> corresponding to a cjoin> within the same
cprocess body>, cprocedure body> respectively cservice body>.

Fascicle X.l — Rec. Z.100

Concrete graphical grammar

emerge area> ::=
emerge symbol> is connected to eflow line symbol>

emerge symbol> ::=
eflow line symbol>

eflow line symbol> ::=

eout-connector area> ::=
eout-connector symbol> contains econnector name>

eout-connector symbol> ::=
ein-connector symbol>

For each eout-connector area> in a eprocess graph area> or eprocedure graph area> there must be
one and only one ein-connector area> respectively in that eprocess graph area> or eprocedure
graph area> with the same econnector name>

An eout-connector area> corresponds to a ejoin> in the Concrete textual grammar. If a emerge
area> is included in a etransition area> it is equivalent to specifying an eout-connector area> in the
etransition area> which contains a unique econnector name> and attaching an ein-connector area>,
with the same econnector name> to the eflow line symbol> in the emerge area>.

Model

In the abstract syntax a ejoin> or eout-connector area> is derived from the etransition string>
wherein the first eaction statement> or area has the same econnector name> attached.

2.6.1.23 Stop

Abstract grammar

Stop-node :: ()

A Stop-node must not be contained in a Procedure-graph.

Concrete textual grammar

estop>::=
STOP

60 Fascicle X.l — Rec. Z.100

Concrete graphical grammar

<stop symbol> ::=

X
Semantics

The stop causes the immediate halting of the process instance issuing it. This means that the
retained signals in the input port are discarded and that the variables and timers created for the
process, the input port and the process will cease to exist.

2.6.7.2.4 Return

Abstract grammar

Return-node :: ()

A Return-node must not be contained in a Process-graph.

Concrete textual grammar

<retum> ::=
RETURN

Concrete graphical grammar

<retum symbol> ::=

Semantics

A Return-node is interpreted in the following way:

a) All variables created by the interpretation of the Procedure-start-node will cease to
exist.

b) Interpreting the Return-node completes the interpretation of the Procedure-graph and
the procedure instance ceases to exist.

c) Hereafter the calling process (or procedure) interpretation continues at the node
following the call.

Fascicle X.l — Rec. Z.100

2.7 Action

2.7.1 Task

Abstract grammar

Task-node :: Assignment-statement I
Informal -text

Concrete textual grammar

<task> ::=
TASK ctask body>

<taskbody>
{<assignment statement>{,<assignment statement>}*}
I {<informal text> {,<informal text>} *}

<assignment statement> is defined in § 5.5.3

Concrete graphical grammar

ctask area> ::=
ctask symbol> contains ctask body>

ctask symbol> ::=

Semantics

The interpretation of a Task-node is the interpretation of the Assignment-statement which is
explained in § 5.5.3, or the interpretation of the Informal-text which is explained in § 2.2.3

Model

A ctask> and a ctask area> may contain several cassignment statements or cinformal tex t. In
that case it is derived syntax for specifying a sequence of ctask>s, one for each cassignment
statement or cinformal te x t such that the original order they were specified in the ctask body> is
retained.

This shorthand is expanded before any cimport expression> is expanded (see §4.13).

62 Fascicle X.l — Rec. Z.100

2.7.2 Create

Abstract grammar

Create-request-node :: Process-identifier
[Expression]*

Process-identifier = Identifier

The number of Expressions in the [Expression]* must be the same as the number of
Process-formal-parameters in the Process-definition of the Process-identifier. Each Expression
must have the same sort as the corresponding by position Process-formal-parameter in the
Process-definition denoted Process-identifier.

Concrete textual grammar

ccreate request ::=
CREATE ccreate body>

ccreate body>
cprocess identifiet [cactual parameters>]

cactual parameters> ::=
([cexpression>] {,[cexpression>]}*)

cexpression> is defined in § 5.

Concrete graphical grammar

ccreate request area> ::=
ccreate request symbol> contains ccreate body>

ccreate request symbol>

A ccreate request area> represents a Create-request-node.

Semantics

When a process instance is created, it is given an empty input port, variables are created and the
actual parameter expressions are interpreted in the order given, and assigned (as defined in § 5.5.3)

Fascicle X.l — Rec. Z.100

to the corresponding formal parameters. If an actual parameter is empty, the corresponding formal
parameter is given the value undefined.Then the process starts by interpreting the start node in the
process graph.

The created process then executes asynchronously and in parallel with other processes.

The create action causes the creation of a process instance in the same block. The created process
PARENT has the same PId value as the creating process SELF. The created process SELF and the
creating process OFFSPRING expressions both have a newly created PId value (see § 5.6.10.1).

If an attempt is made to create more process instances than specified by the maximum number of
instances in the process definition, then no new instance is created, the OFFSPRING expression of
the creating process has the value NULL and interpretation continues.

2.7.3 Procedure Call

Abstract grammar

Call-node :: Procedure-identifier
[Expression] *

Procedure-identifier = Identifier

The length of the [E x p ress io n]* must be the same as the number of the
Procedure-formal-parameters in the Procedure-definition of the Procedure-identifier.

Each Expression corresponding by position to an IN Process-formal-parameter must have the same
sort as the Process-formal-parameter.

Each Expression corresponding by position to an IN/OUT Process-formal-parameter must be a
Variable-identifier with die same Sort-reference-identifier as the Process-formal-parameter.

There must be an Expression for each IN/OUT Process-formal-parameter.

Concrete textual grammar

<procedure call> ::=
CALL <procedure call body>

<procedure call body>
<procedure identifier [<actual parameters>]

<actual parameters> are defined in 2.7.2.

An example of <procedure call> is given in Figure 2.9.13 in § 2.9.

Concrete graphical grammar

<procedure call area> ::=
<procedure call symbol> contains <procedure call body>

64 Fascicle X.l — Rec. Z.100

<procedure call symbol> ::=

The <procedure call area> represents the Call-node.

An example of <procedure call area> is shown in Figure 2.9.14 in § 2.9.

Semantics

The interpretation of a procedure call node transfers the interpretation to the procedure definition
referenced in the call node, and that procedure graph is interpreted. The node of the procedure
graph are interpreted in the same manner as the equivalent nodes of a process graph.

The interpretation of the calling process is suspended until the interpretation of the called procedure
is finished.

The actual parameter expressions are interpreted in the order given.

A special semantics is needed as far as data and parameters interpretation is concerned (the
explanation is contained in § 2.4.4).

2.7.4 Output

Abstract grammar

Output-node :: Signal-identifier
[Expression]*
[Signal-destination]
Direct-via

Signal-destination = Expression
Direct-via = Signal-route-identifier-set

The length of the [Expression]* must be the same as the number of Sort-reference-identifiers in the
Signal-definition denoted by the Signal-identifier.

Each E xp ress io n must have the same sort as the corresponding (by position)
Sort-identifier-reference in the Signal-definition.

For every possible consistent subset (see § 3) there must exist at least one communication path
(either implicit to own process type, or explicit via signal routes and possibly channels) to the
environment or to a process type having Signal-identifier in its valid input signal set and originating
from the process type where the Output-node is used.

For each Signal-route-identifier in Direct-via it must hold that the Originating-process in (one of)
the Signal-route-path{s) in the signal route must be of the same process type as the process
containing the Output-node and the Signal-route-path must include Signal-identifier in its set
of Signal-identifiers.

If no Signal-route-identifier is specified in Direct-via, any process, for which there exists a
communication path, may receive the signal.

Fascicle X .l — Rec. Z.100

Concrete textual grammar

<output>
OUTPUT coutput body>

coutput body>
c signal identifier

[cactual parameters>] {, csignal identifier [cactual parameters>]} *
[TO cPId expression>]
[VIA {csignal route identifier {.csignal route identifier} *
I (cchannel identifier{,cchannel identifier}* }]

The cactual parameters> are defined in § 2.7.2, cexpression> in § 5.4.2.1.

It is not allowed to specify a cchannel identifier in the VIA construct if any signal routes are
specified for the block.

For each c channel identifier in an coutput> there must exist a channel originating from the
enclosing block, and able to convey the signals denoted by the c signal identifiers contained in
the coutput>.

The TO cPId expression> represents the Signal-destination.

The VIA construct represents the Direct-via .

Concrete graphical grammar

coutput area> ::=
coutput symbol> contains coutput body>

coutput symbol> ::=

The Signal-destination PId expression is interpreted after other expressions in the Output-node.

The values conveyed by the signal instance are the values of the actual parameters in the output. If
there is no actual parameter in the output for a sort in the signal definition, the undefined value is
conveyed by the signal.

The origin PId value conveyed by the signal instance is the value associated with SELF (of the

Semantics

66 Fascicle X.l — Rec. Z.100

process performing the output action). The destination PId value conveyed by the signal instance is
the value of the signal destination PId expression contained in the output.

The signal instance is then delivered to a communication path able to convey it to the specified
destination process instance.

If no Signal-destination is specified, then there must exist one and only one receiver which may
receive the signal according to the signal routes or channels specified in Direct-via. The destination
PId value implicitly conveyed by the signal instance is the PId value of this receiver.

The environment may always receive any signal in the signal set of a channel which lead to the
environment.

Note that specifying the same channel identifier or signal route identifier in the Direct-via of two
Output-nodes does not automatically mean that the signals are queued in the input port in the same
order as the Output-nodes are interpreted. However, order is preserved if the two signals are
conveyed by identical channels connecting the Originating-process with the Destination-process
or if the processes are defined within the same block.

If a syntype is specified in the signal definition and an expression is specified in the output, then the
range check defined in § 5.4.1.9.1 is applied to the expression. If the range check is equivalent to
False then the output is in error and the future behaviour of the system is undefined.

An output sent to a non existent process instance (or no longer existent) causes an interpretation
error. The evaluation on the existence of a process instance is made at the same time the output is
interpreted. A subsequent stopping of the receiving process instance causes the discarding of the
signal from the input port and no error condition is reported.

Model

If several pairs of (<signal identifier <actual parameters>) are specified in an <output body> it is
derived syntax for specifying a sequence of <output>s or coutput area>s in the same order
specified in the original coutput body> each containing a single pair of (csignal identifier cactual
parameters>). The TO clause and the VIA clause are repeated in each of the coutput>s or coutput
area>s. This shorthand is expanded before any shorthands in the contained expressions are
expanded.

2.7.5 Decision

Abstract grammar

Decision-node :: Decision-question
Decision-answer-set
[Else-answer]

Decision-question = Expression I
Informal-text

Decision-answer :: (Range-condition I
Informal-text) Transition

Else-answer :: Transition

The Decision-answers must be mutually exclusive.

Fascicle X .l — Rec. Z.100 67

If the Decision-question is an Expression, the Range-condition of the Decision-answers must be
of the same sort as the Decision-question.

Concrete textual grammar

<decision> ::=
DECISION <question> <end> <decision body> ENDDECISION

<decision body>
{<answer part> <else part>}

I {<answer part> {<answer part>}+ [<else part>] }
>

<answer part> ::=
(<answer>): [<transition>]

<answer> ::=
<range condition> I <informal text>

<else part> ::=
ELSE: [<transition>]

<question>::=
<question expression> I <informal text>

<range condition> is defined in § 5.4.1.9.1, <transition> in § 2.6.7.1, cinformal text> in § 2.2.3.

A <decision> or ctransition option> (defined in § 4.3.4) is terminating if each canswer part> and
celse part> in the cdecision body> contains a ctransition> where a cterminator statement> is
specified, or contains a ctransition string> whose last caction statement> contains a terminating
decision or option.

Concrete graphical grammar

cdecision area> ::=
cdecision symbol> contains cquestion>
is followed by
{ {cgraphical answer part> cgraphical else part>} set

I {cgraphical answerpart> {cgraphical answer part>}+ [cgraphical else part>] } s e t}

cdecision symbol> ::=

68 Fascicle X .l — Rec. Z.100

cgraphical answer part> ::=
cflow line symbol> is associated with cgraphical answer>
is followed by ctransition area>

cgraphical answer> ::=
canswer> I (canswer>)

cgraphical else part> ::=
cflow line symbol> is associated with ELSE
is followed by ctransition area>

The ctransition area> is defined in § 2.6.7.1 and cflow line symbol> in § 2.6.12.2.

The cgraphical answer> and ELSE may be placed along the associated cflow line symbol>, or in
the broken cflow line symbol>.

The cflow line symbol>s originating from a cdecision symbol> may have a common originating
path.

A cdecision area> represents a Decision-node.

Semantics

A decision transfers the interpretation to the outgoing path whose range condition contains the value
given by the interpretation of the question. A set of possible answers to the question is defined,
each of them specifying the set of actions to be interpreted for that path choice.

One of the answers may be the complement of the others. This is achieved by specifying the
Else-answer, which indicates the set of activities to be performed when the value of the expression
on which the question is posed, is not covered by the values or set of values specified in the other
answers.

Whenever the Else-answer is not specified, the value resulting from the evaluation of the question
expression must match one of the answers.

There is syntactic ambiguity between <informal text> and <character string> in question> and
<answer>. If the <question> and all <answer>s are <character string>, then all of these are
interpreted as <informal text>. If the <question> or any <answer> is a Ccharacter string> which
does not match the context of the decision, then the <character string> denotes <informal text>.
The context of the decision (i.e. the sort) is determined without regard to <answer>s which are
<character string>.

Model

If a <decision> is not a terminating decision then it is derived syntax for a <decision> wherein all
the <answer part>s and the <else part> have inserted in their <transition> a <join> to the first
<action statement> following the decision or, if the decision is the last <action statement> in a
Ctransition string>, to the following Cterminator statements

2.8 Timer

Abstract grammar

Timer-definition :: Timer-name Sort-reference-identifier*

Fascicle X.l — Rec. Z.100

Timer-name

Set-node

Reset-node

Timer-identifier

Time-expression

Name

Time-expression
Timer-identifier
Expression*

Timer-identifier
Expression*

Identifier

Expression

The sorts of the Expression* in the Set-node and Reset-node must correspond by position to the
Sort-reference-identifier* directly following the Timer-name identified by the Timer-identifier.

The Expressions in a Set-node or Reset-node must be evaluated in the order given.

Concrete textual grammar

ctimer definition> ::=

<reset> ::=

creset statement> ::=

cset> ::=

cset statement> ::=

TIMER ctimer name> [csort list>]
{ , ctimer name> [csort list>] }* cend>

RESET (creset statement> { , creset statement> }*)

ctimer identifier [(cexpression list>)]

SET cset statement> { , cset statement }*

(crime expression>, c timer identifier [(cexpression list>)])

csort list> and cexpression list> are defined in § 2.5.4 and § 5.5.2.1 respectively.

A creset statement> represents a Reset-node; a cset statement> represents a Set-node. If a creset>
contains several creset statement>s, then they must be interpreted in the order given. If a cset>
contains several cset statements, then they must be interpreted in the order given.

Concrete graphical grammar

cset area> ::=

creset area> ::=

ctask symbol> contains c s e t

ctask symbol> contains c re se t

Semantics

A timer instance is an object, owned by a process instance, that can be active or inactive. Two

70 Fascicle X.l — Rec. Z.100

occurrences of a timer identifier followed by an expression list refer to the same timer instance only
if the two expression lists have the same values.

When an inactive timer is set, a time value is associated with the timer. Provided there is no reset or
other setting of this timer before the system time reaches this time value, a signal with the same
name as the timer is put in the input port of the process. The same action is taken if the timer is set
to a time value minor than NOW. After consumption of a timer signal the SENDER expression
yields the same value as the SELF expression. If an expression list is given when the timer is set,
the values of these expression(s) are contained in the timer signal in the same order. A timer is
active from the moment of setting up to the moment of consumption of the timer signal.

If a sort specified in a timer definition is a syntype, then the range check defined in § 5.4.19.1
applied to the corresponding expression in a set or reset must be True, otherwise the system is in
error and the further behaviour of the system is undefined.

When an inactive timer is reset, it remains inactive.

When an active timer is reset, the association with the time value is lost, if there is a corresponding
retained timer signal in the input port then it is removed, and the timer becomes inactive.

When an active timer is set, this is equivalent to resetting the timer, immediately followed by setting
the timer. Between this reset and set the timer remains active.

Before the first setting of a timer instance it is inactive.

2.9 Examples

INPUT SI /*example*/;
TASK /* example*/ T1:=0;

FIGURE 2.9.1

Example of comment (PR)

INPUT II COMMENT ’example’;
TASKT1:=0;

FIGURE 2.9.2

Example of comment (PR)

Fascicle X.l — Rec. Z.100

 ^ ____
T3:=0

/♦example*/

FIGURE 2.9.3

Example of comment (GR)

V

'taskl' example

example

\

'task2'

FIGURE 2.9.4

Example of comment (GR)

72 Fascicle X.l — Rec. Z.100

/* This system is a game......................A player logs out by the signal Endgame */

SIGNAL Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score (Integer),
Subscr,Endsubscr, Bump;

CHANNEL Cl
FROM ENV TO Blockgame
WITH Newgame, Probe, Result, Endgame;
FROM Blockgame TO ENV
WITH Gameid, Win, Lose, Score;

ENDCHANNEL Cl;

CHANNEL C3 FROM Blockgame TO Blockdaemon
WITH Subscr, Endsubscr;

ENDCHANNEL C3;

CHANNEL C4 FROM Blockdaemon TO Blockgame
WITH Bump;

ENDCHANNEL C4;

BLOCK Blockgame REFERENCED;

BLOCK Blockdaemon REFERENCED;

ENDSYSTEM DAEMON_GAME;

FIGURE 2.9.5

Example of a system specification (PR)

SYSTEM DAEMON_GAME;

Fascicle X .l — Rec. Z.100

SYSTEM DAEMON_GAME 1(1)

/* This system is a game having any number of players. The players belong to the1—
environment of the system. A "daemon" in the system produces Bump signals
randomly. A player has to guess whether the number of the generated Bump

signals is odd or even. The guess is made by sending a Probe signal to the
system. The system replies by the signal Win if the number of the generated

Bump signals is odd, otherwise by the signal Lose.

The system keeps track of the score of each player. A player can ask for the
current value of his score by the signal Result, which is answered by the system
with the signal Score.

Before a player can start playing, he must log in. This is accomplished by the
signal Newgame. A player logs out by the signal Endgame. */

SIGNAL Newgame, Probe, Result, Endgame, Gameid, Win, Lose, Score(integer),
Subsrc, Endsubscr, Bump;

Newgame,
Probe,
Result,
Endgame

Cl Blockgame

Gameid,
Win,
Lose,
Score

C4
C3ir

Blockdaemon

T10Q305(W8

FIGURE 2.9.6
Example of a system specification (GR)

74 Fascicle X.l — Rec. Z.100

BLOCK Blockgame;

CONNECT Cl AND R1,R2,R3;
CONNECT C3 AND R4;
CONNECT C4 AND R5;
SIGNALROUTE Rl FROM ENV TO Monitor WITH Newgame;
SIGNALROUTE R2 FROM ENV TO Game

WITH Probe, Result, Endgame;
SIGNALROUTE R3 FROM Game TO ENV

WITH Gameid, Win, Lose, Score;
SIGNALROUTE R4 FROM Game TO ENV

WITH Subscr, Endsubscr;
SIGNALROUTE R5 FROM ENV TO Game WITH Bump;

PROCESS Monitor (1,1) REFERENCED;

PROCESS Game (0,) REFERENCED;

ENDBLOCK Blockgame;

FIGURE 2.9.7

Example of block specification (PR)

FIGURE 2.9.8

Example of a block diagram

Fascicle X.l - Rec. Z.100 75

PROCESS Game (0,);
FPAR Player Pid;

DCL
Count Integer; /*counter to keep track of score */

START;

OUTPUT Subscr;
OUTPUT Gameid TO Player;
TASK Count:=0;

NEXTSTATE Even;

STATE Even;

INPUT Probe;
OUTPUT Lose TO Player;
TASK Count:=Count-l;

NEXTSTATE -;

INPUT Bump;
NEXTSTATE Odd;

STATE Odd;

INPUT Bump;
NEXTSTATE Even;

INPUT Probe;
OUTPUT Win TO Player;
TASK Count:=Count+l;

NEXTSTATE -;

STATE *;

INPUT Result;
OUTPUT Score(Count) TO Player;

NEXTSTATE -;

INPUT Endgame;
OUTPUT Endsubscr;

STOP;

ENDPROCESS Game;

FIGURE 2.9.9

Example of process specification (PR)

76 Fascicle X.l — Rec. Z.100

Fascicle X .l — Rec. Z.100

PROCEDURE check;
/* The following signal definitions are assumed:

SIGNAL sigl(Boolean), sig2, sig3(Integer,PId); */
FPAR IN/OUT x, y Integer;
DCL sum, index Integer,

nice Boolean;
START;
TASK sum := 0,

index := 1;
NEXTSTATE idle;
STATE idle;

INPUT sigl (nice);
DECISION nice;

(true): TASK 'Calculate sum';
OUTPUT sig3(sum, SENDER);
RETURN;

(false): NEXTSTATE Jaj;
ENDDECISION;
INPUT sig2;

ENDPROCEDURE check;

FIGURE 2.9.11

Example of a fragment of a procedure specification (PR)

Fascicle X.l — Rec. Z.100

T10030SO-88

FIGURE 2.9.12

Example of a fragment of a procedure specification (GR)

Fascicle X.l — Rec. Z.100

/* The following signal definition is assumed:
SIGNAL inquire(Integer,Integer,Integer); */
PROCESS alfa;
DCL a,b,c Integer;

INPUT inquire (a,b,c);
CALL check (a,b);

ENDPROCESS;
FIGURE 2.9.13

Example of a procedure call in a fragment of a process definition (PR)

PROCESS alfa

/*The following signal
definition is assumed:
SIGNAL
inquire (Integer,Integer,
Integer); */

DCL
a,b,c Integer,

I

inquire
(a,b ,c)
= t =
check
(a,b)

T100309Q-88

FIGURE 2.9.14

Example of a procedure call in a fragment of a process definition (GR)

80 Fascicle X.l — Rec. Z.100

3 Structural concepts in SDL

3.1 Introduction

This section defines a number of concepts needed to handle hierarchical structures in SDL.
The basis for these concepts is defined in §2 and the defined concepts are strict additions to those
defined in §2.

The intention with the concepts introduced in this section is to provide the user of SDL with
means to specify large and/or complex systems. The concepts defined in §2 are suitable for
specifying relatively small systems which may be understood and handled at a single level of
blocks. When a larger, or complex system is specified, there is a need to partition the system
specification into manageable units, which may be handled and understood independently. It is
often suitable to perform the partitioning in a number of steps, resulting in a hierarchical structure
of units specifying the system.

The term partitioning means subdivision of a unit into smaller subunits that are components
of the unit. Partitioning does not affect the static interface of a unit. In addition to partitioning, there
is also a need to add new details to the behaviour of a system when descending to lower levels in
the hierarchical structure of the system specification. This is denoted by the term refinement.

3.2 Partitioning

3.2.1 General

A block definition may be partitioned into a set of subblock definitions, channel definitions
and subchannel definitions. Similarly, a channel definition may be partitioned into a set of block
definitions, channel definitions and subchannel definitions. Thus, each block definition and channel
definition can have two versions: an unpartitioned version and a partitioned version in the concrete
syntaxes. However channel substructures are transformed when mapping onto the abstract syntax.
These two versions have the same static interface, but their behaviour may differ to some extent,
because the order of output signals may not be the same. A subblock definition is a block
definition, and a subchannel definition is a channel definition.

In a concrete system definition as well as in an abstract system definition, both the
unpartitioned and the partitioned version of a block definition may appear. In such a case, a
concrete system definition contains several consistent partitioning subsets, each subset
corresponding to a system instance. A consistent partitioning subset is a selection of the block
definitions in a system definition such that:

a) If it contains a Block-definition, then it must contain the definition of the enclosing
scope unit if there is one;

b) It must contain all the Block-definitions defined on the system level and if it contains a
Sub-block-definitions of a Block-definition , then it must also contain all other
Sub-block-defmitions of that Block-definition.

c) All "leaf* Block-definitions in the resulting structure contain Process-definitions.

Fascicle X .l — Rec. Z.100 81

FIGURE §3.2.1

Consistent partitioning subset illustrated in an auxiliary diagram

At system interpretation time a consistent partitioning subset is interpreted.
The processes in each of the leaf blocks in the consistent partitioning subset are interpreted. If these
leaf blocks also contain substructures, they have no effect. The substructures in the non-leaf blocks
have an effect on visibility, and the processes in these blocks are not interpreted.

3.2.2 Block partitioning

Abstract grammar

Block-substructure-definition

Block-substructure-name

Sub-block-definition

Channel-connection

Sub-channel-identifier
Channel-identifier

Block-substructure-name
Sub-block-definition-set
Channel-connection-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set

Name

Block-definition

Channel-identifier
Sub-channel-identifier-set

Channel-identifier
Identifier

82 Fascicle X.l — Rec. Z.100

The Block-substructure-definition must contain at least one Sub-block-definition. It is understood in
the following that an abstract syntax term is contained in the Block-substructure-definition , if not
stated otherwise.

A Block-identifier contained in a Channel-definition must denote a Sub-block-definitions. A
Channe l-de f in i t ion connecting a Sub-b lock-de f in i t ion to the boundary of the
Block-substructure-definition is called a subchannel definition.

For each external Channel-definition connected to the Block-substructure-definition there must be
exactly one Channel-connection. The Channel-identifier in the Channel-connection must identify
this external Channel-definition.

For signals directed out of the Block-substructure-definition, the union of the Signal-identifiers
associated to the Sub-channel-identifier-set contained in a Channel-connection must be identical to
the Signal-identifiers associated to the Channel-identifier contained in the Channel-connection. The
same rule is valid for signals directed into the Block-substructure-definition. However, this rule is
modified in case of signal refinement, see §3.3.

Each Sub-channel-identifier must appear in one and only one Channel-connection.

Since a Sub-block-definition is a Block-definition, it may be partitioned. This partitioning may be
repeated any number of times, resulting in a hierarchical tree structure of Block-definitions and their '
Sub-block-definitions. The Sub-block-definitions of a Block-definition are said to exist on the next
lower level in the block tree, see also the figure below.

level n+1

T1003110-M

FIGURE l/§3.2.2

A block tree diagram

The block tree diagram is an auxiliary diagram.

Fascicle X.l - Rec. Z.100 83

Concrete textual grammar

cblock substructure definition> ::=
SUBSTRUCTURE d eblock substructure name>]

I cblock substructure identifier> } cend>
{ cblock definition>

I ctextual block reference>
I cchannel definition>
I cchannel connection>
I csignal definition>
I csignal list definition>
I cdata definition>
I cselect definition>
I cmacro definition> }+

ENDSUBSTRUCTURE [{ cblock substructure name>
I cblock substructure identifier 11 eend>

The cblock substructure name> after the keyword SUBSTRUCTURE can be omitted only if it is
the same as the cblock name> in the enclosing cblock definitions

ctextual block substructure reference> ::=
SUBSTRUCTURE cblock substructure name> REFERENCED cend>

cchannel connection> ::=
CONNECT cchannel identifier AND csubchannel identifier
{, csubchannel identifier} * cend>

Concrete graphical grammar

cblock substructure diagram> ::=
cframe symbol>
contains {cblock substructure heading>

{ {cblock substructure text area>}*
{cmacro diagram>} *
cblock interaction area> }set }

is associated with fcchannel identifier}*

The cchannel identifier identifies a channel connected to a subchannel in the cblock substructure
diagrams It is placed outside the cframe symbol> close to the endpoint of the subchannel at the
cframe symbols

A cchannel symbol> within the cframe symbol> and connected to it indicates a subchannel.

cblock substructure heading> ::=
SUBSTRUCTURE (cblock substructure name> I cblock substructure identifier}

cblock substructure text area> ::=
csystem text area>

84 Fascicle X.l — Rec. Z.100

cblock substructure area>
cgraphical block substructure reference>

I cblock substructure diagram>
I copen block substructure diagram>

cgraphical block substructure reference> ::=
cblock substructure symbol> contains cblock substructure name>

cblock substructure symbol> ::=
cblock symbol>

c open block substructure diagram> ::=
{{cblock substructure text area>} *
{cmacro diagram>} *
cblock interaction area>} set

When a cblock substructure area> is an copen block substructure diagram>, then the enclosing
cblock diagram> must not contain cblock text area>, cmacro diagram> nor cprocess interaction
area>.

Semantics

See § 3.2.1.

Model

An copen block substructure diagram> is transformed to a cblock substructure diagram> in such a
way that in the cblock substructure heading> the cblock substructure name> or the cblock
substructure identifier is the same as the cblock name> respectively c block identifier in the
enclosing cblock diagram>.

Example

An example of a cblock substructure definition> is given below.

BLOCK A;
SUBSTRUCTURE A ;

SIGNAL s5(nat), s6, s8, s9(min);
BLOCK al REFERENCED;
BLOCK a2 REFERENCED;
BLOCK a3 REFERENCED;
CHANNEL cl FROM a2 TO ENV WITH si, s2; ENDCHANNEL cl;
CHANNEL c2 FROM ENV TO al WITH s3;

FROM al TO ENV WITH s i ; ENDCHANNEL c2;
CHANNEL dl FROM a2 TO ENV WITH s7; ENDCHANNEL dl;
CHANNEL d2 FROM a3 TO ENV WITH slO; ENDCHANNEL d2;
CHANNEL el FROM al TO a2 WITH s5, s6; ENDCHANNEL el;
CHANNEL e2 FROM a3 TO al WITH s8; ENDCHANNEL e2;
CHANNEL e3 FROM a2 TO a3 WITH s9; ENDCHANNEL e3;
CONNECT c AND cl, c2 ;
CONNECT d AND d l,d 2 ;

ENDSUBSTRUCTURE A;
ENDBLOCKA;

Fascicle X .l — Rec. Z.100

The cblock substructure diagram> for the same example is given below.

FIGURE 2/§3.2.2

Block substructure diagram for block A

3.2.3 Channel partitioning

All static conditions are stated using concrete textual grammar. Analogous conditions hold
for the concrete graphical grammar.

Concrete textual grammar

cchannel substructure definition> ::=
SUBSTRUCTURE {fcchannel substructure name>]

I cchannel substructure identified } cend>
{ cblock definition>

I ctextual block reference>
I cchannel definition>
I cchannel endpoint connection>
I csignal definition>
I csignal list definition>
I cdata definition>
I cselect definition>
I cmacro definition> }+

ENDSUBSTRUCTURE [{ cchannel substructure name>
I cchannel substructure identifier^] cend>

86 Fascicle X.l — Rec. Z.100

The cchannel substructure name> after the keyword SUBSTRUCTURE can be omitted only if it is
the same as the cchannel name> in the enclosing cchannel definitions

ctextual channel substructure reference> ::=
SUBSTRUCTURE cchannel substructure name> REFERENCED cend>

cchannel endpoint connection> ::=
CONNECT f cblock identified I ENV} AND csubchannel identified

{, csubchannel identified}* cend>

For each endpoint of the partitioned cchannel definition> there must be exactly one cchannel
endpoint connections The cblock identified or ENVIRONMENT in a cchannel endpoint
connection> must identify one of the endpoints of the partitioned cchannel definitions

Concrete graphical grammar

cchannel substructure diagram> ::=
cffame symbol>
contains {cchannel substructure heading>

{ {cchannel substructure text area>}*
{cmacro diagram>} *
cblock interaction area> }set }

is associated with f cblock identified I ENV}+

The cblock identified or ENV identifies an endpoint of the partitioned channel. The cblock
identified is placed outside the cframe symbol> close to the endpoint of the associated subchannel
at the cframe symbols The cchannel symbol> within the cframe symbol> and connected to this
indicates a subchannel.

cchannel substructure heading> ::=
SUBSTRUCTURE { c channel substructure name>

I c channel substructure identified}

cchannel substructure text area> ::=
csystem text area>

cchannel substructure association area> ::=
cdashed association symbol>
is connected to cchannel substructure area>

cchannel substructure area> ::=
cgraphical channel substructure reference>

I cchannel substructure diagram>

cgraphical channel substructure reference> ::=
cchannel substructure symbol> contains cchannel substructure name>

cchannel substructure symbol> ::=
cblock symbol>

Fascicle X.l — Rec. Z.100

Model

A cchannel definition> which contains a cchannel substructure definition> is transformed into a
cblock definition> and two cchannel definitions such that:

a) The two cchannel definitions are each connected to the block and to an endpoint of the
original channel. The cchannel definitions have distinct new names and every reference to
the original channel in the VIA constructs is replaced by a reference to the appropriate new
channel.

b) The cblock definition> has a distinct new name and it contains only a cblock
substructure definition> having the same name and containing the same definitions as the
original cchannel substructure definitions The qualifiers in the new cblock definition> are
changed to include the block name. The two cchannel endpoint connections from the
original cchannel substructure definition> are represented by two cchannel connections
wherein the cblock identified or ENV is replaced by the appropriate new channel.

This transformation must take place immediately after those of a generic system. See § 4.3.

Example

An example of a cchannel substructure definition> is given below.

CHANNEL C FROM A TO B WITH si;
FROM B TO A WITH s2;

SUBSTRUCTURE C;

SIGNAL s3(hel), s4(boo), s5;

BLOCK bl REFERENCED;
BLOCK b2 REFERENCED;

CHANNEL cl FROM ENV TO bl WITH si;
FROM bl TO ENV WITH s2; ENDCHANNEL cl;

CHANNEL c2 FROM b2 TO ENV WITH si;
FROM ENV TO b2 WITH s2; ENDCHANNEL c2;

CHANNEL el FROM bl TO b2 WITH S3; ENDCHANNEL el;
CHANNEL e2 FROM b2 TO bl WITH s4, s5; ENDCHANNEL e2;

CONNECT A AND cl;
CONNECT BAND c2;

ENDSUBSTRUCTURE C;

ENDCHANNEL C;

The cchannel substructure diagram> for the same example is given below.

88 Fascicle X.l — Rec. Z.100

A

SUBSTRUCTURE C

SIGNAL s3(hel), s4(boo), s5;

[si] [s2]
bl

el [s3]
> ------

e2 [s4,s5]
b2

[si] [s2]
B

T1003130-88

FIGURE §3.2.3

Channel substructure diagram for channel C

3.3 Refinement

Refinement is achieved by refining a signal definition into a set of subsignal
definitions. A subsignal definition is a signal definition and may be refined. This refinement can be
repeated any number of times, resulting in a hierarchical structure of signal definitions and their
subsignal definitions. Note that a subsignal definition of a signal definition is not considered a
component of the signal definition.

Abstract grammar

Signal-refinement :: Subsignal-definition-set

Subsignal-Definition :: [REVERSE] Signal-definition

For each Channel-connection it must hold that for each Signal-identifier associated to the
Channel- identi fier either the Signal-identi fier is associated to at least one of the
Sub-channel-identifiers, or each of its subsignal identifiers is associated to at least one of the
Sub-channel-identifier s. This is a change of the corresponding rules for partitioning.

No two signals in the complete valid input signal set of a process definition or in the Output-nodes
of a process definition may be on different refinement levels of the same signal.

Fascicle X .l - Rec. Z.100 89

Concrete textual grammar

<signal refinement ::=
REFINEMENT
{<subsignal definition>}+
ENDREFINEMENT

<subsignal definition> ::=
[REVERSE] <signal definition>

Semantics

When a signal is defined to be carried by a channel, the channel will automatically be the carrier for
all the subsignals of the signal. Refinement may take place when the channel is partitioned or split
into subchannels. In such a case the subchannels will carry the subsignals in place of the refined
signal. The direction of a subsignal is determined by the carrying subchannel, a subsignal may have
an opposite direction to the refined signal, which is indicated by the keyword REVERSE. Signals
cannot be refined when a channel is split into signal routes.

When a system definition contains signal refinement, the concept of consistent partitioning subset
is restricted. Such a system definition is said to contain several consistent refinement subsets.

A consistent refinement subset is a consistent partitioning subset restricted by the following rule:

When selecting the consistent partitioning subset, the set of signals on signalroutes connected
to an endpoint of a channel must not contain parent signals of contained subsignals, and unless
the other endpoint is the system ENVIRONMENT, the set of signals for the first endpoint
must be equal to the set of signals on signalroutes connected to the other endpoint.

Example

T100314&-88

FIGURE §3.3

System diagram containing signal refinement

90 Fascicle X.l — Rec. Z.100

In the above example signal s is refined in block definition B1 and B2, but not signal a. On the
highest refinement level, processes in Bl and B2 are communicating using signal s and a. On the
next lower level, processes in Bl 1 and B21 are communicating using si, s2 and a.

Note that refinement in only one of the block definitions Bl and B2 is not allowed, since there is no
dynamic transformation between a signal and its subsignals, only a static relation.

Fascicle X.l — Rec. Z.100 91

4 Additional concepts in SDL

4. 1 Introduction

This chapter defines a number of additional concepts. These additional concepts are standard
shorthand notations, and are modeled in terms of the primitive concepts of SDL, using concrete
syntax. They are introduced for the convenience of the users of SDL in addition to shorthand
notations defined in other chapters of the Recommendation.

The properties of a shorthand notation is derived from the way it is modeled in terms of (or
transformed to) the primitive concepts. In order to ensure easy and unambiguous use of the
shorthand notations, and to reduce side effects when several shorthand notations are combined,
these concepts are transformed in a specified order as follows:

1 Macro § 4.2
2 Generic systems § 4.3
3 Asterisk state § 4.4
4 State list § 2.6.3
5 Multiple appearence of state § 4.5
6 Asterisk input § 4.6
7 Asterisk save § 4.7
8 Stimulus list § 2.6.4
9 Output list § 2.7.4

10 Implicit transition § 4.8
11 Dash nextstate § 4.9
12 Service § 4.10
13 Continuous signal § 4.11
14 Enabling condition § 4.12
15 Imported and exported value § 4.13

This order is also followed when defining the concepts in this section. The specified order of
transformation means that in the transformation of a shorthand notation of order n , another
shorthand notation of order m may be used, provided m>n.

Since there is no abstract syntax for the shorthand notations, terms of either graphical syntax or
textual syntax are used in their definitions. The choice between graphical syntax terms and textual
syntax terms is based on practical considerations, and does not restrict the use of the shorthand
notations to a particular concrete syntax.

4.2 Macro

In the following text the terms macro definition and macro call are used in a general sense, covering
both SDL/GR and SDL/PR. A macro definition contains a collection of graphical symbols and/or
lexical units, that can be included in one or more places in the cconcrete system definition>. Each
such place is indicated by a macro call. Before a cconcrete system definition> can be analysed, each
macro call must be replaced by the corresponding macro definition.

4.2.1 Lexical rules

cformal name> ::=
[cname>%] cmacro parameter>
{% cname> %cmacro parameter> I %cmacro parameter> }* [%cname>]

92 Fascicle X.l — Rec. Z.100

4.2.2 Macro definition

Concrete textual grammar

cmacro definition>
MACRODEFINTTION cmacro name>
[c macro formal parameters>] cend>
cmacro body>
ENDMACRO f cmacro name>] cend>

cmacro formal parameters> ::=
FPAR c macro formal parameter> {, c macro formal parameter>} *

cmacro formal parameter> ::=
cname>

cmacro body> ::=
{clexical unit>lcformal name>}*

cmacro parameter> ::=
cmacro formal parameter>

I MACROID

The cmacro formal parameters must be distinct, cmacro actual parameters of a macro call must
be matched one to one with their corresponding cmacro formal parameters.

The cmacro body> must not contain the keyword ENDMACRO and MACRODEFIN1T10N.

Concrete graphical grammar

cmacro diagram> ::=
cframe symbol> contains {cmacro heading> cmacro body area>}

cmacro heading> ::=
MACRODEFINITION cmacro name> [cmacro formal parameters>]

cmacro body area> ::=
{ {cany area> }*

cany area> [is connected to cmacro body portl>] }set
l{ cany area> is connected to cmacro body port2>

cany area> is connected to cmacro body port2>
{ cany area> [is connected to cmacro body port2>]}*}set

cmacro inlet symbol>::=

(E D

Fascicle X.l — Rec. Z.100 93

<macro outlet symbol>::=

' 0

<macro body portl> ::=
<outlet symbol> is connected to {<frame symbol>

[is associated with <macro label>]
I <macro inlet symbol> [{contains lis associated with } cmacro label>]
I cmacro outlet symbol> [{contains lis associated with } cmacro label>] }

cmacro body port2> ::=
coutlet symbol> is connected to {cframe symbol>

is associated with cmacro label>
I cmacro inlet symbol> [contains lis associated with } cmacro label>
I cmacro outlet symbol> [contains lis associated with } cmacro label>)

cmacro label> ::=
cname>

coutlet symbol> ::=
cdummy outlet symbol>

I cflow line symbol>
I cchannel symbol>
I csignal route symbol>
I csolid association symbol>
I cdashed association symbol>
I ccreate line symbol>

cdummy outlet symbol> ::=
csolid association symbol>

cany area>
csystem text area>

I cblock interaction area>
I csignal list area>
I cblock area>
I cblock text area>
I cprocess interaction area>
I cgraphical procedure reference>
I cprocess text area>
I cprocess graph area>
I emerge area>
I ctransition string area>
I estate area>
I cinput area>
I csave area>
I cset area>
I creset area>
I cexport area>
I ctext extension area>
I cchannel substructure association area>
I cchannel substructure area>

94 Fascicle X.l — Rec. Z.100

I cblock substructure area>
I cpriority input area>
I econtinuous signal area>
I cin-connector area>
I cnextstate area>
I cprocess area>
I cchannel definition area>
I ccreate line area>
I csignal route definition area>
I cgraphical process reference>
I cprocess diagram>
I cstart area>
I coutput area>
I cpriority output area>
I ctask area>
I ccreate request area>
I cprocedure call area>
I cprocedure area>
I cdecision area>
I cout-connector area>
I cprocedure text area>
I cprocedure graph area>
I cprocedure start area>
I cblock substructure text area>
I cblock interaction area>
I cservice area>
I cservice signal route definition area>
I cservice text area>
I cservice graph area>
I cservice start area>
I ccomment area>
I cmacro call area>
I cinput association area>
I csave association area>
I coption area>
I cchannel substructure text area>
I ctransition option area>
I cservice interaction area>
I cpriority input association area>
I ccontionuous signal association area>
I cenabling condition area>

A cdummy outlet symbol> must not have anything associated to it except for cmacro label>.

For an coutlet symbol> which is not a cdummy outlet symbol>, the corresponding cinlet symbol>
in the macro call must be a cdummy inlet symbolx

A cmacro body> may appear in any text referred to in cany area>.

Fascicle X .l - Rec. Z.100

Semantics

A cmacro definition> contains lexical units, while a cmacro diagram> contains syntactical units.
Thus, mapping between macro constructs in textual syntax and graphical syntax is generally not
possible. For the same reason, separate detailed rules apply for textual syntax and graphical syntax,
although there are some common rules.

cmacro name> is visible in the whole system definition, no matter where the macro definition
appears. A macro call may appear before the corresponding macro definition.

A macro definition may contain macro calls, but a macro definition must not call itself either directly
or indirectly through macro calls in other macro definitions.

The keyword MACROID may be used as a pseudo macro formal parameter within each macro
definition. No cmacro actual parameters can be given to it, and it is replaced by a unique cname>
for each expansion of a macro definition (within an expansion the same cname> is used for each
occurence of MACROID).

Example r

Below is given an example of a cmacro definitions

MACRODEFINrnON Exam
FPAR alfa, c, s, x;

BLOCK alfa REFERENCED;
CHANNEL c FROM x TO alfa WITH s; ENDCHANNEL c;

ENDMACRO Exam;

The cmacro diagram> for the same example is given below. However, the cmacro formal
parameter>, x, is not required in this case.

MACRODEFINmON Exam
FPAR alfa, c, s

aa fc. alfa b

T1003150-J8

4.2.3 Macro call

Concrete textual grammar

cmacro call> ::=
MACRO cmacro name> [cmacro call body>] cend>

96 Fascicle X.l — Rec. Z.100

<macro call body>
(<macro actual parameter> {, <macro actual parameter>}*)

<macro actual parameter> ::=
{clexical unit>}*

The <lexical unit> cannot be a comma or right parenthesis If any of these two characters is
required in a cmacro actual parameters then the cmacro actual parameter> must be a ccharacter
string>. If the cmacro actual parameter> is a ccharacter strings then the value of the ccharacter
string> is used when the cmacro actual parameter> replaces a cmacro formal parameters

A cmacro call> may appear at any place where a clexical unit> is allowed.

Concrete graphical grammar

cmacro call area> ::=
cmacro call symbol> contains (cmacro name> [cmacro call body>]}
[is connected to
{cmacro call portl> I cmacro call port2> {cmacro call port2>}+}]

cmacro call symbol> ::=

cmacro call portl> ::=
cinlet symbol> [is associated with cmacro label>]
is connected to cany area>

cmacro call port2> ::=
cinlet symbol> is associated with cmacro label>
is connected to cany area>

cinlet symbol> ::=
cdummy inlet symbol>

I cflow line symbol>
I cchannel symbol>.
I csignal route symbol>
I csolid association symbol>
I cdashed association symbol>
I ccreate line symbol>

cdummy inlet symbol> ::=
csolid association symbol>

A cdummy inlet symbol> must not have anything associated to it except for cmacro labels

Fascicle X.l - Rec. Z.100 97

For each cinlet symbol> there must be an coutlet symbol> in the corresponding cmacro diagram>,
associated with the same cmacro label>. For an cinlet symbol> which is not a cdummy inlet
symbol>, the corresponding coutlet symbol> must be a cdummy outlet symbol>.

Except in the case of cdummy inlet symbol>s and cdummy outlet symbol>s, it is possible to have
multiple (textual) clexical unit>s associated with an cinlet symbol> or coutlet symbol>. In this case
the clexical unit> closest to the cmacro call symbol> or the cframe symbol> of the cmacro
diagram> is taken to be the cmacro label> associated with the cinlet symbol> or coutlet symbol>.

The cmacro call area> may appear at any place where an area is allowed. However, a certain space
is required between the cmacro call symbol> and any other closed graphical symbol. If such a
space must not be empty according to the syntax rules, then the cmacro call symbol> is connected
to the closed graphical symbol with a cdummy inlet symbol>.

Semantics

A system definition may contain macro definitions and macro calls. Before such a system definition
can be analysed, all macro calls must be expanded. The expansion of a macro call means that a copy
of the macro definition having the same cmacro name> as that given in the macro call replaces the
macro call.

When a macro definition is called, it is expanded. This means that a copy of the macro definition is
created, and each occurence of the cmacro formal parameters of the copy is replaced by the
corresponding cmacro actual parameters of the macro call, then macro calls in the copy, if any, are
expanded. All percent characters (%) in cformal name>s are removed when cmacro formal
parameters are replaced by cmacro actual parameters.

There should be one to one correspondence between cmacro formal parameter and cmacro actual
parameter.

Rules for graphical syntax

The cmacro call area> is replaced by a copy of the cmacro diagram> in the following way.
All cmacro inlet symbol>s and cmacro outlet symbol>s are deleted. A cdummy outlet
symbol> is replaced by the cinlet symbol> having the same cmacro label>. A cdummy inlet
symbol> is replaced by the coutlet symbol> having the same cmacro label>. Then the
cmacro label>s attached to cinlet symbol>s and coutlet symbol>s are deleted, cmacro body
portl> and cmacro boby port2> which have no corresponding cmacro call portl> or
cmacro call port2> are also deleted.

98 Fascicle X.l - Rec. Z.100

Below is given an example of a cmacro call>, within a fragment of a cblock definitions

Example

BLOCK A REFERENCED;
MACRO Exam (B, Cl, SI, A);
BLOCK C REFERENCED;
CHANNEL C2 FROM B TO C WITH S2; ENDCHANNEL C2;

The expansion of this macro call, using the example in §4.2.2, gives the following result.

BLOCK A REFERENCED;
BLOCK B REFERENCED;
CHANNEL Cl FROM A TO B WITH SI; ENDCHANNEL Cl;
BLOCK C REFERENCED;
CHANNEL C2 FROM B TO C WITH S2; ENDCHANNEL C2;

The cmacro call area> for the same example, within a fragment of a cblock interaction area>,
given below.

The expansion of this macro call gives the following result.

Fascicle X.l - Rec. Z.100

4.3 Generic systems

A system specification may have optional parts and system parameters with undefined values in
order to meet various needs. Such a system specification is called generic, its generic property is
specified by means of external synonyms (which are analogous to formal parameters in a procedure
definition). A generic system specification is tailored by selecting a suitable subset of it and
providing a value for each of the system parameters. The resulting system specification does not
contain external synonyms, and is called a specific system specification.

4.3.1 External synonym

Concrete textual grammar

cextemal synonym definitions :=
SYNONYM cextemal svnonvm name> cpredefined sort> = EXTERNAL

cextemal synonym> ::=
cextemal svnonvm identifier

An cextemal synonym definition> may appear at any place where a csynonym definition> is
allowed, see §5.4.1.13. An cextemal synonym> may be used at any place where a <synonym> is
allowed, see §5.4.2.3. The predefined sorts are: Boolean, Character, Charstring, Integer, Natural,
Real, Pid, Duration or Time.

Semantics

An <extemal synonym> is a <synonym> whose value is not specified in the system definition. This
is indicated by the keyword EXTERNAL which is used instead of a <simple expression>.

A generic system definition is a system definition that contains <extemal synonym>s, or cinformal
text> in a transition option (see §4.3.4). A specific system definition is created from a generic
system definition by providing values for the <extemal synonym>s, and transforming cinformal
text> to formal constructs. How this is accomplished, and the relation to the abstract grammar, is
not part of the language definition.

4.3.2 Simple expression

Concrete textual grammar

<simple expression> ::=
<ground expression>

A <simple expression> must only contain operators, synonyms and literals of the predefined sorts.

Semantics

A simple expression is a Ground-expression.

100 Fascicle X.l — Rec. Z.100

4.3.3 Optional definition

Concrete textual grammar

cselect definition> ::=
SELECT IF (cboolean simple expression>) <end>
{<block definition>

I <textual block reference>
I cchannel definition>
I <signal definition>
I <signal list definition>
I cdata definition>
I <process definition>
I <textual process reference>
I <timer definition>
I cservice signal route definition>
I <channel connection>
I <channel endpoint connection>
I <variable definition>
I <view definition>
I <import definition>
I <procedure definition>
I <textual procedure reference>
I <service definition>
I <textual service reference>
I <signal route definition>
I <channel to route connection>
I <signal route connection>
I cselect definition>
I cmacro definition> }+

ENDSELECT <end>

The c boolean simple expression> must not be dependent on any definition within the cselect
definition>. A cselect definition> must contain only those definitions that are syntactically allowed
at that place.

Concrete graphical grammar

coption area> ::=
coption symbol> contains
{ SELECT IF (cboolean simple expression>)
{cblock area>

I cchannel definition area>
I csystem text area>
I cblock text area>
I cprocess text area>
I cprocedure text area>
I cblock substructure text area>
I cchannel substructure text area>
I cservice text area>
I cmacro diagram>

Fascicle X.l - Rec. Z.100 101

I <process area>
I <signal route definition area>
I <create line area>
I <procedure area>
I coption area>
I cservice area>
I cservice signal route definition area> }+ }

The coption symbol> is a dashed polygon having solid comers, for example:

I 1

An coption symbol> logically contains the whole of any one-dimensional graphical symbol cut by
its boundary (i.e. with one end point outside).

The cboolean simple expression> must not be dependent on any area or diagram within the coption
area>.

An coption area> may appear anywhere, except within a cprocess graph area>, cprocedure graph
area> and cservice graph area>. An coption area> must contain only those areas and diagrams that
are syntactically allowed at that place.

Semantics

If the value of the cboolean simple expression> is false, then the constructs contained in the cselect
definition> and coption symbol> are not selected. In the other case the constructs are selected.

Model

The cselect definition> and the coption area> are deleted at transformation and are replaced by the
contained selected constructs, if any.

102 Fascicle X.l — Rec. Z.100

Example

In system Alfa there are three blocks: Bl, B2 and B3. Block Bl and the channels connected to it
are optional, dependent on the values of the external synonyms p and extension. In SDL/PR this
example is represented as follows.

SYSTEM Alfa;
SYNONYM p Integer = EXTERNAL;
SYNONYM extension Boolean = EXTERNAL;
SIGNAL sl,s2,s3,s4,s5,s6,s7;
SELECT IF (p = 3 AND extension);

BLOCK Bl REFERENCED;
CHANNEL Cl FROM ENV TO Bl WITH s i ; ENDCHANNEL Cl;
CHANNEL C2 FROM B1 TO B2 WITH s2 ; ENDCHANNEL C2;
CHANNEL C6 FROM B3 TO B1 WITH s6; ENDCHANNEL C6;

ENDSELECT*
CHANNEL C3 FROM B2 TO ENV WITH s3 ; ENDCHANNEL C3;
CHANNEL C4 FROM B3 TO B2 WITH s4 ; ENDCHANNEL C4;
CHANNEL C5 FROM B2 TO B3 WITH s5; ENDCHANNEL C5;
CHANNEL C7 FROM ENV TO B3 WITH s7 ; ENDCHANNEL C7;
BLOCK B2 REFERENCED;
BLOCK B3 REFERENCED;

ENDS YSTEM Alfa;

The same example is in SDL/GR syntax represented as shown below.

Fascicle X.l — Rec. Z.100

4.3.4 Optional transition string

Concrete textual grammar

<transition option> ::=
ALTERNATIVE <altemative question> <end>
{<answer part> <else part>

I <answer part> { canswer part> }+ [<elsepart>] }
END ALTERNATIVE

<altemative questions :=
<simple expression>

I <informal text>

Every <ground expression> in <answer> must be a <simple expression>. The <answer>s in a
ctransition option> must be mutually exclusive. If the caltemative question> is an <expression>,
the Range-condition of the <answer>s must be of the same sort as of the caltemative question>.

Concrete graphical grammar

ctransition option area> ::=
ctransition option symbol> contains {caltemative question>}
is followed by {coption outlet 1> {coption outlet 1> I coption outlet2> }

{ coption outletl> }* }set

ctransition option symbol> ::=

Z X
coption outletl> ::=

cflow line symbol> is associated with cgraphical answer>
is followed by ctransition area>

coption outlet2> ::=
cflow line symbol> is associated with ELSE
is followed by ctransition area>

The cflow line symbol> in coption outletl> and coption outlet2> is connected to the bottom of the
ctransition option symbol>. The cflow line symbol>s originating from a ctransition option
symbol> may have a common originating path. The cgraphical answer> and ELSE may be placed
along the associated cflow line symbol>, or in the broken cflow line symbol>.

The cgraphical answer>s in a ctransition option area> must be mutually exclusive.

104 Fascicle X.l — Rec. Z.100

Semantics,

Constructs in an coption outletl> are selected if the <answer> contains the value of the caltemative
question>. If none of the canswer>s contains the value of the caltemative question>, then the
constructs in the coption outlet2> are selected.

If no coption outlet2> is provided and none of the outgoing paths is selected then the selection is
invalid.

Model

The ctransition option> and ctransition option area> is deleted at transformation and is replaced by
the contained selected constructs.

Example

A fragment of a cprocess definition> containing a ctransition option> is shown below, p and s are
synonyms.

ALTERNATIVE p + s;
(>2): TASK 'Do what you want';

NEXTSTATE-;
ELSE: TASK 'Do nothing’;

NEXTSTATE Hum;
ENDALTERNATTVE;

The same example in concrete graphical syntax is shown below.

i
'Do what
you want'

Fascicle X .l — Rec. Z.100 105

4.4 Asterisk state

Concrete textual grammar

<asterisk state list> ::=
<asterisk> [(estate name> {, estate name>}*)]

easterisk> ::=
*

In a eprocess body>, eprocedure body> or eservice body>, at least one estate list> must be
different from easterisk state list>. The e state name>s in an easterisk state list> must be distinct
and must be contained in other estate list>s in the enclosing eprocess body>, eprocedure body> or
eservice body>.

The estate name>s in the easterisk state list> must not include all e state name>s in the enclosing
eprocess body>, eprocedure body> or eservice body>.

Concrete graphical grammar

A estate area> containing easterisk state list> must not coincide with a enextstate area>.

Model

An easterisk state list> is transformed to a estate list> containing all e state name>s of the eprocess
body>, eservice body> or eprocedure body> in question, except for those e state name>s contained
in the easterisk state list>.

4.5 Multiple appearance of state

Concrete textual grammar

A e state name> may appear in more than one estate> of a eprocess body>, eservice body> or
eprocedure body>.

Model

When several estate>s contain the same e state name>, these estate>s are concatenated into one
estate> having that e state name>.

4.6 Asterisk input

Concrete textual grammar

easterisk input list> ::=
easterisk>

A estate> may contain at most one easterisk input list>. A estate> must not contain both easterisk
input list> and easterisk save list>.

106 Fascicle X.l - Rec. Z.100

Model

An easterisk input list> is transformed to a list of estimulus>s containing the complete valid input
signal set of the enclosing eprocess definition> or eservice definitions except for e signal
identifiers of implicit signals and for e signal identifiers contained in the other einput list>s and
esave list>s of the estates and in all epriority input>s of the eservice definition> § 4.10.

4.7 Asterisk save

Concrete textual grammar

easterisk save list> ::=
easterisk>

A estate> may contain at most one easterisk save list>. A estate> must not contain both easterisk
input list> and easterisk save list>.

Model

An easterisk save list> is transformed to a list of estimulus>s containing the complete valid input
signal set of the enclosing eprocess definition> or eservice definitions except for e signal
identifiers of implicit signals and for e signal identifiers contained in the other einput list>s and
esave list>s of the estates and in all epriority input>s of the eservice definition> § 4.10.

4.8 Implicit transition

Concrete textual grammar

A e signal identifier contained in the complete valid input signal set of a eprocess definition> or
eservice definition> may be omitted in the set of esignal identifiers contained in the einput list>s,
epriority input list>s and the esave list> of a estate>.

Model

For each estate> there is an implicit einput p a rr containing a etransition> which only contains a
enextstate> leading back to the same estatex

4.9 Dash nextstate

Concrete textual grammar

edash nextstate> ::=
ehyphen>

ehyphen>::=

The etransition> contained in a estart> must not lead, directly or indirectly, to a edash nextstatex

Fascicle X.l - Rec. Z.100 107

Model

In each <nextstate> of a <state> the <dash nextstate> is replaced by the estate name> of the
estatex

4.10 Service

The behaviour of a process in basic SDL is defined by a process graph. The service concept
offers an alternative to the process graph through a set of service definitions. In many situations
service definitions can reduce the overall complexity and increase the readability of a process
definition. In addition, each service definition may define a partial behaviour of the process, which
may be useful in some applications.

4.10.1 Service decomposition

Concrete textual grammar

<service decomposition> ::=
{<service signal route definition>

I csignal route connection>
I <service definition>
I <select defmition>
I ctextual service reference>}+

cservice signal route definition> ::=
SIGNALROUTE cservice signal route name>
cservice signal route path>
[cservice signal route path>]

cservice signal route path> ::=
{FROM cservice identifier TO cservice identifier

I FROM cservice identifier TO ENV
I FROM ENV TO cservice identifier }

WITH csignal list> cend>

csignal route connection> ::=
CONNECT csignal route identifier
AND cservice signal route identifier f. cservice signal route identifier)* cend>

ctextual service reference> ::=
SERVICE cservice name> REFERENCED cend>

When a cprocess definition> contains a cservice decompositions it must not contain ctimer
definitions outside the cservice decompositions

A cservice decomposition> must contain at least one cservice definitions

Similar wellformedness rules apply for cservice signal route> as for csignal routes

108 Fascicle X.l — Rec. Z.100

Concrete graphical grammar

<service interaction area> ::=
{ <service area> I <service signal route definition area> }+

<service area> ::=
<graphical service reference>

I <service diagram>

<graphical service reference> ::=
<service symbol> contains <service name>

<service symbol> ::=

<service signal route definition area> ::=
<signal route symbol>
is associated with (<service signal route name>

r<signal route identifier]
<signal list area>
[<signal list area>] }set

is connected to {<service area>
{<service area> I <ffame symbol>} }set

When the <signal route symbol> is connected to the <frame symbol>, then the <signal route
identifier identifies an external signal route to which the signal route is connected.

The <service decomposition> is an alternative to the <process body>, and expresses the same
behaviour.

The service concept is modeled by transforming the <service decomposition> to primitive
concepts. Transformation of <service signal route definitions and <signal route connection>s
results in nothing.

Semantics

Model

Fascicle X .l — Rec. Z.100 109

Concrete textual grammar

<service definition> ::=
SERVICE (<service name> I cservice identifier} <end>
[<valid input signal set>]
{cvariable definition>

I <data definition>
I <timer definition>
I cview definition>
I cimport definition>
I cselect definition>
I cmacro definition>
I cprocedure definition>
I ctextual procedure reference>}*

cservice body>
ENDSERVICE f I cservice name> I c service identifier)} cend>

cservice body> ::=
cprocess body>

cpriority input> ::=
PRIORITY INPUT cpriority input list> cend> ctransition>

cpriority input list> ::=
cpriority stimulus> {, cpriority stimulus>}*

cpriority stimulus> ::=
cprioritv signal identifier [(fcvariable identifier>] {, fcvariable identifier] } *)]

cpriority output> ::=
PRIORITY OUTPUT cpriority output body>

cpriority output body> ::=
cprioritv signal identifier [cactual parameters>]
{, cprioritv signal identifier [cactual parameters>] }*

A signal is a high priority signal in a process if and only if it is mentioned in a <priority input> of
a <service definition> in that process.

A cvariable definition> in a cservice definition> must not contain the keyword EXPORTED or
REVEALED.

A cprioritv signal identifier in a cpriority output> must not be contained in an cinput part> or in a
csave p a rr . A cprioritv signal identifier in a cpriority input> must not be contained in an
coutput>.

The same rule on valid input signal set and service signal route stated in 2.5.2 on process applies.

The cservice decomposition> may contain cservice signal route definition>s only if the enclosing
cblock definition> contains csignal route definitions.

Only one of the cservice definitions in a cservice decomposition> is allowed to have a cstart>
containing a ctransition string>. All other cstarts must contain only cnextstate>.

4 . 10.2 Service definition

110 Fascicle X.l — Rec. Z.100

The complete valid input signal sets (each such sets being a union of the cvalid input signal set>
and the set of signals conveyed on incoming cservice signal route>s of a cservice definition>) of
the cservice definitions within a cprocess definition> must be disjoint.
A <procedure definition> must not have <state>s when the enclosing <process definition> con­
tains a <service definitions <procedure definitions visible to more than one service must not
contain a VIA construct.
The set of priorities associated to ccontinuous signals within the various cservice definitions of a
cservice decomposition> must not overlap.

Similar wellformedness rules apply for csignal route connect> as for cchannel to route
connections

If the enclosing cservice decomposition> contains any cservice signal route definitions then for
each csignal route identifier in an coutput> there must exist a service signal route originating from
the enclosing service and connected to the signal route, and able to convey the signals denoted by
the c signal identifiers contained in the coutputx

If an coutput> does not contain a VIA construct, then there must exist at least one communication
path (either implicit to own service, or via (possibly implicit) service signal routes, and possibly
signal routes and channels), originating from the service, that is able to convey the signals denoted
by the csignal identifiers contained in the coutputx

For each cprioritv output> there must exist at least one communication path (either implicit to own
service, or via (possibly implicit service signal routes), originating from the service that is able to
convey the signals denoted by the cprioritv signal identifiers contained in the cpriority output>.

cpriority input> is only allowed in a cservice body>. cpriority output> is only allowed in a
cservice body> and in cprocedure body>.

Concrete graphical grammar

cservice diagram> ::=
cframe symbol> contains
{cservice heading>

{ {cservice text area> }*
{cgraphical procedure reference>}*
{cprocedure diagram>} *
{cmacro diagram>} *
cservice graph area> }set }

cservice heading> ::=
SERVICE {cservice namec I cservice identifier}

cservice text area>
ctext symbol> contains
{ cvariable definition>

I cdata definition>
I ctimer defmition>
I cview definition>
I cimport definition>
I cselect definition>
I cmacro definition> }*

cservice graph area> ::=

Fascicle X.l - Rec. Z.100 111

<priority input association area>
<solid association symbol> is connected to <priority input area>

<priority input area> ::=
<priority input symbol> contains <priority input list>
is followed by ctransition area>

cpriority input symbol> ::=

j h

cpriority output area> ::=
cpriority output symbol> contains cpriority output body>

cpriority output symbol> ::=

O

<process graph area>

Semantics

The properties of a service are derived from the requirement that the cservice decomposition>
replacing a cprocess body> expresses the same behaviour as the cprocess body>.

Within a process instance there is a service instance for each cservice definition> in the cprocess
definitionx Service instances are components of the process instance, and cannot be manipulated
(created, addressed or aborted) as separate objects. They share the input port and the expressions
SELF, PARENT, OFFSPRING and SENDER of the process instance.

A service instance is a finite state machine, but it cannot run in parallel with other service instances
of the process instance, i. e. within a process instance only one service instance can perform a
transition at any one time.

In cpriority output body> the construct TO SELF is implied. Priority signals are a special class of
signals that have higher priority than ordinary signals. These signals can be sent only between
service instances within the same process instance.

An input signal from the input port is given to the service instance that is able to receive that signal.

Model

a) Transformation of definitions

Local definitions within a cservice definition> are transformed to the process level by
replacing every occurrence of a name in the service by the same distinct new name. Every
references to services in qualifiers disappear.
View definitions or import definitions containing the same view or import variable are
merged into one view or import definition.

112 Fascicle X.l — Rec. Z.100

Transformation of <service body>s

The set of <service body>s is transformed into one <process body>. This may be done in
several alternative ways. Here, a simple transformation is chosen, since the main objective is
to define the service concept by strict concrete syntax. For practical reason a <service body>
and a <process body> is regarded as a graph composed of states,, transition strings between
states, stop transition strings and one start transition string. A transition string is uniquely
defined by a start state, an input and an end state.

1) States

A state in the resulting process graph is identified by a name-tuple. The dimension of
the tuple is the number of service graphs. Each tuple component refers uniquely to one
of the original services graphs, and the value of the tuple component is one of the state
names of the referred service graph. The state names of the process graph will then be
the set of tuples that is possible to construct using these rules. Example:

Given two service graphs and their states

fl: <a>
f2: <A> <C>

then the resulting process graph has the following states

<a.A> <a.B> <a.C> <b.A> <b.B> <b.C>

This state explosion can normally be reduced substantially, but this is not treated here.

2) transition strings

Each transition string in a service graph is copied into the process graph in one or more
places. It is copied to connect each pair of state tuples that satisfies the following
conditions:

One component of the start state tuple refers to the start state of the transition string
One component of the end state tuple refers to the end state of the transition string
the other component values must be the same for both state tuples

Example:

In the previous example we have a transition string in f2 between and <C>. In the
resulting process graph, this transition string will connect <a.B> to <a.C> and <b.B>
to <b.C>. This can be expressed more concisely (using the short hand notation of the
concrete syntax):

<*.B> is transformed to <-.C>

3) Start transition strings

If one of the service graphs contains a start transition string, then this transition string is
transformed into the start transition string of the process graph. The start transition
string of the process graph leads to the state tuple having as components all the initial
state names of the service graph.

Fascicle X .l — Rec. Z.100 1

4) Stop transition strings

Each transition leading to a <stop> is copied into the process graph and it is connected
to each state tuple having one component that refers to the start state of the transition.

5) Priority signals

The priority signals are transformed as follows.

Each state of the resulting process graph is split into two states. Priority inputs to the
original state are connected to the first state, all other inputs to the second state and are
saved in the first state. The transition string leading to the original state is now leading
to the first state. To this transition string is added the following action string:

a unique token-value is generated and is assigned to the implicit variable
SAME_TOKEN
the implicit signal X_CONT is sent to SELF, carrying the token-value.

An input for the implicit signal X_CONT is added to the first state, followed by the
following transition string:

A decision compares the received token-value with the value of S AME_TOKEN.
If the values are equal, then a path leading to the second state is chosen, otherwise
a part leading back to the first state.

Example

An example of a <process definition> containing a <service decomposition> is given below as well
as the corresponding <service definitions. This process has the same behaviour of the one given in
Figure 2.9.9 in § 2.9.

PROCESS Game;
FPAR Player pid;
SIGNAL Proberers (integer);
DCL A integer,

SIGNALROUTE IR1 FROM Game_handler TO ENV WITH Score,Gameid;
SIGNALROUTE IR2 FROM Game_handler TO ENV WITH Subscr,Endsubscr;
SIGNALROUTE IR3 FROM ENV TO Game_handler WITH Result,Endgame;
SIGNALROUTE IR4 FROM ENV TO Bump_handler WITH Probe;
SIGNALROUTE IR5 FROM ENV TO Bump_handler WITH Bump;
SIGNALROUTE IR6 FROM Bumpjiandler TO ENV WITH Lose,Win;
SIGNALROUTE IR7 FROM Bump_handler TO Game_handler WITH Proberers;

CONNECT R5 AND IR5;
CONNECT R2 AND IR3,IR4;
CONNECT R3 AND IR1,IR6;
CONNECT R4 AND IR2;

SERVICE Game_handler REFERENCED;
SERVICE Bump_handler REFERENCED;

ENDPROCESS Game;

114 Fascicle X.l — Rec. Z.100

SERVICE Game_handler,

/*The service handles a game with actions to start a game,
to end a game, to keep track
of the score and to communicate the score*/

DCL Count integer,
/*Counter to keep track of the score*/

START*
OUTPUT Subscr,
OUTPUT Gameid TO Player,
TASK Count:=0;
NEXTSTATE STARTED;

STATE STARTED;
PRIORITY INPUT Proberers(A);

TASK Count:=Count+A;
NEXTSTATE _;

INPUT Result;
OUTPUT Score(Count) TO Player,
NEXTSTATE _;

INPUT Endgame;
OUTPUT Endsubscr,
STOP;

ENDSTATE STARTED;
ENDSERVICE Game_handler;

SERVICE Bump_handler,

/*The service has actions to register the bumps and
to handle probes from the player.
The probe result is sent to the player but also to the service Game_handler*/

START*
NEXTSTATE EVEN;

STATE EVEN;
INPUT Probe;

OUTPUT Lose TO Player,
PRIORITY OUTPUT Proberers(-l);
NEXTSTATE _;

INPUT Bump;
NEXTSTATE ODD;

ENDSTATE EVEN;
STATE ODD;

INPUT Bump;
NEXTSTATE EVEN;

INPUT Probe;
OUTPUT Win TO Player,
PRIORITY OUTPUT Proberers(+l);
NEXTSTATE _;

ENDSTATE ODD;
ENDSERVICE Bump_handler,

Fascicle X.l - Rec. Z.100 115

The same example in SDL/GR is shown in the following diagrams:

R3 R4

Example of a process diagram with service decomposition

116 Fascicle X.l - Rec. Z.100

SERVICE Game handler

/* The service handles a game \
with actions to start a game, —
to end a game, to keep track of
the score and to communicate
the score */

DCL Count integer;
/* Counter to keep track of

the score */

Proberes
(A) I

I

Subscr

I ""
Gameid
TO Player

)
>

STARTED

I
Result I

CEJ

1(1)

Count := ScorefcountjS.
Count +A TO Player S

FIGURE 4.10.2

Example of a service diagram

Fascicle X .l — Rec. Z.100

I* The service has actions
to register the bumps and
to handle probes from the player.
The probe result is sent to the
player but also to the service
‘Game-handier' 7 ____________

SERVICE Bump_handler

EVEN

Probe I
Lose TO
Player >

Proberes
(- 1)

I

Bump

C

i
<

EVEN

1(1)

Bump

I
<

ODD

Probe I
Win TO
Playe

Proberes^^
(1)

L>
>

FIGURE 4.10.3

Example of a service diagram

Applying the rules from 1 to 4 of the transformation the process graph of Figure 4.10.4 is obtained;
it still contains priority signals not yet transformed. Simplifying in an obvious way the transitions
that contain priority signals and using the asterisk state concept, the same process of Figure 2.9.10
in § 2.9 can be obtained. (Note that the states EVEN and ODD correspond respectively to the states
STARTED.EVEN and STARTED.ODD)

118 Fascicle X.l - Rec. Z.100

Fascicle X.l — Rec. Z.100 1

4.11 Continuous signal

In describing systems with SDL, the situation may arise where a user would like to show that a
transition is caused directly by a true value of a boolean expression. The model of achieving this is
to evaluate the expression while in the state, and initiate the transition if the expression evaluates to
true.A shorthand for this is called Continuous signal, which allows a transition to be initiated
directly when a certain condition is fulfilled.

Concrete textual grammar

ccontinuous signal> ::=
PROVIDED <boolean expression> <end>
[PRIORITY c integer literal name> <end>] <transition>

The values of the cinteger literal name>s in <continuous signal>s of a <state> must be distinct. The
PRIORITY construct may be omitted only if the <state> contains exactly one <continuous signal>.

Concrete graphical grammar

<continuous signal association area> ::=
<solid association symbol> is connected to ccontinuous signal area>

ccontinuous signal area> ::=
cenabling condition symbol>
contains (cboolean expression> [[cend>] PRIORITY cinteger literal name>]}
is followed by ctransition area>

Semantics

The cboolean expression> in the ccontinuous signal> is evaluated upon entering the state to which
it is associated, and while waiting in the state, any time no cstimulus> of an attached cinput list> is
found in the input port. If the value of the cboolean expression> is True, the transition is initiated.
When the value of the cboolean expression> is True in more than one ccontinuous signal>s, then
the transition to be initiated is determined by the ccontinuous signal> having the highest priority,
that is the lowest value for cinteger literal name>.

Model

The state with the name state_name containing ccontinuous signal>s is transformed to the
following. This transformation requires two implicit variables n and newn. The variable n is
initialised to 0. Furthermore an implicit signal emptyQ conveying an integer value is required.

1) All cnextstate>s which mention the state_name are replaced by JOIN 1;

2) The following transition is inserted:

1: TASK n:= n+1;
OUTPUT emptyQ (n) TO SELF;
NEXTSTATE state_name;

3) The following cinput part> is added to the cstate> state_name:

INPUT emptyQ (newn);
and a cdecision> containing the cquestion>

(newn=n)

120 Fascicle X.l — Rec. Z.100

4a) The false <answer part> contains

NEXSTATE state_name;

4b) The true <answer part> contains a sequence of <decision>s corresponding to the
ccontinuous signal>s in priority order (higher priority is indicated by lower value of the
cinteger literal name>).
The False canswer part> contains the next cdecision>, except for the last cdecision> for
which this canswer part> contains: JOIN 1;
Each true canswer part> of these cdecision>s leads to the ctransition> of the corresponding
ccontinuous signalx

Example

See § 4.12.

4.12 Enabling condition

In SDL the reception of a signal in a state immediately initiates a transition. The concept of
Enabling condition makes it possible to impose an additonal condition for the initiation of a
transition.

Concrete textual grammar

cenabling condition> ::=
PROVIDED cboolean expression> cend>

Concrete graphical grammar

cenabling condition area> ::=
cenbling condition symbol> contains cboolean expression>

cenabling condition symbol> ::=

< >
Semantics

The cboolean expression> in the cenabling condition> is evaluated before entering the state in
question, and any time the state is reentered through the arrival of a cstimulusx In the case of
multiple enabling conditions, these are evaluated sequentially in a non deterministic order before
entering the state. The transformation model guarantees repeated reevaluation of the expression by
sending additional cstimulus>s through the input port. A signal denoted in the cinput list> which
precedes the cenabling condition> can start a transition only if the value of the corresponding
cboolean expression> is True. If this value is False, the signal is saved instead.

Fascicle X.l — Rec. Z.100 121

Model

The state with the name state_name containing <enabling conditions is transformed to the
following. This transformation requires two implicit variables n and newn. The variable n is
initialised to 0. Furthermore an implicit signal emptyQ conveying an integer value is required.

1) All <nextstate>s which mention the state_name are replaced by JOIN 1;

2) The following transition is inserted:

1: TASK n:=n+l;
OUTPUT emptyQ (n) TO SELF;

A number of decisions, each containing only one cboolean expression> corresponding to
some cenabling condition> attached to the state, is added hierarchically in a non deterministic
order such that all combination of truth values may be evaluated for all enabling conditions
attached to the state.
Each such combination leads to a new distinct state .

3) Each of these new states has a set of cinput part>s consisting of a copy of these cinput
part>s of the state without enabling conditions plus the cinput part>s for which the
cenabling conditioners cboolean expressions evaluated to true for this state.
The cstimulus>s for the remaining cinput p a rts constitute the csave list> for a new csave
part> attached to this state. The csave p a rts of the original state are also copied to this new
state.

4) Add to each of the new states:

INPUT emptyQ (newn);

A cdecision> containing the cquestion> (newn=n);
The false canswer part> contains a cnextstate> back to this same new state.

5) The true canswer partx contains a JOIN 1;

6) If ccontinuous signals and cenabling conditions are used in the same cstate>, evaluations
of the cboolean expressions from ccontinuous signals are done by replacing step 5 of the
model for cenabling condition> with step 4b of the model for ccontinuous signalx

Example

An example illustrating the transformation of continuous signal and enabling condition appearing in
a state is given below.

Note in the example that the connector ec has been introduced for convenience. It is not part of the
transformation model.

122 Fascicle X.l — Rec. Z.100

STATE1

>

is transformed into

FIGURE 4.12.1
Transformation of continuos signal and enabling condition in the same state

Fascicle X.l — Rec. Z.100 123

4.13 Imported and Exported value

In SDL a variable is always owned by, and local to, a process instance. Normally the
variable is visible only to the process instance which owns it, though it may be declared as a shared
value (see §2) which allows other process instances in the same block to have access to the value
of the variable. If a process instance in another block needs to access the value of a variable, a
signal interchange with the process instance owning the variable is needed.

This can be achieved by the following shorthand notation, called imported and exported
value. The shorthand notation may also be used to export values to other process instances within
the same block, in which case it provides an alternative to the use of shared values.

Concrete textual grammar

<import definition> ::=
IMPORTED cimport name> {, cimport name> }* csort>

{, cimport name> {, c import name> }* csort>}* cend>

cimport expression>
IMPORT (cimport identified [, cpid expression>])

cexport> ::=
EXPORT (cvariable identified {, cvariable identified }*)

Concrete graphical grammar

cexport area>::=
ctask symbol> contains cexport>

Semantics

The process instance which owns a variable whose values are exported to other process instances
is called the exporter of the variable. Other process instances which use these values are known as
importers of the variable. The variable is called exported variable.

A process instance may be both importer and exporter, but it cannot import from or export to the
environment.

a) Export operation

Exported variables have the keyword EXPORTED in their cvariable definitions, and have
an implicit copy to be used in import operations.

An export operation is the execution of an cexport> by which an exporter discloses the
current value of an exported variable . An export operation causes the storing of the current
value of the exported variable into its implicit copy.

b) Import operation

For each cimport definition> in an importer there is a set of implicit variables, all having the
name and sort given in the cimport definitions These implicit variables are used for the
storage of imported values.

124 Fascicle X.l — Rec. Z.100

An import operation is the execution of an cimport expression> by which an importer
accesses the value of an exported variable. The value is stored in an implicit variable denoted
by the cimport identifier in the cimport expressions The exporter containing the exported
variable is specified by the cpid expression> in the cimport expressions If no cPId
expression> is specified then there should be only one instance exporting that variable.The
association between the exported variable in the exporter and the implicit variable in the
importer is specified by having the same cidentifier> in the cexport> and in the cimport
expressions In addition, the exported variable and the implicit variable must have the same
sort.

Model

An import operation is modeled by exchange of signals. These signals are implicit and are conveyed
on implicit channels and signal routes. The importer sends a signal to the exporter, and waits for the
reply. In response to this signal the exporter sends a signal back to the importer with the value
contained in the implicit copy of the exported variable.

If a default assignement is attached to the export variable or if the export variable is initiated when it
is defined, then also the implicit copy is initiated and with the same value as the export variable.

There are two implicit csignal definitions for each combination of cimport name> and csort>
contained in all cimport definitions in a system definition. The csignal nam es in these csignal
definitions is denoted by xtQUERY respectively xtREPLY, where x denotes an cimport name>
and t denotes a csort>. The implicit copy of the exported variable is denoted by imcx.

a) Importer

The cimport expression> 'IMPORT (x, pidexp)' is transformed to the following:

OUTPUT xtQUERY TO pidexp;
Wait in state xtWAIT, saving all other signals;
INPUT xtREPLY (x);
Replace the cimport expression> by x, (the cname> of the implicit variable);

If an cimport expression> occurs more than once in an cexpression>, then a separate
implicit variable with the same cname> is used for each occurence.

b) Exporter

To all estates, including implicit states, of the exporter the following cinput part> is added:

INPUT xtQUERY;
OUTPUT xtREPLY (imcx) TO SENDER;
/* next state the same */

The eexport> 'EXPORT (x)' is transformed to the following:

TASK imcx := x;

Fascicle X .l — Rec. Z.100 125

5 Data in SDL

5.1 Introduction

This introduction gives an outline of the formal model used to define data types and
information on how the rest of § 5 is structured.

In a specification language, it is essential to allow data types to be formally described in
terms of their behaviour, rather than by composing them from provided primitives, as in some
programming languages. The latter approach invariably involves a particular implementation of the
data type, and hence restricts the freedom available to the implementer to choose appropriate
representations of the data type. The abstract data type approach allows any implementation
providing that it is feasible and correct with respect to the specification.

5.1.1 Abstraction in data types

All data used in SDL is based on abstract data types which are defined in terms of their
abstract properties rather than in terms of some concrete implementation. Examples of defining
abstract data types are given in § 5.6 which defines the predefined data facilities of the language.

Although all data types are abstract, and the predefined data facilities may even be
overridden by the user, SDL attempts to provide a set of predefined data facilities which are familiar
in both their behaviour and syntax. The following are predefined:

a) Boolean

b) Character

c) String

d) Charstring

e) Integer

f) Natural

g) Real

h) Array

i) Powerset

j) Pid

k) Duration

1) Time.

The structured sort concept (STRUCT) can be used to form composite objects.

5.1.2 Outline of formalisms used to model data

Data is modelled by an initial algebra. The algebra has designated sorts, and a set of
operators mapping between the sorts. Each sort is the collection of all the possible values which can
be generated by the related set of operators. Each value can be denoted by at least one expression in

126 Fascicle X.l — Rec. Z.100

the language containing only literals and operators (except in the special case of Pid values).
Literals are a special case of operators without arguments.

The sorts and operators, together with the behaviour (specified by algebraic rules) of the
data type, form the properties of the data type. A data type is introduced in a number of partial type
definitions, each of which defines a sort and operators and algebraic rules associated with that sort.

The keyword NEWTYPE introduces a partial type definition which defines a distinct new
sort. A sort can be created with properties inherited from another sort, but with different identifiers
for the sort and operators.

Introduction of a syntype nominates a subset of the values of an already existing sort.

A generator is an incomplete NEWTYPE description: before it assumes the status of a sort,
it must be instantiated by providing the missing information.

Some operators map onto the sort, and so produce (possibly new) values of the sort. Other
operators give meaning to the sort by mapping onto other defined sorts. Many operators map onto
the Boolean sort from other sorts, but it is strictly prohibited for these operators to extend the
Boolean sort.

In SDL a function is known as a passive operator and can have no effect on the values
associated with variables given as parameters. SDL also defines assignment which can change the
values associated with variables.

5.1.3 Terminology

The terminology used in § 5 or the data model is chosen to be in harmony with published
work on initial algebras. In particular ’’data type" is used to refer to a collection of sorts plus a
collection of operators associated with those sorts and the definition of properties of these sorts and
operators by algebraic equations. A "sort" is a set of values with common characteristics. An
"operator" is a relation between sorts. An "equation" is a definition of equivalence between terms of
a sort. A value is a set of equivalent terms. An "axiom" is an equation which defines a Boolean
value to be equivalent to True. However, "axioms" is used as a term for "axiom"s or "equation"s,
and an "equation" can be an "axiom".

5.1.4 Division of text on data

The initial algebra model used for data in SDL is described in a way which allows most of
the data concepts to be defined in terms of a data kernel of the SDL abstract data language.

The text of § 5 is divided into this introduction (§ 5.1), the data kernel language (§ 5.2), the
initial algebra model (§ 5.3), passive use of data (§ 5.4), active use of data (§ 5.5) and predefined
data (§ 5.6).

The data kernel language defines the part of data in SDL which corresponds directly with
the underlying initial algebra approach.

The text on initial algebra gives a more detailed introduction to the mathematical basis of this
approach. This is formulated in a more precise mathematical way in appendix I.

The passive use of SDL includes the implicit and shorthand features of SDL data which
allow its use for the definition of abstract data types. It also includes the interpretation of
expressions which do not involve values assigned to variables. These "passive" expressions
correspond to functional use of the language.

Fascicle X.l - Rec. Z.100 127

The active use of data extends the language to include assignment. This includes assignment
to use of and initialisation of variables. When SDL is used to assign to variables or to access the
values in variables, it is said to be used actively. The difference between active and passive
expressions is that the value of a passive expression is independent of when it is interpreted,
whereas an active expression may be interpreted as different values depending on the current values
associated with variables or the current system state.

The final topic is predefined data.

5.2 The data kernel language

The data kernel can be used to define abstract data types.

More convenient constructs for defining data types can be defined in terms of the constructs
defined for the data kernel, except where the concepts of assignment to a variable are needed. (The
concepts of errors and syntypes could be defined in terms of the kernel but in § 5.4.1.7 and §
5.4.1.9 alternative, more concise, definitions are used).

5.2.1 Data type definitions

At any point in an SDL specification there is an applicable data type definition. The data type
definition defines the validity of expressions and the relationship between expressions. The
definition introduces operators and sets of values (sorts).

There is not a simple correspondence between the concrete and abstract syntax for data type
definitions since the concrete syntax introduces the data type definition incrementally with emphasis
on the sorts (see also § 5.3).

The definitions in the concrete syntax are often interdependent and cannot be separated into
different scope units. For example

NEWTYPE even LITERALS 0;
OPERATORS plusee : even, even -> even;

plusoo : odd, odd -> even;
AXIOMS plusee(a,0) == a;

plusee(a,b) == plusee(b,a);
plusoo(a,b) == plusoo(b,a);

ENDNEWTYPE even COMMENT 'even "numbers" with plus-depends on odd';
NEWTYPE odd LITERALS 1;

OPERATORS plusoe : odd, even -> odd;
pluseo : even, odd -> odd;

AXIOMS plusoe(a,0) = a;
pluseo(a,b) == plusoe(b,a);

ENDNEWTYPE odd; /*odd "numbers" with plus - depends on even*/

Each data type definition is complete; there are no references to sorts or operators which are
not included in the data type definition which applies at a given point. Also a data type definition
must not invalidate the semantics of a data type definition in the immediately surrounding scope
unit. A data type in an enclosed scope unit only enriches operators of sorts defined in the outer
scope unit. A value of a sort defined in a scope unit may be freely used and passed between or from
hierarchically lower scope units. Since predefined data is defined at system level the predefined
sorts (for example Boolean and Integer) may be freely used throughout the system.

128 Fascicle X.l — Rec. Z.100

Abstract grammar

Data-type-definition

Type-union

Type-identifier

Sorts

Type-name

Sort-name

Equations

Type-name
Type-union
Sorts
Signature-set
Equations

Type-identifier-set

Identifier

Sort-name-set

Name

Name

Equation-set

Within a data type definition for each Sort there must be at least one Signature with a Result (see
§ 5.2.2) which is the same as the Sort.
A data type definition must not add new values to any sort of the data type identified by the type
union.

If one term (see § 5.2.3) is non-equivalent to another term according to the data type identified by
the type union of a data type definition, then these terms must not be defined to be equivalent by
the data type definition.

In addition the two Boolean terms True and False must not be (directly or indirectly) defined to be
equivalent (see § 5.4.3.1). Also it is not allowed to reduce the number of values for the predefined
sort Pid.

Note — The abstract syntax allows more than one type identity for a type union to harmonise
with the more general class of algebras used for the underlying model - in SDL only one type is
referenced because in the concrete syntax the visible data type is implicitly defined by the
surrounding <scope unit class>; therefore ctype union> is only referenced in the abstract syntax
and is either the type identifier of the surrounding scope unit or in the case of a <system
definition> an empty set.

Concrete textual grammar

<partial type definition> ::=
NEWTYPE csort name> [cextended properties>] cproperties expression>

ENDNEWTYPE [csort name>]

cproperties expression>
coperators> [AXIOMS caxioms>] [cliteral mapping>] [cdefault assignment]

The optional cextended properties>, cliteral mapping> and cdefault assignment are not part of the
data kernel and are defined in sections § 5.4.1, § 5.4.1.15 and § 5.5.3.3 respectively.

The data type definition is represented by the collection of all the cpartial type definitions in the
current cscope unit class> combined with the data type definition identified by the type union of
the surrounding cscope unit class>. The type name of a cdata type definition> is implied and does

Fascicle X .l — Rec. Z.100 129

not have a concrete syntax representation. The type identifier of a type union is implied to be the
identity of the data type definition of the surrounding scope unit.

The following <scope unit class>s (see § 2.2.2) each represent an item in the abstract syntax which
contains a data type definition : <system definitions cblock definitions cprocess definitions
cprocedure definitions <channel substructure definition> or cblock substructure definition> or the
corresponding diagrams in graphical syntax. The cpartial type definition> in a cservice definition>
represents part of the data type definition in the enclosing cprocess definition> of the cservice
definition> (see § 4.10).

The sorts for a cscope unit class> are represented by the set of csort name>s introduced by the set
of cpartial type definitions of the cscope unit class>.

The signature set and equations for a cscope unit class> are represented by the cproperties
expressions of the cpartial type definitions of the cscope unit class>.

The coperators> of a cproperties expression> represents part of the signature set in the abstract
syntax. The complete signature set is the union of the signature sets defined by the cpartial type
definitions in the cscope unit class>.

The caxioms> of a cproperties expression> represents part of the equation set in the abstract
syntax. The equations is the union of the equation sets defined by the cpartial type definitions in
the cscope unit class>.

The predefined data sorts have their implicit cpartial type definitions at the system level.

If a c sort name> is given after the keyword ENDNEWTYPE then it must be the same as the csort
name> given after the keyword NEWTYPE.

Semantics

The data type definition defines a data type. A data type has a set of type properties, that is: a set of
sorts, a set of operators and a set of equations.

The properties of data types are defined in the concrete syntax by partial type definitions. A partial
type definition does not introduce all the properties of a data type but only partially defines some of
the properties related to the sort introduced in the partial type definition. The complete properties of
a data type are found by considering the combination of all partial type definitions which apply
within the scope unit containing the data type definition.

A sort is a set of data values. Two different sorts have no values in common.

The data type definition is formed from the data type definition of the scope unit defining the
current scope unit taken in conjunction with the sorts, operators and equations defined in the
current scope unit. The system definition contains the definition of the predefined data sorts.

Except within a cpartial type definitions a csignal refinement or a cservice definitions the data
type definition which applies at any point is the data type defined for the scope unit immediately
enclosing that point. Within a cpartial type definition> or a csignal refinement the data type
definition which applies is the data type definition of the scope unit enclosing the cpartial type
definition> or csignal refinement respectively. Within a cservice definition> it is the data type
definition of the enclosing cprocess definition> of the cservice definition> which applies (see
§4.10).

The set of sorts of a data type is the set of sorts introduced in the current scope unit plus the set of

130 Fascicle X.l — Rec. Z.100

sorts of the data type identified by the type union. The set of operators of a data type is the set of
operators introduced in the current scope unit plus the set of operators of the data type identified by
the type union. The set of equations of a data type is the set of equations introduced in the current
scope unit plus the set of equations of the data type identified by the type union.

Each sort introduced in a data type definition has an identifier which is the name introduced by a
partial type definition in the scope unit qualified by the identifier of the scope unit.

A data type has an identifier which is the unique type name in the abstract syntax qualified by the
identity of the scope unit. There is no name for a data type in the concrete syntax.

Example

NEWTYPE telephone
/* operators and construction of values defined elsewhere*/

ENDNEWIYPE telephone;

5.2.2 Literals andparameterised operators

Abstract grammar

Signature =

Literal-signature

Operator-signature

Argiunent-list

Result

Sort-reference-identifier

Literal-operator-name

Operator-name

Sort-identifier

Literal-signature I
Operator-signature

Literal-operator-name
Result

Operator-name
Argument-list
Result

Sort-reference-identifier +

Sort-reference-identifier

Sort-identifier I
Syntype-identifier

Name

Name

Identifier

Syntypes and syntype identifiers are not part of the kernel (see § 5.4.1.9).

Concrete textual grammar

<operators> ::=
[cliteral list>] [coperator list>]

cliteral list> ::=
LITERALS cliteral signature> {, cliteral signature> }* [cend>]

Fascicle X .l — Rec. Z.100

cliteral signature> ::=
cliteral operator name>

I cextended literal name>

coperator list> ::=
OPERATORS

coperator signature> { cend> coperator signature> }* [cend>]

coperator signature> ::=
coperator name> : cargument list> -> cresult>

I cordering>

coperator name> ::=
coperator name>

I cextended operator name>

cargument list>
cargument sort> { , cargument sort> }*

cargument sort> ::=
cextended sort>

cresult> ::=
cextended sort>

cextended sort> ::=
csort>

I cgenerator sort>

csort> ::=
csort identifier

I csyntype>

The alternatives cextended operator name>, cextended literal name>, cordering>, cgenerator
sort>, cgenerator sort> and csyntype> are not part of the data kernel and are defined in § 5.4.1, §
5.4.1, § 5.4.1.8, § 5.4.1.12.1, § 5.4.1.12.1 and § 5.4.1.9 respectively.

Literals are introduced by cliteral signatures>s listed after the keyword LITERALS. The result of a
literal signature is the sort introduced by the cpartial type definition> defining the literal.

Each coperator signature> in the list of coperator signatures after the keyword OPERATORS
represents an operator signature with an operator name, an argument list and a result.

The coperator name> corresponds to an operator name in the abstract syntax which is unique
within the defining scope unit even though die name may not be unique in the concrete syntax.

The unique Operator-name or Literal-operator-name in the abstract syntax is derived from

a) the coperator name> (or cliteral operator name>), plus

b) the list of argument sort identifiers, plus

c) the result sort identifier, plus

132 Fascicle X.l - Rec. Z.100

d) the sort identifier of the partial type definition in which the coperator name> (or cliteral
operator name>) is defined.

Whenever an coperator identified is specified then the unique operator name in operator identifier
is derived in the same way with the list of argument sorts and the result sort derived from context.
Two operators with the same cname> which differ by one or more of the argument or result sorts
have different names.
Each cargument sort> in an cargument list> represents a sort reference identifier in an argument
lis t. A cresult> represents the sort reference identifier of a result.

Wherever a cqualifier> of an coperator identified (or cliteral operator identified) contains a cpath
item> with the keyword TYPE, then the csort name> after this keyword does not form part of the
Qualifier of the Operator-identifier (or Literal-operator-identifier) but is used to derive the unique
Name of the Identifier. In this case the Qualifier is formed from the list of cpath item>s preceding
the keyword TYPE.

Semantics

An operator is "total" which means that application of the operator to any list of values of the
argument sorts denotes a value of the result sort.

An operator signature defines how the operator may be used in expressions. The operator signature
is the operator identity plus the list of sorts of the arguments and the sort of the result. It is the
operator signature which determines whether an expression is a valid expression in the language
according to the rules required for matching the sorts of argument expressions.

An operator with no argument is called a literal.

A literal represents a fixed value belonging to the result sort of the operator.

An operator has a result sort which is the sort identified by the result.

Note — As guidelines: an coperator signature> should mention the sort introduced by the
enclosing cpartial type definition> as either an cargument> or a cresult>.

Example 1

LITERALS free, busy;

Example 2

OPERATORS
findstate : Telephone-> Availability;

Example 3

LITERALS empty_list
OPERATORS add_to_list : list_of_telephones, telephone -> list_of_telephones;

sub_list : list__of_telephones, telephone -> list_of_telephones

5.2.3 Axioms

The axioms determine which terms represent the same value. From the axioms in a data type
definition the relationship between argument values and result values of operators is determined and
hence meaning is given to the operators. Axioms are either given as Boolean axioms or in the form

Fascicle X .l — Rec. Z.100 133

of algebraic equivalence equations.

Abstract grammar

Equation

Unquantifted-equation

Quantified-equations

Value-name

Term

Composite-term

Value-identifier

Operator-identifier

Ground-term

Literal-operator-identifier

The alternatives Conditional-composite-term and Conditional-ground-term in the rules
Composite-term and Ground-term respectively are not part of the data kernel, although the
equations containing these terms may be replaced by semantically equivalent equations written in
the kernel language (see § 5.4.1.6). The alternative error term in the rule term is not part of the
data kernel and is defined in § 5.4.1.7.

The definitions of informal text and conditional equations are given in § 2.2.3 and § 5.2.4
respectively.

Each term (or ground term) in the list of terms after an operator identifier must have the same sort
as the corresponding (by position) sort in the argument list of the operator signature.

The two terms in an unquantified equation must be of the same sort.

Concrete textual grammar

<axioms> ::=
<equation> { <end> <equation>}* [<end>]

Unquantified-equation I
Quantified-equations I
Conditional-equation I
Informal-text

Term
Term

Value-name-set
Sort-identifier
Equations

Name

Ground-term I
Composite-term I
Error-term

Value-identifier I
Operator-identifier Term+ I
Conditional-composite-term

Identifier

Identifier

Literal-operator-identifier I
Operator-identifier Ground-term* I
Conditional-ground-term

Identifier

134 Fascicle X.l — Rec. Z.100

cequation> ::=
cunquantified equation>

I <quantified equations>
I conditional equation>
I <informal text>

cquantified equations> ::=
<quantification> (<axioms>)

<quantification> ::=
FOR ALL <value name> { , <value name> }* IN extended sort>

<unquantified equation> ::=
<term> == <term>

I <Boolean axiom>

<term> ::=
<ground term>

I composite term>
I e rro r term>
I <spelling term>

composite term> ::=
<value identifier

I <operator identifier (composite term list>)
I (composite term>)
I extended composite term>

composite term list> ::=
composite term> { , <term> }*

I <term> , composite term list>

<ground term> ::=
<literal identifier

I <operator identifier (<ground term> { , <ground term> }*)
I (<ground term>)
I extended ground term>

<literal identifier ::=
<literal operator identifier

I extended literal identifier

The alternatives <Boolean axiom> of rule cunquantified equation>, cerror term> and cspelling
term> of rule <term>, cextended composite term> of rule composite term>, cextended ground
term> of rule cground term>, and cextended literal identifier of rule cliteral identifier are not
part of the data kernel and are defined in § 5.4.1.5, § 5.4.1.7, § 5.4.1.15, § 5.4.1, § 5.4.1, and §
5.4.1 respectively.

The csort> in a cquantification> represents the sort identifier in quantified equations . The cvalue
name>s in a cquantification> represents the value name set in quantified equations .

A ccomposite term list> represents a term list. An operator identifier followed by a term list is
only a. composite term if the term list contains at least one value identifier.

An cidentifier which is an unqualified name appearing in a cterm> represents

Fascicle X.l - Rec. Z.100 « 135

a) an operator identifier if it precedes an open round bracket (or it is an coperator name>
which is an cextended operator name> - see § 5.4.1), otherwise

b) a value identifier if there is a definition of that name in a cquantification> of cquantified
equations> enclosing the cterm> of a suitable sort for the context, otherwise

c) a literal operator identifier if there is a visible literal with that name of a suitable sort for the
context, otherwise

d) a value identifier which has an implied quantified equation in the abstract syntax for the
cunquantified equations

Two or more occurrences of the same unbound cvalue identifier in an cequation> imply only one
quantification.

An operator identifier is derived from the context so that if the coperator name> is overloaded (that
is the same cname> is used for more than one operator) then it will be the operator name which
identifies a visible operator with the same name and the argument sorts and result sort consistent
with the operator application. If the coperator name> is overloaded then it may be necessary to
derive the argument sorts from the arguments and the result sort from context in order to determine
the operator name.

Within one cunquantified equation> there must be exactly one sort for each implicitly quantified
value identifier which is consistent with all its uses.

It must be possible to bind each unqualified coperator identifier> or c literal operator identified to
exactly one defined operator identifier or literal operator identifier which satisfies the conditions in
the construct in which the cidentifier> is used. That is the binding shall be unique.

Note — As guidelines: an axiom should be relevant to the sort of the enclosing partial type
definition by mentioning an operator or literal with a result of this sort or an operator which has an
argument of this sort; an axiom should be defined only once.

Semantics

Each equation is a statement about the algebraic equivalence of terms. The left hand side term and
right hand side term are stated to be equivalent so that where one term appears, the other term may
be substituted. When a value identifier appears in an equation then it may be simultaneously
substituted in that equation by the same term for every occurrence of the value identifier. For this
substitution the term may be any ground term of the same sort as the value identifier.

Value identifiers are introduced by the value names in quantified equations. A value identifier is
used to represent any data values belonging to the sort of the quantification. An equation will hold
if the same value is simultaneously substituted for every occurrence of the value identifier in the
equation regardless of the value chosen for the substitution.

A ground term is a term which does not contain any value identifiers. A ground term represents a
particular, known value. For each value in a sort there exists at least one ground term which
represents that value.

If any axioms contain informal text then the interpretation of expressions is not formally defined by
SDL but may be determined from the informal text by the interpreter. It is assumed that if informal
text is specified the equation set is known to be incomplete, therefore complete formal specification
has not been given in SDL.

136 • Fascicle X.l — Rec. Z.100

A value name is always introduced by quantified equations in the abstract syntax, and the
corresponding value has a value identifier which is the value name qualified by the sort identifier of
the enclosing quantified equations. For example

FOR ALL z,z IN X (FOR ALL z IN X ...))
introduces only one value identifier named z of sort X.

In the concrete syntax it is not allowed to specify a qualifier for value identifiers.

Each value identifier introduced by quantified equations has a sort which is the sort identified in the
quantified equations by the sort reference identifier. The sort of the implied quantifications is the
sort required by the context(s) of the occurrence of the unbound identifier. If the contexts of a value
identifier which has implied quantification allow different sorts then the identifier is bound to a sort
which is consistent with all its uses in the equation.

A term has a sort which is the sort of the value identifier or the result sort of the (literal) operator.

Unless it can be deduced from the equations that two literals denote the same value then each literal
denotes a different value.

Example 1

FOR ALL b IN logical (eq(b,b)==T)

Example 2

neq(T,F)==T; neq(T,T) == F;
neq(F,T)==T; neq(F,F) == F;

Example 3

eq(b, b) == T;
eq(F, eq(T,F)) ==T;
eq(eq(b,a),eq(a,b)) == T;

5.2.4 Conditional equations

A conditional equation allows the specification of equations which only hold when certain
restrictions hold. The restrictions are written in the form of simple equations.

Abstract grammar

Conditional-equation :: Restriction-set
Restricted-equation

Restriction - Unquantified-equation

Restricted-equation = Unquantified-equation

Concrete textual grammar

conditional equation> ::=
<restriction> { , <restriction>)* ==> restricted equation>

restricted equation> ::=
cunquantified equation>

Fascicle X .l — Rec. Z.100 137

<restriction> ::=
<unquantified equation>

Semantics

A restricted equation defines that terms denote the same value only when any value identifier in the
restricted equations denotes a value which can be shown from other equations to satisfy the
restriction. A value will satisfy a restriction only if the restriction can be deduced from other
equations for this value.

The semantics of a set of equations for a data type which includes conditional equations are derived
as follows:-

a) Quantification is removed by generating every possible ground term equation which can be
derived from the quantified equations. As this is applied to both explicit and implicit quantification a
set of unquantified equations in ground terms only is generated.

b) Let a conditional equation for which all the restrictions (in ground terms only) can be proved to
hold from unquantified equations which are not restricted equations be called a provable conditional
equation. If there exists a provable conditional equation, then it is replaced by the restricted
equation of the provable conditional equation.

c) If there are conditional equations remaining in the set of equations and none of these conditional
equations are a provable conditional equation, then these conditional equations are deleted,
otherwise return to step (b).

d) The remaining set of unquantified equations defines the semantics of the data type.

Example

z /= 0 == True ==> (x/z)*z==x

5.3 Initial algebra model (informal description)

The definition of data in SDL is based on the data kernel defined in §5.2. Operators and
values need to be given some further meaning in addition to the former definition so interpretation
can be given to expressions. For example expressions used in continuous signals, enabling
conditions, procedure calls, output actions, create requests, assignment statements, set and reset
statements, export statements, import statements, decisions, and viewing.

The necessary additional meaning is given to expressions by using the initial algebra
formalism which is explained in § 5.3.1 to § 5.3.6 below1).

At any point in an SDL specification the last data type hierarchically defined will apply, but
there will be a set of sorts visible. The set of sorts will be the union of all sorts at levels
hierarchically above the place in question as explained in §5.2.

^ T h e text o f § 5.3.1 to § 5.3.6 has been agreed between ISO and CCITT as a common informal
description o f the in itia l algebra m odel for abstract data types. As w ell as appearing in this
recommendation this text (with appropriate typographical and numbering changes) is also an annex to
ISO IS8807.

138 Fascicle X.l — Rec. Z.100

(In this section the symbol = is used as an equation equivalence symbol whereas in SDL
symbol == is used for equation equivalence so that the symbol = can be used for the equality
operator. The symbol = is used in this section as it is the conventional symbol used in published
work on initial algebras.)

5.3.1 Introduction

The meaning and interpretation of data based on initial algebra is explained in three stages:

a) Signatures

b) Terms

c) Values

5.3. 1.1 Representations

The idea that different notations can represent the same concept is commonplace. For
instance it is generally accepted that positive Arabic numbers (1,2,3,4,...) and Roman numerals
(I,n,III,IV,...) represent the same set of numbers with the same properties. As another example it
is quite usual to accept that prefix functional notational (plus(l,l)), infix notation (1+1) and
reverse polish notation (1 1 +) can all represent the same operator. Furthermore different users
may use different names (perhaps because they are using different languages) for the same concepts
so that the pairs {true, false), {T,F}, {0,1}, {vrai, faux) could be different representations of the
Boolean sort.

What is essential is the abstract relationship between identities and not the concrete
representation. Thus for numerals what is interesting is the relationship between 1 and 2 which is
the same as the relationship between I and II. Also for operators what is of interest is the
relationship between the operator identity and other operator identities and the list of arguments.
Concrete constructions such as brackets which allow us to distinguish between (a+b)*c and
a+(b*c) are only of interest so that the underlying abstract concept can be determined.

These abstract concepts are embodied in an abstract syntax of the concept which may be
realised by more than one concrete syntax. For example the following two concrete examples both
describe the same data type properties but in different concrete syntax.

Fascicle X.l - Rec. Z.100 139

NEWTYPE bool LITERALS true, false;
OPERATORS ’’not’' :bool ->bool;
AXIOMS

not(true) == false;
not(not(a)) == a;

ENDNEWTYPE bool;

NEWTYPE int LITERALS zero, one;
OPERATORS plus :int,int ->int;

minus :int,int ->int;
AXIOMS

plus(zero,a) == a;
plus(a,b) = plus(b,a);
plus(a,plus(b,c)) == plus(plus(a,b),c);
minus(a,a) = zero;
minus(a,zero) == a;
minus(a,minus(b,c)) == minus(plus(a,c),b);
minus(minus(a,b),c) = minus(a,plus(b,c));
plus(minus(a,b),c) == minus(plus(a,c),b);

ENDNEWTYPE int;

NEWTYPE tree LITERALS nil;
OPERATORS

tip : int ->tree;
isnil : tree ->bool;
istip : tree ->bool;
node : tree,tree ->tree;
sum : tree ->int;

AXIOMS
istip(nil) == false;
istip(tip(i)) == true;
istip(node(tl,t2)) == false;
isnil(nil) == true;
isnil(tip(i)) = false;
isnil(node(t 1 ,t2)) == false;
sum(node(tl,t2)) == plus(sum(tl),sum(t2));
sum(tip(i)) == i;
sum(ml) == zero;

ENDNEWTYPE tree;

EXAMPLE 1

140 Fascicle X.l - Rec. Z.100

TYPE bool IS
SORTS bool
OPNS true : -> bool

false: -> bool
not :bool-> bool

EQNS OFSORT bool FOR ALL a:bool
not(true) = false;
not(not(a)) = a

ENDTYPE

IS bool WITHTYPE int
SORTS int
OPNS zero :

one :
plus : . int,int
minus: int,int

EQNS OFSORT int
plus(zero,a)
plus(a,b)
plus(a,plus(b,c))
minus(a,a)
minus(a,zero)
minus(a,minus(b,c))
minus(minus(a,b) ,c)
plus(minus(a,b),c)

ENDTYPE

-> int
-> int
-> int
-> int

FOR ALL a,b,c:int
= a ;
= plus(b,a); ,
= plus(plus(a,b),c);
= zero;
= a ;
= minus(plus(a,c),b);
= minus(a,plus(b,c));
= minus(plus(a,c),b)

TYPE tree IS int WITH
SORTS tree
OPNS nil I ->tree

tip : int ->tree
isnil : tree ->bool
istip : tree ->bool
node : tree,tree ->tree
sum : tree ->int

EQNS OFSORT bool FOR ALLiiint, tl,t2:tree
istip(nil) = false;
istip(tip(i)) = true;
istip(node(tl,t2)) = false;
isnil(nil) = true;
isnil(tip(i)) = false;
isnil(node(tl,t2)) = false

OFSORT int FOR ALLi:int, tl,t2:tree
sum(node(tl,t2)) = plus(sum(tl),sum(t2));
sum(tip(i)) = i ;
sum(nil) = zero

ENDTYPE

EXAMPLE 2

This example will be used for illustration. Initially the definition of sorts and literals will be
considered.

It should be noted that literals are considered to be a special case of operators, that is
operators without parameters.
We can introduce some sorts and literals in the first form by

NEWTYPE int LITERALS zero, one;...
NEWTYPE bool LITERALS true, false;...
NEWTYPE tree LITERALS nil;...

or in the second form by

SORTS bool
OPNS true : -> bool

false: -> bool

SORTS int
OPNS zero : -> int

one : -> int

SORTS tree
OPNS nil : ->tree

In the following the second form only will be used as that is closest to the formulation used
in many publications on initial algebra. It should be noted that the form of terms is the same in both
cases and the most significant difference is the way in which literals are introduced. It should be
remembered that it is necessary to adopt a concrete notation to communicate the concepts, but the
meaning of the algebras is independent of the notation so that systematic renaming of names
(retaining the same uniqueness) and a change from prefix to polish notation will not change the
meaning defined by the type definitions.

5.3.2 Signatures

Associated with each sort will be one or more operators. Each operator has an operator
functionality; that is it is defined to relate one or more input sorts to a result sort.

For example the following operators can be added to the sorts defined above

SORTS bool
OPNS true : -> bool

false: -> bool
not :bool-> bool

SORTS int
OPNS zero :

one :
plus : int,int
minus: int,int

SORTS tree
OPNS nil :

tip : int
isnil : tree
istip : tree
node: tree,tree
sum : tree

->int
-> int
-> int
-> int

->tree
->tree
->bool
->bool
->tree
->int

142 Fascicle X.l — Rec. Z.100

The signature of the type which applies is the set of sorts, and the set of operators (both
literals and operators with parameters) which are visible.

A signature of a type is called complete (closed) if for every operator in the signature, the
sorts of the functionality of the operator are included in the set of sorts of the type.

5.3.3 Terms and expressions

The language of interest is one which allows expressions which are variables, literals or
operators applied to expressions. A variable is a data object which is associated with an expression.
Interpretation of a variable can be replaced with interpretation of the expression associated with the
variable. In this way variables can be eliminated so that interpretation of an expression can be
reduced to the application of various operators to literals.

Thus on interpretation an open expression (an expression involving variables) becomes a
closed expression (an expression without variables) by providing the open expression with actual
arguments (that is closed expressions).

A closed expression corresponds to a ground term.

The set of all possible ground terms of a sort is called the set of ground terms of the sort.
For example for bool as defined above the set of ground terms will contain

{true, false, not(true), not(false), not(not(true)),...}

It can be seen that even for this very simple sort the set of ground terms is infinite.

5.3.3.1 Generation of terms

Given a signature of a type it is possible to generate the set of ground terms for that type.

The set of literals of the type are considered to be the basic set of ground terms. Each literal
has a sort, therefore each ground term has a sort. For the type being defined above this basic set of
ground terms will be

{zero, one, true, false, nil)

For each operator in the set of operators for the type, ground terms are generated by
substituting for each argument all previously generated ground terms of the correct sort for that
argument. The result sort of each operator is die sort of the ground term generated by that operator.
The resulting set of ground terms is added to the existing set of ground terms to generate a new set
of ground terms. For the type above this is

{zero, one, true, false, nil,
plus(zero,zero), plus(one,one), plus(zero,one), plus(one,zero),
minus(zero,zero), minus(one,one), minus(zero,one), minus(one,zero),
not(true), not(false), tip(zero), tip(one),
isnil(nil), istip(nil), node(nil,nil), sum(nil) }

Fascicle X.l - Rec. Z.100 143

This new set of ground terms is then taken as the previous set of ground terms for a further
application of the last algorithm to generate a further set of ground terms. This set of ground terms
will include

{zero, one, true, false, nil,
plus(zero,zero), plus(one,one), plus(zero,one), plus(one,zero),
plus(zero,plus(zero,zero)), plus(zero,plus(one,one)),
plus(zero,sum(nil)),
isnil(node(nil,nil)), istip(node(nil,nil)), node(nil,node(nil,nil)),

sum(node(nil,nil)) }

This algorithm is applied repeatedly to generate all possible ground terms for the type which
is the set of ground terms for the type. The set of ground terms for a sort is the set of ground terms
of the type which have that sort.

Normally generation will continue indefinitely yielding an infinite number of terms.

5.3.4 Values and algebras

Each term of a sort represents a value of that sort. It can be seen from above that even a
simple sort such as bool has an infinite number of terms and hence an infinite number of values,
unless some definition is given of how terms are equivalent (that is represent the same value). This
definition is given by equations defined on terms. In the absence of istip and isnil the sort bool can
be limited to two values by the equations

not(true) = false;
not(false) = true

Such equations define terms to be equivalent and it is then possible to obtain the two
equivalent classes of terms

{true, not(false), not(not(true)), not(not(not(false))),...}
{false, not(true), not(not(false)), not(not(not(true))),...}

Each equivalence class then represents one value and members of the class are different
representations of the same value.

Note that unless they are defined equivalent by equations, terms are non-equivalent (that is
they do not represent the same value).

An algebra defines the set of terms which satisfies the signature of the algebra. The
equations of tile algebra relate terms to one another.

In general there will be more than one representation for each value of a sort in an algebra.

An algebra for a given signature is an initial algebra if and only if any other algebra which
gives the same properties for the signature can be systematically transformed onto the initial
algebra. (Formally such a transformation is known as a homomorphism.)

Providing not, istip and isnil always produce values in the equivalence classes of true and
false then an initial algebra for bool is the pair of literals

{true, false}

and no equations.

144 Fascicle X.l — Rec. Z.100

5.3.4.1 Equations and quantification

For a sort such as bool, where there are only a limited number of values, all equations can
be written using only ground terms, that is terms which only contain literals and operators.

When a sort contains many values, writing all the equations using ground terms is not
practical and for sorts with an infinite number of values (such as integers), such explicit
enumeration becomes impossible. The technique of writing quantified equations is used to
represent a possibly infinite set of equations by one quantified equation.

A quantified equation contains value identifiers in terms. Such terms are called composite
terms. The set of equations with only ground terms can be derived from the quantified equation by
systematically generating equations with each value identifier substituted in the equation by one of
the ground terms of the sort of the value identifier. For example

FOR ALL b : bool not(not(b))=b
represents

not(not(true)) = true;
not(not(false)) = false

An alternative set of equations for bool can now be taken as
FOR ALL b: bool

not(not(b)) = b ;
not(true) = false

When the sort of the quantified value identifier is obvious from context it is usual practice to
omit the clause defining the value identifier so that the example becomes

not(not(b)) = b ;
not(true) = false

5.3.5 Algebraic specification and semantics (meaning)

An algebraic specification consists of a signature and sets of equations for each sort of that
signature. These sets of equations induce equivalence relations which define the meaning of the
specification.

The symbol = denotes an equivalence relation that satisfies the reflexive, symmetric and
transitive properties and the substitution property.

The equations given with a type allow terms to be placed into equivalence classes. Any two
terms in the same equivalence class are interpreted as having the same value. This mechanism can
be used to identify syntactically different terms which have the same intended value.

Two terms of the same sort, TERM1 and TERM2, are in the same equivalence class if

a) there is an equation
TERM1=TERM2,

or

b) one of the equations derived from the given set of quantified equations is
TERM 1 =TERM2,

or

Fascicle X .l — Rec. Z.100 145

c) i) TERM1 is in an equivalence class containing TERMA, and

ii) TERM2 is in an equivalence class containing TERMB, and

iii) there is an equation or an equation derived from the given set quantified equations
such that

TERMA=TERMB,
or

d) by substituting a sub-term of TERM1 by a term of the same class as the sub-term
producing a term TERM1A it is possible to show that TERM1A is in the same class as
TERM2.

By applying all equations the terms of each sort are partitioned into one or more equivalence
classes. There are as many values for the sort as there are equivalence classes. Each equivalence
class represents one value and every member of a class represents the same value.

5.3.6 Representation of values

Interpretation of an expression then means first deriving the ground term by determining the
actual value of variables used in the expression at the point of interpretation, then finding the
equivalence class of this ground term. The equivalence class of this term determines the value of the
expression.

Meaning is thus given to operators used in expressions by determining the resultant value
given a set of arguments.

It is usual to choose a literal in the equivalence class to represent the value of the class. For
instance bool would be represented by true and false, and natural numbers by 0,1,2,3 etc.. When
there is no literal then usually a term of the lowest possible complexity (least number of operators)
is used. For instance for negative integers the usual notation is -1, -2 -3 etc..

146 Fascicle X .l - Rec. Z.100

5.4 Passive use of SDL data

In § 5.4.1 extensions to the data definition constructs in § 5.2 are defined. How to interpret
the use of the abstract data types in expressions is defined in § 5.4.2 if the expression is '’passive”
(that is do not depend on variables or the system state). How to interpret expressions which are not
passive (that is "active” expressions) is defined in § 5.5.

5.4.1 Extended data definition constructs

The constructs defined in § 5.2 are the basis of more concise forms explained below.

Abstract grammar

There is no additional abstract syntax for most of these constructs. In § 5.4.1 and all subsections of
§ 5.4.1 the relevant abstract syntax is usually to be found in § 5.2.

Concrete textual grammar

<extended properties> ::=
inheritance rule>

I <generator instantiations>
I <structure definition>

<extended composite term>
<extended operator identifier (ccomposite term list>)

I ccomposite term> cinfix operator <term>
I <term> cinfix operator ccomposite term>
I cmonadic operator ccomposite term>
I cconditional composite term>

cextended ground term> ::=
cextended operator identifier

(cground term> {, cground term>) *)
I cground term> cinfix operator cground term>
I cmonadic operator cground term>
I cconditional ground term>

cextended operator identifier ::=
coperator identifier cexclamation>

I cgenerator formal name>
I [cqualifier] cquoted operator

cextended operator name>
coperator name> cexclamation>

I cgenerator formal name>
I cquoted operator

cexclamation> ::=
I

cextended literal name>
ccharacter string literab

I cgenerator formal name>
I cname class literab

Fascicle X.l — Rec. Z.100 147

<extended literal identifier ::=
<character string literal identifier

I <generator formal name>

The rules <extended properties>, <extended composite term>, <extended ground term>,
<extended operator name>, cextended literal name> and <extended literal identifier extend the
rules for <partial type definition> (§ 5.2.1), ccomposite term> (§ 5.2.3), cground term> (§
5.2.3), coperator name> (§ 5.2.2), cliteral> (§ 5.2.2) and cliteral identifier (§ 5.2.3) respectively
in the data kernel. The rules above are further expanded by the rules cinheritance rule> (§
5.4.1.11), cgenerator instantiations> (§ 5.4.1.12.2), cgenerator formal name> (§ 5.4.1.12.1),
cconditional composite term> (§ 5.4.1.6), cconditional ground term> (§ 5.4.1.6), ccharacter
string literal> and ccharacter string literal identifier (§ 5.4.1.2) and cname class literal> (§
5.4.1.14). The rules cinfix operator, cmonadic operator, cquoted infix operator and cquoted
monadic operator are defined in § 5.4.1.1.

Alternatives with cgenerator formal name>s are only valid in a cproperties expression> in a
cgenerator text> (see § 5.4.1.12) which has that name defined as a formal parameter.

The alternatives of cextended composite term> and cextended ground term> with a cgenerator
formal name> preceding a "(" are only valid if the cgenerator formal name> is defined to be of the
OPERATOR class (see § 5.4.1.12).

The alternative of cextended literal name> with a cgenerator formal name> is only valid if the
cgenerator formal name> is defined to be of the LITERAL class (see § 5.4.1.12).

The alternative of cextended literal identifier with a cgenerator formal name> is only valid if the
cgenerator formal name> is defined to be of the LITERAL class or the CONSTANT class (see §
5.4.1.12).

If an operator name is defined with an cexclamation>, then the cexclamation> is semantically part
of the name.

The forms coperator name> cexclamation> or coperator identifier cexclamation> represent
operator name (§ 5.2.2) and operator identifier (§ 5.2.3) respectively.

Semantics

An operator name defined with an cexclamation> has the normal semantics of an operator, but the
operator name is only visible in axioms.

5.4.1.1 Special operators

These are operator names which have special syntactic forms. The special syntax is
introduced so that arithmetic operators and Boolean operators can have their usual syntactic form.
That is the user can write "(1 + 1) = 2" rather than being forced to use the for example
equal(add(l,l),2). Which sorts are valid for each operator will depend on the data type definition.

Concrete textual grammar

cquoted operator> ::=
cquote> cinfix operator> cquote>

I cquote> cmonadic operator> cquote>

cquote> ::=

148 Fascicle X.l — Rec. Z.100

cinfix operator> ::=
=>

I OR
I XOR
I AND
I IN
I /=

I >
I <
I <=
I >=
I +
I /
I *
I //
I MOD
I REM

cmonadic operator> ::=

I NOT

Semantics

An infix operator in a term has the normal semantics of an operator but with infix or quoted prefix
syntax as above.

A monadic operator in a term has the normal semantics of an operator but with the prefix or quoted
prefix syntax as above.

The quoted forms of infix or monadic operators are valid names for operators.

Infix operators have an order of precedence which determines the binding of operators. The
binding is the same as the binding in cexpression>s as specified in § 5.4.2.1.

When the binding is ambiguous such as in
aO R bX O R c;

then binding is from left to right so that the above term is equivalent to
(aORb) X O Rc;

Note that the <quoted operator>s MOD and REM have no predefined semantics, as they are not
defined in the predefined data sorts.

Model

A term of the form
cterml> cinfix operator> cterm2>

is derived syntax for
"cinfix operator>" (cterml>, cterm2>)

with "cinfix operator>" as a legal name, "cinfix operator>" represents an operator name.

Similarly
cmonadic operator> cterm>

is derived syntax for
"cmonadic operator>" (cterm>)

Fascicle X .l - Rec. Z.100 149

with "cmonadic operator>" as a legal name and representing an operator name.

(Note that the SDL equality operator (=) should not be confused with the SDL term equivalence
symbol (= =).)

5.4.1.2 Character string literals

Concrete textual grammar

ccharacter string literal identifier> ::=
[<qualifier>] ccharacter string literal>

ccharacter string literal> ::=
ccharacter string>

A ccharacter string> is a lexical unit defined in § 2.2.1.

A ccharacter string literal identifier represents a Literal-operator-identifier in the abstract syntax.

A ccharacter string literal> represents a unique Literal-operator-name (§ 5.2.2) in the abstract
syntax derived from the ccharacter string>.

Semantics

Character string literal identifiers are the identifiers formed from character string literals in terms
and expressions.

Character string literals are used for the predefined data sorts Charstring and Character (see § 5.6).
They also have a special relationship with name class literals (see § 5.4.1.14) and literal mappings
(see § 5.4.1.15). These literals may also be defined to have other uses.

A ccharacter string literal> has a length which is the number of calphanumerios plus cother
characters plus cspecial>s plus cfull stop>s plus cunderline>s plus cspace>s plus capostrophe>
capostrophe> pairs in the ccharacter string> (see § 2.2.1).

A ccharacter string literal> which

a) has a length greater than one, and

b) has a substring formed by deleting the last character (calphanumerio or cother character
or cspecial> or cfull stop> or cunderline> or cspace> or capostrophe> capostrophe>
pairs) from the ccharacter string>, and

c) that substring is defined as a literal such that
substring // deleted_character_in_quotes

is a valid term with the same sort as the ccharacter string literal>,

then there is an implied equation given by the concrete syntax that the ccharacter string literal> is
equivalent to the substring followed by the "//" infix operator followed by the deleted character with
apostrophes to form a ccharacter string>.

150 Fascicle X.l — Rec. Z.100

For example the literals 'ABC’, 'AB'", and 'AB' in
NEWTYPE s
LITERALS 'ABC, 'AB'", AB’, 'A', 'B',
OPERATORS s, s -> s;

have implied equations
'ABC' == 'AB' // ’C ;
•AB'" == 'AB' // "" ;
'AB' == 'A' //'B ';

5.4.1.3 Predefined data

The predefined data including the Boolean sort which defines properties for two literals
Tme and False, are defined in § 5.6. The semantics of Equality (§ 5.4.1.4), Boolean axioms (§
5.4.1.5), Conditional terms (§ 5.4.1.6), Ordering (§ 5.4.1.8), and Syntypes (§ 5.4.1.9) rely on
the definition of the Boolean sort (§ 5.6.1). The semantics of Name Class Literals (if cregular
interval>s are used - § 5.4.1.14) and Literal Mapping (§ 5.4.1.15) also rely on the definition of
Character (§ 5.6.2) and Charstring (§ 5.6.4) respectively.

Predefined data is considered to be defined at system level.

5.4.1.4 Equality

Concrete textual grammar

Each sort name introduced in a <partial type definition> has an implied operator signature for both
= and /=, and an implied equation set for these operators.

A <partial type definition> introducing a sort named S has implied operator signature pah-
equivalent to

"=" : S, S -> Boolean;
S, S -> Boolean;

where Boolean is the predefined Boolean sort.

A <partial type definition> introducing a sort named S has an implied equation set
FOR ALL a, b, c IN S (

a = a == True;
a = b == b = a;
((a=b) AND (b=c)) => a=c == True;
a /= b == NOT (a=b);
a = b == True ==> a == b)

The last equation expresses the substitution property for equality.

If it is possible to derive from the equations (explicit, implicit and derived) that
True == False

this is in contradiction with the assumed properties of the Boolean data type and so the definition
must be invalid. It must not be possible to derive

True == False;

Every Boolean ground expression which is used outside data type definitions must be interpreted as
either True or False. If it is not possible to reduce such an expression to True or False then the
specification is incomplete and allows more than one interpretation of the data type.

Fascicle X.l — Rec. Z.100 151

Semantics

For every sort introduced by a partial data type definition there is an implicit definition of operators
and equations for equality.

The symbols = and /= in the concrete syntax represent the names of the operators which are called
the equal and not equal operators.

5.4.1.5 Boolean axioms

Concrete textual grammar

<Boolean axiom> ::=
<Boolean term>

Semantics

A Boolean axiom is a statement of truth which holds under all conditions for the data type being
defined, and thus can be used to specify the behaviour of the data type.

Model

An axiom of the form
<Boolean term>;

is derived syntax for the concrete syntax equation
<Boolean term> == True;

which has the normal relationship of an equation with the abstract syntax.

5.4.1.6 Conditional terms

In the following the equation containing the conditional term is called a conditional term
equation.

Abstract grammar

Conditional-composite-term = Conditional-term

Conditional-ground-term = Conditional-term

Conditional-term :: Condition
Consequence
Alternative

Condition = Term

Consequence = Term

Alternative = Term

The sort of the Condition must be the predefined Boolean sort and the Condition must not be the
Error-term. The consequence and the alternative must have the same sort.

A conditional term is a conditional composite term if and only if one or more of the terms in the
condition, the consequence or alternative is a composite term.

152 Fascicle X.l — Rec. Z.100

A conditional term is a conditional ground term if and only if all the terms in the condition, the
consequence or alternative are ground terms.

Concrete textual grammar

conditional composite term> ::=
conditional term>

conditional ground term> ::=
conditional term>

conditional term> ::=
IF <condition> THEN <consequence> ELSE <altemative> FI

<condition> ::=
<Boolean term>

<consequence> ::=
<term>

<altemative> ::=
<term>

Semantics

A conditional term used in an equation is semantically equivalent to two sets of equations where all
the quantified value identifiers in the Boolean term have been eliminated.

The set equations can be formed by simultaneously substituting throughout the conditional term
equation each value identifier in the condition by each ground term of the appropriate sort. In this
set of equations the condition will always have been replaced by a Boolean ground term. In the
following this set of equations is referred to as the expanded ground set.

A conditional term equation is equivalent to the equation set which contains

a) for every equation in the expanded ground set for which the condition is equivalent to True,
that equation from the expanded ground set with the conditional term replaced by the
(ground) consequence, and

b) for every equation in the expanded ground set for which the condition is equivalent to False,
that equation from the expanded ground set with the conditional term replaced by the
(ground) alternative.

Note that in the special case of an equation of the form
exl == IF a THEN b ELSE c FI;

this is equivalent to the pair of conditional equations
a == True ==> exl == b;
a == False ==> exl == c;

Example

IF i = j * j THEN posroot(i) ELSE abs(j) FI == IF positive® THEN j ELSE -j FI;

Note - There are better ways of specifying these properties - this is only an example.

Fascicle X.l — Rec. Z.100 153

5.4.1.7 Errors

Errors are used to allow the properties of a data type to be fully defined even for cases when
no specific meaning can be given to the result of an operator.

Abstract grammar

Error-term :: ()

An error term must not be used as a argument term for an operator identifier in a composite term.

An error term must not be used as part of a restriction.

It must not be possible to derive from Equations that a literal operator identifier is equal to error
term.

Concrete textual grammar

<error term> ::=
ERROR <exclamation>

Semantics

A term may be an error so that it is possible to specify the circumstances under which an operator
produces an error. If these circumstances arise during interpretation then the further behaviour of
the system is undefined.

5.4.1.8 Ordering

Concrete textual grammar

<ordering> ::=
ORDERING

(<ordering> is referenced in § 5.2.2)

Semantics

The ordering keyword is a shorthand for explicitly specifying ordering operators and a set of
ordering equations for a partial type definition.

Model

A <partial type definition> introducing a sort named S with the keyword ORDERING implies an
operator signature set equivalent to the explicit definitions:

t t ^ t r

!t^ tt
I I . tt

5.5 -> Boolean;
5.5 -> Boolean;
5.5 -> Boolean;
5.5 -> Boolean;

where Boolean is the predefined Boolean sort, and also implies the Boolean axioms'.

154 Fascicle X.l — Rec. Z.100

FOR ALL a,b INS
(

"<"(a,a) == False;
”c"(a,b) ==">"(b,a);
"<="(a,b) == ”OR"("c"(a,b),"="(a,b));
l,>="(a,b) == "OR"(">"(a,b),"="(a,b));
"c"(a,b) => NOT("c"(b,a));
”c"(a,b) AND "c"(b,c) => ”<"(a,c);

);

When a <partial type definition> includes both cliteral list> and the keyword ORDERING the
cliteral signaturos are nominated in ascending order, that is

LITERALS A,B,C;
OPERATORS ORDERING;

implies AcB, BcC. 1

5.4.1.9 Syntypes

A syntype specifies set of values of a sort. A syntype used as a sort has the same semantics
as the sort referenced by the syntype except for checks that values are within the value set of the
sort.

Abstract grammar

Syntype-identifier

Syntype-definition

Syntype-name

Identifier

Syntype-name
Parent-sort-identifier
Range-coruMon

Name

Parent-sort-identfier = Sort-identifier

Concrete textual grammar

csyntype> ::=
csvntvpe identifier

csyntype definition> ::=
SYNTYPE

csvntvpe name> = cparent sort identifier
[cdefault assignment] [CONSTANTS crange condition>]
ENDSYNTYPE [csvntvpe name>]

I NEWTYPE csyntype name> [cextended properties>]
cproperties expression> CONSTANTS crange condition>
ENDNEWTYPE [csvntvpe name>]

cparent sort identifier ::=
c so r t

A csyntype> is an alternative for a c s o r t (see § 5.2.2).

A csyntype definition> with the keyword SYNTYPE and "= csyntype identifier" is derived
syntax defined below.

Fascicle X.l — Rec. Z.100 155

A <syntype definition> with the keyword SYNTYPE in the concrete syntax corresponds to a
Syntype-definition in the abstract syntax.

A <syntype definition> with the keyword NEWTYPE can be distinguished from a <partial type
definition> by the inclusion of CONSTANTS <range conditions Such a <syntype definition> is a
shorthand for introducing a <partial type definition> with an anonymous name followed by a
<syntype definition> with the keyword SYNTYPE based on this anonymously named sort. That is

NEWTYPE X /* details */
CONSTANTS /* constant list */

ENDNEWTYPE X;
is equivalent to

NEWTYPE anon /* details */
ENDNEWTYPE anon;

followed by ’
SYNTYPE X = anon

CONSTANTS /* constant list */
ENDSYNTYPEX;

When a <svntvpe identified is used as an <argument> in an <argument list> defining an operator,
the sort for the argument in an argument list is the parent sort identifier of the syntype.

When a <svntvpe identified is used as a result of an operator, the sort of the result is the parent
sort identifier of the syntype.

When a <svntvpe identified is used as a qualifier for a name, the qualifier is the parent sort
identifier of the syntype.

The optional <svntvpe name> given at the end of a <syntype definition> after the keyword
ENDSYNTYPE or ENDNEWTYPE must be the same as the csyntype name> specified after
SYNTYPE or NEWTYPE respectively.

If the keyword SYNTYPE is used and the crange condition> is omitted then all the values of the
sort are in the range condition so that the csyntype identified has exactly the same semantics as the
sort identifier and the range condition is always true.

Semantics

A syntype definition defines a syntype which references a sort identifier and range condition.
Specifying a syntype identifier is the same as specifying the parent sort identifier of the syntype
except for the following cases:

a) assignment to a variable declared with a syntype (see § 5.5.3),

b) an output of a signal if one of the sorts specified for the signal is a syntype (see § 2.7.4),

c) calling a procedure when one of the sorts specified for the procedure IN parameter variables
is a syntype (see § 2.4.5),

d) creating a process when one of the sorts specified for the process parameters is a syntype
(see § 2.7.2 and § 2.4.4),

e) input of a signal and one of the variables which is associated with the input, has a sort
which is a syntype (see § 2.6.4),

156 Fascicle X.l — Rec. Z.100

f) use in an expression of an operator which has a syntype defined as either an argument sort
or a result sort (see § 5A.2.2 and § 5.5.2.4),

g) a set or reset statement on a timer and one of the sorts in the timer definition is a syntype
(see § 2.8),

h) an import definition (see §4.13).

For example a <syntype definition> with the keyword SYNTYPE and "= csyntype identifier" is
equivalent to substituting the <parent sort identifier by the <parent sort identifier of the <syntype
definition> of the <syntype identifier. That is

SYNTYPE s2 = nl CONSTANTS al:a3; ENDSYNTYPE s2;
SYNTYPE s3 = s2 CONSTANTS al:a2; ENDSYNTYPE s3;

is equivalent to

SYNTYPE s2 = nl CONSTANTS al:a3; ENDSYNTYPE s2;
SYNTYPE s3 = nl CONSTANTS al:a2; ENDSYNTYPE s3;

When a syntype is specified in terms of csyntype identifier then the two syntypes must not be
mutually defined.

A syntype defined by a syntype definition has an identity which is the name introduced by the
syntype name qualified by the identity of the enclosing scope unit.

A syntype has a sort which is the sort identified by the parent sort identifier given in the syntype
definition.

A syntype has a range which is the set of values specified by the constants of the syntype
definition.

5.4.1.9.1 Range condition

Abstract grammar

Range-condition Or-operator-identifier
Condition-item-set

Condition-item Open-range I Closed-range

Open-range Operator-identifier
Ground-expression

Closed-range And-operator-identifier
Open-range
Open-range

Or-operator-identifier

And-operator-identifier

Identifier

Identifier

Fascicle X.l — Rec. Z.100 157

Concrete textual grammar

crange condition> ::=
{ cclosedrange> I copen range> } { , { cclosedrange> I copen range> } }*

cclosed range> ::=
cconstant>: cconstant>

copen range> ::=
cconstant>

I { = I /= I c I > I c= I >= } cconstant>

cconstant> ::=
cground expression>

The symbol "c" ("c=", ">=" respectively) must only be used in the concrete syntax of the
crange condition> if that symbol has been defined with an coperator signature>

P, P -> Boolean;
where P is the sort of the syntype. These symbols represent operator identifier.

A cclosed range> must only be used if the symbol "c=" is defined with an coperator signature>
P, P -> Boolean;

where P is the sort of the syntype.

A cconstant> in a crange condition> must have the same sort as the sort of the syntype.

Semantics

A range condition defines a range check. A range check is used when a syntype has additional
semantics to the sort of the syntype (see § 5.4.1.9 and the cases where syntypes have different
semantics - see § 5.5.3, § 2.6.4, § 2.7.2, § 2.5.4, § 5.4.2.2 and § 5.5.4). A range check is also
used to determine the interpretation of a decision (see § 2.7.5).

The range check is the application of the operator formed from the range condition. The application
of this operator must be equivalent to true otherwise the further behaviour of the system is
undefined. The range check is derived as follows:

a) Each element (copen range> or cclosed range>) in the crange condition> has a
corresponding open range or closed range in the condition item.

b) An copen range> of the form cconstant> is equivalent to an copen range> of the form =
cconstant>.

c) For a given term, A, then

i) an copen range> of the form = cconstant>, /= cconstant>, c cconstant>, c=
cconstant>, > cconstant>, and >= cconstant>, has sub-terms in the range check of the
form A = cconstant>, A A= cconstant>, A c cconstant>, A c= cconstant>, A >
cconstant>, and A >= cconstant> respectively.

ii) a cclosed range> of the form cfirst constant> : csecond constant> has a sub-term in the
range check of the form cfirst constant> c= A AND A c= csecond constant> where
AND corresponds to the Boolean AND operator and corresponds to the And operator
identifier in the abstract syntax.

d) There is an or operator identifier for the distributed operator over all the elements in the

158 Fascicle X.l - Rec. Z.100

condition-item-set which is a Boolean union (OR) of all the elements. The range check is
the term formed from the Boolean union (OR) of all the sub-terms derived from the crange
conditions

If a syntype is specified without a crange condition> then the range check is True.

5.4.1.10 Structure sorts

Concrete textual grammar

cstructure definition> ::=
STRUCT cfield list> [cend>] [ADDING]

cfield list>
cfields> { cend> cfields> }*

cfields> ::=
cfield name> { , c field name> }* cfield sort>

cfield sort> ::=
csort>

Each cfield name> of a structure sort must be different from every other cfield name> of the same
cstructure definitions

Semantics

A structure definition defines a structure sort whose values are composed from a list of field values
of sorts.

The length of the list of values is determined by the structure definition and the sort of a value is
determined by its position in the list of values.

Model

A structure definition is derived syntax for the definition of

a) an operator, Make!, to create structure values, and

b) operators both to modify structure values and to extract field values from structure values.

The name of the implied operator for modifying a field is the field name concatenated with
"Modify!".

The name of the implied operator for extracting a field is the field name concatenated with
"Extract!".

The cargument list> for the Make! operator is the list of cfield sort>s occurring in the field list in
the order in which they occur.

The cresult> for the Make! operator is the sort identifier of the structure.

The cargument list> for the field modify operator is the sort identifier of the structure followed by
the cfield sort> of that field. The cresult> for a field modify operator is the sort identifier of the
structure.

Fascicle X.l — Rec. Z.100 159

The <argument list> for a field extract operator is the sort identifier of the structure. The <result>
for a field extract operator is the <field sort> of that field.

There is an implied equation for each field which defines that modifying a field of a structure to a
value is the same as constructing a structure value with that value for the field.

There is an implied equation for each field which defines that extracting a field of a structure value
will return the value associated with that field when the structure value was constructed.

For example
NEWTYPE s STRUCT

b Boolean;
i Integer,
c Character,

ENDNEWTYPE s;
implies

NEWTYPE s
OPERATORS

Make! : Boolean, Integer, Character -> s;
bModify! : s, Boolean -> s;
iModify! : s, Integer -> s;
cModify! : s, Character -> s;
bExtract! : s -> Boolean;
iExtract! : s -> Integer;
cExtract! : s -> Character,

AXIOMS
bModify! (Make!(x,y,z),b) == Make!(b,y,z);
iModify! (Make!(x,y,z),i) == Make!(x,i,z);
cModify! (Make!(x,y,z),c) == Make!(x,y,c);
bExtract! (Make!(x,y,z)) ==x;
iExtract! (Make!(x,y,z)) == y;
cExtract! (Make!(x,y,z)) == z;

ENDNEWTYPE s;

5.4.1.11 Inheritance

Concrete textual grammar

inheritance rule> ::=
INHERITS <parent sort> [iiteral renaming>]

[[OPERATORS] { ALL I (inheritance list>)} [<end>]] [ADDING]

<parent sort> ::=
<sort>

inheritance list> ::=
inherited operator> {, inherited operatoi> }*

inherited operator> ::=
[coperator name> =] inherited operator name>

inherited operator name> ::=
cparent sort operator name>

160 Fascicle X.l — Rec. Z.100

cliteral renaming> ::=
LITERALS <literal rename list> <end>

<literal rename list> ::=
<literal rename pair> {, cliteral rename pair> } *

<literal rename pair> ::=
<literal rename signature> = < parent literal rename signature>

<literal rename signature> ::=
< literal operator name>

I <character string literal>

A sort must not be circularly based on itself by inheritance.

All cliteral rename signatures in a cliteral rename list> must be distinct. All the cparent literal
rename signatures in a cliteral rename list> must be different.

All cinherited operator nam es in an cinheritance list> must be distinct. All coperator nam es in
an cinheritance Hst> must be distinct.

An <inherited operator name> specified in an <inheritance list> must be a visible operator of the
cparent sort> defined in the cpartial type definition> defining the cparent sort>. An operator name
is not visible at this point if it is defined with an cexclamation>.

When several operators of the <parent sort> have the same name, as the <inherited operator
name>, then all of these operators are inherited.

Semantics

One sort may be based on another sort by using NEWTYPE in combination with an inheritance
rule. The sort defined using the inheritance rule is disjoint from the parent sort.

If the parent sort has literals defined the literal names are inherited as names for literals of the sort
unless literal renaming has taken place for that literal. Literal renaming has taken place for a literal if
the parent literal name appears as the second name in a literal renaming pair in which case the literal
is renamed to the first name in that pair.

There is an inherited operator for every operator of the parent sort except and An operator
of the parent sort is any operator which both

a) is defined by any partial type definition or syntype definition (except that being defined)
which defines a sort visible at the point of inheritance, and also

b) has the parent sort as either an argument or as a result.

The names of operators are inherited as specified by ALL or the inheritance list. The name of an
inherited operator is

a) the same as the parent sort operator name if ALL is specified and the name is explicitly or
implicitly defined as an operator name in the partial type definition or syntype definition
defining the parent sort, otherwise

b) if the parent operator identifier is given in the inheritance list and an operator name followed
by "=" is given for the inherited operator, then renamed to this name, otherwise

c) if the parent operator identifier is given in the inheritance list and an operator name followed
by "=" is not given for the inherited operator, then the same name as the parent sort operator
name, otherwise

Fascicle X .l — Rec. Z.100 161

d) if ALL is not specified and the parent operator identifier is not mentioned in the inheritance
list, then renamed to an invisible but unique name. Such names cannot be explicitly used
either in axioms or expressions.

The argument sorts and result of an inherited operator are the same as those of the corresponding
operator of the parent sort, except if the argument sort or result is the parent sort in which case it is
changed to the sort being defined. That is every occurrence of the parent sort in the inherited
operators is changed to the new sort

From each equation of the parent sort an equation is derived by inheritance. The equations of the
parent sort are

a) any equation which contains an operator (or literal) of the parent sort, and also

b) any equation which is defined by any partial type definition or syntype definition (except
that being defined) which defines a sort visible at the point of inheritance.

An inherited equation is the same as the corresponding equation of the parent sort except that

a) any occurrence of the parent sort is changed to the new sort, and

b) operators (or literals) of the parent sort which have renamed inherited operators (or literals),
undergo the same renaming in the inherited equation.

As a consequence of changing sorts as in (a) the literal identities and operator identities of inherited
literals and inherited operators are changed to be qualified by the sort identity of the new sort.

Model

The concrete syntax of an <inheritance rule> is related to the concrete syntax of the <properties
expression> in the <partial type definition> or <syntype definition> containing the cinheritance
rule>.

The set of <literal>s of the new sort in the abstract syntax corresponds to the set of cliteral
signatures in the cproperties expression> plus the set of inherited literals.

The set of coperator>s of the new sort in the abstract syntax corresponds to the set of coperator
signatures in the cproperties expression> plus the set of inherited operators.

The set of cequations> of the new sort in the abstract syntax corresponds to the caxioms> of the
cproperties expression> plus the set of inherited equations.

Example

NEWTYPE bit
INHERITS Boolean

LITERALS 1 = True, 0 = False;
OPERATORS ("NOT", "AND”, "OR”)

ADDING
OPERATORS

EXOR: bit,bit -> bit;
AXIOMS /* note - 2 different ways of writing NOT are used here */

EXOR(a,b) == (a AND MNOT"(b)) OR (NOT a AND b);
ENDNEWTYPE bit;

162 Fascicle X.l — Rec. Z.100

5.4.1.12 Generators

A generator allows a parameterised text template to be defined which is expanded by
instantiation before the semantics of data types are considered.

5.4.1.12.1 Generator definition

Concrete textual grammar

cgenerator definition> ::=
GENERATOR c generator name> (cgenerator parameter list>) cgenerator text>

ENDGENERATOR [c generator name>]

cgenerator text> ::=
[cgenerator instantiations>] cproperties expression>

cgenerator parameter list> : :=
cgenerator parameter> {, cgeneratorparameter> }*

cgenerator parameter> ::=
{ TYPE I LITERAL I OPERATOR I CONSTANT }

cgenerator formal name> {, cgenerator formal name> }*

cgenerator formal name> ::=

cgenerator sort> ::=

I cgenerator name>

A c generator name> or cgenerator formal name> must only be used in a cproperties expression> if
the cproperties expression> is in a cgenerator text>.

In a cgenerator definition> all c generator formal nam es of the same class (TYPE, LITERAL,
OPERATOR or CONSTANT) must be distinct. A name of the class LITERAL must be distinct
from every name of the class CONSTANT in the same cgenerator definitions
The c generator name> after the keyword GENERATOR must be distinct from all sort names in the
cgenerator definition> and also distinct from all TYPE cgenerator parameters of that cgenerator
definitions

A cgenerator sort> is only valid if it appears as an cextended sort> (see § 5.2.2) in a cgenerator
text> and the name is either the c generator name> of that cgenerator definition> or a cgenerator
formal name> defined by that definition.

If a cgenerator sort> is a c generator formal name> it must be a name defined to be of the TYPE
class.

The optional c generator name> after ENDGENERATOR must be the same as the c generator
name> given after GENERATOR.

A <generator formal name> must not be used in a <qualifier>. A <generator name> or
<generator formal name> must not:

a) be qualified, or
b) be followed by an <exclamation>, or
c) be used in a <default assignments

Fascicle X .l - Rec. Z.100 163

A generator names a piece of text which can be used in generator instantiations.

The texts of generator instantiations within a generator text are considered to be expanded at the
point of definition of the generator text.

Each generator parameter has a class (TYPE, LITERAL, OPERATOR or CONSTANT) specified
by the keyword TYPE, LITERAL, OPERATOR or CONSTANT respectively.

Model

The text defined by a generator definition is only related to the abstract syntax if the generator is
instantiated. There is no corresponding abstract syntax for the generator definition at the point of
definition.

Example

GENERATOR bag(TYPE item)
LITERALS empty;
OPERATORS

put : item, bag -> bag;
count : item, bag -> Integer;
take : item, bag -> bag;

AXIOMS
take(i,put(i,b)) == b;
take (i,empty) == ERROR!;
count(i,empty) == 0;
count(i,put(j,b)) == count(i,b) + IF i=j THEN 1 ELSE 0 FI;
put(i,put(j,b)) == put(j,put(i,b));

ENDGENERATOR bag;

Note — The formal definition (Annex F.2) does not allow the use of <generator formal name>
in qualifiers. The recommendation was corrected for this topic, after the Annex F.2 was printed.
Annex F.2 is thus invalid on this topic.

5.4.1.12.2 Generator instantiation

Concrete textual grammar

cgenerator instantiations> ::=
{ cgenerator instantiation> [cend>] [ADDING])+

cgenerator instantiation> ::=
c generator identifier (cgenerator actual list>)

cgenerator actual list> ::=
cgenerator actual> {, cgenerator actual> }*

cgenerator actual>
cextended sort>

I cliteral signature>
I coperator name>
I cground term>

If the class of a cgenerator parameter is TYPE then the corresponding cgenerator actual> must be
an cextended sort>.

Semantics

164 Fascicle X.l - Rec. Z.100

If the class of a cgenerator parameter> is LITERAL then the corresponding cgenerator actual>
must be a cliteral signatures
A cliteral signature> which is a cname class literal> may be used as a cgenerator actual> if and
only if the corresponding cgenerator formal name> does not occur in the caxioms>, or cliteral
mapping> of the cproperties expression> in the cgenerator texts

If the class of a cgenerator parameter> is OPERATOR then the corresponding cgenerator actual>
must be an coperator names

If the class of a cgenerator parameter> is CONSTANT then the corresponding cgenerator actual>
must be a cground terms

If the cgenerator actual> is a cgenerator formal name> then the class of the cgenerator formal
name> must be the same as the class for the cgenerator actuals

Semantics

Use of a generator instantiation in extended properties or in a generator text denotes instantiation of
the text identified by the generator identifier. An instantiated text for literals, operators and axioms
is formed from the generator text with

a) the generator actual parameters substituted for the generator parameters, also

b) with the name of the generator substituted by

i) if the generator instantiation is in a partial type definition or syntype definition, the
identity of the sort being defined by the partial type definition or syntype definition,
otherwise

ii) in the case of generator instantiation within a generator, the name of that generator.

The instantiated text for literals is the text instantiated from the literals in the properties expression
of the generator text omitting the keyword LITERALS.

The instantiated text for operators is the text instantiated from the operator list in the properties
expression of the generator text omitting the keyword OPERATORS.

The instantiated text for axioms is the text instantiated from the axioms in the properties expression
of the generator text omitting the keyword AXIOMS.

When there is more than one generator instantiation in the list of generator instantiations, the
instantiated texts for literals (operators and axioms) are formed by concatenating the instantiated text
for the literals (operators, axioms respectively) of all the generators in the order they appear in the
list.

The instantiated text for literals is a list of literals for the properties expression of the enclosing
partial type definition, syntype definition or generator definition occurring before any literal list
explicitly mentioned in the properties expression. That is if ordering has been specified, literals
defined by generator instantiations will be in the order they are instantiated and before any other
literals.

The instantiated text for operators and axioms are added to the operator list and axioms respectively
of the enclosing partial type definition, syntype definition or generator definition.

Fascicle X .l — Rec. Z.100 165

When instantiated text is added to a properties expression the keywords LITERALS, OPERATORS
and AXIOMS are considered to be added if necessary to create correct concrete syntax.

Model

The abstract syntax corresponding to a generator instantiation is determined after instantiation. The
relationship is determined from the instantiated text at the point of instantiation.

Example

NEWTYPE boolbag bag(Boolean)
ADDING
OPERATORS

yesvote : boolbag -> Boolean;
AXIOMS

yesvote(b) == count(True,b) > count(False,b);
ENDNEWTYPE boolbag;

5.4.1.13 Synonyms

A synonym gives a name to a ground expression which represents one of the values of a
sort.

Concrete textual grammar

<synonym definition> ::=
SYNONYM <svnonvm name> [<sort>] = <ground expression>

I <external synonym definition>

The alternative <extemal synonym definition> is described in § 4.3.1.

If the sort of the <ground expression> cannot be uniquely determined, then a sort must be specified
in the <synonym deflnition>.

The sort identified by the <sort> must be one of the sorts to which the <ground expression> can be
bound.

The <ground expression> must not refer to the synonym defined by the <synonym definition>
either directly dr indirectly (via another synonym).

Semantics

The value which the synonym represents is determined by the context in which the synonym
definition appears.

If the sort of the ground expression cannot be uniquely determined in the context of the synonym
then the sort is given by the <sort>.

A synonym has a value which is the value of the ground term in the synonym definition.

A synonym has a sort which is the sort of the ground term in the synonym definition.

Model

The <ground expression> in the concrete syntax denotes a ground term in the abstract syntax as

166 y Fascicle X.l — Rec. Z.100

defined in § 5.4.2.2.

If a <sort> is specified the result of the <ground expression> is bound to that sort. The <ground
expression> represents a ground term in the abstract syntax which has an operator identifier with
the same name and the same argument sorts as given by the concrete syntax and the result sort
equal to the sort specified in the concrete syntax.

5.4.1.14 Name class literals

A name class literal is a shorthand for writing a (possibly infinite) set of literal names
defined by a regular expression.

Concrete textual grammar

<name class literal> ::=
NAMECLASS <regular expression>

<regular expression>
<partial regular expression>

{ [OR] <partial regular expression> }*

<partial regular expressions :=
<regular element> [cnatural literal name> I + 1 *]

cregular element> ::=
(cregular expression>)

I ccharacter string literal>
I cregular interval>

cregular interval> ::=
ccharacter string literal>: ccharacter string literal>

The names formed by the cname class literal> must satisfy the normal static conditions for literals
(see § 5.2.2) and either the lexical rules for names (see § 2.2.1) or the concrete syntax for
ccharacter string literal> (see § 5.4.1.2).

The ccharacter string literal>s in a cregular interval> must both be of length one, and must both be
literals defined by the Character sort (see § 5.6.2).

Semantics

A name class literal is an alternative way of specifying literal signatures.

Model

The set of names which a name class literal is equivalent to is defined as the set of names which
satisfy the syntax specified by the cregular expressions The name class literal is equivalent to this
set of names in the abstract syntax.

A cregular expression> which is a list of cpartial regular expressions without an OR specifies that
the names can be formed from the characters defined by the first cpartial regular expression>
followed by the characters defined by the second cpartial regular expressions

When an OR is specified between two cpartial regular expressions then the names are formed
from either the first or the second of these cpartial regular expressions. Note that OR is more

Fascicle X.l — Rec. Z.100 167

tightly binding than simple sequencing so that
NAMECLASS 'A' ’O' OR '1' '2';

is equivalent to
NAMECLASS ’A’ ('O' OR 'I') '2';

and defines the literals A02, A12.
If a <regular element> is followed by cnatural literal name> the cpartial regular expression> is
equivalent to the cregular element> being repeated the number of times specified by the cnatural
literal name>.

For example
NAMECLASS 'A' ('A' OR 'B') 2

defines names AAA, AAB, ABA and ABB.

If a cregular element> is followed an the cpartial regular expression> is equivalent to the
cregular element> being repeated zero or more times.

For example
NAMECLASS ’A’ (’A' OR 'B')*

defines names A, AA, AB, AAA, AAB, ABA, ABB, AAAA,... etc.

If a cregular element> is followed an V the cpartial regular expression> is equivalent to the
cregular element> being repeated one or more times.

For example
NAMECLASS 'A' ('A' OR 'B’)+

defines names AA, AB, AAA, AAB, ABA, ABB, AAAA,... etc.

A cregular element> which is a bracketed cregular expression> defines the character sequences
defined by the cregular expressions

A cregular element> which ccharacter string literal> defines the character sequence given in the
character string literal (omitting the quotes).

A cregular element> which is a cregular interval> defines all the characters specified by the
cregular interval> as alternative character sequences. The characters defined by the cregular
interval> are all the characters greater than or equal to the first character and less than or equal to the
second character according to the definition of the character sort (see § 5.6.2). For example

'a ’rT
defines the alternatives 'a' or 'b' or 'c' or'd ' or 'e' or 'f .

If the sequence of definition of the names is important (for instance if ORDERING is specified),
then the names are considered to be defined in the order so that they are alphabetically sorted
according to the ordering of the character string sort. If two names commence with the same
characters but are of different lengths then the shorter name is considered to be defined first.

5.4.1.15 Literal mapping

Literal mappings are shorthands used to define the mapping of literals to values.

Concrete Textual Grammar

cliteral mapping> ::=
MAP cliteral equation> { cend> cliteral equation> }* [cend>]

168 Fascicle X.l — Rec. Z.100

<Iiteral equation> ::=
<literal quantification>

(cliteral axioms> { <end> cliteral axioms> }* [cend>])

cliteral axioms> ::=
cequation>

I cliteral equation>

cliteral quantification> ::=
FOR ALL Cvalue name> { , cvalue name> } * IN cextended sort> LITERALS

cspelling term> ::=
SPELLING (cvalue identified)

The rules cliteral mapping> and cspelling term> are not part of the data kernel but occur in the
rules cproperties expression> and cground term> in § 5.2.1 and § 5.2.3 respectively.

Semantics

Literal mapping is a shorthand for defining a large (possibly infinite) number of axioms ranging
over all the literals of a sort. The literal mapping allows the literals for a sort to be mapped onto the
values of the sort. When the sort contains a large (or infinite) number of values a literal mapping is
the only practical way to define the value corresponding to each literal.

The spelling term mechanism is used in literal mappings to refer to the character string which
contains the spelling of the literal. This mechanism allows the Charstring operators to be used to
define literal mappings.

Model

A cliteral mapping> is a shorthand for a set of caxioms>. This set of caxioms> is derived from the
cliteral equation>s in the cliteral mapping>. The cequation>s which are used for this derivation are
all cequation>s contained in caxioms> of the rules cliteral axioms>. In each of these cequation>s
the cvalue identifier>s defined by the Cvalue name> in the cliteral quantification> are replaced. In
each derived cequation> each occurrence of the same cvalue identified is replaced by the same
c literal operator identified of the csort> of the cliteral quantification>. The derived set of
caxioms> contains all possible cequation>s which can be derived in this way.
The derived caxioms> for cliteral equation>s are added to caxioms> (if any) defined after the
keyword AXIOMS and before the keyword MAP in the same cpartial type definitions

For example
NEWTYPE abc LITERALS 'Mb/c';

OPERATORS
"c " : abc,abc -> Boolean;
"+": abc,abc -> Boolean;

MAP FOR ALL x,y IN abc LITERALS
(x c y => y + x);

ENDNEWTYPE abc;

is derived concrete syntax for

NEWTYPE abc LITERALS 'A'.b/c';
OPERATORS

"c" : abc,abc -> Boolean;
"+": abc,abc -> Boolean;

Fascicle X .l - Rec. Z.100 169

AXIOMS
'A' c 'A' => 'A' + 'A';
'A' c b => b + 'A';
'A' c 'c' => 'c' + 'A';
b c 'A' => 'A' + b ;
b c b => b + b ;
b c 'c' => 'c' + b ;
’c' c 'A' => 'A' + 'c';
'c' c b => b + 'c';
'c' c 'c' => 'c' + 'c';

ENDNEWTYPE abc;

If a cliteral quantification> contains one or more cspelling term>s then there is replacement of the
cspelling term>s with Charstring literals (see § 5.6.3).

If the cliteral signature> of the cliteral operator identifier> of a cspelling term> is a cliteral operator
name> (see § 5.2.2), then the cspelling term> is shorthand for an uppercase Charstring derived
from the cliteral operator identifier. The Charstring contains the uppercase spelling of the cliteral
operator name> of the cliteral operator identifier.

If the cliteral signature> of the cliteral operator identifier of a cspelling term> is a ccharacter
string literal> (see § 5.2.2 and § 5.4.1.2), then the cspelling term> is shorthand for a Charstring
derived from the ccharacter string literal>. The Charstring contains the spelling of the ccharacter
string literal>.

The Charstring is used to replace the cvalue identifier after the cliteral equation> containing the
cspelling term> is expanded as above.

For example
NEWTYPE abc LITERALS 'A',Bb,’c';

OPERATORS
"c" : abc,abc -> Boolean;

MAP FOR ALL x,y IN abc LITERALS
SPELLING(x) c SPELLING(y) => x c y;

ENDNEWTYPE abc;

is derived concrete syntax for

NEWTYPE abc LITERALS 'A’,Bb,'c';
OPERATORS

"c" : abc,abc -> Boolean;
AXIOMS

/* note that 'A', Bb, 'c' are bound to the local sort abc */
/* ’"A"', 'BB' and "'c'" should be qualified by the Charstring identifier

if these literals are ambiguous - to be concise this is omitted below*/
" ’A ” ' c '"A"' => 'A' c 'A';
" 'A '" c 'BB' => 'A' cBb;
’"A " ' c ,„c"' => 'A' c 'c';
'BB' c "'A'" => Bb < ’A';
'BB' c 'BB' => Bb c Bb;
'BB' c , „ c ' " => Bb c 'c';
,„C’" c ,M A.IM => 'c' < ’A’;
,Mc"’ c ’BB’ => 'c' c Bb;
mc'" c , " c ’ " => 'c' c 'c';

ENDNEWTYPE abc;

170 Fascicle X.l - Rec. Z.100

Every cunquantified equation> in <literal axioms> must contain a <spelling term> or a cliteral
operator identifier.
A cspelling term> must be in a cliteral mapping>.

The cvalue identifier in a cspelling term> must be a cvalue identifier defined by a cliteral
quantifications

5.4.2 Use of data

The following defines how data types, sorts, literals, operators and synonyms are
interpreted in expressions.

5.4.2.1 Expressions

Expressions are literals, operators, variables accesses, conditional expressions and
imperative operators.

Abstract grammar

Expression = Ground-expression I
Active-expression

An expression is an active expression if it contains an active primary (see § 5.5).

An expression which does not contain an active primary is a ground expression.

Concrete textual grammar

For simplicity of description no distinction is made between the concrete syntax of ground
expression and active expression. The concrete syntax for cexpression> is given in § 5.4.2.2
below.

Semantics

An expression is interpreted as the value of the ground expression or active expression. If the value
is an error then the further behaviour of the system is undefined.

The expression has the sort of the ground expression or active expression.

5.4.2.2 Ground expressions

Abstract grammar

Ground-expression :: Ground-term

The static conditions for the ground term also apply to the ground expression .

Concrete textual grammar

cground expression> ::=
c ground expression>

Fascicle X.l - Rec. Z.100 171

<expression> ::=
<operandO>

I <sub expression> => <operandO>

<sub expression> ::=
<expression>

<operandO> ::=
<operandl>

I <sub operandO> { OR IXOR } <operandl>

<sub operandO> ::=
<operandO>

<operandl> ::=
<operand2>

I <sub operand 1> AND <operand2>

<sub operandl> ::=
<operandl>

<operand2> ::=
<operand3>

I <sub operand2> { = I /= I > I >= I < I <= I IN } <operand3>

<sub operand2> ::=
<operand2>

<operand3> ::=
<operand4>

I <sub operand3> { + I - 1 // } <operand4>

<sub operand3> ::=
<operand3>

<operand4> ::=
<operand5>

I <sub operand4> { * I / 1 MOD I REM } <operand5>

<sub operand4> ::=
<operand4>

<operand5> ::=
[- 1 NOT] <primary>

<primary> ::=
cground primary>

I cactive primary>
I cextended primary>

cground primary> ::=
cliteral identifier

I coperator identifier (cground expression list>)
I (cground expression>)
I cconditional ground expression>

172 Fascicle X.l - Rec. Z.100

<extended primary> ::=
<synonym>

I cindexed primary>
I <field primary>
I <structure primary>

<ground expression list> ::=
<ground expression> { , <ground expression> }*

coperator identified ::=
coperator identified
I [cqualified] cquoted operated

An cexpression> which does not contain any cactive primary> represents a ground expression in
the abstract syntax. A cground expression> must not contain an cactive primary>.

If an cexpression> is a cground primary> with an coperator identified and an cargument sort> of
the coperator signature> is a csyntype> then the range check for that syntype defined in §
5.4.1.9.1 is applied to the corresponding argument value. The value of the range check must be
True.

If an cexpression> is a cground primary> with an coperator identified and the cresult sort> of the
coperator signature> is a csyntype> then the range check for that syntype defined in § 5.4.1.9.1 is
applied to the result value. The value of the range check must be True.

If an cexpression> contains an cextended primary> (that is a csynonym>, cindexed primary>,
cfield primary> or cstructure primary>), this is replaced at the concrete syntax level as defined in §
5.4.2.3, § 5.4.2.4, § 5.4.2.5 and § 5.4.2.6 respectively before relationship to the abstract syntax
is considered.

The optional cqualified before a cquoted operated has the same relationship with the abstract
syntax as a cqualified of an coperator identified (see § 5.2.2).

Semantics

A ground expression is interpreted as the value denoted by the ground term syntactically equivalent
to the ground expression.

In general there is no need or reason to distinguish between the ground term and the value of the
ground term. For example the ground term for the unity integer value can be written "1". Usually
there are several ground terms which denote the same value, for instance the integer ground terms
”0+1", "3-2" and "(7+5)/12", and it is usual to consider a simple form of ground term (in this case
"1") as denoting the value.

A ground expression has a sort which is the sort of the equivalent ground term.

A ground expression has a value which is the value of the equivalent ground term.

Fascicle X .l — Rec. Z.100 173

5.4.2.3 Synonym

Concrete textual grammar

<synonym> ::=
csvnonvm identified

I cextemal synonym>

The alternative cextemal synonym> is described in § 4.3.1.

Semantics

A synonym is a shorthand for denoting an expression defined elsewhere.

Model

A <synonym> represents the cground expression> defined by the csynonym definition> identified
by the c synonym identified. An cidentified used in the cground expression> represents an
identifier in the abstract syntax according to the context of the csynonym definitions

5.4.2.4 Indexed primary

An indexed primary is a shorthand syntactic notation which can be used to denote
"indexing" of an "array" value. However, apart from the special syntactic form an indexed primary
has no special properties and denotes an operator with the primary as a parameter.

Concrete textual grammar

cindexed'primary> ::=
cprimary> (cexpression list>)

Semantics

An indexed expression represents the application of an Extract! operator.

Model

A cprimary> followed by a bracketed cexpression list> is derived concrete syntax for the concrete
syntax

Extract!(cprimary>, cexpression list>)

and then this is considered as a legal expression even though Extract! is not allowed as an operator
name in the concrete syntax for expressions. The abstract syntax is determined from this concrete
expression according to § 5.4.2.2.

5.4.2.5 Field primary

An field primary is a shorthand syntactic notation which can be used to denote "field
selection" of "structures". However, apart from the special syntactic form an field primary has no
special properties and denotes an operator with the primary as a parameter.

Concrete textual grammar

cfield primary> ::=
cprimary> cfield selection>

174 Fascicle X.l — Rec. Z.100

<field selection> ::=
! <field name>

I (<field name> {, <field name> }*)

The field name must be a field name defined for the sort of the primary.

Semantics

A field primary represents the application of one of the field extract operators of a structured sort.

Model

The form
<primary> (<field name>)

is derived syntax for
<primary>! <field name>

The form
<primary> (<first field name> { , <field name> }*)

is derived syntax for
<primary> ! < first field name > { ! <field iiame> }*

where the order of field names is preserved.

The form
<primary>! <field name>

is derived syntax for
<fidd extract operator name> (<primary>)

where the field extract operator name is formed from the concatenation of the field name and
"Extract!" in that order. For example

s ! f l
is derived syntax for

flExtract!(s)

and then this is considered as a legal expression even though flExtract! is not allowed as an
operator name in the concrete syntax for expressions. The abstract syntax is determined from this
concrete expression according to § 5.4.2.2.

In the case where there is an operator defined for a sort so that
Extract! (s, name)

is a valid term when "name” is the same as a valid field name of the sort of s then a primary
s(name)

is derived concrete syntax for
Extract! (s, name)

and the field selection must be written
s ! name

5.4.2.6 Structure primary

Concrete textual grammar

cstructure primary>
[cqualifier>] (. cexpression list> .)

Fascicle X .l - Rec. Z.100 175

Semantics

A structure primary represents a value of a structured sort which is constructed from expressions
for each field of the structure.

The form
(. <expression list>.)

is derived concrete syntax for

Make!(<expression list>)

where this is considered as a legal ground expression even though Make! is not allowed as an
operator name in concrete syntax for ground expressions. The abstract syntax is determined from
this concrete ground expression according to § 5.4.2.2.

5.4.2.7 Conditional ground expression

Concrete textual grammar

cconditional ground expression> ::=
IF cBoolean ground expression>

THEN cconsequence ground expression>
ELSE caltemative ground expression>
FI

cconsequence ground expression> ::=
cground expression>

caltemative ground expression> ::=
cground expression>

The cconditional ground expression> represents a ground expression in the abstract syntax. If the
cBoolean ground expression> represents True then the ground expression is represented by the
cconsequence ground expression> otherwise it is represented by the calternative ground
expressionx

The sort of the cconsequence ground expression> must be the same as the sort of the caltemative
ground expressionx

Semantics

A conditional ground expression is a ground primary which is interpreted as either the consequence
ground expression or the alternative ground expression.

If the cBoolean ground expression> has the value True then the caltemative ground expression> is
not interpreted. If the cBoolean ground expression> has the value False then the cconsequence
ground expression> is not interpreted. The further behaviour of the system is undefined if the
cground expression> which is interpreted has the value of an error.

A conditional ground expression has a sort which is the sort of the consequence ground expression
(and also the sort of the alternative ground expression).

176 Fascicle X.l — Rec. Z.100

5.5 Use of data with variables

This section defines the use of data and variables declared in processes and procedures, and
the imperative operators which obtain values from the underlying system.

A variable has a sort and an associated value of that sort. The value associated with a
variable may be changed by assigning a new value to the variable. The value associated with the
variable may be used in an expression by accessing the variable.

Any expression containing a variable is considered to be "active" since the value obtained by
interpreting the expression may vary according to the value last assigned to the variable.

5.5.1 Variable and data definitions

Concrete textual grammar

<data definition> ::=
{ <partial type definition>

I <syntype definition>
I <generator definition>
I <synonym definition> } <end>

A data definition forms part of a data type definition if it is a <partial type definition> or <syntype
definition> as defined in § 5.2.1 and § 5.4.1.9 respectively. The rules <generator definition> and
<synonym definition> are defined in § 5.4.1.12 and §5.4.1.13 respectively.

The syntax for introducing process variables and for procedure parameter variables is given in §
2.5.1.1 and § 2.3.4 respectively. A variable defined in a procedure must not be revealed.

Semantics

A data definition is used either for the definition of part of a data type or the definition of a
synonym for an expression as further defined in § 5.2.1, § 5.4.1.9 or § 5.4.1.13.

When a variable is created it contains a special value called undefined which is distinct from any
other value of the sort of that variable.

5.5.2 Accessing variables

The following defines how an expression involving variables is interpreted.

5.5.2.1 Active expressions

Abstract grammar

Active-expression = Variable-access I
Conditional-expression I
Operator-application I
Imperative-operator

Concrete textual grammar

<active expression>
<active expression>

Fascicle X.l - Rec. Z.100 177

<active primary> ::=
<variable access>

I <operator application>
I conditional expression>
I imperative operator>
I (<active expression>)
I <active extended primary>

<active extended primary> ::=
<active extended primary>

<expression list> ::=
< expression> { , < expression> }*

To be concise the concrete syntax for <active expression> is given as <expression> in § 5.4.2.2..
An <expression> is an <active expression> if it contains an <active primary>.

Also to be concise the concrete syntax for <active extended primary> is given as extended
primary> in § 5.4.2.2. An extended primary> is an <active extended primary> if it contains an
<active primary>. For an extended primary> replacement at the concrete syntax level takes place
as defined in § 5.4.2.3, § 5.4.2.4, § 5.4.2.5 and § 5.4.2.6 before the relationship to the abstract
syntax is considered.

Semantics

An active expression is an expression whose value will depend on the current state of the system.

An active expression has a sort which is the sort of the equivalent ground term.

An active expression has a value which is the ground term equivalent to the active expression at the
time of interpretation.

Model

Each time the active expression is interpreted the value of the active expression is determined by
finding the ground term equivalent to the active expression. This ground term is determined from a
ground expression formed by replacing each active primary in the active expression by the ground
term equivalent to the value of that active primary. The value of an active expression is the same as
the value of the ground expression .

Within an active expression each operator is interpreted in the order determined either by the
concrete syntax given in § 5.4.2.2 or in the case of ambiguity from left to right. Within an active
expression list or expression list each element of the list is interpreted in the order left to right.

5.5.2.2 Variable access

Abstract grammar

Variable-access = Variable-identifier

Concrete textual grammar

<variable access>
cvariable identifier

178 Fascicle X.l — Rec. Z.100

Semantics

A variable access is interpreted as giving the value associated with the identified variable.

A variable access has a sort which is the sort of the variable identified by the variable access.

A variable access has a value which is the value last associated with the variable or if that value was
the special value "undefined” then an error. If the value of a variable access is an error then the
further behaviour of the system is undefined.

5.5.2.3 Conditional expression

A conditional expression is an expression which is interpreted as either the consequence or
the alternative.

Abstract grammar

Conditional-expression ::

Boolean-expression =

Consequence-expression -

Alternative-expression =

The sort of the consequence expression must

Boolean-expression
Consequence-expression
Alternative-expression

Expression

Expression

Expression

■ the same as the sort of the alternative expression.

Concrete textual grammar

cconditional expression>
IF cBoolean active expression>

THEN cconsequence expression>
ELSE caltemative expression>
FI

I IF cBoolean expression>
THEN cactive consequence expression>
ELSE caltemative expression>
FI

I IF cBoolean expression>
THEN cconsequence expression>
ELSE cactive alternative expression>
FI

cconsequence expression> ::=
cexpression>

caltemative expression> ::=
cexpression>

A cconditional expression> is distinguished from a cconditional ground expression> by the
occurrence of an cactive expression> in the cconditional expressionx

Fascicle X.l — Rec. Z.100 179

Semantics

A conditional expression is interpreted as the interpretation of the condition followed by either the
interpretation of the consequence expression or the interpretation of the alternative expression. The
consequence is interpreted only if the condition has the value True, so that if the condition has the
value False then the further behaviour of the system is undefined only if the alternative expression
is an error. Similarly, the alternative is interpreted only if the condition has the value False, so that
if the condition has the value True then the further behaviour of the system is undefined only if the
consequence expression is an error.

The conditional expression has a sort which is the same as the sort of the consequence and
alternative.
The conditional expression has a value which is the value of the consequence if the condition is
True or the value of the alternative if the condition is False.

5.5.2.4 Operator application

An operator application is the application of an operator where one or more of the actual
arguments is an active expression.

Abstract grammar

Operator-application :: Operator-identifier
Expression+

If an argument sort of the operator signature is a syntype and the corresponding expression in the
list of expressions is a ground expression, the range check defined in § 5.4.1.9.1 applied to the
value of the expression must be Tme.

Concrete textual grammar

coperator application> ::=
coperator identifier (cactive expression list>)

cactive expression list> ::=
cactive expression> [, cexpression list>]

I cground expression> , cactive expression list>

An coperator application> is distinguished from the syntactically similar cground expression> by
one of the cexpression>s in the bracketed list of cexpression>s being an cactive expressions If all
the bracketed cexpression>s are cground expressions then the construction represents a ground
expression as defined in § 5.4.2.2.

Semantics

An operator application is a active expression which has the value of the ground term equivalent to
the operator application. The equivalent ground term is determined as in § 5.5.2.1.

The list of expressions for the operator application are interpreted in the order given before
interpretation of the operator.

If an argument sort of the operator signature is a syntype and the corresponding expression in the
active expression list is an active expression then the range check defined in § 5.4.1.9.1 is applied
to the value of the expression. If the range check is False at the time of interpretation then the
system is in error and the further behaviour of the system is undefined.

180 Fascicle X.l — Rec. Z.100

If the result sort of the operator signature is a syntype then the range check defined in § 5.4.1.9.1 is
applied to the value of the operator application. If the range check is False at the time of
interpretation then the system is in error and the further behaviour of the system is undefined.

5.5.3 Assignment statement

Abstract grammar

Assignment-statement :: Variable-identifier
Expression

The sort of the variable identifier and the sort of the expression must be the same.

If the variable is declared with a syntype and the expression is a ground expression, then the range
check defined in § 5.4.1.9.1 applied to the expression must be True.

Concrete textual grammar

<assignment statement> ::=
<variable> := <expression>

<variable> ::=
cvariable identifier

I cindexed variable>
I cfield variable>

If the cvariable > is a cvariable identifier then the cexpression> in the concrete syntax represents
the cexpression> in the abstract syntax. The other forms of cvariable>, cindexed variable> and
cfield variable>, are derived syntax and the cexpression> in the abstract syntax is found from the
equivalent concrete syntax defined in § 5.5.3.1 and § 5.5.3.2 below.

Semantics

An assignment statement is interpreted as creating an association from the variable identified in the
assignment statement to the value of the expression in the assignment statement. The previous
association of the variable is lost.

If the variable is declared with a syntype and the expression is an active expression, then the range
check defined in § 5.4.1.9.1 is applied to the expression. If this range check is equivalent to False
then the assignment is in error and the further behaviour of the system is undefined.

5.5.3.1 Indexed variable

An indexed variable is a shorthand syntactic notation which can be used to denote
"indexing" of "arrays". However, apart from the special syntactic form an indexed active primary
has no special properties and denotes an operator with the active primary as a parameter.

Concrete textual grammar

cindexed variable> ::=
cvariable> (cexpression list>)

There must be an appropriate definition of an operator named Modify!.

Fascicle X .l - Rec. Z.100 181

An indexed variable represents the assignment of a value formed by the application of the Modify!
operator to an access of the variable and the expression given in the indexed variable.

Model

The concrete syntax form
<variable> (Expression list>) := <expression>

is derived concrete syntax for
<variable> := Modify! (<variable>,Expression list>, Expression>)

where the same <variable> is repeated and the text is considered as a legal assignment even though
Modify! is not allowed as an operator name in the concrete syntax for expressions. The abstract
syntax is determined for this <assignment statement> according to § 5.5.3 above.

The model for indexed variables must be applied before the model for import (see § 4.13).

5.5.3.2 Field variable

A field variable is a shorthand for assigning a value to a variable so that only the value in
one field of that variable has changed.

Concrete textual grammar

<field variable> ::=
<variable> <field selection>

There must be an appropriate definition of an operator named Modify!. Normally this definition
will be implied by a structured sort definition.

Semantics

A field variable represents the the assignment of a value formed by the application of a field modify
operator.

Model

Bracketed field selection is derived syntax for ! <field name> field selection as defined in §
5.4.2.5.

The concrete syntax form
<variable> ! <field name> := Expression>

is derived concrete syntax for
<variable> := <field modify operator name> (<variable>, Expression>)

where

a) the same <variable> is repeated, and

b) the cfield modify operator name> is formed from the concatenation of the field name and
"Modify!”, and then

c) the text is considered as a legal assignment even though the cfield modify operator name> is
not allowed as an operator name in the concrete syntax for expressions.

Semantics

182 Fascicle X.l - Rec. Z.100

If there is more than one <field name> in the field selection then they are modelled as above by
expanding each ! <field name> in turn from right to left and considering the remaining part of the
<field variable> as a <variable>. For example

var ! fielda ! fieldb := expression;
is first modelled by

var ! fielda := fieldbModify!(var ! fielda, expression);
and then by

var := fieldaModify!(var, fieldbModify!(var ! fielda, expression));

The abstract syntax is determined for the <assignment statement> formed by the modelling
according to § 5.5.3 above.

5.5.3.3 Default assignment

A default assignment is shorthand for assigning the same value to all variables of a specified
sort immediately after they are created.

Concrete textual grammar

<default assignment ::=
DEFAULT <ground expression> [<end>]

A <partial type definition> or <syntype definition> must contain not more than one <default
assignments (This prevents multiple assignments arising from generator instantiations).

Semantics

A default assignment is optionally added to a properties expression of a sort. A default assignment
specifies that any variable declared with the sort introduced by the partial type definition or syntype
definition is immediately assigned the value of the ground expression.

If there is no default assignment then when a variable is declared it will be associated with the
undefined value.

A variable may be assigned an alternative value when it is declared by including an explicit
assignment with the declaration.

Default assignments are not inherited.

Model

The concrete syntax form
DEFAULT <ground expression>

used in a properties expression where the sort s is introduced implies an assignment of the <ground
expression> to a variable. This assignment is interpreted immediately after the declaration of the
variable and before any explicitly specified action in the same process or procedure is interpreted.
For example if

DEFAULT 2*dnumber
is given for sort s and there is a declaration in the concrete syntax

DCL v s;
then there is an implied assignment

v := 2*dnumber;

Fascicle X.l - Rec. Z.100 183

If the declaration also has an <initial value> then the <initial value> is assigned to the variable after
the <ground expression> in the <default assignment.

The implied assignment statement has the normal relationship of an <assignment statement to the
abstract syntax (see § 5.5.3).

If a <default assignment is specified for a <data definition> then the <sort> (representing a
syntype or sort) has a default assignment value which is the value of the <ground expression> of
the cdefault assignment. If no cdefault assignment is given in csyntype definition> then the
syntype has a default assignment value if the parent sort identifier (identifying a syntype or sort)
given in the syntype definition has a default assignment value.

For a csyntype definition> the assignments are interpreted if and only if the range check as defined
in § 5.4.1.9.1 gives True when applied to the default assignment value. That is, for each variable
of the syntype there is an implied decision of the form

DECISION crange check>;
(True): cdefault assignment
ELSE: ENDDECISION.

5.5.4 Imperative operators I

Imperative operators obtain values from the underlying system state.

Abstract grammar

Imperative-operator = Now-expression I
Pid-expression I
View-expression I
Timer-active-expression

Concrete textual grammar

cimperative operator> ::=
enow expression>

I cimport expression>
I cPId expression>
I cview expression>
I ctimer active expression>

The alternative cimport expression> is defined in § 4.13.

Imperative operators are expressions for checking whether timers are active or for accessing the
system clock, the Pid values associated with a process or imported variables.

5.5.4.1 NOW

Abstract grammar

Now-expression :: ()

Concrete textual grammar

enow expression> ::=
NOW

184 Fascicle X.l — Rec. Z.100

The now expression is an expression which accesses a system clock variable to determine the
absolute system time.

The now expression represents an expression requesting the current value of the system clock
giving the time. The origin and unit of time are system dependent. Whether two occurences of
NOW in the same transition will give the same value is system dependent.

A now expression has the time sort.

5.5.4.2 IMPORT expression

Concrete textual grammar

The concrete syntax for an import expression is defined in § 4.3.

Semantics

In addition to the semantics defined in § 4.13 an import expression is interpreted as a variable
access (see § 5.5.2.2) to the implicit variable for the import expression.

Model

The import expression has implied syntax for the importing of the value as defined in § 4.13 and
also has an implied variable access of the implied variable for the import in the context where the
cimport expression> appears.

5.5.4.3 Pid expression

Abstract grammar

Pid-expression = Self-expression I
Parent-expression I
Offspring-expression I
Sender-expression

Self-expression :: ()

Parent-expression :: 0

Offspring-expression :: ()

Sender-expression :: ()

Concrete textual grammar

<PId expression> ::=
SELF

I PARENT
I OFFSPRING
I SENDER

Semantics

Fascicle X .l - Rec. Z.100 185

Semantics

A Pid expression accesses one of the implicit process variables defined in § 2.4.4. The process
variable expression is interpreted as the last value associated with the corresponding implicit
variable.

A Pid expression has a sort which is Pid.

A Pid expression has a value which is the last value associated with the corresponding variable as
defined by § 2.4.4.

5.5.4.4 View expression

A view expression allows a process to obtain the value of a variable of another process in
the same block as if the variable were defined locally. The viewing process can not modify the
value associated with the variable.

Abstract grammar

View-expression :: Variable-identifier
Expression

The expression must be a Pid expression.

The variable identifier must be one of the identifiers of one of the variables in the process identified
by the expression.

Concrete textual grammar

cview expression> ::=
VIEW (cvariable identifiers cPId expression>)

The cvariable identifier must be defined to be viewed in a cview definition> in the process
containing the cview expressionx The cqualifier> in cvariable identifier may be omitted only if
no other variables with the same cname> part are contained in a cview definition> for the enclosing
cprocess definitionx

Semantics

A view expression is interpreted in the same way as a variable access (see § 5.5.2.2). The variable
accessed is the variable in the process identified by the Pid expression which corresponds to the
Pid expression (see § 5.5.4.3).

A view expression has a value and a sort which are the value and sort of the variable access.

The Pid expression must identify an existing process in the same block as the process in which the
view expression is interpreted otherwise the view expression is in error and the further behaviour
of the system is undefined. The Pid expression must identify the same process type as Process-
identifier in the corresponding view definition.

186 Fascicle X.l — Rec. Z.100

5.5.4.5 Timer active expression

Abstract grammar

Timer-active-expression :: Timer-identifier
Expression*

The sorts of the Expression* in the Timer-active-expression must correspond by position to the
Sort-reference-identifier* directly following the Timer-name (§ 2.8) identified by the
Timer-identifier.

Concrete textual grammar

<Timer active expression> ::=
ACTIVE (ctimer identifier [(cexpression list>)])

cexpression list> is defined in § 5.5.2.1.

Semantics

A timer active expression is an expression of the Boolean sort which has the value True if the timer
identified by timer identifier, and set with the same values as denoted by the expression list (if any),
is active (see §2.8.2). Otherwise the timer active expression has the value False. The expressions
are interpreted in the order given.

Fascicle X.l — Rec. Z.100 187

5 .6 Predefined data

This section defines data sorts and data generators implicitly defined at system level.
Note that section 5.4.1.1 defines the syntax and precedence of special operators (infix and
monadic), but the semantics of these operators (except REM and MOD) are defined by the data
definitions in this section.

5.6.1 Boolean sort

5.6.1.1 Definition

NEWTYPE Boolean
LITERALS True,False;
OPERATORS

"NOT" : Boolean

"=" : Boolean, Boolean
"/=" : Boolean, Boolean

"AND'
"OR"
"XOR1
tl ^ tt

AXIOMS
"NOT"(True)
"NOT" (False)

: Boolean, Boolean
: Boolean, Boolean
; Boolean, Boolean
: Boolean, Boolean

-> Boolean;

-> Boolean;
-> Boolean;

-> Boolean;
-> Boolean;
-> Boolean;
-> Boolean;

== False;
== True;

/*

*/

The "=" and "/=" operators
are implied. See § 5.4.1.4

"=" (True, True) ==True;
"=" (True,False) == False;
"=" (False, True) = False;
"=" (False,False) ==True;

"/=" (True, True) == False;
"/="(True,False) = True ;
"/=" (False, True) ==True;
"/=" (False,False) == False;

"AND"(True, True) == True ;
"AND"(True,False) == False;
"AND"(False, True) == False;
"AND"(False,False) == False;

"OR" (True,True) ==True;
"OR" (True,False) == True ;
"OR" (False, True) == True ;
"OR" (False,False) == False;

"XOR"(True, True) == False;
"XOR"(True,False) == True ;
"XOR"(False, True) == True ;
"XOR"(False,False) == False;

"=>"(True, True) ==True;
"=>"(True,False) == False;

188 Fascicle X.l — Rec. Z.100

"=>" (False, True) ==True;
"=>" (False,False) ==True;

ENDNEWTYPE Boolean;

5.6.1.2 Usage

The Boolean sort is used to represent true and false values. Often it is used as the result of a
comparison.

The Boolean sort is used by many of the short-hand forms of data in SDL such as axioms
without the " = " symbol, and the implicit equality operators "=" and

5.6.2 Character sort

5.6.2.1 Definition

NEWTYPE Character

LITERALS
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, '
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, IS4, IS3, IS 2, IS1,t I9 1 | t 111 f 1 jj.»• 9 9 "9 •a’, f 11 f9!\f 9*1 9,9) 9 9 ' 9 i i 9 9 i9 1 f •)
’O’, ’1', ’2 ’, '3 ', '4 ', 5 \ '6 ', ’7 ’,
’8’, 1 Q1 9.9 1*1 9 • 9 9 9 _ f “ 9 ♦ 9

’A’, ’B ’, ’C', ’D ’, E ’, 'F ', 'O ’,
’H ’, ’I', ’J ’, 'K ', •L’, M’, ’N ’, 'O ’,
’P ’, Q’, 'R \ 'S ’, 'T ', U ’, ■'V, ’W',
’X ’, ’Y’, Z ’, ’[', 'V,]', 'A*> 1 9 — 9!>■ 19 'a ', ’b ’, ’c ’, ’d', e ’, 'f ', ’g*.
'h ', »• 1 »|_♦A > J > *- » '1', m’, ’n ’, 'O',
’P’, 'q \ 'r \ ’s’, ’t ’, u', 'V , 'w ’,
V , V , 'z', T , I- f) DEL;
/* "" is an apostrophe, ’ ' is a space,

OPERATORS
, is an overline or

"=" : Character, Character -> Boolean;
7=" : Character, Character -> Boolean;

/*

*/

The "=" and 7=" operator signatures
are implied - see § 5.4.1.4

"<" : Character, Character -> Boolean;
"<=": Character, Character -> Boolean;
’’>" : Character, Character -> Boolean;
’’>=": Character, Character -> Boolean;

AXIOMS
/* the following specifies ’’less than" between adjacent character literals*/

NUL < SOH = True;
STX < ETX = True;
EOT < ENQ = True;
ACK < BEL == True;
BS < HT = True;
LF < VT — True;
FF < CR = True;
SO < SI = True;

SOH < STX = True;
ETX <EOT == True;
ENQ < ACK == True;
BEL < BS == True;
HT < LF == True;
VT < FF — True;
CR < SO == True;
SI < DLE == True;

Fascicle X .l — Rec. Z.100 189

II
II

II
II

II
II

II
II

II II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

<n Ti-£
 £

 pq
.

Q
q

£5u
§h

2£2-
 ̂P ^

 5-'-* I~I-P
^

P
E

0
§°I--Iv

P
®

P
P

P
P

p
P

?
P

-i9::<I“lr>
^

N
^

<
 I

P
P

 "e 'op
 5-. >

 'x "n =_ 7
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
,

 v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
^

 ^
 PQ m

 CJ
-

-

Q
Q

^
W

w
S

^
H

r*
?

:
^

 + j S
rHS°^n

^
?

sI**'Jl r* ^
P

P
P

P
^

^
P

?

 P~ F1 P
r-1. L031° j° j^-r1 P

 ^
 j° 1°"}* P

 ?

<
D

<
D

<
D

<
0

<
D

<
D

<
D

<
D

<
D

<
D

<
D

<
D

<
D

<
0

<
0

<
0

<
L

>
0

<
D

<
D

<
D

<
D

<
D

4
)

i
D

f
c

>
<

D
<

D
<

D
<

D
<

D
i

D
<

D
<

D
<

0
<

L
>

<
D

<
D

<
L

>
i

O
<

D
<

D
<

D
<

D
<

t
>

U
D

<
i

>
l

>
i

>
<

D
<

D
<

D
D

a
>

II II
,—I CO W

 PQ
QJ

_
_

_
_

Q
Q

Z
W

W
w

S
S

^
'^

-
^

^

^
"

+
 -' S

-i^
 P

 ih
P

 >
jl r

-
<

P
W

p
M

^
^

O
 cyco p

 ^
 y

~ \~et >

 ~o >o.v, M
 B

 jo “cry> >
 >

v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

Q
Q

Q
&

U
§S

2h3I
=

P
*

 I "I' • P
 ^

 ^
 P

 §° I* • y
 lA SP̂

P
I

P
P

P
P

 :r-»p P
 p\P

 P
 ~> P

 IN =-

oO
n Fascicle X.l — Rec. Z.100

<DEL == True;
FOR ALL a,b,c IN Character (

a < a == False;
a < b AND b < c => a < c == True;
a < b == b > a;
a < b OR a > b == a /= b;
a < b = > NOT (b < a);
NOT (a /= b) ==a =b;
a < b OR a = b == a <= b;
a > b OR a = b == a >= b;)

ENDNEWTYPE Character,

5.6.2.2 Usage

The Character sort defines character strings of length 1, where the characters are those of
the International Alphabet No. 5. These are defined either as strings or as abbreviations according
the International Reference Version of the alphabet. The printed representation may vary according
to national usage of the alphabet.

There are 128 different literals and values defined for Character. The ordering of the values
and equality and inequality are defined.

5.6.3 String generator

5.6.3.1 Definition

GENERATOR String(TYPE Itemsort, LITERAL Emptystring) /*Strings are "indexed" from one */
LITERALS Emptystring;
OPERATORS

MkString : Itemsort -> String; /* make a string from an item */
Length : String -> Integer; /* length of string */
First : String -> Itemsort; /* first item in string*/
Last : String -> Itemsort; /* last item in string */
"//" : String, String -> String; /* concatenation */
Extract! : String, Integer -> Itemsort; /* get item from string */
Modify! : String, Integer, Itemsort -> String;/* modify value of string */
Substring: String, Integer,Integer -> String;/* get substring from string */

/*substring (s,i,j) gives a string of length j starting from the ith element */
AXIOMS
FOR ALL item, itemi, itemj, iteml, item2 IN Itemsort (
FOR ALL s, si, s2, s3 IN String (
FOR ALL i, j IN Integer (

type String Length(Emptystring) == 0;
type String Length(MkString(item)) == 1;
type String Extract! (MkString(item), 1) = item;
First(s) == Extract!(s,l);
Last(s) = Extract! (s,Length(s));
Length(si // s2) == Length (si) + Length (s2);
Length(Modify!(s,i,item)) == Length(s);
(s l / / s 2) / /s3 = si // (s2 // s3);
Emptystring // s == s;
s // Emptystring == s;
Emptystring = (MkString(item) // s2) == False;
(MkString(iteml) // si) = (MkString (item2) // s2) == (iteml = item 2) AND (si = s2);

Fascicle X.l — Rec. Z.100 191

i > 0 AND i <= Length(s) == True ==>
Extract! (Modify! (s,i,item),i) == item;

i /= j AND i > 0 AND i <= Length(s) AND j > 0 AND j <= Length(s) == True ==>
Extract! (Modify! (s,i,item),j) == Extract! (s,j);

i <= 0 OR i > Length(s) == True ==> Extract! (s,i) == ERROR!;

i /= j == True ==>
Modify! (Modify! (s,i,itemi),j,itemj) == Modify! (Modify! (s,j,itemj),i,itemi);

Modify! (Modify! (s,i,iteml),i,item2) == Modify! (s,i,item2);
i <= 0 OR i > Length(s) == True ==> Modify!(s,i,item) == ERROR!;

i <= Length(sl) == True ==>
Extract! (s 1 // s2, i) == Extract! (s 1 ,i);

i > Length(sl) == True ==>
Extract! (s 1 // s2, i) == Extract! (s2,i - Length(s 1));

i > 0 AND i <= Length(s) == True ==> SubString(s,i,0) == Emptystring;
i > 0 AND i < - Length(s) == True ==> SubString(s,i,l) == MkString(Extract!(s,i));
i > 0 AND i <= Length(s) AND i -1+j <= Length(s) AND j > 1 == True ==>

SubString(s,i,j) == SubString(s,i,l) // SubString(s,i+l,j-l);
i < 0 OR i > Length(s) OR j <= 0 OR i+j > Length(s) == True ==>

SubString(s,i,j) == ERROR!;

i > 0 AND i <= Length(s) == True ==>
Modify !(s,i, item) ==

Substring^, l,i-l) // MkString(item) // Substring^,i+l,Length(s)-i);)));
ENDGENERATOR String;

5.6.3.2 Usage

A string generator can be used to define a sort which allows strings of any item sort to be
constructed. The most common use will be for the Charstring defined below.

The Extract! and Modify! operators will typically be used with the shorthands defined in §
5.4.2.4 and § 5.5.3.1 for accessing the values of strings and assigning values to strings.

5.6.4 Charstring sort

5.6.4.1 Definition

NEWTYPE Charstring String (Character,")
ADDING LITERALS NAMECLASS "" ((' ':'&') OR mm OR (’(':))+
/* character strings of any length of any characters from a space " to an o v e r l i n e */
/* equations of the form

'ABC == ’AB' // 'C;
are implied - see § 5.4.1.2 */

MAP FOR ALL c IN Character LITERALS (
FOR ALL charstr IN Charstring LITERALS (

Spelling(charstr) == Spelling(c) ==> charstr == Mkstring(c);
)); /* string 'A' is formed from character ’A' etc. */

ENDNEWTYPE Charstring;

192 Fascicle X.l — Rec. Z.100

5 .6 .4 .2 Usage

The Charstring sort defines strings of characters. A Charstring literal can contain printing
characters and spaces. A non printing character can be used as a string by using Mkstring, for
example Mkstring(DEL).

/* Example */ SYNONYM newline_prompt Charstring = Mkstring(CR) // Mkstring(LF) //

5.6.5 Integer sort

5.6.5.1 Definition

NEWTYPE Integer
LITERALS NAMECLASS (’O':

/* optional number sequence
OPERATORS

-.Integer ->
”+” : Integer, Integer ->

: Integer, Integer ->
”*” : Integer, Integer ->
7" : Integer, Integer ->

"=" : Integer, Integer ->
"/=" : Integer, Integer ->

"<" : Integer, Integer ->
">" : Integer, Integer ->
"<=": Integer, Integer ->
">=": Integer, Integer ->
Float: Integer ->
Fix : Real ->

AXIOMS
FOR ALL a, b, c IN Integer (

/♦negation*/
0 - a == - a;
/* addition*/
0 + a = a;
a + b == b + a;
a + (b + c) == (a + b) + c;
/* subtraction*/
a - a = = 0 ;
(a - b) - c == a - (b + c)
(a - b) + c == (a + c) - b
a - (b - c) == (a + c) - b
/♦multiplication*/
a * 0 = = 0 ;
a * 1 == a;
a * b == b * a;
a * (b * c) == (a * b) * c;
a* (b + c) == a * b + a*c;
a * (b - c) == a * b - a * c;
/♦ordering*/
a + 1 > a == Tme;
a - 1 < a == Tme;
/♦equality*/

’9’)* (,0,:,9’) ;
before one of the numbers 0 to 9 */

Integer;
Integer;
Integer;
Integer;
Integer;

/*
Boolean;
Boolean;

*/
Boolean;
Boolean;
Boolean;
Boolean;
Real; /* axioms in NEWTYPE Real definition */
Integer; /* axioms in NEWTYPE Real definition */

The ”=" and "/=" operator signatures
are implied - see § 5.4.1.4

Fascicle X .l — Rec. Z.100 193

(a>b) OR (b>a) == NOT (a=b);
/* normal ordering axioms */
"<"(a,a) == False;
"<"(a,b) == ">"(b,a);
"<="(a,b) == ,,OR,,(',<,,(a,b),,,=,,(a,b));
">="(a,b) == "OR"(">"(a,b),"="(a,b));
"<"(a,b) == True ==> NOT("<"(b,a)) == True;
”<"(a,b) AND "<"(b,c) == True ==> ”<"(a,c) == True ;
/*division*/
a /0 == ERROR!;
a >= 0 AND b > a == True ==> a / b == 0;
a >= 0 AND b <= a AND b > 0 == True ==> a / b == 1 + (a-b)/b;
a >= 0 AND b < 0 == True ==> a / b == - (a/(-b));
a < 0 AND b < 0 == True ==> a / b == (-a)/(-b);
a < 0 AND b > 0 == True ==> a / b == - ((-a)/b);
/* Literals 2 to 9 */
TYPE Integer 2 = = 1 + 1; TYPE Integer 3 = = 2 + 1
TYPE Integer 4 = = 3 + 1; TYPE Integer 5 = = 4 + 1
TYPE Integer 6 = = 5 + 1; TYPE Integer 7 = = 6 + 1
TYPE Integer 8 = = 7 + 1; TYPE Integer 9 = = 8 + 1

MAP /* Literals other than 0 to 9 */
FOR ALL a,b,c IN Integer LITERALS
(Spelling(a) == Spelling(b) // Spelling(c), Length(Spelling(c)) == 1 ==>

a == b * (9 + 1) + c ;
•);

ENDNEWTYPE Integer;

5.6.5.2 Usage

The Integer sort is used for mathematical integers with decimal notation.

5.6.6 Natural syntype

5.6.6.1 Definition

SYNTYPE Natural = Integer CONSTANTS >= 0 ENDSYNTYPE Natural;

5.6.6.2 Usage

The natural syntype is used when positive integers only are required. All operators will be
the integer operators but when a value is used as a parameter or assigned the value is checked. A
negative value will be an error.

5.6.7 Real sort

5.6.7.1 Definition

NEWTYPE Real
LITERALS NAMECLASS (('O':^)* (,0,:,9I)) OR (7 (,0,:’9’)+);
OPERATORS

: Real -> Real;
"+" : Real, Real -> Real;

: Real, Real -> Real;
: Real, Real ->Real;

T : Real, Real -> Real;

194 Fascicle X.l — Rec. Z.100

"=” : Real, Real
7=" : Real, Real

"<" : Real, Real
">" : Real, Real

Real, Real
Real, Real

AXIOMS
FOR ALL a, b, c IN Real (

/*negation*/
0 - a
/* addition*/
0 + a
a + b
a + (b + c)
/* subtraction*/
a- a
(a - b) - c
(a - b) + c
a - (b - c)
^multiplication*/
a * 0
a* 1
a * b
a * (b * c)
a **(b + c)
a * (b - c)
/*ordering*/
FOR ALL i, j IN Integer (

Float(i) > Float(j)
Float(j) = 0 = False

/*
-> Boolean;
-> Boolean;

*/
-> Boolean;
-> Boolean;
-> Boolean;
-> Boolean;

== - a;

The "=" and 7=" operator signatures
are implied - see § 5.4.1.4

a;
b + a;
(a + b) + c;

0;
a - (b + c);
(a + c) - b;
(a + c) - b;

0;
a;
b * a;
(a * b) * c;
a * b + a * c;
a * b - a * c ;);

== TYPE Integer ">"(i,j);
==> Float(i) / Float® > 0 == Float(i) > 0 AND Float® > 0

OR Float® < 0 AND Float® < 0;
Float® > 0 AND Float® > 0 AND Float® > Float®

==> Float® / Float® > 1 == True;);
FOR ALL a, r, b IN Real (a + r < b + r = = a < b;

r > 0 = = > a * r < b * r = = a < b;
r < 0 = = > a * r < b * r = = b < a;);

/* normal ordering axioms */
FOR ALL a, b, c, d IN Real (

/* equality and ordering */
(a>b) OR (b>a) = NOT (a=b);
"<"(a,a) == False;
"<"(a,b) == ">"(b,a);
"<="(a,b) == "OR"("<"(a,b),"="(a,b));
">="(a,b) == MOR,,(,,>,,(a,b),,,=,,(a,b));
"<"(a,b) == True ==> NOTC^’Xb.a)) == True;
,,<,,(a,b) AND "<"(b,c) == True ==> VYa.c) == True ;

/*division*/
a /0 == ERROR!;
a = 0 == False ==> a /a == 1;
a = 0 == False ==> 0 / a == 0;
b = 0 == False ==> (a / b) * b = a;

Fascicle X .l — Rec. Z.100 195

b = 0 OR c = 0 == False ==> (a * b) / (c * b) == a / c;
b = 0 OR d = 0== False ==> a / b + c / d == (a * d + b * c) / (b * d);
b = 0 OR d = 0 == False ==> a / b - c / d == (a * d - b * c) / (b * d);
b = 0 OR d = 0 == False ==>(a/b) * (c/d) == (a * c) / (b * d);
b = 0 OR d = 0 == False ==> (a/b) / (c/d) == (a * d) / (b * c););

/* conversions between integer and real */
FOR ALL a, i, j IN Integer (
FOR ALL r IN Real (

Fix(Float(a)) == a;
r - 1.0 < Float(Fix(r)) = True; /* Note Fix(1.5) == 1, Fix(-0.5) == -1 */
Float(Fix(r)) <= r == True;
Float(TYPE integer "+"(i j)) == Float(i) + Float(j);));

MAP
FOR ALL r,s IN Real LITERALS (

FOR ALL i,j IN Integer LITERALS (
Spelling(r) == Spelling(i) ==> r == Float(i);
Spelling(r) = Spelling® ==> i == Fix(r);
Spelling(r) == Spelling® // Spelling(s), Spelling(s) == // Spelling(j)

==> r == Float(i) + s;
Spelling® == // Spelling(i), Length(Spelling(i)) == 1

==> r = - Float(i) / 10;
Spelling(r) = = / / Spelling(i) // Spelling®, Length(Spelling(i)) == 1,

Spelling(s) == // Spelling®
==> r == (Float(i) + s) / 10;

));
ENDNEWTYPE Real;

5.6.7.2 Usage

The real sort is used to represent real numbers. The real sort can represent all numbers
which can be represented as one integer divided by another. Numbers which cannot be represented
in this way (irrational numbers - for example V2) are not part of the real sort. However for practical
engineering a sufficiently accurate approximation can usually be used. Defining a set of numbers
which includes all irrationals is not possible without using additional techniques.

5.6.8 Array generator

5.6.8.1 Definition

GENERATOR Array (TYPE Index, TYPE Itemsort)
OPERATORS

Make! : Itemsort -> Array;
Modify! : Array,Index,Itemsort -> Array;
Extract! : Array,Index -> Itemsort;

AXIOMS
FOR ALL item, iteml, item2, itemi, itemj IN Itemsort (
FOR ALL i, j, ipos IN Index (
FOR ALL a, s IN Array (

type Array Extract!(Make!(item,i)) == item;
Modify! (Modify! (s,i, iteml), i,item2) == Modify! (s,i,item2);
Extract! (Modify! (a,ipos,item),ipos) ==item;
i = j == False ==> Extract! (Modify! (a,j,item),i) == Extract! (a,i);
i = j == False ==>

Modify! (Modify! (s,i,itemi) ,j,itemj) == Modify! (Modify! (s,j,itemj),i,itemi);)));
/♦equality*/

196 Fascicle X.l — Rec. Z.100

type Array Make! (iteml) = Make! (item2) == iteml = item2;
Modify! (a,i,item) =s == (Extract! (s,i) = item) AND (a=s);

ENDGENERATOR Array;

5.6.8.2 Usage

The array generator can be used to define one sort which is indexed by another. For
example

NEWTYPE indexbychar Array(Character,Integer)
ENDNEWTYPE indexbychar;

defines an array containing integers and indexed by characters.

Arrays are usually used in combination with the shorthand forms of Modify! and Extract!
defined in § 5.5.3.1 and § 5.4.2.4 for indexing. For example

DCL charvalue indexbychar;

TASK charvalue('A’) := charvalue('B’)-l;

5.6.9 Powerset generator

5.6.9.1 Definition

GENERATOR Powerset (TYPE Itemsort)
LITERALS Empty;
OPERATORS

"IN" : Itemsort,
Incl : Itemsort,
Del : Itemsort,
"<" : Powerset,
">" : Powerset,
"<=" : Powerset,
">=" : Powerset,
"AND" : Powerset,
"OR" : Powerset,

AXIOMS
FOR ALL i, j IN Itemsort (
FOR ALL p, ps, a, b, c IN Powerset (

i IN type Powerset Empty
i IN Incl(i,ps)
i lNps
type Powerset Del(i,Empty)
NOT(ilNps)
Del(i,Incl(i,ps))
i = j == False ==> Del(i,Incl(j,ps))

Powerset -> Boolean;
Powerset -> Powerset;
Powerset -> Powerset;
Powerset -> Boolean;
Powerset -> Boolean;
Powerset -> Boolean;
Powerset -> Boolean;
Powerset -> Powerset;
Powerset -> Powerset;

/* is member of operator */
/* include item in set */
/* delete item from set */
/* is proper subset of operator */
/* is proper superset of operator */
/* is subset of operator */
/* is superset of operator */
/* intersection of sets */
/* union of sets */

== False;
== True;
== i IN Incl(j,ps);
== Empty;
== Del(i,ps) = ps;
== ps;

= Incl(j,Del(i,ps));
Incl(i,Incl(j,p))
Incl(i,Incl(i,p))
a<b = > (i IN a = > i IN b)
i IN (a AND b)
i IN (a OR b)
/^equality*/
Empty = Incl (i,ps) == False;
Incl (i,a) = b = (i IN b) AND (a=Del (i,b));
/* normal ordering axioms */

== Incl(j,Incl(i,p));
= Incl(i,p);
== True;
== TYPE Boolean "AND"(i IN a, i IN b);
== TYPE Boolean "OR"(i IN a, i IN b);

Fascicle X .l - Rec. Z.100 197

"<"(a,a) == False;
"<"(a,b) == ">"(b,a);
"<="(a,b) = "OR"("<M(a,b),',=,,(a,b));
">="(a,b) == "OR"(">"(a,b),"="(a,b));
"<"(a,b) == True ==> NOT("<"(b,a)) = True;
TYPE Boolean ,,AND,,("<"(a,b),M<M(b,c)) == True ==> "<”(a,c) == True ;))

ENDGENERATOR Powerset;

5.6.9.2 Usage

Powersets are used to represent mathematical sets. For example
NEWTYPE Boolset Powerset(Boolean) ENDNEWTYPE Boolset;

can be used for a variable which can be empty or contain (True), (False) or (True,False).

5.6.10 Pid sort

5.6.10.1 Definition

NEWTYPE Pid
LITERALS NuU;
OPERATORS unique! : Pid -> P id ;

/*
"=" : Pid,Pid - > Boolean; The "=" and "/=" operator signatures

Pid,Pid - > Boolean; are implied - see § 5.4.1.4
*/

AXIOMS
FOR ALL p, p i, p2 IN Pid (

unique! (p) = Null == False;
unique! (pi) = unique! (p2) == pi = p2);

DEFAULT Null;
ENDNEWTYPE Pid;

5.6.10.2 Usage

The Pid sort is used for process identities. Note that there are no other literals than the value
Null. When a process is created the underlying system uses the unique! operator to generate a new
unique value.

5.6.11 Duration sort

5.6.11.1 Definition

NEWTYPE Duration INHERITS Real (" + " , , " > ")
ADDING

OPERATORS
: Duration, Real -> Duration;
: Duration, Real -> Duration;

AXIOMS /* in the following every d must be a duration value from context */
FOR ALL d, z IN Duration (
FOR ALL r IN Real (

/*equality*/
(d>z) OR (z>d) == NOT (d=z);
/* Duration multiplied by Real */
d * 0 ==0;
0 * r ==0;
d * TYPE Real ,,+"(l,r) == d + (d * r);

198 Fascicle X.l — Rec. Z.100

d * TYPE R e a l (l , r) == d - (d * r);
d * TYPE R e a l (r , l) == (d * r) - d;
d * TYPE R e a l (r) == 0 - (d * r);
/* Duration divided by Real */
d / 0 = = ERROR!;
r = 0 == False ==> d / r == d * TYPE Real "/" (l , r);
/* that is division is the same as multiplying by the (real) reciprocal */
r = 0 == False ==> z * r = d ==(d / r) = z;));

MAP
FOR ALL d IN Duration LITERALS (
FOR ALL r IN Real LITERALS (Spelling(d) == Spelling(r) ==> d == 1 * r));

ENDNEWTYPE Duration;

5.6.11.2 Usage

The duration sort is used for the value to be added to the current time to set timers. The
literals of the sort duration are the same as the literals for the real sort. The meaning of one unit of
duration will depend on the system being defined.

Durations can be multiplied and divided by reals.

5.6.12 Time sort

5.6.12.1 Definition

NEWTYPE Time INHERITS Real OPERATORS ("<", "<=", M>", ”>=") ADDING
OPERATORS

"+" : Time, Duration -> Time;
: Time, Duration -> Time;
: Time, Time -> Duration;

AXIOMS
FOR ALL t , tl, t2 IN Time (
FOR ALL d,dl,d2 IN Duration (

(tl>t2) OR (t2>tl) == NOT (tl=t2);
t + 0 == t;
t - d == t + TYPE Duration "-M(0 , d) ;
(t + dl) + d2 == t + TYPE Duration "+"(dl,d2);
(t + dl) - (t + d2) == TYPE Duration M-"(dl,d2);));

MAP
FOR ALL d IN Duration LITERALS (
FOR ALL t IN Time LITERALS (Spelling(d) == Spelling(t) ==> t == 0 + d));

ENDNEWTYPE Time;

5.6.12.2 Usage

The NOW expression returns a value of the time sort. A time value may have a duration
added or subtracted from it to give another time. A time value subtracted from another time value
gives a duration. Time values are used to set the expiry time of timers.

The origin of time is system dependent. A unit of time is the amount of time represented by
adding one duration unit to a time.

Fascicle X .l — Rec. Z.100 199

Appendix I
(To Recommendation Z.100)

The formal model of non-parameterised data types1)

1.1 Many-sorted algebras

A many-sorted algebra A is a 2-tuple <D,0> where

a) D is a set of sets, and the elements of D are referred to as the data carriers (of A); the
elements of a data-carrier dc are referred to as data-values; and

b) O is a set of total functions, where the domain of each function is a Cartesian product of
data carriers of A and the range of one of the data carriers.

1.2 Semantics of data type definitions

1.2.1 General concepts

1.2.1.1 Signature

A signature SIG is a tuple <S,OP> where

a) S is a set of sort-identifiers (also referred to as sorts); and

b) OP is a set of operators.

An operator consists of an operation-identifier op, a list of (argument) sorts w with elements in
S, and a (range) sort se S. This is usually written as oplw—»s. If w is equal to the empty list the
op:w—»s is called a null-ary operator or constant symbol of sort s.

1.2.1.2 Signature morphism

Let S IGj=<Si ,OP^> and SIG2 =<S2 ,OP2 > be signatures. A signature morphism

g:SIG|->SIG2 is a pair of mappings

g = <gs:S1->S2,gop:OP1->OP2>

such that for all e-opid^ = <opidf^, <gs(e-sidf^), ..., gs(e-sidfjc)>, gs(e-res), pos > e OP^

gop(e-opidi) = <opidf2 , <(e-sidfi), ..., (e-sidffc)>, (e-res), pos >

for some operation-identifier opidf2 -

1) The text o f this appendix has been agreed between CCITT and ISO as a common formal descriptior
of the initial algebra model for abstract data types. As well as appearing in this recommendation this texi
(with appropriate term inology, typographical and numbering changes) also appears in ISO IS8807. §§1.1,
1.2.1.1, 1.2.1.2, 1.2.1.3, 1.2.1.4, I.2 .1 .5 , I.2 .1 .6 , 1.3, 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.4.5 and 1.4.6 o f this
appendix appear in §§5.2, 7 .2 .2 .1 , 7 .3 .2 .8 , 7 .2 .2 .2 , 7 .2 .2 .3 , 7 .2 .2 .4 , 7 .2 .2 .5 , 4 .7 , 7 .4 .2 .1 , 7.4.2.2,
7 .4 .3 , 7 .4 .3 and 7 .4 .4 o f IS8807 respective ly . The term ino log ies s o r t - i d e n t i f i e r , o p e r a t o r ,
v a r i a b l e - i d e n t i f i e r , v a r i a b l e , a l g e b r a i c s p e c if ic a tio n S P E C and o p e ra tio n s o f this appendix
are rep laced by s o r t - v a r i a b l e , o p e r a t i o n - v a r i a b l e , v a l u e - v a r i a b l e , v a l u e - v a r i a b l e , d a t a
p re s e n ta t io n p re s and fu n c tio n s respectively in IS8807.

200 Fascicle X.l — Rec. Z.100

1.2.1.3 Terms

Let V be any set of variables and let <S, OP> be a signature. The sets TERM(OP,V,s) of terms of
sort s g S with operators in OP and variables in V, are defined inductively by the following steps:

a) each variable x!s g V is in TERM(OP,V,s);

b) each null-ary operator op g OP with res(op)= s is in TERM(OP,V,s);

c) if the terms tj of sort Sj are in TERM(OP,V,Sj) for i= l,.. .,n, then for each opG OP with
arg(op)=< SJ, ...,sn> and res(op)=s, opOq,...,^) is in TERM(OP,V,s).

If term t is an element of TERM(OP,V,s) then s is call the sort of t, denoted as sort(t).
The set TERM(OP,s) of ground terms of sort s g S is defined as the set TERM(OP,{ },s).

1.2.1.4 Equations

An equation of sort s with respect to a signature <S,OP> is a triple <V,L,R> where

a) V is a set of variable-identifiers; and

b) L,R g T(OP,V,s); and

c) S G S.

An equation e=<{ is a ground instance of an equation e=<V,L,R>, if L',R' can be
obtained from L,R by for each variable v:s in V, replacing all occurrences of that variable in L,R by
the same ground term with sort s.

The notation L=R is used for the ground instance <{} ,L,R> of an equation.

Note - Also an equation <V,L,R> may be written L=R if no semantical complications are thus
introduced.

1.2.1.5 Conditional equations

A conditional equation of sort s with respect to the signature <S, OP> is a triple <V,Eq,e>,
where

a) V is a set of variable-identifiers; andr

b) Eq is a set of equations with respect to <S, OP>, with variables in V; and

c) e is an equation of sort s with respect to <S, OP>, with variables in V.

1.2.1.6 Algebraic specifications

An algebraic specification SPEC is a triple <S,OP,E> where

a) <S,OP> is a signature; and

b) E is a set of conditional equations with respect to <S,OP>.

Fascicle X .l — Rec. Z.100 201

1.3 Derivation systems

A derivation system is a 3-tuple D=<A,Ax,I> with:

a) A a set, the element s of which are called assertions,

b) AidAx the set of axioms,

c) l a set of inference rules.

Each inference rule Re I has the following format
p l>- >pn

R: -----------
Q

where P j ,... ,Pn,Qe A.

A derivation of an assertion P in a derivation system D is a finite sequence s of assertions
satisfying the following conditions:

a) the last element of s is P,

b) if Q is an element of s, then either Qe Ax, or there exists a rule Re I

p l>f ♦ -,pn
R: -----------

Q
with P ̂ . ,Pn elements of s preceding Q.

If there exists a derivation of P in a derivation system D, this is written D l-P. If D is uniquely
determined by context this may be abbreviated to l-P.

1.4 Semantics of algebraic specifications

All occurrences of a set of sorts S, a set operations OP, and a set of equations E in § 1.4 refer to a
given algebraic specification SPEC=<S,OP,E> as defined in § 1.2.1.6.

In order to define the semantics of an algebraic specification SPEC, a derivation system associated
with SPEC is used. This derivation system is defined in §§ I.4.1-I.4.3. Using this derivation
system a relation on the set of ground terms with respect to <S,OP,E> and conguence classes are
defined in § 1.4.4 and § 1.4.5. This relation is used in § 1.4.6 to define an algebra (see § LI) that
represents the data type that is specified by <S,OP,E>.

1.4.1 Axioms generated by equations

Let ceq be a conditional equation. The set of axioms generated by ceq, notation Ax(ceq), is defined
as follows:

a) if ceq=<V,Eq,e> with Eq*{}, then Ax(ceq)={}; and

b) if ceq=<V,{ },e>* then Ax(ceq) is the set of all ground instances of e (see § 1.2.1.3)

202 Fascicle X.l — Rec. Z.100

1.4.2 Inference rules generated by equations

Let ceq be a conditional equation. The set of inference rules generated by ceq, notation Inf(ceq), is
defined as follows:

a) if ceq=<V, {} ,e>, then Inf(ceq)={}, and

b) if ceq=<V, {e^,...,en}, e> with n>0, then Inf(ceq) contains all rules of the form
 ̂ I ̂ iej_,...,en

e
where e^',..., en',e' are ground instances of e^,..., en,e respectively, that are obtained by,

for each variable x occurring in V, replacing all occurrences of that variable in e^,...,
en,e by the same ground term with sort sort(x).

1.4.3 Generated derivation system

The derivation system D=<A,Ax,I> (see § 1.3) generated by an algebraic specification
SPEC=<S,OP,E>is defined as follows:

a) A is the set of all ground instances of equations w.r.t. <S,OP>; and

b) Ax=LJ {Ax(ceq) I ceqe E) u ID,
with ID={t=t 11 is a ground term}; and

c) I=LJ{Inf(ceq) I ceqeE} u SI,
where SI is given by the following schemata
o t1=t2

 for all ground terms tj» 12 *, and

*2=tl

ii) t1=t2 , t2=t3
for all ground terms t ,̂ t2 , 13; and

ti=t3

xii) tn=tn'

°p(l l tn)= °p(tl' tn’)
for all operators op:si,...,sn—»s e OP with n>0 and all ground terms of tptj' of
sort Sj for i= l,...,n .

1.4.4 Congruence relation generated by an algebraic specification

Let D be the derivation system generated by an algebraic specification SPEC=<S,OP,E>. Two
ground terms t̂ and t2 are called congruent with respect to SPEC, notation tl EESPECt2 ’ iff

D I- t1=t2.

Fascicle X.l — Rec. Z.100 203

1.4.5 Congruence classes

The SPEC-congruence class [t] of a ground term t is the set of all terms congruent to t with
respect to SPEC, i.e.

[t] = {t' 11 —SPBC t’)•

1.4.6 Quotient term algebra

The semantical interpretation of an algebraic specification SPEC=<S,OP,E> is the following
many-sorted algebra Q=<Dq,Oq>, called the quotient term algebra, where

a) Dq is the set { Q(s) I se S} where
Q(s)= { [t] 11 is ground term of sort s} for each se S; and

b) Oq is the set of operations { op' I ope OP }, where the op1 are defined by
op’([ti], . . . ,[tn]) = [opCtj,...,^)].

204 Fascicle X.l — Rec. Z.100

Annexes A, B, C and E
to Recommendation Z.100

FUNCTIONAL SPECIFICATION AND
DESCRIPTION LANGUAGE (SDL)

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

ANNEX A

SDL Glossary

The Z.100 Recommendation contains the formal definitions of SDL terminology. The SDL Glossary is
compiled to help new SDL users when reading the Recommendation and its annexes, giving a brief definition and
reference to the defining section of the Recommendation. The definitions in the Glossary may summarize or
paraphrase the formal definitions, and thus may be incomplete.

Terms which are in a definition may also be found in the glossary. If an italicized phrase, for example
procedure identifier, is not in the glossary, then it may be the concatenation of two terms, in this case the term
procedure followed by the term identifier. When a word is in italics but cannot be located in the glossary, it may
be a derivative of a glossary term. For example, exported is the past tense of export.

Except where a term is a synonym for another term, after the definition of the term there is a main
reference to the use of the term in the Z.100 Recommendation. These references are shown in square brackets []
after definitions. For example, [3.2] indicates that the main reference is in § 3.2.

abstract data type

F : type abstrait de donnees

S : tipo abstracto de datos

Abstract data type is a synonym for data type. All SD L data types are abstract data types.

abstract grammar

F : grammaire abstraite

S : gramatica abstracta

The abstract grammar defines the semantics of S D L The abstract grammer is described by the abstract
syntax and the well-formedness rules. [1.2, 1.4.1]

abstract syntax

F : syntaxe abstraite

S : sin taxis abstracta

The abstract syntax is the means to describe the conceptual structure of an SD L specification as compared
with the concrete syntaxes which exist for each concrete syntax of SDL, this is S D L /G R and SD L/P R . [1.2]

access

F : acces

S : acceder

Access is the operation applied to a variable which gives the value which was last assigned to it. If a
variable is accessed which has an undefined value, then an error occurs.

action

F : action

S : accion

An action is an operation which is executed within a transition string, e.g., a task, output, decision, create
request or procedure call. [2.7]

active timer

F : temporisateur actif

S : temporizador activo

An active timer is a timer which has a timer signal in the input port o f the owning procedure or is scheduled
to produce a timer signal at some future time. [2.8.2, 5.5.4.5J

(to R ecom m endation Z .100)

Fascicle X .l - Rec. Z.100 - Annex A 207

actual parameter

F : parametre reel

S : parametro efectivo'

An actual parameter is an expression given to a process or procedure for the corresponding form al
parameter when the process or procedure is created (or called). Note that in certain cases in a procedure call an
actual parameter must be a variable (i.e. a particular type of expression -, see IN /O U T). [2.7.2, 2.7.3, 4.2.2]

actual parameter list

F : liste de parametres reels

S ■: lista de parametros efectivos

An actual parameter list is the list of actual parameters. The actual parameters are matched by position
with the respective elements of the corresponding form al parameter list.

area

F : zone

S : area; zona

An area is a two dimensional region in the concrete graphical syntax. Area often correspond to nodes in
the abstract syntax and usually contain common textual syntax. In interaction diagrams areas may be connected by
channels or signal routes. In control flow diagrams areas may be connected by flow lines.

array

F : tableau (array)

S : matriz

Array is the predefined generator used to introduce the concept of arrays, easing the definition of arrays,

assign

F : affectation

S : asignar

Assign is the operation applied to a variable which associates a value to the variable replacing the previous
value associated with the variable. [5.5.3]

assignment statement

F : instruction d ’affectation

S : sentencia de asignacion

An assignment statement is a statement which assigns a value to a variable. [5.5.3]

association area

F : zone d ’association

S : area de asociacidn

An association area is a connection between areas in an interaction diagram by means of an association
symbol. There are five asociation areas: channel substraction association area, input association area, priority input
association area, continuous signal association area and save association area. [2.6.3, 3.2.3, 4.10.2, 4.11]

axiom

F : axiome

S : axioma

An axiom is a special kind of equation with an implied equivalence to the Boolean literal True. “Axiom s"
is used as a synonym for “axioms and e q u a t io n s [5.1.3]

208 Fascicle X.l — Rec. Z.100 — Annex A

, basic SDL

F : LD S de base

S : LED basico

Basic SD L is the subset of SD L defined in § 2 of Recommendation Z.100.

behaviour

F : comportement

S : comportamiento

The behaviour or functional behaviour of a system is the set of sequences of responses to sequences of
stimuli. [1.1.3]

block

F : bloc

S : bloque

A block is part of a system or parent block. When used by itself, block is a synonym for a block instance. A
block is a scope unit and provides a static interface. [2.4.3]

block area

F : zone de bloc

S : area de bloque

The block area is the definition of a block or a reference to a block in an interaction diagram. [2.4.2]

block definition

F : definition de bloc

S : definicidn de bloque

A block definition is the definition of a block in SD L/P R . [2.4.2]

block diagram

F : diagramme de bloc

S : diagrama de bloque

The block diagram is the definition of a block in SD L/G R . [2.4.3]

block substructure

F : sous-structure de bloc

S : subestructura de bloque

A block substructure is the partitioning of the block into subblocks and new channels at a lower level o f
abstraction. [3.2.2]

block substructure definition

F : definition de sous-structure de bloc

S : definicidn de subestructura de bloque

A block substructure definition is the SD L /P R representation of a block substructure for a partitioned block.
[3.2.2]

Fascicle X .l — Rec. Z.100 — Annex A 209

block substructure diagram

F : diagramme de sous-structure de bloc

S : diagrama de subestructura de bloque

A block substructure diagram is the SL D /G R representation of a block substructure for a partitioned block.

block tree diagram

F : diagramme d ’arborescence de bloc

S : diagrama de arbol de bloques

A block tree diagram is an auxiliary document in S D L /G R representing the partitioning o f a system into
blocks at lower levels o f abstraction by means of an inverted tree diagram (i.e., parent block at the top). [3.22]

BNF (Backus-Naur Form)

F : form e BNF (Backus-Naur Form)

S : FBN (forma Backus-Naur)

BNF (Backus-Naur Form) is a formal notation used for expressing the concrete textual syntax of a
language. An extended form of BN F is used for expressing the concrete graphical grammar. [1.5.2, 1.5.3]

Boolean

F : booleen

S : booleano

Boolean is a sort defined in a predefined partial type definition and has the values True and False. For the
sort Boolean the predefined operators are NOT, AND, OR, XOR and implication. [5.6.1]

channel

F : canal

S : canal

A channel is the connection conveying signals between two blocks. Channels also convey signals between a
block and the environment. Channels may be unidirectional or bidirectional. [2.5.1]

channel definition

F : definition

S : definicidn de canal

A channel definition is the definition of a channel in SD L/P R . [2.5.1]

channel definition area

F : zone de definition de canal

S : area de definicidn de canal

The channel definition area is the definition of a channel in SD L/G R . [2.5.1]

channel substructure

F : sous-structure de canal

S : subestructura de canal

A channel substructure is a partitioning of a channel into a set o f channels and blocks at a lower level o f
abstraction. [3.2.3]

[3.2.2]

210 Fascicle X .l — Rec. Z.100 — Annex A

channel substructure definition

F : definition de sous-structure de canal

S : definicidn de subestructura de canal

A channel substructure definition is the definition of the channel substructure in SD L/P R . [3.2.3]

channel substructure diagram

F : diagramme de sous-structure de canal

S : diagrama de subestructura de canal

A channel substructure diagram is the definition of the channel substructure in SD L/G R . [3.2.3]

character

F : caractere (characterj

S : caracter; character

Character is a sort defined in a predefined partial type definition for which the values are the elements of
the CCITT No. 5 alphabet, (e.g., 1, A, B, C, etc.). For the sort character the ordering operators are predefined.
[5.6.2]

chartstring

F : chaine de caracteres (character string)

S : cadena-de-caracteres; chartstring

Chartstring is a sort defined in a predefined partial type definition for which the values are strings of
characters and the operators are those of the string predefined generator instantiated for characters. [5.6.4]

comment

F : commentaire

S : comentario

A comment is information which is in addition to or clarifies the SD L specification. In SD L /G R comments
may be attached by a dashed line to any symbol. In S D L /P R comments are introduced by the keyword
COMMENT. Comments have no SD L defined meaning. See also Note. [2.2.6]

common textual grammar

F : grammaire textuelle commune

S : gramatica textual comun

The common textual grammar is the subset of the concrete textual grammar which applies to both SD L /G R
and SD L/P R . [1.2]

communication path

F : trajet de communication

S : trayecto de comunicacion

A communication path is a transportation means that carriers signal instances from one process instance or
from the environment to another process instance or to the environment. A communication path comprises either
channel path(s) or signal route path(s) or a combination of both. [2.7.4]

complete valid input signal set

F : ensemble complet de signaux d ’entree valides

S : conjunto completo de senates de entrada validas

The complete valid input signal set of a process is the union of the valid input signal set, the local signals,
timer signals and the implicit signals of the process. [2.4.4]

Fascicle X .l - Rec. Z.100 - Annex A 211

concrete grammar

F : grammaire concrete

S : gramatica concreta

A concrete grammar is the concrete syntax along with the well-formedness rules for that concrete syntax.
S D L /G R and SD L /P R are the concrete grammars of S D L The concrete grammars are mapped to the abstract
grammar to determine their semantics. [1.2]

concrete graphical grammar

F : grammaire graphic concrete (

S : gramatica grafica concreta

The concrete graphical grammar is the concrete grammar for the graphical part of SD L/G R.

concrete graphical syntax

F : syntaxe graphique concrete

S : sintaxis grafica concreta

The concrete graphical syntax is the concrete syntax for the graphical part of SD L/G R . The concrete
graphical syntax is expressed in Z.100 using an extended form of BNF. [1.2, 1.5.3]

concrete syntax

F : syntaxe concrete

S : sintaxis concreta

The concrete syntax for the various representations of SD L is the actual symbols used to represent SD L
and the interrelationship between symbols required by the syntactic rules of SDL. The two concrete syntaxes used
in Z.100 are the concrete graphical syntax and the concrete textual syntax. [1.2]

concrete textual syntax

F : syntaxe textuelle concrete

S : sintaxis textual concreta

The concrete textual syntax is the concrete syntax for SD L /P R and the textual parts o f SD L/G R . The
concrete textual syntax is expressed in Z.100 using BNF. [1.2, 1.5.2]

conditional expression

F : expression conditionnelle

S : expresion condicional

A conditional expression is an expression containing a Boolean expression which controls whether the
consequence expression or the alternative expression is interpreted. [5.5.2.3]

connect

F : connect

S : conectar

Connect indicates the connection of a channel to one or more signal routes. [2.5.3]

connector

F : connecteur

S : conector

A connector is an SD L /G R symbol which is either an in-connector or an out-connector. A flow line is
implied from out-connectors to the associated in-connector in the same process or procedure identified by having the
same name. [2.6.6]

212 Fascicle X.l — Rec. Z.100 — Annex A

consistent partitioning subset

F : sous-ensemble de subdivision coherent

S : subconjunto de particidn consistente

A consistent partitioning subset is a set of the blocks and subblocks in a system specification which provides
a complete view of the system with related parts at a corresponding level o f abstraction. Thus, when a block or
subblock is contained in a consistent partitioning subset, its ancestors and siblings are too. [3.2.1]

consistent refinement subset

F : sous-ensemble de raffinement coherent

S : subconjunto de refinamiento consistente

The consistent refinement subset is a consistent partitioning subset which contains all blocks and subblocks
which use the signals used by any of the blocks or subblocks. [3.3]

continuous signal

F : signal continu

S : sehal continua

A continuous signal is a means to define that when in a state the associated Boolean condition becomes
True, the transition following the continuous signal is interpreted. [4.11]

control flow diagram

F : diagramme de liaison de controle

S : diagrama de flujo de control

A control flow diagram is either a process diagram, a procedure diagram, or a service diagram.

create

F : creer

S : crear

Create is a synonym for create request.

create request

F : demande de creation

S : peticion de crear

A create request is the action causing the creation and starting of a new process instance using a specified
process type as a template. The actual parameters in the create request replace the form al parameters in the process.
[2.7.2]

create line area

F : zone de ligne de creation

S : area de linea de crear

The create line area in a block diagram connects the process area of the creating (PARENT) process with
the process area of the created (OFFSPRING) process. [2.4.3]

data type

F : type de donnees

S : tipo de datos

A data type is the definition of sets of values (sorts), a set of operators which are applied to these values
and a set of algebraic rules (equations) defining the behaviour when the operators are applied to the values. [2.3.1]

Fascicle X .l — Rec. Z.100 — Annex A 213

data type definition

F : definition de type de donnees

S : definicidn de tipo de datos

A data type definition defines the validity of expressions and relationship between expressions at any given
point in an SD L specification. [5.2.1]

decision

F : decicion

S : decision

A decision is an action within a transition which asks a question to which the answer can be obtained at
that instant and accordingly chooses one of the several outgoing transitions from the decision to continue
interpretation. [2.7.5]

decision area

F : zone de decision

S : area de decision

A decision area is the S D L /G R representation of a decision. [2.7.5]

default ;

F : default

S : por defecto

The default assignment is a denotation of a value that is initially associated to each variable of the sort of
the default clause. The default clause may appear in data type definitions. [5.5.3.3]

description

F : description

S : descripcidn

A description o f a system is the description of its actual behaviour. [1.1]

diagram

F : diagramme

S : diagrama

A diagram is the S D L /G R representation for a part o f a specification. [2.4.2]

duration

F : duree (duration)

S : duration; duration

Duration is a sort defined in a predefined partial type definition for which the values are denoted as reals
and represent the interval between two time instants. [5.6.11]

enabling condition

F : condition de validation

S : condition habilitante (o habilitadora)

An enabling condition is a means for conditionally accepting a signal for input. [4.12]

214 Fascicle X .l — Rec. Z.100 — Annex A

enabling condition area

F : zone de condition de validation

S : area de condition habilitante (o habilitadora)

The enabling condition area is the S D L /G R representation of an enabling condition. [4.12]

entity class

F : classe d ’entite

S : clase de entidad

An entity class is a categorization of SD L types based on similarity of use. [2.2.2] c

environment

F : environnement

S : entorno

The term environment is a synonym for the environment o f a system. Also when context allows, it may be a
synonym for the environment of a block, process, procedure or a service. [1.3.2]

environment of a system

F : environnement d ’un systeme

S : entorno de un sistema

The environment o f a system is the external world of the system being specified. The environment interacts
with the system by sending/receiving signal instances to /from the system. [1.3.2]

equation

F : equation

S : ecuacion

An equation is a relation between terms of the same sort which holds for all possible values substituted for
each value identifier in the equation. An equation may be an axiom. [5.1.3, 5.2.3]

error

F : erreur

S : error

An error occurs during the interpretation of a valid specification of a system when one of the dynamic
conditions SD L is violated. Once an error has occurred, the subsequent behaviour o f the system is not defined by
SDL. [1.3.3]

export

F : export

S : exportation

The term export is a synonym for export operation.

exported variable

F : variable exportee

S : variable exportada

An exported variable is a variable which can be used in an export operation. [4.13]

exporter

F : exportateur

S : exportador

An exporter of a variable in the process instance which owns the variable and exports its values. [4.13]

Fascicle X.l — Rec. Z.100 — Annex A 215

F : operation d ’exportation

S : operation de exportation

export operation

An export operation is the operation by which the exporter discloses the value of a variable. See import
operation. [4.13]

expression

F : expression

S : expresion

An expression is either a literal, an operator application, a synonym, a variable access, a conditional
expression, or an imperative operator applied to one or more expressions. When an expression is interpreted a value
is obtained (or the system is in error). [2.3.4, 5.4.2.1]

external synonym

F : synonyme externe

S : sinonimo externo

An external synonym of a predefined sort whose value is not specified in the system specification. [4.3.1]

extract!

F : extract!

S : extraer!; extract!

Extract is an operator which is implied in an expression when a variable is immediately followed by
bracketed expressions). [5.4.2.4, 5.6.8]

flow line

F : ligne de liaison

S : linea de fiujo

A flow line is a symbol used to connect areas in a control flow diagram. [2.2.4, 2.6.7.2.2J

formal parameter

F : parametre form el

S : parametro form al

A form al parameter is a variable name to which actual values are assigned or which are replaced by actual
variables. [2.4.4, 2.4.5, 4.2, 4.10]

formal parameter list

F : liste de parametres formels

S : lista de parametros formales

A form al parameter list is list of a form al parameters.

216 Fascicle X.l — Rec. Z.100 — Annex A

functional behaviour

F : comportement fonctionnel

S : comportamiento funcional

Functional behaviour is a synonym for behaviour.

general option area

F: zone d ’option generate

S: area de opcion general

The general option area is the SD L /G R representation of an option. [4.3.3]

general parameters

F : parametres generaux

S : parametros generates

The general parameters in both a specification and a description of a system relate to such matters as
temperature limits, construction, exchange capacity, grade of service, etc., and are not defined in SDL. [1.1]

generator

F : generateur

S : generador

A generator is an incomplete newtype description. Before it assumes the status of a newtype, a generator
must be instantiated by providing the missing information. [5.4.1.1.2]

graph

F : graphe

S : grafico

A graph in the abstract syntax is a part of an SD L specification such as procedure graph or a process graph.

ground expression

F : expression close

S : expresion fundamental

A ground expression is an expression containing only operators, synonyms and literals. [5.4.2.2]

hierarchical structure

F : structure hierarchique

S : estructure jerarquica

A hierarchical structure is a structure of a system specification where partitioning and refinement allow
different views of the system at different levels o f abstraction. Hierarchical structures allow the management of
complex system specifications. See also block tree diagram. [3.1]

identifier

F : identificateur

S : identificador

An identifier is the unique identification of an object, formed from a qualifier part and a name. [2.2.2]

Fascicle X .l — Rec. Z.100 — Annex A 217

imperative operator

F : operateur imperatif

S : operador imperativo

An imperative operator is a now expression, view expression, timer active expression, import expression or one
of the Pid expressions: SELF, PARENT, OFFSPRING or SENDER. [5.5.4]

implicit transition

F : transition implicite

S : transition implicita

An implicit transition is in the concrete syntax initiated by a signal in the complete valid input signal set and
not specified in an input or save for the state. An implicit transition contains no action and leads directly back to
the same state [4.6]

import

F : import

S : importacion

The term import is a synonym for import operation. [4.13]

imported variable

F : variable importee

S : variable importada

An imported variable is a variable used in an import operation. [4.13]

importer

F : importeur

S : importador

An importer o f an imported variable is the process instance which imports the value. [4.13]

import operation

F : operation d'importation

S : operation de importation

An import operation is the operation that yields value o f an exported variable. [4.13]

IN variable

F : variable “I N ”

S : variable IN

An IN variable is a form al parameter attribute denoting the case when a value is passed to a procedure via
an actual parameter. [2.4.5]

IN/OUT variable

F : variable “IN /O U T ”

S : variable IN /O U T

An IN /O U T variable is a form al parameter attribute denoting the case when a form al parameter name is
used as a synonym for the variable (i.e. the actual parameter must be a variable. [2.4.5]

218 Fascicle X.l — Rec. Z.100 — Annex A

in-connector

F : connecteur d ’entree

S : conector de entrada

An in-connector is a connector.

infix operator

F : operateur infixe

S : operador infijo

An infix operator is one o f the predefined dyadic operators o f SD L (= > , OR, XOR, AND, IN, / = , = ,
> , < , < = , > = , + , —, //,■*, / , MOD, REM) which are placed between its two arguments. [5.4.1.1]

informal text

F : texte informel

S : texto informal

Informal text is text included in an SD L specification for which semantics are not defined by SDL, but
through some other model. Informal text is enclosed in apostrophes. [2.2.3]

initial algebra

F : algebre initiate

S : algebra inicial

An initial algebra is the formalism for defining abstract data types. [5.3]

inlet

F : acces entrant

S : acceso de entrada

An inlet represents a line, such as a channel or a flow line, entering an S D L /G R macro call. [4.2.3]

input

F : entree

S : entrada

An input is the consumption of a signal from the input port which starts a transition. During the
consumption of a signal, the values associated with the signal become available to the process instance. [2.6.4,
4.10.2]

input area

F : zone d ’entree

S : area de entrada

An input area is the SD L /G R representation of an input. [2.6.4] *'

input port

F : port d ’entree

S : puerto de entrada

An input port of a process is a queue which receives and retains signals in the order of arrival until the
signals are consumed by an input. The input port may contain any number of retained signals. [2.4.4]

Fascicle X.l — Rec. ZAOQ — Annex A 219

instance

F : instance

S : instancia

An instance o f a type is an object which has the properties of the type (given in the definition). [1.3.1]

instantiation

F : instantiation

S : instanciacion

Instantiation is the creation of an instance of a type. [1.3.1]

integer

F : entier (integer)

S : entero; integer

Integer is a sort defined in a predefined partial type definition for which the values are these of
mathematical integers (. . . , —2, —1, 0, + 1 , + 2 , . . .) . For the sort integer the predefined operators are +
and the ordering operators. [5.6.5]

interaction diagram

F : diagramme d ’interaction

S : diagrama de interaccion

An interaction diagram is a block diagram, system diagram, channel substructure diagram, or block
substructure diagram.

keyword

F : mot cle

S : palabra clave

A keyword is a reserved lexical unit in the concrete textual syntax. [2.2.1]

label

F : etiquette

S : etiqueta

A label is a name followed by a colon and is used in the concrete textual syntax for connection purposes.
[2.6 .6]

level

F : niveau

S : nivel

The term level is a synonym for level o f abstraction.

level of abstraction

F : niveau d abstraction

S : nivel de abstraccion

A level o f abstraction is one of the levels of a block tree diagram. A description of a system is one block at
the highest level o f abstraction and is shown as a single block at the top of a block tree diagram. [3.2.1]

220 Fascicle X.l - Rec. Z.100 — Annex A

lexical rules

F : regies lexicales

S : reglas lexicas

Lexical rules are rules which define how lexical units are built from characters. [2.2.1, 4.2.1]

lexical unit

F : unites lexicales

S : unidad lexica

Lexical units are the terminal symbols o f the concrete textual syntax. [2.2.1]

literal

F : liiteral

S : literal

A literal denotes a value. [2.3.3, 5.1.2, 5.4.1.14]

macro

F : macro

S : marco

A marcro is a named collection of syntactic or textual items, which replaces the macro call before the
meaning of the SDL representation is considered (i.e., a macro has meaning only when replaced in a particular
context). [4.2]

macro call

F : appel de macro

S : llamada a (de) macro

A macro call is an indication of a place where the macro definition with the same name should be
expanded. [4.2.3]

macro definition

F : definition de macro

S : definicidn de macro

A macro definition is the definition of a macro in SD L/P R . [4.2.2]

macro diagram

F : diagramme de macro

S : diagrama de macro

A macro diagram is the definition of a macro in SD L/G R . [4.2.2]

make!

F : make!

S : hacer!; make!

Make! is an operation only used in data type definitions fo form a value of a complex type (e.g., structured
sort). [5.4.1.10, 5.6.8]

Fascicle X .l — Rec. Z.100 — Annex A 221

merge area

F : zone de fusion

S : area de fusion

A merge area is where one flow line connects to another. [2.6.7.2.2]

Meta IV

F : Meta IV

S : Meta IV

Meta /F i s a formal notation for expressing the abstract syntax of a language. [1.5.1]

model

F : modele

S : modelo

A model gives the mapping for shorthand notations expressed in terms of previously defined concrete
syntax. [1.4.1, 1.4.2]

modify!

F : modify!

S : modificar!; modify!

Modify is an operator which is implied in expressions when a variable is immediately followed by bracketed
expressions and then : = . Within axioms modify! is used explicitly (see extract!) [5.4.1.10, 5.6.8]

name

F : nom

S : nombre

A name is a lexical unit used to name SD L objects. [2.2.1, 2.2.2]

natural

F : naturel

S : natural

Natural is a syntype defined in a predefined partial type definition for which the values are the non-negative
integers (i.e., 0, 1, 2, . . .) . The operators are the operators of the sort integer. [5.6.6]

r~
newtype

F : nouveau type (newtype)

S : niotipo

A newtype introduces a sort, a set of operators, and a set of equations. Note that the term newtype might be
confusing because actually a new sort is introduced, but newtype is maintained for historical reasons. [5.2.1]

node

F : noeud

S : nodo

In the abstract syntax, a node is a designation of one of the basic concepts of S D L .

222 Fascicle X.l — Rec. Z.100 — Annex A

note

F: note

S: nota

A note is text enclosed by /* and * / which has no SD L defined semantics. See comment. [2.2.1]

null

F : null

S : null; nulo

Null is the literal of sort Pid. [5.6.10]

OFFSPRING

F : D ESC EN D AN T (OFFSPRING)

S : OFFSPRING; V AST AGO

OFFSPRING is an expression of sort Pid. When OFFSPRING is evaluated in a process it gives the
PId-values o f the process most recently created by this process. If the process has not created any processes, the
result o f the evaluation of OFFSPRING is null. [2.4.4, 5.5.4.3]

operator

F : operateur

S : operador

An operator is a denotation for an operation. Operators are defined in a partial type definition. For
example + , are names for operators defined for sort integer. [5.1.2, 5.1.3]

operator signature

F : signature d ’operateur

S : signatura de operador

An operator signature fines the sort(s) of the values to which the operator can be applied and the sort of
the resulting value. [5.2.2]

option

F : option

S : opcion

An option is a concrete syntax construct in a generic SD L system specification allowing different system
structures to be chosen before the system is interpreted. [4.3.3, 4.3.4]

ordering operators

F : operateurs de relation d ’ordre

S : operadores de ordenacion

The ordering operators are < , < = , > or > —.[5.4.1,8]

out connector

F : connecteur de sortie

S : conector de salida

An out-connector is a connector.

Fascicle X.l — Rec. Z.100 - Annex A 223

outlet

F : acces sortant

S : acceso de salida

An outlet represents a line, such as a channel or flow line, existing a macro diagram. [4.2.2]

output

F: sortie

S: salida

An output is an action within a transition which generates a signal instance.

output area

F : zone de sortie

S : area de salida

The output area in a control flow diagram represents the SD L /G R concept of an output. [2.7.4]

page

F : page

S : pagina

A page is one of the components of a physical partitioning of a diagram. [2.2.5]

PARENT

F : P A R E N T

S : PARENT; PROGENITOR

PAREN T is a Pid expression. When a process evaluates this expression, the result is the Pld-value of the
parent process. If the process was created at system initialization time, the result is null. [2.4.4, 5.5.4.3J

partial type definition

F : defintiion partielle de type

S : definicidn parcial de tipo

The partial type definition for a sort defines some of the properties related to the sort. A partial type
definition is part of a data type definition. [5.2.1]

partitioning

F : subdivision

S : particion

Partitioning is the subdivision of a unit into smaller components which when taken as a whole have the
same behaviour as the original unit. Partitioning does not affect the static interface of a unit. [3.1, 3.2]

Pid

F : Pid

S : Pid

P id is a sort defined in a predefined partial type definition for which there is one literal, null. P id is an
abbreviation for process instance identifier, and the values of the sorts are used to identify process instances.
[5.5.4.3, 5.6.10]

powerset

F : mode ensembliste

S : conjunista

Powerset is the predefined generator used to introduce mathematical sets. The operators for powerset are IN,
Incl, Del, union, insersection and the ordering operators. [5.6.9]

224 Fascicle X.l — Rec. Z.100 — Annex A

F : donnees predefinies

S : datos predefinidos

For simplicity of description the term predefined data is applied to both predefined names for sorts
introduced by partial type definitions and predefined names for data type generators. Boolean, character,
chartstring, duration, integer, natural Pid, real and time are sort names which are predefined. Array, powerset, and
string are data type generator nameswhich are predefined. Predefined data are defined implicitly at system level in
all SD L systems. [5.6]

procedure

F : procedure

S : procedimiento

A procedure is an encapsulation of the behaviour of a process. A procedure is defined in one place but may
be referred to several times within the same process. See form al parameter and actual parameter. [2.4.5]

procedure call

F : appel de procedure

S : llamada a (de) procedimiento

A procedure call is the invocation of a named procedure for interpretation of the procedure and passing
actual parameters to the procedure. [2.7.3]

procedure call area

F : zone d ’appel de procedure

S : area de llamada a (de) procedimiento

The procedure call area is the S D L /G R representation of a procedure call. [2.7.3]

procedure definition

F : definition de procedure

S : definicidn de procedimiento

A procedure definition is the SD L /P R definition of a procedure. [2.4.5]

procedure diagram

F : diagramme de procedure

S : diagrama de procedimiento

A procedure diagram is the S D L /G R representation of a procedure. [2.4.5]

procedure graph

F : graphe de procedure

S : grafico de procedimiento

A procedure graph is a nonterminal in the abstract syntax representing a procedure. [2.4.5]

predefined data

Fascicle X .l — Rec. Z.100 — Annex A 225

procedure return

F : retour de procedure

S : retorno de procedimiento

Procedure return is a synonym for return.

process

F : processus

S : proceso

A process is a communicating extended finite state machine. Communication can take place via signals or
shared variables. The behaviour o f a process depends on the order of arrival of signals in its input port. [2.4.4]

process area

F : zone de processus

S : area de proceso

A process area in S D L /G R is the representation of a process or a reference to a process in an interaction
diagram. [2.4.3]

process definition

F : definition de processus

S : definicidn de processo

A process definition is the SD L /P R representation of a process. [2.4.4]

process diagram

F : diagramme de processus

S : diagrama de proceso

A process diagram is the S D L /G R representation of the definition of a process. [2.4.4]

process graph

F : graphe de processus

S : grafico de proceso

A process graph is nonterminal in the abstract syntax representing a process. [2.4.4]

process instance

F : instance de processus

S : instancia de proceso

A process instance is a dynamically created instance ofa process. See SELF, SEND ER, PARENT, and
OFFSPRING [2.4.4]

qualifier

F : partie qualijicative (qualificatif)

S : calificador

The qualifier is part of an identifier which is the extra information to the name part of the identifier to
ensure uniqueness. Qualifiers are always present in the abstract syntax, but only have to be used as far as needed
for uniqueness in the concrete syntax when the qualifier of an identifier cannot be derived from the context of the
use of the name part. [2.2.2]

real

F : reel

S : real

Real is a sort defined in a predefined partial type definition for which the values are the numbers which can
be presented by one Integer divided by another. The predefined operators for the sort real have the same names as
the operators of sort integer. [5.6.7]

226 Fascicle X.l — Rec. Z.100 — Annex A

refinement

F : reafjinement

S : rejinamiento

Refinement is the addition of new details to the funtionality at a certain level o f abstraction. The refinement
of a system causes an enrichment in its behaviour or its capabilities to handle more types of signals and
information, including those signals to and from the environment. Compare with partitioning. [3.3]

remote definition

F : definition distante

S : definicidn remota

A remote definition is a syntactic means of distributing a system definition into several parts and relating
the parts to each other. [2.4.1]

reset

F : reset (reinitialisation)

S : reincializar; reponer

Reset is an operation defined for timers which allows timers to be made inactive. See active timer. [2.8]

retained signal

F : signal retenu

S : sehal retenida

A retained signal is a signal in the input port of a process, i.e., a signal which has been received but not
consumed by the process. [2.4.4]

return

F : retour

S : retorno

The return of a procedure is the transfer of control to the calling procedure or process. [2.6.7.2.4]

reveal attribute

F : attribut d ’exposition

S : atributo revelado

A variable owned by a process may have a reveal attribute, in which case another process in the same block
is permitted to view the value associated with the variable. See view definition. [2.6.1.1]

save

F : mise en reserve

S : conservacion

A save is the declaration of those signals that should not be consumed in a given state. [2.6.5]

save area

F : zone de mise en reserve

S : area de conservacion

The save area is the SD L /G R representation of a save. [2.6.5]

Fascicle X.l — Rec. Z.100 — Annex A 227

save signal set

° F : ensemble de signaux de mise en reserve

S : conjunto de senates de conservacion

The save signal set of a state is the set of saved signals for that state. [2.6.5]

SDL (CCITT Specification and Description Language)

F : LD S (langage de description et de specification du CCITT)

S : LED (lenguaje de especificacion y descripcion del CCITT)

CCITT SD L (Specification and Description Language) is a formal language providing a set of constructs of
the specification for the functionality of a system.

SDL/GR

F: L D S/G R

S: L E D /G R

SD L /G R is the graphical representation in SDL. The grammar for S D L /G R is defined by the concrete
graphical grammar and the common textual grammar. [1.2]

SDL/PE

F : L D S/P E

S : L E D /E P

SD L /P E is a set of icons which can be used in conjunction with the state symbol of SD L/G R . [Annex E]

SDL/PR

F : L D S/P R

S : LE D /P R

SD L /P R is the textual phrase representation in SDL. The grammar for S D L /P R is defined by the concrete
textual grammar. [1.2]

scope unit

F : unite de portee

S : unidad de ambito

A scope unit in the concrete grammar defines the range of visibility of identifiers. Examples of scope units
include the system, block, process, procedure, partial type definitions and service definitions. [2.2.2]

selection

F : selection

S : seleccion

Selection means providing those external synonyms needed to make a specific system specification from a
generic system specification. [4.3.3]

SELF

F : SELF

S : SELF; M ISM O

SE LF is a Pid expression. When a process evaluates this expression, the result is the PId-value of that
process. .SELFnever results in the value Null. See also PARENT, OFFSPRING, Pid. [2.4.4, 5.5.4.3]

228 Fascicle X.l — Rec. Z.100 — Annex A

F : semantique

S : semantica

Semantics gives meaning to an entity: the properties it has, the way its behaviour is interpreted, and any
dynamic conditions which must be fulfilled for the behaviour of the entity to meet SD L rules. [1.4.1, 1.4.2]

SENDER

F : SEND ER (emetteur)

S : SEND ER; E M ISO R

SEND ER is a Pid expression. When evaluated SEND ER yields the P id value of the sending process o f the
signal that activated the current transition. [2.4.4, 2.6.4, 5.5.4.3]

service

F : service

S : servicio

A service is an alternative way o f specifying a process. Each service may define a partial behaviour o f a
process. [4.10]

service area

F : zone de service

S : area de servicio

A service area is either a service diagram or a reference to a service. [4.10.1]
I

service definition

F : definition de service

S : definicidn de servicio

A service definition is the S D L /P R definition of a service. [4.10.1]

service diagram

F : diagramme de service

S : diagrama de servicio

A service diagram is the SD L /G R definition of a service. [4.10]

set

F : set (initialisation)

S : inicializar; poner

Set is an operation defined for timers which allow timers to be made active. [2.8]

semantics

Fascicle X .l — Rec. Z.100 — Annex A 229

shorthand notation

F : notation abregee

S : notacion taquigrafica (o abreviada)

A shorthand notation is a concrete syntax notation providing a more compact representation implicitly
referring to Basic SD L concepts. [1.4.2]

signal

F : signal

S : sehal

A signal is an instance of a signal type communication information to a process instance. [2.5.4]

signal definition

F : definition de signal

S : definicidn de sehal

A signal definition defines a named signal type and associates a list of zero or more sort identifiers with the
signal name. This allow signals to carry values. [2.5.4]

signal list

F : liste de signaux

S : lista de senates

A signal list is a list of signal identifiers used in channel and signal route definitions to indicate all the
signals which may be conveyed by the channel or signal route in one direction. [2.5.5]

signal list area

F : zone de liste de signaux

S : area de lista de senates

The signal list area in an interaction diagram represents a signal list associated with a channel or signal
route. [2.5.5]

signal route

F : acheminement de signaux

S : ruta de senates

A signal route indicates the flow of signals between a process type and either another process type in the
same block or the channels connected to the block. [2.5.2]

simple expression

F : expression simple

S : expresion simple

A simple expression is an expression which only contains operators, synonyms, and literals o f the predefined
sorts. [4.3.2]

sort

F : sorte

S : genero

A sort is a set of values with common characteristics. Sorts are always nonempty and disjoint. [2.3.3, 5.1.3]

230 Fascicle X.l — Rec. Z.100 — Annex A

specification

F : specification

S : especificacion

A specification is a definition of the requirements of a system. A specification consists of general parameters
required of the system and the functional specification of its required behaviour. Specification may be also used as a
shorthand for “specification an d /o r description”, e.g., in SD L specification or system specification. [1.1]

start

F : depart

S : arranque

The start in a process is interpreted before any state or action. The start initializes the process by replacing
its form al parameters by the actual parameters as specified in the create. [2.6.2]

state

F : etat

S : estado

A state is a condition in which a process instance can consume a signal. [2.6.3]

state area

F : zone d ’etat

S : area de estado

A state area is the SD L /G R representation of one or more states. [2.6.3]

state picture

F : representation graphique d ’etat

S : pictograma de estado

A state picture is a state symbol incorporating pictorial elements used to extend S D L /G R to SD L/PE.
[Annex E]

stop

F : arret

S : parada

A stop is an action which terminates a process instance. When a stop is interpreted, all variables owned by
the process instance are destroyed and all retained signals in the input port are no longer accessible. [2.6.7.2.3]

string

F : chaine (string)

£: cadena; string

String is a predefined generator used to introduce lists. The predefined operators include Length, First,
Last, Substring and concatenation. [5.6.3]

structured sort

F : sorte structuree

S : genero estructurado

A structured sort is a sort with implicit operators and equations and special concrete syntax for these
implicit operators. The structured sort is used to make values with so called fields. The values of the fields can be
accessed and modified independently. [5.4.1.10]

Fascicle X .l — Rec. Z.100 — Annex A 231

subblock

F : sous-bloc

S : subbloque

A subblock is a block contained within another block. Subblocks are formed when a block is partitioned.
[3.2.1, 3.2.2]

subchannel

F : sous-canal

S : subcanal

A subchannel is a channel formed when a block is partitioned. A subchannel connects a subblock to a
boundary of the partitioned block or a block to the boundary of a partitioned channel. [3.2.2, 3.2.3]

subsignal

F : sous-signal

S : subsehal

A subsignal is a refinement of a signal and may be further refined. [3.3]

symbol

F : symbole

S : simbolo

A symbol is a terminal in the concrete syntaxes. A symbol may be one of a set of shapes in the concrete
graphical syntax.

synonym

F : synonyme

S : sinonimo

A synonym is a name which represents a value. [5.4.1.13]

syntax diagram

F : diagramme de syntaxe

S : diagrama de sintaxis

Syntax diagrams are illustrations of the definitions of the concrete textual syntax. [Annex C2]

syntype

F : syntype

S : sintipo

A syntype determines a set of values which corresponds to a subset of the values of the parent type. The
operators of the syntype are the same as those of the parent type. [5.4.1.9]

system

F : systeme

S : sistema

A system is a set of blocks connected to each other and the environment by channels.

232 Fascicle X.l — Rec. Z.100 — Annex A

system definition

F : definition de systeme

S : definicidn de sistema

A system definition is the S D L /P R representation of a system. [2.4.2]

system diagram

F : diagramme de systeme

S : diagrama de sistema

A system diagram is the S D L /G R representation of a system. [2.4.2]

task

F : tache

S : tarea

A task is an action within a transition containing either a sequence of assignment statements or informal
text. The interpretation of a task depends on and may act on information, held by the system. [2.7.1]

task area

F : zone de tache

S : area de tarea

A task area is the SD L /G R representation of a task. [2.7.1]

term

F : terme

S ': termino

A term is syntactically equivalent to an expression. Terms are only used in axioms and are distinguished
from expressions for reasons of clarity. [5.2.3, 5.3.3]

text extension symbol

F : symbole d ’extension de texte

S : sibolo de ampliacion de texto

A text extension symbol is a container of text which belongs to the graphical symbol to which the text
extension symbol is attached. The text in the text extension symbol follows the text in the symbol to which it is
attached. [2.2.7]

time

F : temps (time)

S : tiempo; time

Time is a sort defined in a predefined partial type definition for which the values are denoted as the values
of real. The predefined operators using time and duration are + and — . [5.5.4.1, 5.6.12]

timer

F : temporisateur

S : temporizador

A timer is an object, owned by a process instance, that can be active or inactive. An active timer returns a
timer signal to the owning process instance at a specified time. See also set and reset. [2.8, 5.5.4.5]

Fascicle X .l — Rec. Z.100 — Annex A 233

F : transition

S : transition

A transition is an active sequence which occurs when a process instance changes from one state to another.
[2.6.7.1]

transition area

F : zone de transition

S : area de transition

A transition area is the S D L /G R representation of a transition. [2.6.7.1]

transition string

F : chaine de transition

S : cadena de transition

A transition string is a sequence of zero or more actions. [2.6.7.1]

transition string area

F : zone de chaine de transition

F : area de cadena de transition

A transition string area is the SD L /G R representation of a transition string. [2.6.7.1]

type

F : type

S : tipo

A type is a set of properties for entities. Examples of classes of types in SD L include blocks, channels,
signal routes, signals, and systems. [1.3.1]

type definition

F : definition de type

S ; definicidn de tipo

A type definition defines the properties of a type [1.3.1]

undefined

F : indefini (undefined)

S : indefinido

Undefined is a “special” value o f every sort which indicates that a variable of that sort has not yet been
assigned a normal value. See access. [5.5.2.2]

valid input signal set

F : ensemble de signaux d ’entree valides

S : conjunto de sehales de entrada validas

The valid input signal set of a process is the list of all external signals handled by any input in the process.
It consists of those signals in signal routes leading to the process. Compare with complete valid input signal set.
[2.4.4, 2.5.2]

transition

234 Fascicle X.l — Rec. Z.100 — Annex A

valid specification

F : specification valide

S : especificacion valida

A valid specification is a specification which follows the concrete syntax and static well-formedness rules.

value

F : valeur

S : valor

A value o f a sort is one o f the values which are associated with a variable o f that sort, and which can be
used with an operator requiring a value of that sort. A value is the result of the interpretation of an expression.
[2.3.3, 5.1.3]

variable

F : variable

S : variable

A variable is an entity owned by a process instance or procedure instance which can be associated with a
value through an assignment statement. When accessed, a variable yields the last value which was assigned to it.
[2.3.2]

variable definition

F : definition de variable

S : definicidn de variable

A variable definition is the indication that the variable names listed will be visible in the process, procedure
or service containing the definition. [2.6.1.1]

view definition

F : definition de visibilite

S : definicidn de vision

A view definition defines a variable identifier in another process where it has the revealed attribute. This
allows the viewing process to access the value of that variable. [2.6.1.2]

view expression

F : expression de vue

S : expresion de vision

A view expression is used within an expression to yield the current value of a viewed variable. [5.5.4.4]

visibility

F : visibilite

S : visibilidad

The visibility of an identifier is the scope units in which it may be used. No two definitions in the same
scope unit and belonging to the same entity class may have the same name. [2.2.2]

well-formedness rules

F : regies de bonne formation

S : reglas de formacion correcta

Well-formedness rules are constraints on a concrete syntax enforcing static conditions not directly expressed
by the syntax rules. [1.4.1, 1.4.2]

1.3.3]

Fascicle X.l — Rec. Z.100 — Annex A 235

ANNEX B
(To Recommendation Z.100)

Abstract syntax summary

Identifier

Qualifier

Path-item

System-qualifier

Block-qualifier

Block-Substructure-qualifier

Process-qualifier

Procedure-qualifier

Signal-qualifier

Sort-qualifier

Name

Informal-text

System-definition

System-name

Block-definition

Qualifier Name

Path-item +

System-qualifier I
Block-qualifier I
Block-Substructure-qualifier I
Signal-qualifier I
Process-qualifier I
Procedure-qualifier I
Sort-qualifier

System-name

Block-name

Block-substructure-name

Process-name

Procedure-name

Signal-name

Sort-name

System-name
Block-definition-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set

Name

Block-name
Process-definition-set
Signal-definition-set
Channel-to-route-connection-set
Signal-route-definition-set
Data-type-definition
Syn-type-definition-set
[Block-substructure-definition]

Token

236 Fascicle X.l — Rec. Z.100 — Annex B

Block-name = Name

Process-defmition :: Process-name
Number-of-instances
Process-formal-parameter *
Procedure-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
View-definition-set
Timer-definition-set
Process-graph

Number-of-instances :: Intg Intg

Process-name = Name

Process-graph :: Process-start-node
State-node-set

Process-formal-parameter :: Variable-name
Sort-reference-identifier

Procedure-definition :: Procedure-name
Procedure-formal-parameter*
Procedure-definition-set
Data-type-definition
Syn-type-definition-set
Variable-definition-set
Procedure-graph

Procedure-name = Name

Procedure-formal-parameter = In-parameter |
Inout-parameter

In-parameter :: Variable-name
Sort-reference-identifier

Inout-parameter :: Variable-name
Sort-reference-identifier

Procedure-graph :: Procedure-start-node
State-node-set

Procedure-start-node :: Transition

Channel-definition :: Channel-name
Channel-path
[Channel-path]

Channel-path :: Originating-block

Fascicle X .l — Rec. Z.100 — Annex B 237

Originating-block

Destination-block

Block-identifier

Signal-identifier

Channel-name

Signal-route-definition

Signal-route-path

Originating-process

Destination-process

Signal-route-name

Channel-to-route-connection

Signal-route-identifier

Signal-definition

Signal-name

Variable-definition

Variable-name

View-definition

Process-start-node

Destination-block
Signal-identifier-set

Block-identifier I
ENVIRONMENT

Block-identifier I
ENVIRONMENT

Identifier

Identifier

Name

Signal-route-name
Signal-route-path
[Signal-route-path]

Originating-process
Destination-process
Signal-identifier-set

Process-identifier I
ENVIRONMENT

Process-identifier I
ENVIRONMENT

Name

Channel-identifier
Signal-route-identifier-set

Identifier

Signal-name
Sort-reference-identifier■*
[Signal-refinement]

Name

Variable-name
Sort-reference-identifier
[REVEALED]

Name

Variable-identifier
Sort-reference-identifier

Transition

238 Fascicle X.l — Rec. Z.100 — Annex B

State-node

State-name

Input-node

Variable-identifier

Save-signalset

Transition

Graph-node

Terminator

Nextstate-node

Return-node

Stop-node

Task-node

Create-request-node

Process-identifier

Call-node

Procedure-identifier

Decision-node

Decision-question

State-name
Save-signalset
Input-node-set

Name

Signal-identifier
[Variable-identifier]*
Transition

Identifier

Signal-identifier-set

Graph-node *
(Terminator | Decision-node)

Task-node \
Output -node \
Create-Request-node \
Call-node \
Set-node |
Reset-node

Nextstate-node \
Stop-node \
Return-node

State-name

0

0

Assignment-statement \
Informal -text

Process-identifier
{Expression]*

Identifier

Procedure-identifier
[Expression] *

Identifier

Decision-question
Decision-answer-set
[Else-answer]

Expression \

Fascicle X .l — Rec. Z.100 — Annex B 239

Else-answer

Output-node

Signal-destination

Direct-via

Timer-definition

Timer-name

Set-node

Reset-node

Timer-identifier

Time-expression

Block-substructure-definition

Decision-answer

Block-substructure-name

Sub-block-definition

Channel-connection

Sub-channel-identifier

Channel-identifier

Signal-refinement

Informal-text

(Range-condition \
Informal-text) Transition

Transition

Signal-identifier
[Expression]*
[Signal-destination]
Direct-via

Expression

Signal-route-identifier-set

Timer-name Sort-reference-identifier*

Name

Time-expression
Timer-identifier
Expression*

Timer-identifier
Expression*

Identifier

Expression

Block-substructure-name
Sub-block-definition-set
Channel-connection-set
Channel-definition-set
Signal-definition-set
Data-type-definition
Syn-type-definition-set

Name

Block-definition

Channel-identifier
Sub-channel-identifier-set

Channel-identifier

Identifier

Subsignal-definition-set

240 Fascicle X .l - Rec. Z.100 - Annex B

Subsignal-deflnition •• [REVERSE] Signal-definition

Data-type-definition Type-name
Type-union
Sorts
Signature-set
Equations

Type-union = Type-identifier-set

Type-identifier = Identifier

Sorts = Sort-name-set

Type-name = Name

Sort-name = Name

Equations = Equation-set

Signature = Literal-signature 1
Operator-signature

Literal-signature ;; Literal-operator-name
Result

Operator-signature Operator-name
Argument-list
Result

Argument-list = Sort-reference-identifier +

Result = Sort-reference-identifier

Sort-reference-identifier = Sort-identifier 1
Syntype-identifier

Literal-operator-name = Name

Operator-name = Name

Sort-identifier = Identifier

Equation Unquantified-equation 1
Quantified-equations 1
Conditional-equation 1
Informal-text

Unquantified-equation ;; Term
Term

Fascicle X .l — Rec. Z.100 — Annex B 241

Quantified-equations Value-name-set
Sort-identifier
Equations

Value-name = Name

Term = Ground-term \
Composite-term \
Error-term

Composite-term Value-identifier |
Operator-identifier Term+ \
Conditional-composite-term

Value-identifier = Identifier

Operator-identifier = Identifier

Ground-term - Literal-operator-identifier \
Operator-identifier Ground-termA
Conditional-ground-term

Literal-operator-identifier = Identifier

Conditional-equation Restriction-set
Restricted-equation

Restriction = Unquantified-equation

Restricted-equation = Unquantified-equation

Conditional-composite-term = Conditional-term

Conditional-ground-term = Conditional-term

Conditional-term :: Condition
Consequence
Alternative

Condition = Term

Consequence = Term

Alternative = Term

Error-term 0

Syntype-identifier = Identifier

Syn-type-definition Syntype-name
Parent-sort-identifier
Range-condition

242 Fascicle X .l — Rec. Z.100 — Annex B

Syntype-name Name

Parent-sort-identfier

Range-condition

Condition-item

Open-range

Closed-range

Or-operator-identifier

And-operator-identifier

Expression

Ground-expression

Variable-access

Active-expression

Imperative-operator

Now-expression

Pid-expression

Self-expression

Parent-expression

Offspring-expression

Sender-expression

Sort-identifier

Or-operator-identifier
Condition-item-set

Open-range \ Closed-range

Operator-identifier
Ground-expression

And-operator-identifier
Open-range
Open-range

Identifier

Identifier

Ground-expression \
Active-expression

Ground-term

Variable-identifier

Variable-access \
Conditional-expression \
Operator-application |
Imperative-operator

Now-expression \
Pid-expression \
View-expression \
Timer-active-expression

0

Self-expression \
Parent-expression \
Offspring-expression \
Sender-expression

0

0

0

0

Fascicle X .l - Rec. Z.100 - Annex B 243

Timer-active-expression

Conditional-expression

Boolean-expression

Consequence-expression

Alternative-expression

Operator-application

Assignment-statement

View-expression Variable-identifier
Expression

Timer-identifier
Expression*

Boolean-expression
Consequence-expression
Alternative-expression

Expression

Expression

Expression

Operator-identifier
Expression+

Variable-identifier
Expression

244 Fascicle X.l - Rec. Z.100 - Annex B

ANNEX Cl
(To Recommendation Z.100)

Concrete graphical syntax summary

C l . l Introduction

Cl. 1.1 Metalanguage

For the graphical grammar the metalanguage described in SDL Rec § 1.5.2 is extended with
the following metasymbols:

a) contains
b) is associated with
c) is followed by
d) is connected to
e) set

The set metasymbol is a postfix operator operating on the immediately preceding syntactic
elements within curly brackets, and indicating an (unordered) set of items. Such items may be any
syntactic element, in which case it must be applied before the set metasymbol. Example:

{{<system text area>}* {<macro diagram>}* cblock interaction area>} set

is a set of zero or more csystem text area>s, zero or more cmacro diagram>s and one cblock
interaction area>.

All the other metasymbols are infix operators, having a graphical non-terminal symbol as
the left-hand argument. The right-hand argument is either a group of syntactic elements within curly
brackets or a single syntactic element. If the right-hand side of a production rule has a graphical
non-terminal symbol as the first element and contains one or more of these infix operators, then the
graphical non-terminal symbol is the left-hand argument of each of these infix operators. A
graphical non-terminal symbol is a non-terminal having the word "symbol" immediately before the
greater than sign >.

The metasymbol contains indicates that its right-hand argument should be placed within its
left-hand argument and the attached ctext extension symbol>, if any. Example:

cblock reference> ::=
cblock symbol> contains cblock name>

cblock symbol> ::=

Fascicle X .l — Rec. Z.100 — Annex C l

means the following

< I>lock uuae >

The metasymbol is associated with indicates that its right-hand side argument is logically
associated with its left-hand argument (as if it were "contained" in that argument, the unambiguous
association is ensured by appropriate drawing rules).

The metasymbol is followed by means that its right-hand argument follows (both
logically and in drawing) its left-hand argument.

The metasymbol is connected to means that its right-hand argument is connected (both
logically and in drawing) to its left-hand argument.

Cl. 1.2 General rules

Cl .1.2.1 Partitioning o f diagrams

The following definition of diagram partitioning is not part of the Concrete graphical grammar, but
the same meta-language is used.

<page>::=
<frame symbol> contains
<heading area> <page number area>
{<syntactical unit>}*

<heading area>
<implicit text symbol> contains <heading>

<page number area> ::=
<implicit text symbol> contains [<page number> [(cnumber of pages>)]]

<pagenumber>
cliteral name>

cnumber of pages> ::=
cnatural literal name>

cpage> is a starting non-terminal, therefore it is not referred to in any production rule. A
diagram may be partitioned into a number of cpage>s, in which case the cframe symbol>
delimiting the diagram and the diagram cheading> are replaced by a cframe symbol> and a
cheading> for each page.

The cimplicit text symbol> is not shown, but implied, in order to have a clear separation

246 Fascicle X.l — Rec. Z.100 — Annex C l

between cheading area> and cpage number area>. cheading area> is placed at the upper left comer
of the cframe symbol>. cpage number area> is placed at the upper right comer of the cframe
symbolx cheading> and csyntactical unit> depends on the type of diagram.

Cl. 1.2.2 Comment

ccomment area> ::=
ccomment symbol> contains ctext>
is connected to cdashed association symbol>

ccomment symbol> ::=

cdashed association symbol> ::=

One end of the cdashed association symbol> must be connected to the middle of the vertical
segment of the ccomment symbolx

A ccomment symbol> is connected to any graphical symbol by means of a cdashed
association symbolx The ccomment symbol> is considered as a closed symbol by completing (in
imagination) the rectangle. It contains comment text related to the graphical symbol.

C l. 1.2.3 Text extension

ctext extension area> ::=
ctext extension symbol> contains ctext>
is connected to csolid association symbol>

ctext extension symbol> ::=
ccomment symbol>

csolid association symbol> ::=

A ctext extension symbol> is connected to any graphical symbol by means of a csolid
association symbolx The ctext extension symbol> is considered as a closed symbol by completing
(in imagination) the rectangle.

One end of the csolid association symbol> must be connected to the middle of the vertical segment
of the ctext extension symbolx

Fascicle X .l — Rec. Z.100 — Annex Cl

The text contained in the <text extension symbol> is a continuation of the text within the graphical
symbol and is considered to be contained in that symbol.

Cl .2 System definition

<concrete system definition> ::=
{<system definition> | <system diagram>} (<remote definition>}*

<remote definition> ::=
<definition>

| <diagram>

<diagram> ::=
<block diagram>

| <process diagram>
j <procedure diagram>
j <block substructure diagram>
| <channel substructure diagram>
| <service diagram>
j cmacro diagram>

C l.3 System diagram

<system diagram> ::=
cframe symbol> contains
(<system heading>

{ {csystem text area>}*
{cmacro diagram>}*
<block interaction area> }set }

<frame symbol> ::=

<system heading> ::=
SYSTEM csystem name>

<system text area> ::=
<text symbol> contains
{csignal definition>

| csignal list definition>
j <data definition>
| <macro definition>
| <select definition>}*

248 Fascicle X.l - Rec. Z.100 - Annex Cl

ctext symbol> ::=

cblock interaction area> ::=
{cblock area> | cchannel definition area>}+

cblock area> ::=
cgraphical block reference>

| cblock diagram>

cgraphical block reference> ::=
cblock symbol> contains cblock name>

cblock symbol> ::=

cchannel definition area>
cchannel symbol>
is associated with {cchannel name>

{ [{cchannel identifier | cblock identifier>}]
csignal list area>
[csignal list area>] }set }

is connected to { cblock area>
{cblock area> | cframe symbol>}
[cchannel substructure association area>] }set

The cchannel identifier identifies an external channel connected to the cblock substructure
diagram> delimited by the cframe symbolx The cblock identifier identifies an external block
being a channel endpoint for the cchannel substructure diagram> delimited by the cframe symbolx

cchannel symbol> ::=
cchannel symbol 1>

| cchannel symbol 2>
| cchannel symbol 3>

cchannel symbol 1> ::=

cchannel symbol 2> ::=

Fascicle X .l — Rec. Z.100 — Annex C l

1 < »■

<signal list area> ::=
<signal list symbol> contains <signal list>

<signal list symbol>

[]

<channel symbol 3> ::=

Cl .4 Block diagram

<block diagram> ::=
cframe symbol>
contains {cblock heading>

{ {<block text area>}*
{cmacro diagram>}*
[<process interaction area>]
[cblock substructure area>] }set }

is associated with {<channel identifier}*

The <channel identifier> identifies a channel connected to a signal route in the cblock diagram>,
is placed outside the cframe symbol> close to the endpoint of the signal route at the cframe
symbolx If the cblock diagram> does not contain a cprocess interaction area>, then it must
contain a cblock substructure areax

cblock heading> ::=
BLOCK I cblock name> | cblock identifier }

cblock text area> ::=
csystem text area>

cprocess interaction area> ::=
{ cprocess area>

| ccreate line area> ^
j csignal route definition area> }+

cprocess area> ::=
cgraphical process reference>

| cprocess diagram>

cgraphical process reference> ::=
cprocess symbol> contains f cprocess name> [cnumber of instances>]}

250 Fascicle X .l — Rec. Z.100 — Annex Cl

<process symbol> ::=

<create line area> ::=
<create line symbol>
is connected to {<process area> <process area>}

<create line symbol> ::=

<signal route definition area> ::=
<signal route symbol>
is associated with (<signal route name>

{ f<channel identifier!
<signal list area>
[<signal list area>] }set }

is connected to
{<process area> {<process area> | <frame symbol>} }set

When the <signal route symbol> is connected to the <frame symbol>, then the <channel identifier
identifies a channel to which the signal route is connected.

<signal route symbol> ::=
<signal route symbol 1>

| <signal route symbol 2>

<signal route symbol 1> ::=

<signal route symbol 2> ::=

C l.5 Process diagram

<process diagram> ::=
<frame symbol>
contains (<process heading>

{ (<process text area>}*
{<procedure area>}*
(<macro diagram> }*
{<process graph area> | <service interaction area> } }set }

[is associated with f<signal route identifier}+]

Fascicle X .l — Rec. Z.100 — Annex C l

The csignal route identifier identifies an external signal route connected to a signal route in the
<process diagramx It is placed outside the <frame symbol> close to the endpoint of the signal
route at the <frame symbolx

<process heading> ::=
PROCESS f <process name> | <process identifier>}
[<number of instances> <end>] [<formal parameters>]

<process text area>
<text symbol> contains [<valid input signal set>]

{<signal definition>
<signal list definition>
<variable definition>
<view definition>
<import defmition>
<data definition>
<macro definition>
<timer definition>
<select definition> }*

<graphical procedure reference>
<procedure symbol> contains <procedure name>

<procedure symbol> ::=

<process graph area> ::=
<start area> { <state area> |cin-connector area> }*

cstart area> ::=
cstart symbol> is followed by ctransition area>

cstart symbol> ::=

ctransition area> ::=
[ctransition string area>] is followed by
{estate area>

cnextstate area>
cdecision area>
estop symbol>
emerge area>
cout-connector area>
cretum symbol>
ctransition option area> }

252 Fascicle X .l — Rec. Z.100 — Annex Cl

emerge area>
emerge symbol> is connected to eflow line symbol>

emerge symbol> ::=
eflow line symbol>

eflow line symbol> ::=

etransition string area> ::=
{etask area>

I eoutput area>
j epriority output area>
j eset area>
I ereset area>
j eexport area>
I ecreate request area>
j eprocedure call area> }

[is followed by etransition string area>]

etask area> ::=
etask symbol> contains etask body>

etask symbol> ::=

eoutput area> ::=
eoutput symbol> contains eoutput body>

eoutput symbol> ::=

ecreate request area> ::=
ecreate request symbol> contains ecreate body>

ecreate request symbol> ::=

Fascicle X .l — Rec. Z.100 — Annex C l 253

<procedure call area> ::=
<procedure call symbol> contains <procedure call body>

<procedure call symbol> ::=

<state area> ::=
<state symbol> contains <state list> is associated with
{<input association area>

| <priority input association area>
j continuous signal association area>
j <save association area> }*

<state symbol> ::=

CD
<input association area> ::=

csolid association symbol> is connected to <input area>

<input area> ::=
<input symbol> contains cinput list>
is followed by { [cenabling condition area>] ctransition area>}

cinput symbol> ::=

2
csave association area> ::=

csolid association symbol> is connected to csave area>

csave area> ::=
csave symbol> contains csave list>

csave symbol> ::=

r u

254 Fascicle X .l - Rec. Z.100 — Annex Cl

<m-connector area> ::=
<in-connector symbol> contains <connector name>
is followed by etransition area>

<in-connector symbol> ::=

cnextstate area> ::=
<state symbol> contains <nextstate body>

<decision area> ::=
<decision symbol> contains <question>
is followed by
{ (egraphical answer part> <graphical else part>} set

| {egraphical answer part> (<graphical answer part>}+ [<graphical else part>] } set }

<decision symbol> ::=

<graphical answer> ::=
<answer> | (<answer>)

<graphical answer part> ::=
<flow line symbol> is associated with egraphical answer>
is followed by <transition area>

<graphical else pait> ::=
<flow line symbol> is associated with ELSE
is followed by ctransition area>

cset area>::=
ctask symbol> contains cset>

creset area>
ctask symbol> contains creset>

estop symbol> ::=

cout-connector area>
cout-connector symbol> contains cconnector name>

eout-connector symbol> ::=
cin-connector symbol>

Fascicle X .l - Rec. Z.100 - Annex C l

<procedure diagram> ::=
<frame symbol> contains {<procedure heading>

{ {<procedure text area>}*
{ <procedure area>}*
{cmacro diagram> }*
<procedure graph area> }set }

<procedure heading>
PROCEDURE I <procedure name> | <procedure identifier> }

[<procedure formal parameters>]

<procedure area> ::=
<graphical procedure reference>

| cprocedure diagram>

<procedure text area> ::=
<text symbol> contains
{< variable definition>

| <data definition>
j <macro definition>
j <select definition> }*

<procedure graph area> ::=
<procedure start area> (<state area> | <in-connector area> }*

<procedure start area> ::=
<procedure start symbol> is followed by <transition area>

<procedure start symbol> ::=

Cl .6 Procedure diagram

<retum symbol> ::=

256 Fascicle X.l - Rec. Z.100 - Annex Cl

;
Cl .7 B lock substructure

<block substructure area> ::=
<graphical block substructure reference>

| cblock substructure diagram>

<graphical block substructure reference> ::=
cblock substructure symbol> contains cblock substructure name>

cblock substructure symbol>
cblock symbol>

cblock substructure diagram> ::=
cframe symbol>
contains {cblock substructure heading>

{ {cblock substructure text area>}*
{cmacro diagram>}*
cblock interaction area> }set }

is associated with f cchannel identifier}*

The cchannel identifier identifies a channel connected to a subchannel in the cblock substructure
diagram>. It is placed outside the cframe symbol> close to the endpoint of the subchannel at the
cframe symbolx

cblock substructure heading> ::=
SUBSTRUCTURE f cblock substructure name> | cblock substructure identifier}

cblock substructure text area> ::=
csystem text area>

Fascicle X .l — Rec. Z.100 - Annex C l 257

Cl .8 Channel substructure

<channel substructure association area> ::=
<dashed association symbol>
is connected to <channel substructure area>

<channel substructure area> ::=
<graphical channel substructure reference>

| <channel substructure diagram>

<graphical channel substructure reference> ::=
<channel substructure symbol> contains <channel substructure name>

<channel substructure symbol> ::=
cblbck symbol>

<channel substructure diagram> ::=
cframe symbol>
contains {cchannel substructure heading>

{ {cchannel substructure text area>}*
{cmacro diagram>}*
cblock interaction area> }set }

is associated with (cblock identifier | ENV}+

The cblock identifier or ENV identifies an endpoint of the partitioned channel. The cblock
identifier is placed outside the cframe symbol> close to the endpoint of the associated subchannel
at the cframe symbolx

cchannel substructure heading> ::=
SUBSTRUCTURE { c channel substructure name>

I c channel substructure identifier}

cchannel substructure text area> ::=
csystem text area>

258 Fascicle X .l — Rec. Z.100 — Annex C l

Cl .9 M acro

9.1 Macro diagram

<macro diagram> ::=
cffame symbol> contains cmacro heading> cmacro body area>

cmacro heading> ::=
MACRODEFINrnON cmacro name> [cmacro formal parameter:

cmacro body area> ::=

cany area> [is connected to cmacro body portl>] }set
l{ cany area> is connected to cmacro body port2>

cany area> is connected to cmacro body port2>
{ cany area> [is connected to cmacro body port2>]}*}set

cmacro body portl>
coutlet symbol> [is associated with cmacro label>]
is connected to {cframe symbol>

I cmacro inlet symbol>
I cmacro outlet symbol>)

cmacro body port2> ::=
coutlet symbol> is associated with cmacro label>
is connected to {cframe symbol>

I cmacro inlet symbol>
I cmacro outlet symbol>)

cmacro label> ::=
cname>

{ {cany area> }*

cmacro inlet symbol>:

cmacro outlet symbol>:

Fascicle X .l — Rec. Z.100 — Annex Cl 259

coutlet symbol> ::=
cdummy outlet symbol>

I cflow line symbol>
I cchannel symbol>
I csignal route symbol>
I csolid association symbol>
I cdashed association symbol>
I ccreate line symbol>

cdummy outlet symbol> ::=
csolid association symbol>

cany area>
csystem text area>

I cblock interaction area>
I csignal list area>
I cblock area>
I cblock text area>
I cprocess interaction area>
I cgraphical procedure reference>
I cprocedure area>
I cprocess text area>
I cprocess graph area>
I emerge area>
I ctransition string area>
I estate area>
I cinput area>
I csave area>
I ctext extension area>
I cchannel substructure association area>
I cchannel substructure area>
I cblock substructure area>
I cpriority input area>
I ccontinuous signal area>
I cin-connector area>
I cnextstate area>
I cprocess area>
I cchannel definition area>
I ccreate line area>
I csignal route definition area>
I cgraphical process reference>
I cprocess diagram>
I cstart area>
I coutput area>
I cset area>
I creset area>
I cexport area>
I cpriority output area>
1 ctask area>
I ccreate request area>
I cprocedure call area>
I cdecision area>

260 Fascicle X .l — Rec. Z.100 — Annex Cl

cout-connector area>
cprocedure text area>
cprocedure graph area>
cprocedure start area>
cblock substructure text area>
cblock interaction area>
cservice area>
cservice signal route definition area>
cservice text area>
cservice graph area>
cservice start area>
ccomment area>
cmacro call area>

Cl .9.2 Macro call

cmacro call area> ::=
cmacro call symbol> contains f cmacro name> [cmacro call body>]}
[is connected to
{cmacro call portl> I cmacro call port2> {cmacro call port2>}+}]

cmacro call symbol> ::=

cmacro call portl> ::=
cinlet symbol> [is associated with cmacro label>]
is connected to cany area>

cmacro call port2> ::=
cinlet symbol> is associated with cmacro label>
is connected to cany area>

cinlet symbol> ::=
cdummy inlet symbol>

I cfiow line symbol>
I cchannel symbol>
I csignal route symbol>
I csolid association symbol>
I cdashed association symbol>
I ccreate line symbol>

cdummy inlet symbol> ::=
csolid association symbol>

Fascicle X.l — Rec. Z.100 — Annex

C1.10 Generic system s

C l. 10.1 Optional definition

coption area> ::=
coption symbol> contains
{ SELECT IF (cboolean simple expression>)
{cblock area>

cchannel substructure area>
csystem text area>
cblock text area>
cprocess text area>
cprocedure text area>
cblock substructure text area>
cchannel substructure text area>
cservice text area>
cmacro diagram>
coption area>
cprocess area>
csignal route definition area>
ccreate line area>
cprocedure area>
cservice area>
cservice signal route definition area> }+ }

The coption symbol> is a dashed polygon having solid comers, for example:

I 1

L ' " " iL n _______ I

C1.10.1 Optional transition

ctransition option area> ::=
ctransition option symbol> contains {caltemative question>}
is followed by {coption outletl> {coption outletl> I coption outlet2> }

{ coption outlet 1> }* }set

ctransition option symbol> ::=

coption outletl> ::=
cflow line symbol> is associated with cgraphical answer>
is followed by {ctransition area> I emerge area>}

262 Fascicle X.l —, Rec. Z.100 — Annex Cl

coption outlet2> ::=
cflow line symbol> is associated with ELSE
is followed by {ctransition area> I emerge area>}

C l. 11 Service

C1.11.1 Service decomposition

cservice interaction area> ::=
{ cservice area> I cservice signal route definition area> }+

cservice area> ::=
cgraphical service reference>

I cservice diagram>

cgraphical service reference> ::=
cservice symbol> contains cservice name>

cservice symbol> ::=

cservice signal route definition area> ::=
csignal route symbol>
is associated with f cservice signal route name> Icsignal route identifier]

csignal list area> [csignal list area>]}set
is connected to {cservice area>

{cservice area> I cframe symbol>) }set

When the csignal route symbol> is connected to the cframe symbol>, then the csignal route
identifier identifies an external signal route to which the signal route is connected.

C l. 11.2 Service diagram

cservice diagram> ::=
cframe symbol> contains
{cservice heading>

{ {cservice text area>} *
{cprocedure area>} *
{cmacro diagram>} *
cservice graph area> }set }

cservice heading> ::=
SERVICE { cservice name> I cservice identifier)

Fascicle X .l - Rec. Z.100 - Annex C l

<service text area>
<text symbol> contains
{ <variable definition>

I <view definition>
I <import definition>
I <data definition>
I <macro definition
I <timer definition>
I cselect definition> }*

<service graph area> :::=
<process graph area>

<priority input association area> ::=
<solid association symbol> is connected to <priority input area>

<priority input area> ::=
<priority input symbol> contains <priority input list>

<priority input symbol> ::=

C l . 12 Continuous signal

ccontinuous signal association area> ::=
csolid association symbol> is connected to ccontinuous signal area>

ccontinuous signal area> ::=
cenabling condition symbol>
contains f cboolean expression> [cend> PRIORITY cinteger literal name>]}
is followed by ctransition area>

cpriority output area> ::=
cpriority output symbol> contains cpriority output body>

cpriority output symbol>

264 Fascicle X.l - Rec. Z.100 - Annex Cl

<enabling condition area> ::=
<enbling condition symbol> contains cboolean expression>

cenabling condition symbol> ::=

< >
C l. 14 Export

cexport area> : :=
ctask symbol> contains cexport>

Cl. 13 Enabling condition

Fascicle X .l — Rec. Z.100 — Annex C l 265

ANNEX C2

(to Recommendation Z.100)

SDL PR syntax summary

1 system

T100324O-88

2 definition

T1003250-88

3 diagram

Diagram is defined in GR syntax summary.

4 system definition (Basic SDL 2.4.1)

266 Fascicle X.l — Rec. Z.100 — Annex C2

5 block definition (Basic SDL 2.4.2)

X BLOCK>

b 1 ock 132
name

b 1 ock 128
i dent i f i er

end
40:

b lo c k d e f i n i t i o n body J

b lo ck s u b s tr u c tu r e
d ef i n i t i on

46

47b lo ck s u b s tr u c tu r e
r e fe r e n c e

ÊNDSLOCKVn
b lo ck s u b s tr u c tu r e
def i n i t i on

b lo ck s u b s tr u c tu r e
re fe r e n c e

46

47

b 1 ock 132
name

b 1 ock 128
i dent i f i e r

40
end

(B as ic SDL 2 . 4 . 2)
T1003270-88

6 textual block reference (Basic SDL 2.4.2)

- C BL0CK> b 1 ock 132 ,
name \-C REFERENCED^ end

40

T10032I0-8S

Fascicle X.l - Rec. Z.100 - Annex C2 267

7 process definition (Basic SDL 2.4.3)

-^ P R O C E S S }-

orocess 132
name

128orocess
i dent i f i er

number
o f in s tan ces

l i end
40 forma I

p aram eters end
40 va 1 i d i nput 9

s i g n a 1 se t

s ig n a l d e f i n i t i o n
IS

s ig n a l l i s t d e f i n i t i o n
17

p ro ced ure d e f i n i t i o n
12

t e x t u a l
procedure r e f e r e n c e

13

d a ta d ef i n i t i on
43

va r i a b Ie d e f i n i t i on
18

v i ew d ef i n i t i on
19

import d e f i n i t i o n
69

t i mer d ef i n i t i on
36

s e I e c t d ef i n i t i on
58

macro d ef i n i t i on
55

process body
10

s e r v ic e
decompos i t i on

60 - C ENDPROCESSV-

orocess 132
name

128orocess
i dent i f i e r

-A- end
40

number o f ins tances :
(j - 1- i n i t i a l number maximum number }

T1003290-M

268 Fascicle X.l — Rec. Z.100 — Annex G2

8 textual process reference (Basic SDL 2.4.3)

PROCESS> orocess 132
name ~C REFERENCED^-) end

40

T1003300-S8

valid input signal set

41
s ig n a 1 l i s t end

40

T1003310-8S

10 process body (Basic SDL 2.4.3)

T1003320-88

11 simple expression

ground e x p re ss io n
10G

12 procedure definition (Basic SDL 2.3.4)

T1003330-8S

PR0CEDURE>

o rocedure 132
name

128o rocedure
i dent i f i e r

40
- end

p rocedure
forma I
p aram eters

end
40

procedure d e f i n i t i o n
12

t e x tu a I
pro ced ure r e f e r e n c e

13

d a ta d e f i n i t io n
43

var i a b Ie d e f i n i t i on
18

— s e l e c t d e f i n i t i o n
58

macro def i n i t i on
55

process b o d y j -^ ^ E N D P R Q C E D U R E }-1-

orocedure 132
name

128o rocedure
i dent i f i er

end
40

procedure

Fascicle X .l — Rec. Z.100 — Annex C2 269

13 textual procedure reference (Basic SDL 2.3.4)

-<PROCEDURE>
hrnroHi i r* o 132 / --------------------- nur ulc uui e
name (REFERENCED> end

14 channel definition (Basic SDL 2.5.1)

40

T1003350-88

15 signal route definition (Basic SDL 2.5.2)

- <SIGNALROUTE> s ia n a l r o u te 132 ------- ;--------- ;----------m
name s ig n a l r o u te path 0 7 = \L

s ig n a l r o u te p ath :

[<FR0f1> process
i dent i f i e r

128

< F R 0 f 1 > process
i dent i f i e r

< FR0n>^ E N V > < T 0 >

< T 0 >

128

process
i dent i f i er

128

<Tq><ENV>
128process

i d e n t i f i e r

s ig n a l I i s t
41

end
40

T1003370-M

16 signal definition (Basic SDL 2.5.4)

270 Fascicle X.l — Rec. Z.100 — Annex C2

17 signal list definition (Basic SDL 2.5.5)

- < S IG N A L L IS T > s ia n a l 1i s t 132 ,
name \ si gnaI l i s t

41
end

40

T1003390-M

18 variable definition (Basic SDL 2.6.1.1)

r ^ E V E A L E O > ^ - (EXPORTED)^
< D C L >

— (e x p o r t e d X r e v e a l e d) —

var i a b Ie
name

132

O

s o r t
72

< S > ground
ex p re ss i on

111
end

40

O 71003400-44

19 view definition (Basic SDL 2.6.1.2)

20 view expression (Data 5.5.4.4)

- ^ V T F L l V f r V l v a r i a b l e i d e n t i f i e r] — Pl .d e x p r e s s i o n -
111

T1003420-M

21 start (Basic SDL 2.6.2)

-<S T A R T) - | end
40

t r a n s i t i on
25

T1003430-44

Fascicle X.l — Rec. Z.100 — Annex C2 271

state (Basic SDL 2.6.3)

~K^5TATE^)- s t a t e l i s t ' end
40

i nput
23 e n a b I i ng

cond i t i on

24

68

pr i or i ty i nput
65

cont i nuous
s i gnaI

67

t ra n s i t i on
25

(Additional concepts 4.4)

< ENDSTATE s t a t e
name

132
end

40

input (Basic SDL 2.6.4)

end
40

T1003450-8!

save (Basic SDL 2.6.5)

Fascicle X.l — Rec. Z.100 — Annex C2

transition (Basic SDL 2.6.7)

nextstate (Basic SDL 2.6.7.2.1)

^ (n e x t s t a t e >

s t a t e
name

132

O - T1003480-88

join (Basic SDL 2.6.7.2.2)

J0IN^)~ con nector naijie
132

T100349M8

stop (Basic SDL 2.6.1.23)

-CSTOP)-*
T1003S00-8S

Fascicle X .l — Rec. Z.100 — Annex C2

29 return (Basic SDL 2.6.7.2.4)

^(return̂
T1003J10-84

30 task (Basic SDL 2.7.1)

31 create request (Basic SDL 2.7.2)

-»(CREATE> process 128 a c t u a 1 45
i dent i f i er param eters

T1003J30-44

32 procedure call (Basic SDL 2.7.3)

- < CALL> procedure
i dent i f i e r

33 output (Basic SDL 2.7.4)

128 a c tu a I
p aram eters

45

T1003540-44

T1OO35J0-44

274 Fascicle X.l — Rec. Z.100 — Annex C2

-< DEC IS ION)- q u e s t io n - end ——

34 decision (Basic SDL 2.7.5)

t ra n s i t i on H^ELSE)~ (T) -^ - t r a n s i t io n
25

answer t r a n s i t i on
25

answer t ra n s i t i on
25

~C ENDDECISI ON)-*

t r a n s i t io n
25

guest i on:
auest i on 111
express i on

i nform aI 44
t e x t

T1003560-8S

35 answer (Basic SDL 2.7.5)

H 2
range c o n d i t io n s

i n fo rm a 1 44
t e x t

< I X T >

T1003570-88

36 timer definition (Basic SDL 2.8)

37 reset (Basic SDL 2.8)

38 set (Basic SDL 2.8)

T1003600-88

(Data 5 .5 .4 .5)

Fascicle X.l — Rec. Z.100 — Annex C2 275

39 timer active expression (Data 5.5.4.5)

- < a c t i v e X 7 > t i mer
i dent i f i e r

128
CDT ex p ress io n

111

O T1003610-88

40 end

127
comment <T>

T10Q3620-88

41 signal list

42 sort list

43 data definition

p a r t i a l type
d ef i ni t i on

» 2

syn type
d ef i n i t i on

2

2

2

synonym
d ef i n i t i on

g e n e ra to r
d ef in i t i on

T1003650-88

44 informal text

c h a r a c te r s t r i n g 138
1i t e r a 1

T1003660-88

276 Fascicle X.l - Rec. Z.100 - Annex C2

45 actual parameters

111 .
express io n

O

< > >

T1003670-88

46 block substructure definition (Structural concepts 3.2.2)

T1003680-88

47 block substructure reference (Structural concepts 3.2.2)

SUBSTRUCTURE^ b 1 ock 132
name ~C REFERENCED^ end

40

T1003690-88

48 channel connection (Structural concepts 3.2.2)

Fascicle X .l — Rec. Z.100 — Annex C2 277

49 channel to route connection (Structural concepts 3.2.2)

50 channel substructure definition (Structural concepts 3.2.3)

51 channel substructure body (Structural concepts 3.2.3)

T1003730-M

52 channel substructure reference (Basic SDL 2.5.1)

- < SUBSTRUCTURE^)- channe1 132 ,
name \-(REFERENCED)- end

40

T1003740-3*

53 channel endpoint connection (Structural concepts 3.2.3)

278 Fascicle X.l — Rec. Z.100 — Annex C2

54 signal refinement (Structural concepts 3.3)

^ (R E F IN E n E N T)i J - (R E V E R S E)^ s ig n a l d e f i n i t i o n | - ^ - r (ENDREFINEMENT>->

T1003760-S8

55 macro definition (Additional concepts 4.2.2)

- < H A C R O D E F IN IT IO N > macro
name

132 macro
forma I
param eters

end
40

macro body -(ENDNACRQ
132macro endname

macro
forma I
p aram eters :

< f p a r) t
macro formal param eter
name

O

macro body: I ex i caI
uni t

131

L forma I name J
T1003770-48

(A d d i t io n a l concepts 4 . 2 . 3)

56 macro call (Additional concepts 4.2.3)

57 external synonym definition (Additional concepts 4.3.1)

T1003790-88

Fascicle X .l — Rec. Z.100 — Annex C2 279

58 select definition (Additional concepts 4.3.3)

-< select> ^Tf>-<CT> boo Iean
s im p le e x p re ss io n

11
end

40

b lo c k d e f i n i t i o n

te x t u a l b lo c k r e fe r e n c e

d ata d ef in i t i on
43

process d e f i n i t i o n

te x t u a l p rocess r e f e r e n c e

var i a b Ie d ef i n i t i on
18

t i mer d ef i n i t i on
36

v i ew d ef i n i t i on
19

import d e f i n i t i o n
69 -[-(j endselecQ-*—|

procedure d e f i n i t i o n
12

t e x t u a l procedure r e fe r e n c e
13

serv i ce d e f i n i t i on
61

s e r v ic e r e f e r e n c e
62

s e Ie c t d ef i n i t i on
58

macro d ef i n i t i on
55

commun i c a t i on
s e Ie c t i on

end
40

T1003S0Q-8S

280 Fascicle X.l — Rec. Z.100 — Annex C2

59 transition option (Additional concepts 4.3.4)

^A L T E R N A TIV E)- ! a l t e r n a t i v e b o d y K ENDALTERNATIVE^)

a I t e r n a t ive
q u e s t io n : s im ple ex p re ss io n

11

in fo rm al t e x t
44

a l t e r n a t i v e
answer :

answer
35

T1003810-M

60 service decomposition (Additional concepts 4.10.1)

Fascicle X .l — Rec. Z.100 — Annex C2 281

61 service definition (Additional concepts 4.10.2)

^ (S E R V IC E >

s erv i ce 132
name

serv i ce 128
i dent i f i er

end
40 va 1 i d i nput

s i g n a 1 s et

procedure d ef i n i t i on

t e x tu a l
procedure r e f e r e n c e

12

13

d a ta def i n i t i on
43

macro d ef i ni t i on
55

import d e f i n i t i o n
59

v i ew d ef i n i t i on
19

t im e r d e f i n i t i o n
35

s e le c t d e f i n i t i o n
58

v a r i a b l e d e f i n i t io n
18

s e r v ic e body

— ENDSERVICE^-

serv i ce 132
name

serv i ce 128
i dent i f i er

— end
40

s e r v ic e body:
s t a r t

21
s t a t e

22

T1003830-88

62 service reference (Additional concepts 4.10.1)

- < S E R V IC E >
132 z'-------- :------------ S

name — f ± -<REFERENCED> end
40

T1003840*St

63 signal route connection (Additional concepts 4.10.1)

282 Fascicle X.l — Rec. Z.100 — Annex C2

< S IG N A L R oOTe > name'Ĉ ~~S ' qnal r0U t8 ' — si gnal r o u te path s ig n a l r o u te path

64 service signal definition (Additional concepts 4.10.1)

rC F R o ri>

s ig n a l r o u te p ath :

serv i ce 128
i dent i f i er \ s e r v ic e

i dent i f i e r
128

< FR0M> s e r v ic e
i dent i f i er

< FROMXENvXTOy

128 <toXm>
128s e r v ic e

i dent i f i e r

(U I T H > si gnaI l i s t
41

end
40

T1003860-88

65 priority input (Additional concepts 4.10.2)

66 priority output (Additional concepts 4.10.2)

^pridrityKoutputhI fSiStnfrf1ana I 128 a c tu a I
p aram eters

45

O T1003880-88

67 continuous signal (Additional concepts 4.11)

68 enabling condition (Additional concepts 4.12)

X pR0VI0E0> boo 1ean 111
end

40
ex p ress io n

69* import definition (Additional concepts 4.13)

Fascicle X .l - Rec. Z.100 - Annex C2 283

XlMPORTXT)-

70 import expression (Additional concepts 4.13)

i moort 128
i dent i f i e r o - Pid 111

express i on < i >
T1003920-88

71 export (Additional concepts 4.13)

- < e x p o r t> C C >-t
va r i a b Ie
i dent i f i e r

128

O
<> >

T1003930-M

72 sort (Data 5.2.2)

s o r t 128
i dent i f i er

128
—>

sun tuoe
i dent i f i e r T1003940-88

73 partial type definition (Data 5.2.1)

^Cneutvpe> 90 m
s o r t name

132 extended p r o p e r t i es
e xp ress i onp r o p e r t i es \ ENDNEUTYPE>-^[s o r t name

132

T1003920-tS

74 properties expression (Data 5.2.1 and 5.5.3.3)

1 75
o p e r a to r s |— ------ K a x i o m s > axioms

80 • 1 l i t e r a l mapping u k DEFAULT> ground e x p re ss io n 1 end 40 ,

I i t e r a I mapp i ng:
l i t e r a l e q u a t io n

end

end
40

I i t e r a I equat i on:
i t e r a I quant i f i c a t i o n - (X) - y

I i t e r a I equat i on

equat i on
81

end

end
40

< i >

l i t e r a l q u a n t i f i c a t i o n :
FOR K ALL v a Iu e name

132

O
<m > extended 89

s o r t < l i t e r a l s) -^

T1003960-44

284 Fascicle X.l - Rec. Z.100 - Annex C2

operators (Data 5.2.2 and 5.4.1.8)

literal list (Data 5.2.2)

literal signature (Data 5.2.2 & 5.4.1.8)

TM03990-M

character string literal identifier

129
q u a l i f i e r c h a r a c te r s t r i n g l i t e r a l

T100400MS

operator signature (Data 5.2.2)

axioms (Data 5.2.3 and 5.2.4)

Fascicle X .l - Rec. Z.100 - Annex C2

81 equation

in fo rm a l te x t
44

u nq u an tif ied equation

co ndit iona l equation

quant i f i cat i on ax |oms K>>

u nq u an t if ied equation: Ihs term
82

(~ = = y ~ rh s te r r
82

boolean axiom

quant i f i cat i on:
FOR X ALL vaIue name

132

-Q *
<JN> extended sort

89

boolean axiom:
boo Iean term

82

r e s t r i c t i o n equation:
unquant i f i ed equat i on

r e s t r ic t e d equation:
unq u an t if ied equation

T1004030-88

82 term

SPELL I NĜ }-^T}~ value i dent i f i er - - - - - (T ^

ground term
83

composite term
A2 in ground_term

<ERR0R>< 7 >
T1004040-M

286 Fascicle X.l - Rec. Z.100 — Annex C2

83 ground term

A2
com posite term:

v a lu e i d e n t i f i e r
128

o p e ra to r i d e n t i f i e r com posite term l i s t —

---------------------------------(! > com posite term — - (^ F) -------------------------------

extended com posite term
A3

T1004080-88

A3
extended com posite term:

extended o p e ra to r i d e n t i f i e r) - (T l) ~ O O H compos i t e term l i s t f -
A5

com posite term
A2

i n f i x o p e ra to r
85

term
82

term
82

i n f i x o p e ra to r
85

com posite term
A2

monadic o p e ra to r
8G

com posite term
A2

c o n d i t io n a l com posite term
A4

T1004070-8S

A4
c o n d i t io n a l com posite term:

c o n d i t io n a l term
A3

T10CM080-88

A5
com posite term l i s t : r- com posite term

A2 O ftw -

term com posite term l i s t
A5

T10M090-S8

Fascicle X .l - Rec. Z.100 - Annex C2 287

T1004100-88

A8
c o n d i t io n a l ground term:

c o n d i t io n a l term
A9

T1004120-88

84 extended operator identifier

T1004I40-88

< R >
T1004130-88

288 Fascicle X.l — Rec. Z.100 — Annex C2

85 infix operator

(xor)
ANC

-<7n>
K 5 >

K 2 ^
K 2 >

K S >
~ G y
< z >
< *>
< n>
o
{M y
< 'reFT>

T1004150-M

86 monadic operator

Fascicle X .l — Rec. Z.100 — Annex C2 289

quoted operator

extended operator name (Data 5.4.1)

— g e n e ra to r formal name

o p e ra to r name
132

98

i n f i x o p e r a to r ~ (T ^) ~

monadic operate
86

O 1
T10041SO-S8

extended sort (Data 5.4.1.9)

s o r t
72

99
g e n e ra to r s o r t

TI004190-M

extended properties (Data 5.4.1)

T1004200-M

Fascicle X.l - Rec. Z.100 - Annex C2

91 syntype definition (Data 5.4.1.9)

- t
syntype range d e f i n i t i o n

newtype range d e f i n i t i o n

syntype range d e f i n i t i o n :
(SYNTYPE> suntuoe 132

name (2 > { s o r t |----------4 defau 11 ass i gnment c o n s ta n ts

- < ENDSYNTYPE>^ suntupe 132
name

newtype range d e f i n i t i o n :
C NEUTYPE> newtuoe

name
132 extended

p ro p e r t ies
90 p ro p e r t i es

ex p re ss i on
111

c o n s ta n ts

- < e n d n e u t y p e V - newtupe 132
name

d e f a u l t assignment:
<CdEFAULT^)~ ground ex p re ss io n

10B
end

40

c on s ta n ts :
<CCONSTANTS^)- range c o n d i t io n s

92

T1004210-M

92 range conditions (Data 5.4.1.9.1)

co n s ta n t
93

<Di

-G>
< 2 >
^2>-
- O -
< S >
< E >

c on s ta n t
93

0 { range cond i t i ons [-^->

T1004220-I8

Fascicle X .l — Rec. Z.100 — Annex C2 291

93 constant (Data 5.4.1.9)

ground exp re ss io n
10G

T1004230-S8

94 structure definition (Data 5.4.1.10)

X STRUCT}-! f i e l d l i s t H e n d [—40 L l-(ADO 1 N G >^

292 Fascicle X.l — Rec. Z.100 — Annex C2

95 inheritance rule (Data 5.4.1.11)

p a r e n t s o r t :
s o r t

72

71004250-88

Fascicle X .l — Rec. Z.100 — Annex C2

96 literal renaming (Data 5.4.1.11)

97 generator definition (Data 5.4.1.12.1)

g e n e ra to r p aram ete r :

— (TYPE>— [

< L I T E R A L >

0PERAT0R>

CONSTANT^

g e n e ra to r formal name
98

T1004270-88

98 generator form al name (D ata 5.4.1.12.1)

g e n e ra to r formal
name

132

<D*
T1004280-88

99 generator sort (Data 5.4.1.12.1)

11004290-88

100 generator instantiations (D ata 5.4.1.12.2)

g e n e ra to r i n s t a n t i a t i o n
101

end
40

< A D D IN G >

T1004300-88

294 Fascicle X .l — Rec. Z.100 — Annex C2

generator instantiation (Data 5.4.1.12.2)

operator name

synonym definition (Data 5.4.1.13)

SYNONYM^)- sunonum name
132

s o r t
72

(~ = y ~ ground e x p re ss io n
10S

e x te r n a I 'synonym d e f i n i t i o n
57

T 100433M *

name class literal (Data 5.4.1.14)

NAhECLASS^) - r egu I ar e x p ress io n
105

TI004340-88

Fascicle X .l — Rec. Z.100 — Annex C2

105 regular expression (Data 5.4.1.14)

p a r t i a l r e g u la r ex p re ss io n :
r e g u la r element

decimal in te g e r
130

■O-
<5>

r e g u l a r e lem ent:
<j X r e g u la r e x p r e s s io n f -

c h a r a c te r s t r i n g l i t e r a l
138

--------------------------- :---------------------- 138 s ---
c h a r a c te r s t r i n g I i t e r a I j----------- \ j _ J ~ c h a r a c te r s t r i n g I i t e r a

138

110043504*

106 ground expression (Data 5.4.2.1)

around e x p re ss io n
111

T 10043604*

107 active expression (Data 5.4.2.2)

a c t i ve e x p re ss io n
111

T10043704S

296 Fascicle X.l - Rec. Z.100 — Annex C2

108 ground prim ary (Data 5.4.2.2)

I i t e r a l
125

o p e r a to r i d e n t i f i e r
110

ground exp re ss io n
108

<>>
- O

/—-x --------------------- 10G
ground e x p r e s s io n ----------- v L /

c o n d i t io n a l ground exp re ss io n
Bl

condi t i onaI

109 fie ld selection

110 operator identifier

T1004400-88

111 expression (Data 5.5.2.1)

operand0

111
i on

112

sub e x p r e s s i o n ------------------------operand0
112

T1004410-iJ

< fT>-
T1004380-M

Fascicle X .l — Rec. Z.100 — Annex C2 297

112 operandO (Data 5.5.2.1)

113 operand 1 (Data 5.5.2.1)

114 operand2 (Data 5.5.2.1)

115 operand3 (Data 5.5.2.1)

116 operand4 (Data 5.5.2.1)

298 Fascicle X.l — Rec. Z.100 — Annex C2

117 operands (Data 5.5.2.1)

NOT

118
p r im a ry

T1004470-M

118 primary

119 active primary

a c t i v e extended p r im ary
Cl

v a r i a b l e i d e n t i f i e r
128

----------- ;----------- 110 s—\ -------------------------- izw
o p e r a to r i d e n t i f i e r v_L/ a c t i v e e x p re ss io n l i s t) ----------- \ 2 y

C4

120

c o n d i t io n a l e x press io n

im p e ra t iv e o p e ra to r
122

a c t;ive e x press io n
107

<I>
T1004490-8S

120 active expression list (Data 5.5.2.1)

"Fascicle X.l — Rec. Z.100 — Annex C2 299

C2

T1004510-8J

C3
f i e l d pr i mary: 118

pr i mary
109

C4
condi t io n a l
express i on

<TF>-

boo 1ean
a c t i v e e x p re ss io n

boo 1ean 111
e x p re ss i on

111boo 1ean
ex p re ss i on

107
< THEtt> consequence

ex p re ss io n
111 < else> a I t e r n a t i ve

e x p re ss io n

-< T H E N >

< THEN>

consequence
a c t i v e e x p re ss io n

107 <ELSE> a I t e r n a t i ve
express i on

consequence
express i on

111 <ELS|> a I t e r n a t i ve
a c t i v e e x p re s s io n

111

111 < n >
107

C5
s t r u c t u r e pr i mary:

e x p re ss io n
111

■ O T1004540-M

121 assignment statement

va r i ab I e -<̂ T=^)~ e x p re ss io n
111

va r i a b Ie :
v a r i a b Ie i d e n t i f i e r

128

indexed v a r i a b l e

field
v ar i a b Ie

indexed v a r i a b l e :
v a r i a b Ie e x p re ss io n

111

O *

f i e l d var i a b Ie :
var i a b Ie f i e l d s e le c t io n

109

T10048JO-88

300 Fascicle X.l — Rec. Z.100 — Annex C2

1 2 2 imperative operator (Data 5.5.4)

125 literal

T1004570-SS

123 now expression

124 P id expression

T1004580-M

- { p a r e n t) —

{OFFSPRING>

— { s e n d e r) —
T 100459M 8

126 label

127 comment

128 identifier

Fascicle X .l — Rec. Z.100 — Annex C2 301

129 qualifier

-̂ SYSTEI1>

— (BLOCK>

- (PROCESS}-

-̂ s e r v i c e >

 C 5 IG N A L >

- (PROCEDURE>

sustem
name

132

b I ock
name

132

process
name

s e r v ic e
name

132

132

s i ana 1
name

132

p rocedure
name

132

^ SUBSTRUCTURE> b lo c k s u b s tr u c tu r e
name

-C TYPE>
s o r t
name

<Z>
132

132

T1004640-S8

130 decimal integer

i n t e a e r l i t e r a l 132
name

T1004650-M

Lexical rules syntax diagrams

131 lexical unit

302 Fascicle X.l — Rec. Z.100 — Annex C2

name

a Iphanumer i c
134

- O
O

end o f name

A name must contain at least one alphabetic character.

end o f name

a Iphanumer i c
134

O T1004680-88

alphanumeric

T1004890-M

133

T1004670-M

Fascicle X.l — Rec. Z.100 — Annex C2

135 letter

upper case l e t t e r ;

<£>
<5>
<S>
<s>
<5>
<i>
<A>
<&>
Kl>
<M>
<N>-

K°>
<P>

<3>
<£>
< D
< i>
<U>
<D
<u>
<*>
<*> lower case l e t t e r :

T1004700-88

l® l
<^>
<^>
<4>
<±>
<a>
<s>
<D
<D
<a>
<i>
<T>
G>-
kS>
<s>
<3>
<£>
< D
k2>
<5>
k2>
<Ji>

<*>
|G>

T1004700-88

304 Fascicle X.l — Rec. Z.100 — Annex C2

decimal digit

<Di
< D
< D
<2>
<D
<6>
< D
< J >

< D
*<07

national

<*>i
O
<»>
(3)
o
o
<D
<D
<j>
< X >

< J>

nOQ<710-M

T1004720-88

Fascicle X .l - Rec. Z.100 - Annex

138 character string literal

139 special

P
O

PK2>

<*>
<i>
<D
O
O
o
<Z>
<D
P 1

T1004740-M

306 Fascicle X.l — Rec. Z.100 — Annex C2

composite special

<=Z>

< E >
<Z Z >

T10(M750-iS

text

T1004760-M

Fascicle X .l — Rec. Z.100 — Annex C2

142 note

T1004770-JJ
~ K y * y text

143 form al name

- J 132
macro param eter

KSH name
132

macro param eter

macro param eter
name

132

macro
param ete r: macro formal param eter

name

-(MACRO I D >
T 100478W *

308 Fascicle X.l — Rec. Z.100 — Annex C2

keyword

—(a l t e r n a t i v e) —

— (and) --------

-(a c t i v e >

-(a d d i n g) -

—(ALL)—

-(a x i o h s) -

—(b lo c k) —

—(c a l l) —

- (c h a n n e l) —

-(COMMENT)-------

-(CONNECT>

— (c o n s t a n t) —

— (c o n s t a n t s) —

(c r e a t e)

<5T>
— (d e c i s i o n) —

— (d e f a u l t) —

— (e l s e) —

(e n o a l t e r n a t i v e)

— (e n db l o c k) —

— (ENDCHANNEL)—

^ Ce n d d e c i s i o n) —

- (en o g ener a to r) -

— (endmacro) —

— (e n d n e u t y p e) —

^ Cen dp r o c e o u r e) -

— (e n o pr o c e s s) —

keywordl

r- (ENDREFINEMENT)- |

— (e n d s e l e c t) —

— (e n d s e r v i c e) —

—(ENDSTATE)—

(e n d s u b s t r u c t u r e)

— (e n d s y n t y p e) —

— (e n d s y s t e m) —

 (Tnv)---------

k e y w o rd l :

T1004790-84

— (erro r) —

—(e x p o r t) —

-(EXPORTEO>

<EXTERNAL>
-^ £ T > —
—< ™)—
— (f p a r) —

— (from) —

— (g en er a t o r) —

— QE>—
- (i m p o r t) -

- (im p o r t e d) -

— Cm)—
- (INHER ITS)-

— (i n p u t) —

— (j o i n) —

-< L I T E R A L >

~(l i t e r a l s >

— keyword2 —

Fascicle X .l — Rec. Z.lOO — Annex C2

keyuiord2:

 (macro) —

{ mACRQDEFINITIQN>

— (n a m e c l a s s) —

— (n e u t y p e) —

— (n e x t s t a t e) —

 { no t) ---------

-(MACRO I D>-

— (nap) —

~(nou) -
(o f f s p r i n g) —

-{ opera to r) —

— (o p e ra t o r s) —

 (or) ----------

-{ order i n g >

 (o u t) ------

—(o u t p u t) —

— (p a r e n t) —

— (p r i o r i t y) —

— (p ro cedure) —

— (p r o c e s s) —

~(p r q v i d e d) -

— (r e f e r e n c e d) —

— (r e f i n e m e n t) —

<RESET>
keyuiord3

— (r e t u r n) —

— (r e v e a l e d) —

— (r e v e r s e) —

— (s a v e) —

— (s e l e c t) —

(self)
— (sen d e r) —

— { s e r v i c e) —

keyword3:

i g n a l) —

< s i g n a l l i s t) -

{s iGNALROUTE>

—(s i g n a l s e t) -

— (s p e l l i n g) —

— (s t a r t) —

~(STOP)~

keyword4

noo4ioo-ss keyuiord4:

— (s t r u c t) ------

{ s u b s t r u c t u r e)

 (SYNONYfl)-----

— (s y n t y p e) —

— (s y s t e m) —

— (ta s k) —

— (th en) —

— (t y p e) —

^ C t i m e r > -

 (T O) -------

—(vTa)—
—(viEu)—
-^Cv i e u e d) —

— C ̂ I t h) —

— (xor) —

310 Fascicle X.l — Rec. Z.100 — Annex C2

107
120
119
45

134
35

121
80

5
46
47
48
14
53
51
50
52
49

138
78

127
140
93
67
31
43

136
130
34

2
3

68
40

133
81
71

111
84
88
90
89
57

109
143
97
98

101
100
99

106
108
83

128
122
69
70

INDEX

active expression 85
active expression list 44
active primary 95
actual parameters 23
alphanumeric 27
answer 144
assignment statement 126
axioms 135
block definition 131
block substructure definition 125
block substructure reference 76
channel connection 96
channel definition 77
channel endpoint connection 56
channel substructure body 55
channel substructure definition 86
channel substructure reference 132
channel to route connection 104
character string literal 137
character string literal identifier 26
comment 142
composite special 123
constant 112
continuous signal 113
create request 114
data definition 115
decimal digit 116
decimal integer 117
decision 110
definition 102
diagram 79
enabling condition 75
end 33
end of name 73
equation 124
export 118
expression 65
extended operator identifier 66
extended operator name 32
extended properties 12
extended sort 10
external synonym definition 7
field selection 74
formal name 129
generator definition 87
generator formal name 92
generator instantiation 105
generator instantiations 37
generator sort 29
ground expression 24
ground primary 58
ground term 60
identifier 61
imperative operator 62
import definition 64
import expression 38

infix operator
informal text
inheritance rule
input
join
keyword
label
letter
lexical unit
literal
literal list
literal renaming
literal signature
macro call
macro definition
monadic operator
name
name class literal
national
nextstate
note
now expression
operandO
operand 1
operand2
operand3
operand4
operand5
operator identifier
operator name
operator signature
operators
output
partial type definition
P id expression
primary
priority input
priority output
procedure call
procedure definition
process body
process definition
properties expression
qualifier
quoted operator
range conditions
regular expression
reset
return
save
select definition
service decomposition
service definition
service reference
service signal route definition
set

Fascicle X.l — Rec. Z.100 — Annex C2 311

16 signal definition 1 system
41 signal list 4 system definition
17 signal list definition 30 task
54 signal refinement 82 term
63 signal route connection 141 text
15 signal route definition 6 textual block reference
11 simple expression 13 textual procedure reference
72 sort 8 textual process reference
42 sort list 39 timer active expression

139 special 36 timer definition
21 start 25 transition
22 state 59 transition option
28 stop 9 valid input signal set
94 structure definition 18 variable definition
91 syntype definition 19 view definition

103 synonym definition 20 view expression

39 ACTIVE 83, 108, 120 FI
94, 95, 100 A D D IN G 74, 81 FOR
74, 81, 95 ALL 7, 55 FPAR
59 ALTERNATIVE 14, 15, 64 FROM
48, 49, 53, 63, 85, 113 AND 97 GENERATOR
74 AXIOMS 58, 83, 108, 120 IF
5, 6, 129 BLOCK 70 IM PORT
32 CALL 69 IM PORTED
14 CHANNEL 12, 74, 81, 85, 114 IN
127 COM M ENT 95 INHERITS
48, 49, 53, 63 CONNECT 23, 65 INPUT
97 CONSTANT 27 JOIN
91 CONSTANTS 97 LITERAL
31 CREATE 74, 76, 96 LITERALS
18 DCL 56 MACRO
34 DECISION 55 M ACRODEFINITION
74, 91 DEFAULT 143 M ACROID
34, 59, 83, 108, 120 ELSE 74 MAP
59 ENDALTERNATIVE 85, 116 MOD
5 ENDBLOCK 104 NAMECLASS
14 EN D CH A N N EL 73, 91 NEWTYPE
34 END D ECISIO N 26 NEXTSTATE
97 ENDGENERATOR 86, 117 NOT
55 ENDM ACRO 123 NOW
73, 91 ENDNEW TYPE 124 OFFSPRING
12 ENDPROCEDURE 97 OPERATOR
7 ENDPROCESS 75, 95 OPERATORS
54 EN D REFIN EM EN T 85, 105, 112 OR
58 ENDSELECT 75 O RD ERIN G
61 ENDSERVICE 12 OUT
22 ENDSTATE 33, 66 OUTPUT
46, 50 ENDSUBSTRUCTURE 124 PARENT
91 ENDSYNTYPE 65, 66, 67 PRIORITY
4 ENDSYSTEM 12, 13, 129 PROCEDURE
14, 15, 53, 64 ENV 7, 8, 129 PROCESS
82 ERROR 67, 68 PROVIDED
71 EXPORT 6, 8, 13, 47, 52, 62 REFEREN CED
18 EXPORTED 54 REFIN EM EN T
57 EXTERNAL 85, 116 REM

312 Fascicle X.l — Rec. Z.100 — Annex C2

37

29

18

54

24

58

124

124

61, 62, 129

38

16, 129

17

15, 64

9

82

21

RESET

RETURN

REVEALED

REVERSE

SAVE

SELECT

SELF

SENDER

SERVICE

SET

SIGNAL

SIGNALLIST

SIGNALROUTE

SIGNALSET

SPELLING

START

22

28

94

46, 47, 50, 52, 129

57, 103

91

4, 129

30

83, 108, 120

97, 129

36

14, 15, 33, 64

33

20,33

19

14, 15, 64

85, 112

STATE

STOP

STRUCT

SUBSTRUCTURE

SYNONYM

SYNTYPE

SYSTEM

TASK

THEN

TYPE

TIM ER

TO

VIA

VIEW

VIEWED

WITH
XOR

Fascicle X .l — Rec. Z.100 — Annex C2 313

ANNEX E

(to Recommendation Z.100)

State-oriented representation and pictorial elements

E.l Introduction

SDL is based on an “extended” Finite State Machine (FSM) model. That is, an FSM is extended with
objects, such as variables, resources, etc. A machine stays in some state. On receiving a signal, a machine executes
a transition, in which relevant actions (e.g. resource allocation an d /o r deallocation, resource control, signal
sending, decision, etc.) are taken. Therefore, the dynamic behaviour of an extended FSM can be explained by
describing action sequences on objects for each transition of the FSM in a procedural way.

As a consequence of the state transition, the machine arrives in a new state. The state of an extended FSM
can be characterized by objects associated with the state, additional object information (e.g. the value of variables,
states of resources, relations between the resources), and signals which can be received in that state. For example,
the “await-first-digit state” in telephone call processing is characterized as follows:

Caller:

Dial tone-sender:

Digit receiver:

Timer:

Path:

handset-off

dialtone sending

ready for receiving

supervising permanent-signal timing

Caller is connected to dial tone-sender and digit receiver, etc.

As can be seen, each state can be defined statically by objects and additional information (qualifying text)
associated with that state.

The SD L/G R is extended with pictorial elements to define objects associated with each state. The state
definitions in terms of pictorial elements are called state pictures. The SD L /G R state symbol may include a state
picture. This is an optional part o f SD L/G R. Figure E-l shows a state definition example of the “await-first-digit
state”.

FIGURE E-l

State definition example in terms of pictorial elements

In many cases, actions on each object, which are required in the transition, can be derived from the
difference between state definitions before and after the transition. For example, if some resource appears only
after transition, it means that resource allocation action is necessary in the transition. Therefore, if detailed state
definitions are given, total actions in the extended FSM transition can usually be derived from the difference
between pre-and post-state definitions. However, the sequence of actions in the transition may not be derived from
the state definition difference. Therefore, in SDL diagrams, when the sequence of actions is less important, those
transition actions which can be derived from the state definition need not be described explicitly. Otherwise, it is
desirable to describe action sequences explicitly.

An SDL diagram, in which transitions are described exclusively by explicit action symbols, is called a
transition-oriented version of SDL/GR.

An SD L/G R diagram, in which states are described using state pictures and transition actions are
minimized, is called the state-oriented version of SDL/GR or state-oriented SDL with pictorial elements (SDL/PE).
State pictures can be used advantageously when applied to certain system definitions, resulting in more compact,
declarative and less verbal process diagrams.

314 Fascicle X.l — Rec. Z.100 — Annex E

A combined version is also possible. Thus, these are 3 SD L /G R versions:
a) Transition-oriented version

— Transition sequences are described exclusively by explicit action symbols.
— This is, as it were, a procedural explanation of the extended FSM.
— This version is suitable when the sequence of actions is im portant and detailed state descriptions

are not important.
b) State-oriented version

— The state is described uniquely using pictorial elements. This picture is called a state picture.
— The transition action sequence is implied by the difference between pre-and post-state definitions.
— This is, as it were, a declarative specification of the extended FSM.
— This vesion is suitable when the sequence of actions within each transition is o f low importance,

when pictorial explanation is desirable, or when a compact representation is desirable.
c) Combined version

— The combined version is suitable when both the sequence of actions within each transition and
the detailed state descriptions are under consideration.

Examples of these three versions are given in Figure E-2, E-3 and E-4.

Ringing

B_offhook

Stop_ringing

Stop_ringtone

Reset (t4)

'Connect A-B'

S tart_charge_A

Conversation

T1Q04840-49

FIGURE E-2

Transition-oriented version

Fascicle X.l — Rec. ZvlOO — Annex E 315

FIGURE E-3

State-oriented version

Fascicle X.l — Rec. Z.100 — Annex E

FIGURE E-4

Combined version

Fascicle X .l — Rec. Z.100 — Annex E

The syntax and semantics defined in Recommendation Z.100 SDL applies to pictorial elements. However,
these semantics and syntax are extended as follows:

Pictorial elements represent various objects. The repertoire of pictorial elements is in principle unlimited
because new pictorial elements can be invented to suit any new application of the SDL. However, in applications
to telecommunications switching and signalling functions, the following repertoire of pictorial elements has been
found to have considerable versatility:

— functional block boundary (left or right),

— terminal equipment (various),
— signalling receiver,
— signalling sender,

— combined signalling sender and receiver,

— supervising timer,

— switching path (connected, reserved),

— switching modules,

— charging in progress,

— control elements,

— uncertainty symbol.

Standard symbols for these pictorial elements are recommended in section E.2.2.

E.2.1 Rules o f interpretation

1) A state symbol may include a state picture. A state picture defines de state using pictorial elements
and qualifying text.

2) Each pictorial element in a state picture represents an object associated with the state, such as:
— resources,
— variables,
— internal and external boundaries,

— the relations between objects,
— signals which can be received in that state,
— etc.

3) Each pictorial element may have accompanying qualifying text. Qualifying text can be used to
explain:

— detailed resource name,
— the resource state,
— value for a variable,

— signals relevant to the object,
— etc.

4) Function block boundary:

a) A function block boundary is used to express whether a pictorial element is “internal” or
“external” to the process. An internal pictorial element represents objects which are owned by
the process. An external pictorial element represents objects which are owned by another process
under consideration.

b) Rule a) also applies to the distinction between internal and external qualifying text, by
substituting the term “qualifying text” for pictorial elements in the rule.

5) Transition interpretation rule:

The total processing involved when a
combination of:

— The processing to effect changes
definition difference.

— The processing explicitly described in the transition, e.g. outputs or tasks.

E.2 Pictorial elements in S D L /G R

process goes from one state to the following state is the

to all relevant objects which are derived from the state

318 Fascicle X .l - Rec. Z.100 - Annex E

Thus:

a) The absence from one state if a pictorial element which represents a resource with its presence in
the next state implies the allocation of the resource in all transitions joining the two states. This
can be equivalently represented by a task(s) showing allocation of the resource in transition(s).

b) If “presence” and “absence” are interchanged in rule a), then “allocation” is replaced by
“deallocation”.

c) In rule a) if “pictorial element” is replaced by “external pictorial element” then the task should
be replaced by an output signal requesting the process which owns the resource to allocate it or
simply an input signal from that process saying that it has been allocated.

d) If in rule a) “presence” and “absence” are interchanged and also “pictorial element” is replaced
by “external pictorial element” then follow rule c) with “allocate” replaced with “deallocate”.

e) Rules a), b), c) and d) also apply to the appearance or disappearance in the state picture of
qualifying text, by substituting the term “qualifying text” for pictorial elements in those rules.

6) For a given process diagram, particular pictorial elements (or a particular combination of pictorial
elements and qualifying text) should always be placed in the same position within the state picture
whenever they appear, so that the presence or absence of this pictorial element (or combination) in a
state symbol can be quickly determined by comparing the state picture with other state pictures in the
process diagram.

7) When a signal sender appears in a state picture, its qualifying text identifies a signal which is sent
during the following transitions.

8) When a sender of a permanent signal (e.g. a ringtone) appears in a state picture, its qualifying text
identifies a signal which has been started to be sent during the following transition and in this state.

9) Such transition actions that cannot be derived from the difference of pre- and post-state definitions
should be explicitly described in the transition. For example, if a resource with an exported variable
does not appear in the pre- and post-states, the necessary actions are better to be described in the
transition.

E.2.2 Recommended symbols fo r pictorial elements

When using pictorial elements, each state is represented by a state symbol containing a state picture with
the format shown in Figure E-5:

State number

FIGURE E-5

Recommended format for a state symbol with a state picture

Fascicle X.l — Rec. Z.100 — Annex E 319

A basic set of pictorial elements is recommended for use in SD L /G R with application to the system
description of telecommunications call handling processes, including signalling protocols, network services and
signalling interworking processes. Many of these pictorial elements are capable of being applied in applications of
SD L /G R to other than call handling processes.

The recommended symbols for the basic set of pictorial elements is shown in Figure E-6, and the
recommended proprotions for pictorial element symbols are shown in Figure E-7.

Examples of the use of the basic set of pictorial elements are shown in Figure E-8.

E.2.3 Special conventions and interpretations used in the state oriented extension o f SD L /G R

A number of special conventions and interpretations have been defined in this section with regard to the
state-oriented version of SD L/G R . These includes:

— The special interpretation required for process diagrams according to the so-called TRANSITION
INTERPRETATION RULE (see § E.2.1, rule 5).

— The unique position of pictorial elements (or pictorial elements and qualifying text) within a state
picture that is required when using pictorial elements (see § E.2.1, rule 6).

— The special interpretation required for the variables represented by external pictorial elements and
external qualifying text, as proxy variables associated with other processes.

E.3 Selection criteria fo r pictorial elements

The choice of symbols for pictorial elements has been based upon the following considerations and general
selection criteria. These should be consulted before developing additional pictorial element symbols for wider
applications of the SDL.

1) Ease of reproduction

In order to permit convenient reproduction of SDL diagrams using the dye-line or blue-print methods
of reproduction as well as photocopying and photo-printing, pictorial element symbols should consist
of clear lines without shading or coloration.

2) Ease of comprehension

a) Appropriateness — The shape of each symbol should be appropriate to the concept that the
symbol represents.

b) Distinctiveness — When choosing a basic set of symbols, care should be taken to permit each
symbol to be readily distinguishable from others in the set.

c) Affinity — The shapes of pictorial elements representing different but related functions,
e.g. receivers and senders, should be related in some obvious way.

d) Association of abbreviated qualifying text with symbols — In some cases it is expected that
abbreviated text will be associated with a pictorial element in order to indicate the class of
pictorial element; e.g. the letters MFC associated with a receiver symbol to indicate that
multi-frequency coded signals are to be received. In these cases, the pictorial elements should
incorporate enclosed space to permit the use of a very small number of alphanumerical
characters.

e) Limited set — The total number of symbols should be kept to a minimum in order to permit
easy learning of the pictorial method.

320 Fascicle X.l — Rec. Z.100 — Annex E

1) F u n c tio n a l b lo ck
b o u n d a ry

2) T erm ina l
e q u ip m e n t

3) S w itc h in g
p a th

(a) te le p h o n e o n -h o o k

te le p h o n e o ff-h o o k

(b) tru n k

(c) s u b s c r ib e r lin e

(d) sw itc h b o a rd

(e) o th e r

(a) connected

(b) reserved

[

£

A

□

4) S ig n a llin g rec e iv er

5) S ig n a ll in g s e n d e r

6) C o m b in e d s ig n a llin g s e n d e r
a n d rece iv er

7) T im er s u p e rv is in g of
a p ro c e s s

8) C h a rg in g in p ro g re s s

9) S u b s c r ib e r o f te rm in a l
c a te g o ry

10) U n c e r ta in ty sy m b o l

11) S w itc h in g m o d u le

12) C o n tro l e le m e n t

□

CD
©

©

*

H—

C
CCITT-34100

FIGURE E-6

Recommended symbols for the basic set of pictorial concepts

Fascicle X .l — Rec. Z.100 — Annex E

Terminal equipment

a) T e l e p h o n e s e t

a

- Off-hook

b) T r u n k

t b (

b/a any value > 1

c) S u b s c r i b e r l i n e

d) S w i t c h b o a r d

a

n>

2a

e) O th e r

b/a any value > 1

Signalling receiver

2a

Signalling sender

> 11 H
if m

4 2a >

Combined signalling sender-
receiver

h

* 2a ►

Charging

5a

Subscriber or terminal
category

a
. 2 .

b/a any value > 1

Control element

a

/

b

b/a any value > 1

CCITT-34110

FIGURE E-7

Recommended proportions for the basic sets of pictorial elements

322 Fascicle X.l — Rec. Z.100 — Annex E

No. P ic to ria l e le m e n t C o m m e n t E x am p les

Functional block (FB) boundary T o d is tin g u ish b e tw e e n o b je c ts in side
an d o u ts id e th e FB b o u n d a ry . O n ly th e
s ta te s o f o b je c ts w ith in th e b o u n d a ry
can b e c h a n g ed d ire c tly b y th is p ro cess .

1.1 A d ig it receiver inside th e FB b o u n d a ry co n n ec ted to a
h andset o u tsid e th e b o u n d ary .

e x te r io r in te rio r
i D R

1.2 A t ru n k o u ts id e th e FB b o u n d a ry c o n n e c te d via a tw o -sta g e
sw itc h in g u n i t t o a s w i tc h b o a rd o u ts id e th e b o u n d a ry

A B

Terminal equipment It c a n b e u se fu l to s h o w te rm in a l e q u ip m e n t
{e.g. te le p h o n e s e t a n d sw itc h b o a rd e q u ip ­
m en t) o u ts id e t h e FB b o u n d a ry , to im prove
u n d e rs ta n d in g o f t h e p ro c e s s in g w ork.

a) T e le p h o n e s e t

o n -h o o k

o ff-h o o k

b) T runk

£

S

2.1
A o n -h o o k

2.2
B o ff-h o o k

2 .3 Incom ing tru n k ju n c to r (from a space division sw itch ing
exchange)

In co m in g

2 .4 O u tg o in g su b s c r ib e r line t o p a r ty line

c) S u b s c r ib e r line [ex c e p t a)]

d) S w itc h b o a rd

e) O th e r

□
2 .5 PBX s w itc h b o a rd

2 .6 M o d em

CCITT-20880

FIGURE E-8

Examples of the use of the basic set of pictorial elements

Fascicle X.l — Rec. Z.100 — Annex E 323

No. P ic to ria l e le m e n t C o m m e n t E x am p les

Switching path

a) c o n n e c te d

b) rese rv e d

To s h o w c o n n e c tiv ity b e tw e e n te rm in a l
e q u ip m e n t a n d /o r s ig n a llin g d e v ic e s
invo lved in th e p ro c e s s .

3.1 S ubscriber line co n n ected to a d ig it receiver and a
m odem w ith a reserved p a th to a central processing
un it (CPU)

Signalling receiver T o ind icate th e n a tu re of th e signals
received, especially th o se crossing th e
functional b lock b o u n d ary .

4 .1 M u lti- f re q u e n c y c o d e s ig n a llin g rece iv er

MFC

Signalling sender To sp e c ify a s ig n a l s e n d in g p ro c e s s , a n d to
in d ic a te t h e n a tu re o f th e s ig n a ls s e n t,
e sp e c ia lly th o s e re q u ired to c ro s s th e f u n c -
tio n a l b lo ck b o u n d a ry .

5.1 R ing tone sender

 ^ Rii

Combined signalling sender
and receiver

(I

T h is c o n v e n ie n tly c o m b in e s t h e fu n c tio n s
o f a s ig n a llin g s e n d e r a n d s ig n a llin g re c e i­
ver.

6.1 MFC s e n d e r - re c e iv e r

-Q MFC

Process supervising timer

o

This show s th e tim er to be running
in th e s ta te .

7.1 T im er t 3 is ru n n in g

7 .2 G en eric t im e r t s is ru n n in g
o
o

w h e re s = 1, 2 , . . . n d e f in e d if fe re n t s e rv ic e to n e s .

C C I T T - 2 0 8 9 0

FIGURE E-8 (cont.)

324 Fascicle X.l — Rec. Z.100 — Annex E

No. P ic to ria l e le m e n t C o m m e n t E x am p les

Charging in progress The qualify ing te x t in th e e lem en t indicates
w h ich custom er is being charged .

8.1 S u b s c r ib e r A is c u rre n tly b e in g c h a rg e d

O

Subscriber or terminal category
(and identity information)

This e lem en t is co n v en ien t to show th e
changes in th e subscriber or term in a l ca te ­
g o ry , fo r each p a rty in a m u lti-p arty call.

9.1 T h e C p a rty h a s o r ig in a tin g c a te g o ry No. 2

O rig in a tin g
c a te g o ry

No. 2

3

10. Uncertainty symbol T h is s u b s t i tu te s fo r d e lib e ra te ly u n d e fin e d
in fo rm a tio n th a t is s h o w n u n a m b ig u o u s ly
in o th e r s ta t e p ic tu re s . In c e rta in c a se s , tw o
o r m o re s ta t e s m ay b e sa fe ly m e rg e d in to
o n e , w ith a n e t g a in in th e in te llig ib ility o f
t h e d ia g ra m , b y u s in g th e u n c e rta in ty
s y m b o l.

10 .1 H a n d s e t e ith e r o n -h o o k o r o f f-h o o k

1 0 .2 An u n d e fin e d MFC s ig n a l is b e in g s e n t in th is s ta t e

M FC

#

C C I T T - 2 0 9 0 0

FIGURE E-8 (cont.)

Fascicle X .l - Rec. Z.100 - Annex E 325

No. P ic to ria l e le m e n t C o m m e n t E x am p les

1 1 . Switching module To s h o w w h a t s w itc h in g m o d u le s a re
invo lved in th e p ro c e s s .

Note - T h e h o riz o n ta l line is th e p ic to ria l
e le m e n t fo r a s w itc h in g p a th , w h ic h m ay b e
c o n n e c te d o r rese rv ed . T h e v ertica l line c an
b e u s e d to r e p re s e n t e ith e r a c o m p le te s w i t ­
c h in g m o d u le (w h en th e in te rn a l s tru c tu re
o f th e m o d u le is n o t req u ired) o r e ls e o n e of
th e sw itc h in g s ta g e s w ith in a sw itc h in g
m o d u le .

11.1 A p a th c o n n ected th ro u g h o ne sw itching m odu le LLN
(Line link n e tw ork)

LLN = Line link n e tw o rk

LLN

1 1 .2 P a th s c o n n e c te d a n d re se rv e d th ro u g h tw o sw itc h in g
m o d u le s R

ICT OGT
\

M o d u le R __ /
/

/•*

r

E s ta b lish e d p a th ___

\
- Q MFC

M o d u le S ____

ICT - In co m in g tru n k
OGT - O u tg o in g tru n k
MFC - M u lti- f re q u e n c y c o d e

Note - In th is e x a m p le , ICT is c o n n e c te d to OGT, b u t ICT is n o t c o n ­
n e c te d to th e MFC se n d e r /re c e iv e r .

1 1 .3 A p a th c o n n e c te d th ro u g h a t h r e e - s ta g e sw itc h in g m o d u le
RSN

m
RSN

1 1 .4 A p a th re se rv e d th ro u g h a t h r e e - s ta g e sw itc h in g m o d u le

-— HI-—
ABC

1 1 .5 A p a th c o n n e c te d th ro u g h a fo ld e d n e tw o rk

12. Control element
(assigned to a process)c

To s h o w w h a t c o n tro l e q u ip m e n t is in v o l­
ved in th e p ro c e s s (e sp e c ia lly m o d u le s th a t
m u s t b e d im e n s io n e d) . T h is sy m b o l c a n b e
u s e d to in d ic a te t h a t p a r t ic u la r so ftw a re
e le m e n ts h a v e b e e n a s s ig n e d to th e p ro ­
c e s s .

12 .1 Call re g is te r b u ffe r

CRB

C C I T T - 2 0 9 1 0

FIGURE E-8 (end)

326 Fascicle X .l — Rec. Z.100 — Annex E

Recommendation Z.110

CRITERIA FOR THE USE AND APPLICABILITY
OF FORMAL DESCRIPTION TECHNIQUES1)

1 Support for formal description techniques (FDTs)

In view of the complexity and widespread use of Recommendations it is imperative that advanced methods
for the development and implementation of these Recommendations be used.

Formal description techniques provide an im portant approach toward such advanced methods.

In some areas, the use of FDTs is still relatively new and phased procedures are required to introduce their
use. This Recommendation proposes the procedures to accomplish this task.

2 FDTs

2.1 Definitions

A formal description technique (FDT) is a specification method based on a description language using
rigorous and unambiguous rules both with respect to developing expressions in the language (formal syntax) and
interpreting the meaning of these expressions (formal semantics). FDTs are intended to be used in the
development, specification, implementation and verification of Recommendations (or parts thereof).

A natural language description is an example of an informal description technique using one of the
languages used by CCITT to publish Recommendations. It may be supplemented with mathematical and other
accepted notation, figures, etc.

2.2 Objectives o f an FDT

The goal o f an FDT is to permit precise and unambiguous specifications. FDTs are also intended to satisfy
objectives such as:

— a basis for analyzing specifications for correctness, efficiency, etc.;
— a basis for determining completeness of specifications;
— a basis for verification of specifications against the requirement of the Recommendation;
— a basis for determining conformance of implementations to Recommendations;
— a basis for determining consistency of specifications between Recommendations;
— a basis for implementation support.

In the current state of the art, in some areas more than one FDT may be needed to accomplish all
objectives.

2.3 Benefits o f an FDT

The application of an FDT can provide benefits such as:
— improving the quality of Recommendations, which in turn reduces maintenance costs to both CCITT

and to users of Recommendations;
— reducing dependency on the natural language to communicate technical concepts in a multilingual

environment;
— reducing development time of implementations by using tools that are based on the properties of the

FDT;
— making the implementation easier, resulting in better products.

•) The content of this Recommendation is also published as ISO Resolution ISO/IEC JTC 1/N 145.
The statement on precedence in case of several descriptions contained in the JTC 1 document is omitted in this
Recommendation.

Fascicle X .l - Rec. Z.110 327

2.4 Problem with FDTs

FDTs are advanced techniques which have not yet been widely introduced. In addition, there is a lack of
resources in the development of FDTs and formal descriptions (FDs), as well as a lack of expertise within the
CCITT Study Groups both to assess the technical merits of the formally described Recommendations and to reach
consensus on them.

2.5 Solutions

The development of tutorial and educational materials will help to provide widespread understanding of
the complexities of FDTs. Nevertheless, time must be permitted for their assimilation.

3 Development and standardization of FDTs

It is im portant to avoid unnecessary proliferation of FDTs. The following criteria should be met before
adopting a new FDTs:

— the need for the FDT should be demonstrated;

— evidence that it is based on a significantly different model from that of an existing FDT should be
provided, and

— the usefulness and capabilities of the FDT should be demonstrated.

4 Development and acceptance of formal descriptions

4.1 In future, only standard FDTs or FDTs in the process of being standardized should be used in formal
descriptions, o f Recommendations.

4.2 It is considered that the development of a FD of any particular Recommendation is a decision of the
Study Group (in consultation with ISO for collaborative standards). If a FD is to be developed for a new
Recommendation, the FD should be progressed, as far as possible, according to the same timetable as the rest of
the Recommendation.

4.3 f o r the evolutionary introduction of FDs into Recommendations three phases can be identified. It is the
responsibility of the Study Group to decide which phase initially applies to each FD and the possible evolution of
the FD toward another phase. It is not mandatory for a FD to go through the three phases described below and,
more generally, it is not mandatory for a FD to evolve.

Phase 1

This phase is characterized by the fact that widespread knowledge of FDTs, and experience in formal
descriptions, are lacking; there may not be sufficient resources in the Study Groups to produce or review formal
descriptions.

The development of Recommendations has to be based on conventional natural language approaches,
leading to Recommendations where the natural language description is the definitive Recommendation.

Study Groups are encouraged to develop FDs of their Recommendations since these efforts may contribute
to the quality of the Recommendations by detecting defects, may provide additional understanding to readers, and
will support the evolutionary introduction of FDTs.

A formal description produced by a Study Group that can be considered to represent faithfully a
significant part o f the Recommendation or the complete Recommendation should be published as an appendix to
the Recommendation.

Meanwhile Study Groups should develop and provide educational material for the FDTs to support their
widespread introduction in the CCITT and Liaison Organizations.

328 Fascicle X.l — Rec. Z.110

Phase 2

This phase is characterized by the fact that knowledge of FDTs and experience in formal descriptions is
more widely available; Study Groups can provide enough resources to support the production of formal
descriptions. However, it cannot be assured that enough CCITT Members can review formal descriptions in order
to enable them to approve a proposed formally described Recommendation.

The development of Recommendations should still be based on conventional natural language approaches,
leading to Recommendation where the natural language description is the definitive standard. However, these
developments should be accompanied and supported by the development of formal descriptions of these standards
with the objective of improving and supporting the structure, consistency, and correctness of the natural language
description.

A formal description, produced by Study Group, that is considered to represent faithfully a significant part
of the Recommendation or the complete Recommendation should be published as an annex to the Recommenda­
tion.

Meanwhile educational work should continue.

Phase 3

This phase is characterized by the fact that a widespread knowledge of FDTs may be assumed; CCITT
Members can provide sufficient resources both to produce and review formal descriptions, and assurance exists
that the application of FDTs does not unnecessarily restrict freedom of the implementations.

Study Groups should use FDTs routinely to develop their Recommendations, and the FD(s) become part
o f the Recommendation together with natural language descriptions.

Whenever a dicrepancy between a natural language description and a formal description, or between two
formal descriptions, is detected, the discrepancy should be resolved by changing or improving the natural
language description or the FDs without necessarily giving preference to one over the other(s).

4.4 The above procedures for phased development of FDs are intended to aid the progression of FDs within
the standards process, not to hinder their progression. However, since there has been little or no actual experience
with these procedures, any Study Group having to use them is urged to identify one or more pilot cases and
carefully monitor the progress of each within the framework of the procedures. Should procedural problems arise,
the Study Group responsible for Formal Description Techniques should be informed and, where possible,
recommended procedural modifications should be proposed to alleviate the problems.

Fascicle X .l - Rec. Z.110 329

ISBN 92-61-03751-8

	CONTENTS OF THE CCITT BOOKAPPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)
	TABLE OF CONTENTS OF FASCICLE X.l OF THE BLUE BOOK
	Recommendation Z.100 and Annexes A,B,C and E; Recommendation Z.110 - FUNCTIONAL SPECIFICATION AND DESCRIPTION LANGUAGE (SDL); CRITERIA FOR USING FORMAL DESCRIPTION TECHNIQUES (FDTs)
	TABLE OF CONTENTS OF Z.100
	1. Introduction to SDL
	2. Basic SDL
	3. Structural concepts in SDL
	4. Additional concepts in SDL
	5. Data in SDL
	Annex A: SDL Glossary
	Annex B: Abstract syntax summary
	Annex C1: Concrete graphical syntax summary
	Annex C2: SDL PR syntax summary
	Annex E: State-oriented representation and pictorial elements
	Z.110

