

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME VIII - FASCICLE VIII.8

DATA COMMUNICATION NETWORKS
DIRECTORY

RECOMMENDATIONS X.500-X.521

IXTH PLENARY ASSEMBLY
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1989

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

BLUE BOOK

VOLUME VIII - FASCICLE VIII.8

DATA COMMUNICATION NETWORKS
DIRECTORY

RECOMMENDATIONS X.500-X.521

IXTH PLENARY ASSEMBLY
MELBOURNE, 14-25 NOVEMBER 1988

Geneva 1989

ISBN 92-61-03731-3

Printed in Sw itzerland

CONTENTS OF THE CCITT BOOK
APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)

Volume I

FASCICLE 1.1

FASCICLE 1.2

FASCICLE 1.3

FASCICLE 1.4

Volume II

FASCICLE II. 1

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

FASCICLE II.5

FASCICLE II.6

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

FASCICLE III.5

BLUE BOOK

— Minutes and reports of the Plenary Assembly.

List of Study Groups and Questions under study.

— Opinions and Resolutions.

Recommendations on the organization and working procedures of CCITT (Series A).

— Terms and definitions. Abbreviations and acronyms. Recommendations on means of
expression (Series B) and General telecommunications statistics (Series C).

— Index of Blue Book.

— General tariff principles — Charging and accounting in international telecommunications
services. Series D Recommendations (Study Group III).

— Telephone network and ISDN — Operation, numbering, routing and mobile service.
Recommendations E.100-E.333 (Study Group II).

— Telephone network and ISDN — Quality of service, network management and traffic
engineering. Recommendations E.401-E.880 (Study Group II).

— Telegraph and mobile services — Operations and quality of service. Recommenda­
tions F.1-F.140 (Study Group I).

— Telematic, data transmission and teleconference services — Operations and quality of
service. Recommendations F.160-F.353, F.600, F.601, F.710-F.730 (Study Group I).

— Message handling and directory services — Operations and definition of service. Recom­
mendations F.400-F.422, F.500 (Study Group I).

— General characteristics of international telephone connections and circuits. Recommenda­
tions G.100-G.181 (Study Groups XII and XV).

— International analogue carrier systems. Recommendations G.211-G.544 (Study Group XV).

— Transmission media - Characteristics. Recommendations G.601-G.654 (Study Group XV).

— General aspects of digital transmission systems; terminal equipments. Recommenda­
tions G.700-G.795 (Study Groups XV and XVIII).

— Digital networks, digital sections and digital line systems. Recommendations G.801-G.961
(Study Groups XV and XVIII).

Ill

FASCICLE III.6

FASCICLE III.7

FASCICLE III.8

FASCICLE III.9

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

Volume V

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VI.4

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

FASCICLE VI.9

FASCICLE VI. 10

IV

Line transmission of non-telephone signals. Transmission of sound-programme and televi­
sion signals. Series H and J Recommendations (Study Group XV).

Integrated Services Digital Network (ISDN) - General structure and service capabilities.
Recommendations 1.110-1.257 (Study Group XVIII).

Integrated Services Digital Network (ISDN) - Overall network aspects and functions,
ISDN user-network interfaces. Recommendations 1.310-1.470 (Study Group XVIII).

Integrated Services Digital Network (ISDN) - Internetwork interfaces and maintenance
principles. Recommendations 1.500-1.605 (Study Group XVIII).

General maintenance principles: maintenance of international transmission systems and
telephone circuits. Recommendations M.10-M.782 (Study Group IV).

Maintenance of international telegraph, phototelegraph and leased circuits. Maintenance of
the international public telephone network. Maintenance of maritime satellite and data
transmission systems. Recommendations M.800-M.1375 (Study Group IV).

Maintenance of international sound-programme and television transmission circuits.
Series N Recommendations (Study Group IV).

Specifications for measuring equipment. Series O Recommendations (Study Group IV).

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Functions and informa­
tion flows for services in the ISDN. Supplements. Recommendations Q.1-Q.118 bis (Study
Group XI).

Specifications of Signalling Systems Nos. 4 and 5. Recommendations Q.120-Q. 180 (Study
Group XI).

Specifications of Signalling System No. 6. Recommendations Q.251-Q.300 (Study
Group XI).

Specifications of Signalling Systems R1 and R2. Recommendations Q.310-Q.490 (Study
Group XI).

Digital local, transit, combined and international exchanges in integrated digital networks
and mixed analogue-digital networks. Supplements. Recommendations Q.500-Q.554 (Study
Group XI).

Interworking of signalling systems. Recommendations Q.601-Q.699 (Study Group XI).

Specifications of Signalling System No. 7. Recommendations Q.700-Q.716 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.721-Q.766 (Study
Group XI).

Specifications of Signalling System No. 7. Recommendations Q.771-Q.795 (Study
Group XI).

Digital subscriber signalling system No. 1 (DSS 1), data link layer. Recommendations
Q.920-Q.921 (Study Group XI).

FASCICLE VI.ll

FASCICLE VI. 12

FASCICLE VI. 13

FASCICLE VI. 14

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

FASCICLE VII.3

FASCICLE VII.4

FASCICLE VII.5

FASCICLE VII.6

FASCICLE VII.7

Volume VIII

FASCICLE VIII. 1

FASCICLE VIII.2

FASCICLE VIII.3

FASCICLE VIII.4

FASCICLE VIII.5

FASCICLE VIII.6

FASCICLE VIII.7

FASCICLE VIII.8

Volume IX

Digital subscriber signalling system No. 1 (DSS 1), network layer, user-network manage­
ment. Recommendations Q.930-Q.940 (Study Group XI).

Public land mobile network. Interworking with ISDN and PSTN. Recommenda­
tions Q.1000-Q.1032 (Study Group XI).

Public land mobile network. Mobile application part and interfaces. Recommenda­
tions Q.1051-Q.1063 (Study Group XI).

Interworking with satellite mobile systems. Recommendations Q.1100-Q.1152 (Study
Group XI).

Telegraph transmission. Series R Recommendations. Telegraph services terminal equip­
ment. Series S Recommendations (Study Group IX).

TelegraphWitching. Series U Recommendations (Study Group IX).

Terminal equipment and protocols for telematic services. Recommendations T.0-T.63
(Study Group VIII).

Conformance testing procedures for the Teletex Recommendations. Recommendation T.64
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.65-T.101,
T.150-T.390 (Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.400-T.418
(Study Group VIII).

Terminal equipment and protocols for telematic services. Recommendations T.431-T.564
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks: services and facilities, interfaces. Recommenda­
tions X.1-X.32 (Study Group VII).

Data communication networks: transmission, signalling and switching, network aspects,
maintenance and administrative arrangements. Recommendations X.40-X.181 (Study
Group VII). V

Data communication networks: Open Systems Interconnection (OSI) — Model and nota­
tion, service definition. Recommendations X.200-X.219 (Study Group VII).

Data communication networks: Open Systems Interconnection (OSI) — Protocol specifica­
tions, conformance testing. Recommendations X.220-X.290 (Study Group VII).

Data communication networks: interworking between networks, mobile data transmission
systems, internetwork management. Recommendations X.300-X.370 (Study Group VII).

Data communication networks: message handling systems. Recommendations X.400-X.420
(Study Group VII).

Data communication networks: directory. Recommendations X.500-X.521 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Construction,
installation and protection of cable and other elements of outside plant. Series L Recom­
mendations (Study Group VI).

V

Volume X

FASCICLE X.l — Functional Specification and Description Language (SDL). Criteria for using Formal
Description Techniques (FDTs). Recommendation Z.100 and Annexes A, B, C and E,
Recommendation Z. 110 (Study Group X).

FASCICLE X.2 — Annex D to Recommendation Z.100: SDL user guidelines (Study Group X).

FASCICLE X.3 — Annex F.l to Recommendation Z.100: SDL formal definition. Introduction (Study
Group X).

FASCICLE X.4 — Annex F.2 to Recommendation Z.100: SDL formal definition. Static semantics (Study
Group X).

FASCICLE X.5 — Annex F.3 to Recommendation Z.100: SDL formal definition. Dynamic semantics (Study
Group X).

FASCICLE X.6 - CCITT High Level Language (CHILL). Recommendation Z.200 (Study Group X).

FASCICLE X.7 — Man-Machine Language (MML). Recommendations Z.301-Z.341 (Study Group X).

VI

CONTENTS OF FASCICLE VHI.8 TO THE BLUE BOOK

Rec. No. Page

X.500 The Directory - Overview of Concepts, Models and Services 3

X.501 The Directory-Models .. 19

X.509 The Directory - Authentication framework ... 48

X.511 The Directory - Abstract Service D efinition.. 82

X.518 The Directory - Procedures for Distributed O peration.. 116

X.519 The Directory - Protocol Specifications .. 174

X.520 The Directory - Selected Attribute T y p e s .. 189

X.521 The Directory - Selected Object Classes .. 212

PRELIMINARY NOTES

1 The questions entrusted to each Study Group for the Study Period 1989-1992 can be found in
Contribution No. 1 to that Study Group.

2 In this Fascicle, the expression "Administration" is used for shortness to indicate both a
telecommunication Administration and a recognized private operating agency.

3 Except where otherwise indicated, the status of annexes and appendices attached to the Series X
Recommendations should be interpreted as follows:

an annex to a Recommendation forms an integral part of the Recommendation;

an appendix to a Recommendation does not form part of the Recommendation and only
provides some complementary explantion of information.

4 The Series X Recommendations contained in this Fascicle were jointly developed in collaboration
with the ISO/IEC. Cross-references between these Recommendations and the corresponding ISO/IEC
standards are given in the table below.

Fascicle VTII.8 - Contents YII

CCITT
Recommendation

ISO/IEC Standard

X. 500 ISO 9594-1, Information processing systems - Open Systems Interconnection -
The Directory - Part 1: Overview of concepts, models and service

X. 501 ISO 9594-2, Information processing systems - Open Systems Interconnection -
The Directory - Part 2: Models a^

X. 509 ISO 9594-8, Information processing systems - Open Systems Interconnection -
The Directory - Part 8: Authentication framework a^

X.511 ISO 9594-3, Information processing systems - Open Systems Interconnection -
The Directory - Part 3: Abstract service definition a^

X. 518 ISO 9594-4, Information processing systems - Open Systems Interconnection -
The Directory - Part 4: Procedures for distributed operations

X. 519 ISO 9594-5, Information processing systems - Open Systems Interconnection -
The Directory - Part 5: Protocol specifications a^

X. 520 ISO 9594-6, Information processing systems - Open Systems Interconnection -
The Directory. - Part 6: Selected attribute types a^

X. 521 ISO 9594-7, Information processing systems - Open Systems Interconnection -
The Directory - Part 7: Selected object classes a ^

*) Presently at the stage of Draft International Standard (DIS).

Fascicle Vttl.8 - Contents

FASCICLE VIII.8

Recommendations X.500 to X.521

DATA COMMUNICATION NETWORKS
DIRECTORY

PAGE INTENTIONALLY LEFT BLANK

PAGE LAISSEE EN BLANC INTENTIONNELLEMENT

Recommendation X.500

THE DIRECTORY - OVERVIEW OF CONCEPTS, MODELS AND SERVICES J)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field o f application

2 References

3 Definitions

3.1 OSI reference model definitions
3.2 Basic directory definitions
3.3 Directory model definitions
3.4 Distributed operation definitions

4 Abbreviations

5 Overview o f the directory

6 The directory information base (DIB)

7 The directory service

7.1 Introduction
7.2 Service qualification
7.3 Directory interrogation
7.4 Directory modification
7.5 Other outcomes

8 The distributed directory

8.1 Functional model
8.2 Organizational model
8.3 Operation of the model

9 Directory protocols

Annex A - Applying the directory

A.l The directory environment
A.2 Directory service characteristics
A.3 Patterns of use of the directory
A.4 Generic applications

Recommendation X.500 and ISO 9594-1, The Directory - Overview of Concepts, Models and Services,
were developed in close collaboration and are technically aligned.

Fascicle VHI.8 - Rec. X.500 3

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application entities, people, terminals and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation introduces and models the concepts of the Directory and of the DIB and
overviews the services and capabilities which they provide. Other Recommendations make use of these
models in defining the abstract service provided by the Directory, and in specifying the protocols
through which this service can be obtained or propagated.

1 Scope and field of application

1.1 The Directory provides the directory capabilities required by OSI applications, OSI management
processes, other OSI layer entities, and telecommunication services. Among the capabilities which it
provides are those of "user-friendly naming" whereby objects can be referred to by names which are
suitable for citing by human users (though not all objects need have user-friendly names); and "name-
to-address mapping" which allows the binding between objects and their locations to be dynamic. The
latter capability allows OSI networks, for example, to be "self-configuring" in the sense that
addition, removal and the changes of object location do not affect OSI network operation.

1.2 The Directory is not intended to be a general-purpose data base system, although it may be
built on such systems. It is assumed, for instance, that, as is typical with communications
directories, there is a considerably higher frequency of "queries" than of updates. The rate of
updates is expected to be governed by the dynamics of people and organizations, rather than, for
example, the dynamics of networks. There is also no need for instantaneous global commitment of
updates: transient conditions where both old and new versions of the same information are available,
are quite acceptable.

1.3 It is a characteristic of the Directory that, except as a consequence of differing access
rights or unpropagated updates, the results of directory queries will not be dependent on the
identity or location of the enquirer. This characteristic renders the Directory unsuitable for some
telecommunications applications, for example some types of routing.

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model.

Recommendation X.208 - Open Systems Interconnection - Specification of Abstract Syntax Notation One
(ASN.l).

Recommendation X.501 - The Directory - Models.

Recommendation X.509 - The Directory - Authentication framework.

Recommendation X.511 - The Directory - Abstract Service Definition.

4 Fascicle VIII.8 - Rec. X.500

Recommendation X.518 - The Directory - Procedures for Distributed Operation.

Recommendation X.519 - The Directory - Protocol Specifications.

Recommendation X.520 - The Directory - Selected Attribute Types.

Recommendation X.521 - The Directory - Selected Object Classes.

Recommendation X.219 - Remote Operations - Model, Notation and Service Definition.

Recommendation X.229 - Remote Operations - Protocol Specification.

3 Definitions

The definitions contained in this § make use of the abbreviations defined in § 4.

3.1 OSI reference model definitions
This Recommendation is based on the concepts developed in Recommendation X.200, and makes use

of the following terms therein defined:

a) application-entity;
b) Application Layer:;

c) application process:;

d) application protocol data unit;
e) application service element.

3.2 Basic directory definitions
a) The Directory• a collection of open systems cooperating to provide directory services;

b) Directory Information Base (DIB): the set of information managed by the Directory;
c) (Directory) user: the end user of the Directory, i.e. the entity or person which

accesses the Directory.

3.3 Directory model definitions
This Recommendation makes use of the following terms defined in Recommendation X.501.

a) Administration Directory Management Domain;
b) alias;
c) attribute;
d) attribute type;
e) attribute value;
f) Directory Information Tree (DIT);

g) Directory Management Domain (DMD);
h) Directory System Agent (DSA);
i) Directory User Agent (DUA);

j) distinguished name;
k) entry;

1) name;
m) object (o f interest);
n) Private Directory Management Domain;

o) relative distinguished name;
p) root;
q) schema;
r) subordinate object;
s) superior entry;

Fascicle VTII.8 - Rec. X.500 5

t) superior object;

u) tree.

3.4 Distributed operation definitions
This Recommendation makes use of the following terms defined in Recommendation X.518:
a) chaining;

b) multicastings
c) referral.

4 Abbreviations

ADDMD Administration Directory Management Domain

DAP Directory Access Protocol

DIB Directory Information Base
DIT Directory Information Tree

DMD Directory Management Domain

DSA Directory System Agent

DSP Directory System Protocol

DUA Directory User Agent

OSI Open Systems Interconnection
PRDMD Private Directory Management Domain

RDN Relative Distinguished Name

5 Overview of the Directory

5.1 The Directory is a collection of open systems which cooperate to hold a logical data base of
information about a set of objects in the real world. The users of the Directory, including people
and computer programs, can read or modify the information, or parts of it, subject to having
permission to do so. Each user is represented in accessing the Directory by a Directory User Agent
(DUA), which is considered to be an application-process. These concepts are illustrated in

' Figure 1 /X.500.

T0704210-88

FIGURE 1/X.500

Access to the Directory

Note - This series of Recommendations refers to the Directory in the singular, and reflects
the intention to create, through a single, unified, name space, one logical directory composed of
many systems and serving many applications. Whether or not these systems choose to interwork will
depend on the needs of the applications they support. Applications dealing with non-intersecting
worlds of objects, may have no such need. The single name space facilitates later interworking
should the needs change.

6 Fascicle VIII.8 - Rec. X.500

5.2 The information held in the Directory is collectively known as the Directory Information Base
(DIB). Clause 6 of this Recommendation overviews its structure.

5.3 The Directory provides a well-defined set of access capabilities, known as the abstract service
of the Directory, to its users. This service, which is overviewed in § 7 of this Recommendation
provides a simple modification and retrieval capability. This can be built on with local DUA
functions to provide the capabilities required by the end-users.
5.4 It is likely that the Directory will be distributed, perhaps widely distributed, both along
functional and organizational lines. § 8 overviews the corresponding models of the Directory. These
have been developed in order to provide a framework for the cooperation of the various components to
provide an integrated whole.

5.5 The provision and consumption of the Directory services requires that the users (actually the
DUAs) and the various functional components of the Directory should cooperate with one another. In
many cases this will require cooperation between application processes in different open systems,
which in turn requires standardized application protocols, overviewed in § 9, to govern this
cooperation.

5.6 The Directory has been designed so as to support multiple applications, drawn from a wide range
of possibilities. The nature of the application supported will govern which objects are listed in
the Directory, which users will access the information, and which kinds of access they will carry
out. Applications may be very specific, such as the provision of distribution lists for electronic
mail, or generic, such as the "inter-personal communications directory" application. The Directory
provides the opportunity to exploit commonalities among the applications:

a single object may be relevant to more than one application; perhaps even the same piece
of information about the same object may be so relevant.

To support this, a number of object classes and attribute types are defined, which will be
useful across a range of applications. These definitions are contained in Recommendations X.520
and X.521:

certain patterns of use of the Directory will be common across a range of applications:
this area is overviewed further in Annex A.

6 The Directory Information Base (DIB)

Note - The DIB, and its structure, are defined in Recommendation X.501.
6.1 The DIB is made up of information about objects. It is composed of (directory) entries, each
of which consists of a collection of information on one object. Each entry is made up of
attributes, each with a type and one or more values. The types of attribute which are present in a
particular entry are dependent on the class of object which the entry describes.
6.2 The entries of the DIB are arranged in the form of a tree, the Directory Information Tree (DIT)
where the vertices represent the entries. Entries higher in the tree (nearer the root) will often
represent objects such as countries or organizations while entries lower in the tree will represent
people or application processes.

Note - The services defined in this Recommendation operate only on a tree-structured DIT.
This Recommendation does not preclude the existence in the future of other structures (as the need
arises).
6.3 Every entry has a distinguished name, which uniquely and unambiguously identifies the entry.
These properties of the distinguished name are derived from the tree structure of the information.
The distinguished name of an entry is made up of the distinguished name of its superior entry,
together with specially nominated attribute values (the distinguished values) from the entry.
6.4 Some of the entries at the leaves of the tree are alias entries, while all other entries are
object entries. Alias entries point to object entries, and provide the basis for alternative names
for the corresponding objects.
6.5 The Directory enforces a set of rules to ensure that the DIB remains well-formed in the face of
modifications over time. These rules, known as the Directory schema, prevent entries having the
wrong types of attributes for its object class, attribute values being of the wrong form for the
attribute type, and even entries having subordinate entries of the wrong class.

Fascicle VTIL8 - Rec. X.500 7

6.6 Figure 2/X.500 illustrates the above concepts of the DIT and its components.

FIGURE 2/X.500

Structure of the DIT and of entries

6.7 Figure 3/X.500 gives a hypothetical example of a DIT. The tree provides examples of some of the
types of attributes used to identify different objects. For example the name:

{C = GB, L = Winslow, O = Graphic Services, CN = Laser Printer}

identifies the application entity "Laser Printer" which has in its distinguished name the
geographical attribute of Locality. The residential person John Jones, whose name is GB

{C = GB, L = Winslow, CN = John Jones)

has the same geographical attribute in his distinguished name.

8 Fascicle Vm.8 - Rec. X.500

root

C = US C = GB
¥ ¥

0 = M icrotech L = Winslow

OU = Research OU = Sales Services \ j o n e s

1 T \ '
CN = Fax CN = Bill CN = Laser
Machine Sm ith Printer

4 4 ' ^ TOT 0-4230-88

FIGURE 3/X.500

A Hypothetical directory information tree

6.8 The growth and form of the DIT, the definition of the Directory schema, and the selection of
distinguished names for entries as they are added, is the responsibility of various authorities,
whose hierarchical relationship is reflected in the shape of the tree. The authorities must ensure,
for example, that all of the entries in their jurisdiction have unambiguous distinguished names, by
carefully managing the attribute types and values which appear in those names. Responsibility is
passed down the tree from superior to subordinate authorities, with control being exercised by means
of the schema.

7 The Directory service

Note - The definition of the abstract service of the Directory can be found in
Recommendation X.511.

7.1 Introduction
7.1.1 This § provides an overview of the service provided to users, as represented by their DUAs, by
the Directory. All services are provided by the Directory in response to requests from DUAs. There
are requests which allow interrogation of the Directory, as described in § 7.3, and those for
modification, as described in § 7.4. In addition, requests for service can be qualified, as described
in § 7.2. The Directory always reports the outcome of each request that is made of it. The form of
the normal outcome is specific to the request, and is evident from the description of the request.
Most abnormal outcomes are common to several requests. The possibilities are described in § 7.5.

7.1.2 A number of aspects of the eventual directory service are not presently provided by the
standards specified in this series of Recommendations. The corresponding capabilities will,
therefore, need to be provided as a local function until such time as a standardized solution is
available. These capabilities include:

addition and deletion of arbitrary entries, thus allowing a distributed Directory to be
created;
the management of access control (i.e. granting or withdrawing permission for a particular
user to carry out a particular access on a particular piece of information);
the management of the Directory schema;

the management of knowledge information;

the replication of parts of the DIB.

Note - This list is not necessarily exhaustive.

Fascicle vm.8 - Rec. X.500 9

7.1.3 The Directory ensures that changes to the DIB, whether the result of a Directory service
request, or by some other (local) means, result in a DIB which continues to obey the rules of the
Directory schema.

7.1.4 A User and the Directory are bound together for a period of time at an access point to the
Directory. At the time of binding, the User and the Directory optionally verify each other’s
identity.

7.2 Service qualification

7.2.1 Service controls

A number of controls can be applied to the various service requests, primarily to allow the
user to impose limits on the use of resources which the Directory must not surpass. Controls are
provided on, among other things: the amount of time, the size of the results, the scope of search the
interaction modes, and on the priority of the request.

7.2.2 Security parameters

Each request may be accompanied by information in support of security mechanisms for protecting
the Directory information. Such information may include the user’s request for various kinds of
protection; a digital signature of the request, together with information to assist the correct party
to verify the signature.

7.2.3 Filters

A number of requests whose outcome involves information from or concerning a number of entries,
may carry with them a filter. A filter expresses one or more conditions that an entry must satisfy in
order to be returned as part of the outcome. This allows the set of entries returned to be reduced to
only those relevant.

7.3 Directory interrogation

7.3.1 Read

A read request is aimed at a particular entry, and causes the values of some or all of the
attributes of that entry to be returned. Where only some attributes are to be returned, the DUA
supplies the list of attribute types of interest.

7.3.2 Compare

A compare request is aimed at a particular attribute of a particular entry, and causes the
Directory to check whether a supplied value matches a value of that attribute.

Note - For example, this can be used to carry out password checking, where the password, held
in the Directory, might be inaccessible for read, but accessible for compare.

7.3.3 List

A list request causes the Directory to return the list of immediate subordinates of a
particular named entry in the DIT.

7.3.4 Search

A search request causes the Directory to return information from all of the entries within a
certain portion of the DIT which satisfy some filter. The information returned from each entry
consists of some or all of the attributes of that entry, as with read.

7.3.5 Abandon

An abandon request, as applied to an outstanding interrogation request, informs the Directory
that the originator of the request is no longer interested in the request being carried out. The
Directory may, for example, cease processing the request, and may discard any results so far
achieved.

10 Fascicle Vm.8 - Rec. X.500

7.4 Directory modification
7.4.1 Add entry

An add entry request causes a new leaf entry (either an object entry, or an alias entry) to be
added to the DIT.

Note - In its present form this service is intended to be used to add entries which will
remain as leaves, such as entries for people or application entities, rather than to add whole
subtrees by repeated applications of this service. It is envisaged that the service will be enhanced
in the future to cater to the more general case.

7.4.2 Remove entry

A remove entry request causes a leaf entry to be removed from the DIT.

Note - As with add entry, this service is presently intended for operation on "true leaf
entries, and will be enhanced in the future for the general case.

7.4.3 Modify entry

A modify entry request causes the Directory to execute a sequence of changes to a particular
entry. Either all of the changes are made, or none of them, and the DIB is always left in a state
consistent with the schema. The changes allowed include the addition, removal, or replacement of
attributes or attribute values.

7.4.4 Modify relative distinguished name

A modify relative distinguished name (RDN) request causes the relative distinguished name of a
leaf entry (either an object entry or an alias entry) in the DIT to be modified by the nomination of
different distinguished attribute values.

7.5 Other outcomes

7.5.1 Errors

Any service may fail, for example because of problems with the user supplied parameters, in
which case an error is reported. Information is returned with the error, where possible, to assist in
correcting the problem. However, in general, only the first error encountered by the Directory is
reported. Besides the above-mentioned example of problems with the parameters supplied by the user
(particularly invalid names for entries or invalid attribute types), errors may arise from violations
of security policy, schema rules, and service controls.

7.5.2 Referrals

A service may fail because the particular access point to which the DUA is bound is not the
most suitable for carrying out the request, e.g. because the information affected by the request is
(logically) far away from the access point. In this case the Directory may return a referral, which
suggests an alternative access point at which the DUA can make its request.

Note - The Directory and the DUA may each have a preference as to whether referrals are used,
or whether the requests are chained (see § 8.3.3.2). The DUA can express its preference by means
of service controls. The Directory makes the final decision as to which approach is used.

8 The distributed Directory

Note - the models of the directory are defined in Recommendation X.501 while the procedures
for the operation of the distributed Directory are specified in Recommendation X.518.

8.1 Functional model

The functional model of the Directory is shown in Figure 4/X.500.

Fascicle Vm.8 - Rec. X.500 11

FIGURE 4/X.500

Functional model of the Directory

A Directory System Agent (DSA) is an OSI application process which is part of the Directory
and whose role is to provide access to the DIB to DUAs and/or other DSAs. A DSA may use information
stored in its local data base or interact with other DSAs to carry out requests. Alternatively, the
DSA may direct a requestor to another DSA which can help carry out the request. Local data bases are
entirely implementation dependent.

8.2 Organizational model

8.2.1 A set of one or more DSAs and zero or more DUAs managed by a single organization may form a
Directory Management Domain (DMD). The organization concerned may or may not elect to make use of
this series of Recommendations to govern the communications among the functional components within
the DMD.

8.2.2 Subsequent Recommendations specify certain aspects of the behaviour of DSAs. For this purpose,
a group of DSAs within one DMD may, at the option of the organization which manages the DMD, behave
as a single DSA.

8.2.3 A DMD may be an Administration DMD (ADDMD), or a Private DMD (PRDMD), depending on whether
or not it is being operated by a public telecommunications organization.

Note - It should be recognized that the provision of support for private directory systems by
CCITT members falls within the framework of national regulations. Thus, the technical possibilities
described may or may not be offered by an Administration which provides directory services. The
internal operation and configuration of private DMDs is not within the scope of envisaged CCITT
Recommendations.

8.3 Operation o f the model

8.3.1 The DUA interacts with the Directory by communicating with one or more DSAs. A DUA need not be
bound to any particular DSA. It may interact directly with various DSAs to make requests. For some
administrative reasons, it may not always be possible to interact directly with the DSA which needs
to carry out the request, e.g. to return some directory information. It is also possible that the DUA
can access the Directory through a single DSA. For this purpose, DSAs will need to interact with each
other.

8.3.2 The DSA is concerned with carrying out the requests of DUAs and with obtaining the information
where it does not have the necessary information. It may take the responsibility to obtain the
information by interacting with other DSAs on behalf of the DUA.

12 Fascicle YIII.8 - Rec. X.500

8.3.3 A number of cases of request handling have been identified, as illustrated in
Figures 5-7/X.500, and described below.

8.3.3.1 In Figure 5a/X.500, the DSA C receives a referral from DSA A and is responsible for either
conveying the request to the DSA B (named in the referral from DSA A) or conveying the referral back
to the originating DUA.

The D irectory

Note - If DSA C returns the referral to the DUA, the "request
(to B)" will not occur. Similarly, if DSA C conveys the request
to DSA B, it will not return a referral to the DUA.

FIGURE 5a/X.500

Referrals

In Figure 5b/X.500, the DUA receives the referral from DSA C and is responsible for reissuing
the request directly to DSA A (named in the referral from DSA C).

The D irectory

FIGURE 5b/X.500

Referrals

8.3.3.2 Figure 6/X.500 shows DSA chaining, whereby the request can be passed through several DSAs
before the response is returned.

Fascicle VTIL8 - Rec. X.500 13

The D irectory

FIGURE 6/X.500

Chaining

8.3.3.3 Figure 7/X.500 shows multicasting, where the DSA associated with the DUA carries out the
request by forwarding it to two or more other DSAs, the request to each DSA being identical.

The D irectory

FIGURE 7/X.500

Multicasting

8.3.4 All of the approaches have their merits. For example, the approach in Figure 5/X.500 may be
used where it is desirable to offload the burden from the local DSA. In other circumstances, a
hybrid approach that combines a more elaborate set of functional interactions may be needed to
satisfy the initiator’s request, as illustrated in Figure 8/X.500.

14 Fascicle YIII.8 - Rec. X.500

The D irectory

FIGURE 8/X.500

Mixed modes hybrid approach

9 Directory protocols

Note - The OSI application layer protocols defined to allow DUAs and DSAs in different open
systems to cooperate are specified in Recommendation X.519.

9.1 There are two Directory protocols:

the Directory Access Protocol (DAP), which defines the exchange of requests and outcomes
between a DUA and a DSA;

the Directory System Protocol (DSP), which defines the exchange of requests and outcomes
between two DSAs.

9.2 Each protocol is defined by an application context, each containing a set of protocol elements.
For example, the DAP contains protocol elements associated with interrogating and .modifying the
Directory.

9.3 Each application context is made up of application service elements. These application service
elements are defined to use the Remote Operations Service (ROS) of Recommendation X.219 to structure
and support their interactions. Thus the DAP and DSP are defined as sets of remote operations and
errors using the ROS notation.

ANNEX A

(to Recommendation X.500)

Applying the Directory

This annex is not an integral part of this Recommendation.

A.l The Directory environment

Note - In this §, the term "network" is used with its general meaning to denote the set of
interlinked systems and processes relevant to any telecommunications service, not only one which
relates to the OSI network layer.

Fascicle Vm.8 - Rec. X.500 15

The Directory exists in and provides services in the following environment:

a) many telecommunications networks will be on a large scale, and will constantly undergo
change:

1) objects of various kinds will enter and leave the network without warning and may do
so either singly or in groups;

2) the connectivity of the objects (particularly network nodes) will change, owing to
the addition or removal of paths between them;

3) various characteristics of the objects, such as their addresses, availability, and
physical locations, may change at any time;

b) although the overall rate of changes is high, the useful lifetime of any particular object
is not short. An object will typically be involved in communications much more frequently
that it will change its address, availability, physical location, etc.;

c) the objects involved in current telecommunications services are typically identified by
numbers or other strings of symbols, selected for their ease of allocation or processing
but not for ease of use by human beings.

A.2 Directory service characteristics

The need for directory capabilities arises from:

a) the desire to isolate (as far as possible) the user of the network from the frequent
changes to it. This can be accomplished by placing a "level of indirection" between the
users and the objects with which they deal. This involves the users referring to objects
by name, rather than by, for example, address. The Directory provides the necessary
mapping service;

b) the desire to provide a more "user-friendly" view of the network. For example, the use of
aliases, the provision of "yellow-pages" (see A.3.5) etc., helps to relieve the burden of
finding and using network information.

The Directory allows users to obtain a variety of information about the network, and provides
for the maintenance, distribution and security of that information.

A.3 Patterns o f use o f the directory

Note - This subclause is concerned only with Directory retrieval: it is assumed that the
Directory modification services are used solely to maintain the DIB in the form necessary for the
application over time.

A.3.1 Introduction

The Directory service is defined in these standards in terms of particular requests that a DUA
can make and the parameters of them. An application designer is likely, however, to think in more
goal-oriented terms when considering the information retrieval requirements of the Directory in that
application. Accordingly, this clause describes a number of high-level patterns of use of the
Directory service that are likely to be relevant to many applications.

A.3.2 Look-up

The straight Directory look-up is likely to be the most frequent type of query of the
Directory. It involves the DUA supplying the distinguished name of an object, together with an
attribute type. The Directory will return any value(s) corresponding that attribute type. This is a
generalization of the classic directory function, which is obtained when the attribute type requested
corresponds to a particular type of address. Attribute types for various kinds of address are
standardized, including OSI PSAP address, Message Handling O/R address, and telephone and telex
numbers.

16 Fascicle VTII.8 - Rec. X.500

Look-up is supported by the read service, which also provides the following further
generalizations:

look-up can be based upon names other than the distinguished name of the object, e.g.
aliases;

the values from a number of attribute types can be requested with a single request: the
extreme case being that the values of all attributes in the entry are to be returned.

A.3.3 User-friendly naming

Names can be given to objects in such a way as to maximize the chances that these names can be
predicted (or perhaps remembered) by human users. Names which have this property would typically be
made up of attributes which are somehow inherent to the object, rather than being fabricated for the
purpose. The name of an object will be common among all of the applications which refer to it.

A.3.4 Browsing

In many human-oriented uses of the Directory, it may not be possible for the user (or DUA) to
directly quote a name, user-friendly or otherwise, for the object about which information is sought.
However, perhaps the user will "know it when he sees it". The browsing capability will allow a human
user to wander about the DIB looking for the appropriate entries.

Browsing is accomplished by combinations of the list and search services, possibly in
conjunction with read (although the search service includes the capability of read).

A.3.5 "Yellow Pages"

There are a variety of ways to provide a "Yellow Pages" type capability. The simplest is based
upon filtering, using assertions about particular attributes whose values are the categories (e.g.
the "Business Category" attribute type defined in Recommendation X.520). This approach does not
require any special information being set-up in the DIT, except to ensure that the requisite
attributes are present. However, in the general case, it may be expensive to search where there is a
large population because filtering requires the generation of the universal set which is to be
filtered.

An alternative approach is possible, based upon the setting up of special subtrees, whose
naming structures are designed especially for "Yellow Pages" type searching. Shown in
Figure A -1/X.500 is an example of a "Yellow Pages" subtree populated by alias entries only. In
reality, the entries within the "Yellow Pages" subtrees may be a mixture of object and alias entries,
so long as there exists only one object entry for each object stored in the Directory.

FIGURE A -1 /X.500

An approach to "Yellow Pages"

Fascicle VIII.8 - Rec. X.500 17

A group is a set whose membership can change over time by explicit addition and removal of
members. The group is an object, as are its members. The Directory can be requested to:

indicate whether or not a particular object is a member of a group;

list the membership of a group.

Groups are supported by having the entry for the group contain a multiple valued "Member"
attribute (such an attribute type is defined in Recommendation X.520). The two capabilities
mentioned can then be carried out by means of compare and read respectively.

A member of a group could itself be a group, if this is meaningful for the application.
However, the necessary recursive verification and expansion services would have to be created by the
DUA out of the non-recursive versions provided.

A.3.7 Authentication

Many applications require the objects taking part to offer some proof of their identify before
they are permitted to carry out some action. The Directory provides support for this authentication
process. (As a separate matter, the Directory itself requires its users to authenticate themselves,
so as to support access control).

The more straightforward approach to authentication, called "simple authentication", is based
upon the Directory holding a "User Password" attribute in the entry for any user that wishes to be
able to authenticate itself to a Service. At the request of the Service, the Directory will confirm
or deny that a particular value supplied is actually the user’s password. This avoids the user
needing a different password for every Service. In cases where the exchange of passwords in a local
environment that uses simple authentication is considered to be inappropriate, the Directory
optionally provides means to protect those passwords against replay or misuse by a one way function.

The more complex approach, called "strong authentication" is based upon public key
cryptography, where the Directory acts as a repository of users’ public encryption keys, suitably
protected against tampering. The steps that users can take to obtain each other’s public keys from
the Directory, and then to authenticate with each other using them, are described in detail in
Recommendation X.509.

A.3.6 Groups

A.4 Generic applications

A.4.1 Introduction

There are a number of generic applications which can be imagined as implicitly supported by the
Directory: applications which are not specific to any particular telecommunications service. Two
such applications are described herein: the inter-personal communications directory and the inter­
system communications directory (for OSI).

Note - Authentication, described in the previous subclause as an "access pattern" could
alternatively be thought of as a generic Directory application.

A.4.2 Inter-personal communications

The intent of this application is to provide humans or their agents with information on how to
communicate with other humans, or groups thereof.

The following classes of objects are certainly involved: person, organizational role and group.
Many other classes are involved too, perhaps in a less direct way, including: country, organization,
organizational unit.

The attribute types concerned, other than those used in naming, are generally the addressing
attributes. Typically the entry for a particular person will have the addresses corresponding to each
of the communication methods by which that person can be reached, selected from an open-ended list
which includes at least the following: telephony, electronic mail, telex, ISDN, physical delivery
(e.g. the postal system), facsimile. In some cases, such as electronic mail, the entry will have some
additional information such as the types of information which the user’s equipment can handle. If
authentication is to be supported, then User Password and/or Credentials will be needed.

18 Fascicle VIII.8 - Rec. X.500

The naming schemes used for the various object classes should be user-friendly, with aliases
being set up as appropriate to provide alternative names, provide continuity after a name change,
etc.

The following access patterns will be manifested in this application: look-up, user-friendly
naming, browsing, "Yellow Pages", and groups. To varying degrees, authentication will also be used.

A.4.3 Inter-system communications (for OSI)

According to the OSI Reference Model, two Directory functions are required in OSI, one,
operating in the application layer, which maps application-titles onto presentation-addresses, and
one, in the network layer, which maps NSAP-addresses onto SNPA-addresses (SNPA = Subnetwork Point of
Attachment).

Note - For the remainder of this §, only the application layer case is dealt with.

This function is carried out by consulting the Directory if the information required to
accomplish the mapping is not conveniently available by other means.

The users are application-entities and the object classes of interest are also
application-entities, or subclasses thereof.

The main attribute type concerned, other than those used for naming, is the
presentation-address. Other attribute types, not viewed as necessary for the directory function
itself, could support verifying or finding out the application entity type, or the lists of
application contexts, abstract syntaxes, etc. supported. The authentication-related attribute types '
could also be relevant.

The main access pattern to be manifested will be look-up.

Recommendation X.501

THE DIRECTORY-MODELS J)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field o f application

2 References

3 Definitions

4 Abbreviations

SECTION 1 - Directory model

5 Directory model

Recommendations X.501 and ISO 9594-2, The Directory-Models were developed in close
collaboration and are technically aligned.

Fascicle YHI.8 - Rec. X.501 19

SECTION 2 - Information model

6 Directory information base 1

7 Directory entries

8 Names

9 Directory schema

SECTION 3 - Security model

10 Security

Annex A - The mathematics of trees

Annex B - Object identifier usage

Annex C - Information framework in ASN.l

Annex D - Alphabetical index of definitions

Annex E - Name design criteria

Annex F - Access control

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. A set of such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application entities, people, terminals and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation provides a number of different models for the Directory as a framework for
the other Recommendations. The models are the overall (functional) model; the organizational model;
the security model; and the information framework. The latter describes the manner in which the
Directory organizes the information it holds. It describes, for example, how information about
objects is grouped to form directory entries for those objects and how that information provides
names for objects.

0.4 Annex A summarizes the mathematical terminology associated with tree structures.

0.5 Annex B summarizes the usage of ASN.l object identifiers in this series of Recommendations.

0.6 Annex C provides the ASN.l module which contains all of the definitions associated with the
information framework.

20 Fascicle VHI.8 - Rec. X.501

0.7 Annex D lists alphabetically the terms defined in this document.

0.8 Annex E describes some criteria that can be considered in designing names.

0.9 Annex F describes guidelines for access control.

1 Scope and field of application

1.1 The models defined in this Recommendation provide a conceptual and terminological framework for
the other Recommendations which define various aspects of the Directory.
1.2 The functional and organizational models define ways in which the Directory can be distributed,
both functionally and administratively.

1.3 The security model defines the framework within which security features, such as access
control, are provided in the Directory.
1.4 The information model describes the logical structure of the DIB. From this viewpoint, the
fact that the Directory is distributed, rather than centralized, is not visible. The other
Recommendations in the series make use of the concepts of the information framework. Specifically:

a) the service provided by the Directory is described (in Recommendation X.511) in terms of
the concepts of the information framework: this allows the service provided to be somewhat
independent of the physical distribution of the DIB;

b) the distributed operation of the Directory is specified (in Recommendation X.518) so as to
provide that service, and therefore maintain that logical information structure, given
that the DIB is in fact highly distributed.

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model.

Recommendation X.500 - The Directory - Overview of Concepts, Models and Services.

Recommendation X.509 - The Directory - Authentication Framework.
Recommendation X.511 - The Directory - Access and System Services Definition.

Recommendation X.518 - The Directory - Procedures for Distributed Operation.

Recommendation X.519 - The Directory - Access and System Protocols Specification.

Recommendation X.520 - The Directory - Selected Attribute Types.
Recommendation X.521 - The Directory - Selected Object Classes.

3 Definitions

Definitions of terms are included at the beginning of individual clauses, as appropriate. An
index of these terms is provided in Annex D for easy reference.

4 Abbreviations

ADDMD Administration Directory Management Domain

AVA Attribute value assertion

DIB Directory Information Base

DIT Directory Information Tree

DMD Directory Management Domain

DSA Directory System Agent

DUA Directory User Agent

Fascicle VIII.8 - Rec. X.501 21

PRDMD Private Directory Management Domain

RDN Relative distinguished name.

SECTION 1 - Directory model

5 Directory model

5.1 Definitions

a) access point: The point at which an abstract service is obtained.

b) Administration Directory Management Domain (ADDMD): A DMD which is managed by an
Administration.

Note - The term "Administration" denotes a public telecommunications administration or
other organization offering public telecommunications services;

c) Administrative Authority: An entity which has administrative control over all entries
stored within a single Directory System Agent;

d) The Directory: A repository of information about objects and which provides directory
services to its users which allow access to the information;

e) Directory Management Domain (DMD): A collection of one or more DSAs and zero or more
DUAs which is managed by a single organization;

f) Directory System Agent (DSA): An OSI application process which is part of the
Directory;

g) (Directory) user: The end user of the Directory, i.e. the entity or person which
accesses the Directory;

h) Directory User Agent (DUA): An OSI application process which represents a user in
accessing the Directory;

Note - DUAs may also provide a range of local facilities to assist users, compose
queries and interpret the responses; '

i) Private Directory Management Domain (PRDMD): A DMD which is managed by an organization
other than an Administration.

5.2 The Directory and its users

5.2.1 A directory user (e.g. a person or an application process) obtains directory services by
accessing the Directory. More precisely, it is a Directory User Agent (DUA), which actually
accesses the Directory and interacts with it to obtain the service on behalf of a particular user.
The Directory provides one or more access points at which such accesses can take place. These
concepts are illustrated in Figure 1/X.501.

5.2.2 The services provided by the Directory are defined in Recommendation X.511.

Access po in t

T0704310-88

FIGURE 1/X.501

Access to the Directory

22 Fascicle VIII.8 - Rec. X.501

5.2.3 The Directory is a repository of information about objects, and the directory services it
provides to its users are concerned with various kinds of access to this information. The
information is collectively known as the Directory Information Base (DIB). A model for the DIB is
defined in section 2 of this Recommendation.
5.2.4 A DUA is manifested as an application-process. Each DUA represents precisely one directory
user.

Note 1 - Some open systems may provide a centralised DUA function retrieving information for
the actual users (application-processes, persons, etc.). This is transparent to the Directory.

Note 2 - The DUA functions and a DSA (see § 5.3.1) can be within the same open system, and it
is an implementation choice whether to make one or more DUAs visible within the OSI environment as
application-entities.

Note 3 - A DUA will likely exhibit local behaviour and structure which is outside the scope
of envisaged Recommendations. For example, a DUA which represents a human directory user may provide
a range of local facilities to assist its user to compose queries and interpret the responses.

5.3 Functional model

5.3.1 The Directory is manifested as a set of one or more application-processes known as Directory
System Agents (DSAs), each of which provides zero, one or more of the access points. This is
illustrated in Figure 2/X.501. Where the Directory is composed of more than one DSA, it is said to be
distributed. The procedures for the operation of the Directory when it is distributed are specified
in Recommendation X.518.

Note - A DSA will likely exhibit local behaviour and structure which is outside the scope of
envisaged Recommendations. For example, a DSA which is responsible for holding some or all of the
information in the DIB will normally do so by means of a database, the interface to which is a local
matter.

5.3.2 A particular pair of application-processes which need to interact in the provision of directory
services (either a DUA and a DSA, or two DSAs) may be located in different open systems. Such an
interaction is carried out by means of OSI directory protocols, as specified in
Recommendation X.519.

FIGURE 2/X.501

The Directory provided by multiple DSAs

5.4 Organizational model

5.4.1 A set of one or more DSAs and zero or more DUAs managed by a single organization may form a
Directory Management Domain (DMD).

Fascicle VTII.8 - Rec. X.501 23

Note - The organization which manages a DMD may be an Administration (i.e. a public
telecommunications administration or other organization offering public telecommunications services)
in which case the DMD is said to be an Administration DMD (ADDMD); otherwise it is a Private DMD
(PRDMD). It should be recognized that the provision of support for private directory systems by CCITT
members falls within the framework of national regulations. Thus, the technical possibilities
described may or may not be offered by an Administration which provides directory services. The
internal operation and configuration of private DMDs is not within the scope of envisaged CCITT
Recommendations.

5.4.2 Management of a DUA by a DMD implies an ongoing responsibility for service to that DUA,
e.g. maintenance, or in some cases ownership, by the DMD.

5.4.3 The organization concerned may or may not elect to make use of this series of Recommendations
to govern any interactions among DUAs and DSAs which are wholly within the DMD.

5.4.4 Each DSA is administered by an Administrative Authority. This entity has control over all
object entries and alias entries stored by that DSA. This includes responsibilities for the Directory
schema being used to guide the creation and modification of entries (see § 9). The structure and
allocation of names is the responsibility of a naming authority [see § 8.1 f)] and the role of the
Administrative Authority is to implement these naming structures in the schema.

SECTION 2 - Information model

6 Directory information base

6.1 Definitions

a) alias entry: an entry of the class "alias" containing information used to provide an
alternative name for an object;

b) Directory Information Base (DIB): the complete set of information to which the Directory
provides access and which includes all of the pieces of information which can be read or
manipulated using the operations of the Directory;

c) Directory Information Tree (DIT): the DIB considered as a tree, whose vertices (other
than the root) are the Directory entries;

Note - The term DIT is used instead of DIB only in contexts where the tree structure of
the information is relevant.

d) (Directory) entry: a part of the DIB which contains information about an object;

e) immediate superior (noun): relative to a particular entry or object (it must be clear
from the context which is intended) the immediately superior entry or object;

f) immediately superior

(entry): relative to a particular entry - an entry which is at the initial vertex of an
arc in the DIT whose final vertex is that of the particular entry;

(object): relative to a particular object - an object whose object entry is the
immediate superior of any of the entries (object or alias) for the second object;

g) object (o f interest): anything in some "world", generally the world of
telecommunications and information processing or some part thereof, which is identifiable
(can be named), and which it is of interest to hold information on in the DIB;

h) object class: an identified family of objects (or conceivable objects) which share
certain characteristics;

i) object entry: an entry which is the primary collection of information in the DIB about
an object and which can therefore be said to represent that object in the DIB;

j) subclass: relative to a superclass - an object class derived from a superclass. The
members of the subclass share all the characteristics of another object class (the
superclass) and additional characteristics possessed by none of the members of that object
class (the superclass);

24 Fascicle VIIL8 - Rec. X.501

k) subordinate/inferior: the converse of superior;

1) superclass: relative to a subclass - an object class from which a subclass is derived;

m) superior: (applying to entry or object) immediately superior, or superior to one which
is immediately superior (recursively).

6.2 Objects

6.2.1 The purpose of the Directory is to hold, and provide access to, information about objects of
interest (objects) which exist in some "world". An object can be anything in that world which is
identifiable (can be named).

Note 1 - The "world" is generally that of telecommunications and information processing or
some part thereof.

Note 2 - The objects known to the Directory may not correspond exactly with the set of "real"
things in the world. For example, a real-world person may be regarded as two different objects, a
business person and a residential person, as far as the Directory is concerned. The mapping is not
defined in this Recommendation but is a matter for the users and providers of the Directory in the
context of their applications.

6.2.2 The complete set of information to which the Directory provides access is known as the
Directory Information Base (DIB). All of the pieces of information which can be read or manipulated
by the operations of the Directory are considered to be included in the DIB.

6.2.3 An object class is an identified family of objects (or conceivable objects) which share
certain characteristics. Every object belongs to at least one class. An object class may be a
subclass of another object class, in which case the members of the former class (the subclass) are
also considered to be members of the latter (the superclass). There may be subclasses of subclasses,
etc. to an arbitrary depth.

6.3 Directory entries

6.3.1 The DIB is composed of Directory entries (entries) each containing information about
(describing) a single object.

6.3.2 For any particular object there is precisely one object entry, this being the primary
collection of information in the DIB about that object. The object entry is said to represent the
object.

6.3.3 For any particular object there may, in addition to the object entry, be one or more alias
entries for that object which are used to provide alternative ,names (see § 8.5).

6.3.4 The structure of directory entries is depicted in Figure 3/X.501 and described in 7.2.

6.3.5 Each entry contains an indication of the object class and the superclasses of that object class
with which the entry is associated. In the case of an object entry, this indicates the class(es) to
which the object belongs. In the case of an alias entry, this indicates, by means of a special object
class, "alias" (defined in § 9.4.8.2), that it is in fact an alias entry, and may also indicate to
which subclass(es) of the alias object class the entry belongs.

6.4 The Directory information tree (DIT)

6.4.1 In order to satisfy the requirements for the distribution and management of a potentially very
large DIB, and to ensure that objects can be unambiguously named (see § 8) and their entries found, a
flat structure of entries is not likely to be feasible. Accordingly, the hierarchical relationship
commonly found among objects (e.g. a person works for a department, which belongs to an organization,
which is headquartered in a country) can be exploited, by the arrangement of the entries into a tree,
known as the Directory Information Tree (DIT).

Note - An introduction to the concepts and terminology of tree structures can be found in
Annex A.

Fascicle VIII.8 - Rec. X.501 25

6.4.2 The component parts of the DIT have the following interpretations:

a) the vertices are the entries. Object entries may be either leaf or non-leaf vertices,
whereas alias entries are always leaf vertices. The root is not an entry as such, but can,
when convenient to do so (e.g. in the definitions of b) and c) below), can be viewed as a
null object entry [see d) below];

b) the arcs define the relationship between vertices (and hence entries). An arc from vertex
A to vertex B means that the entry at A is the immediately superior entry (immediate,
superior) of the entry at B, and conversely, that the entry at B is an immediately
subordinate entry (immediate subordinate) of the entry at A. The superior entries
(superiors) of a particular entry are its immediate superior together with its superiors
(recursively). The subordinate entries (subordinates) of a particular entry are its
immediate subordinates together with their subordinates (recursively);

c) the object represented by an entry is or is closely associated with the naming authority
(see § 8) for its subordinates;

d) the root represents the highest level of naming authority for the DIB.

6.4.3 A superior/subordinate relationship between objects can be derived from that between entries.
An object is an immediately superior object (immediate superior) of another object if and only if
the object entry for the first object is the immediate superior of any of the entries for the second
object. The terms immediately subordinate object, immediate subordinate, superior and subordinate
(applied to objects) have their analogous meanings.

6.4.4 Permitted superior/subordinate relationships among objects are governed by the DIT structure
definitions (see § 9.2).

7 Directory entries

7.1 (Definitions

a) attribute: the information of a particular type concerning an object and appearing in an
entry describing that object in the DIB;

b) attribute type: that component of an attribute which indicates the class of information
given by that attribute;

c) attribute value: a particular instance of the class of information indicated by an
attribute type;

d) attribute value assertion: a proposition, which may be true, false or undefined,
concerning the values (or perhaps only the distinguished values) of an entry;

Note - In this document the notation "string 1 = string2" is used to write down examples
of attribute value assertions. In this notation, "string 1" is an abbreviation for the
"name" of the attribute type, and "string2" is a textual representation of suitable value.
Although the attribute types in the examples are often based upon real types, such as
those defined in Recommendation X.520 (e.g. "C" stands for "Country", CN for "Common
Name"), this is not strictly necessary for the purposes of this document, as the Directory
is usually unaware of the meanings of the attribute types in use.

e) distinguished value: an attribute value in an entry which has been designated to appear
in the relative distinguished name of the entry.

7.2 Overall structure

7.2.1 As depicted in Figure 3/X.501, an entry consists of a set of attributes.

26 Fascicle VTIL8 - Rec. X.501

\

FIGURE 3/X.501

Structure of an entry

7.2.2 Each attribute provides a piece of information about, or describes a particular characteristic
of, the object to which the entry corresponds.

Note - Examples of attributes which might be present in an entry include naming information
such as the object’s personal name, and addressing information, such as its telephone number.
7.2.3 An attribute consists of an attribute type, which identifies the class of information given
by an attribute, and the corresponding attribute value(s), which are the particular instances of
that class appearing in the entry.

Attribute ::=
SEQUENCE{

type Attribute Type
values SET OF AttributeValue
— at least one value is required —}

7.3 Attribute types
7.3.1 Some attribute types will be internationally standardized. Other attribute types will be
defined by national administrative authorities and private organizations. This implies that a number
of separate authorities will be responsible for assigning types in a way that ensures that each is
distinct from all other assigned types. This is accomplished by identifying each attribute type with
an object identifier when the type is defined (as described in § 9.5):

Attribute Type ::= OBJECT IDENTIFIER

7.3.2 All attributes in an entry must be of distinct attribute types.
7.3.3 There are a number of attribute types which the Directory knows about and uses for its own
purposes. They include:

a) ObjectClass. An attribute of this type appears in every entry and indicates the object
class and superclass(es) to which the object belongs.

Fascicle VHI.8 - Rec. X.501 27

b) AliasedObjectName. An attribute of this type appears in every alias entry and holds the
distinguished name (see § 8.5) of the object which this alias entry describes.

These attributes are (partially) defined in § 9.5.4.

7.3.4 The types of attributes which must or which may appear within an entry (other than as mentioned
in § 7.3.3) are governed by rules applying to the indicated object class(es). ,

7.4 Attribute values

7.4.1 Defining an attribute type (see § 9.5) also involves specifying the syntax, and hence data
type, to which every value in such attributes must conform. This could be any data type:

AttributeValue ::= ANY

7.4.2 At most one of the values of an attribute may be designated as a distinguished value, in
which case the attribute value appears in the relative distinguished name (see § 8.3) of the entry.

7.4.3 An attribute value assertion (AVA) is a proposition, which may be true, false, or undefined,
concerning the values (or perhaps only the distinguished values) of an entry. It involves an
attribute type and an attribute value.

AttributeYalueAssertion ::=
SEQUENCE {AttributeType, AttributeValue}

and is:

a) undefined, if any of the following holds:

i) the attribute type is unknown;

ii) the attribute syntax for the type has no equality matching rule;
iii) the value does not conform to the data type of the attribute syntax;
Note - ii) and iii) normally indicate a faulty AVA; i), however, may occur as a local
situation (e.g. a particular DSA has not registered that particular attribute type).

b) true, if the entry contains an attribute of that type, one of whose values matches that
value (if the assertion is concerned only with distinguished values, then the matched
value must be the distinguished one);
Note - The matching of values is for equality and involves the matching rule associated
with the attribute syntax.

c) false, otherwise.

8 Names

8.1 Definitions

a) alias, alias name: a name for an object, provided by the use of one or more alias
entries in the DIT;

b) dereferencing: replacing the alias name for an object by the object’s distinguished
name;

c) distinguished name (of an object): one of the names of the object, formed from the
sequence of the RDNs of the object entry and each of its superior entries;

d) (directory) name: a construct that singles out a particular object from all other
objects. A name must be unambiguous (that is, denote just one object), however it need not
be unique (that is, be the only name which unambiguously denotes the object);

e) purported name: a construct which is syntactically a name but which has not (yet) been
shown to be a valid name;

f) naming authority: an authority responsible for the allocation of names. Each object
whose object entry is located at a non-leaf vertex in the DIT is, or is closely associated
with, a naming-authority;

28 Fascicle VIIL8 - Rec. X.501

g) relative distinguished name (RDN): a set of attribute value assertions, each of which is
true, concerning the distinguished values of a particular entry.

8.2 Names in general

8.2.1 A (directory) name is a construct that identifies a particular object from among the set of
all objects. A name must be unambiguous, that is, denote just one object. However, a name need not be
unique, that is be the only name that unambiguously denotes the object.

8.2.2 Syntactically, each name for an object is an ordered sequence of relative distinguished names
(see § 8.3).

NAME ::=
CHOICE { —only one possibility for now—

RDNSequence}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
DistinguishedName ::= RDNSequence

Note - Names which are formed in other ways than as described herein are a possible future
extension.

8.2.3 The null sequence is the name for the root of the tree.

8.2.4 Each initial subsequence of the name of an object is also the name of an object. The sequence
of objects so identified, starting with the root and ending with the object being named, is such that
each is the immediate superior of that which follows it in the sequence.

8.2.5 A purported name is a construct which is syntactically a name but which has not (yet) been
shown to be a valid name.

8.3 Relative distinguished names

8.3.1 Each entry has a unique relative distinguished name (RDN). An RDN consists of a set of
attribute value assertions, each of which is true, concerning the distinguished values of the entry.

RelativeDistinguishedName ::=
SET OF AttributeValueAssertion

The set contains exactly one assertion about each distinguished value in the entry.

8.3.2 The RDNs of all of the entries with a particular immediate superior are distinct. It is the
responsibility of the relevant naming authority for that entry to ensure that this is so by
appropriately assigning distinguished attribute values.

Note - Frequently, an entry will contain a single distinguished value (and the RDN will thus
comprise a single AVA); however, under certain circumstances (in order to differentiate), additional
values (and hence AVAs) may be used.

8.3.3 The RDN for an entry is chosen when the entry is created. A single value instance of any
attribute type may form part of the RDN, depending on the nature of the object class denoted.
Allocation of RDNs is considered an administrative undertaking that may or may not require some
negotiation between involved organizations or administrations. This Recommendation does not provide
such a negotiation mechanism and makes no assumption as to how it is performed. The RDN may be
modified if necessary by complete replacement.

Note - RDNs are intended to be long-lived so that the users of the Directory can store the
distinguished names of objects (e.g. in the Directory itself) without concerns for their
obsolescence. Thus RDNs should be changed cautiously.

8.4 Distinguished names

8.4.1 The distinguished name of a given object is defined as being the sequence of the RDNs of the
entry which represents the object and those of all of its superior entries (in descending order).
Because of the one to one correspondence between objects and object entries, the distinguished name
of an object can be considered to also identify the object entry.

Note 1 - It is preferable that the distinguished names of objects which humans have to deal
with be user-friendly.

Fascicle Vm.8 - Rec. X.501 29

Note 2 - ISO 7498/3 defines the concept of a primitive name. A distinguished name can be used
as a primitive name for the object it identifies because: a) it is unambiguous, b) it is unique, and
c) the semantics of its internal structure (a sequence of RDNs) need not (but of course may) be
understood by the user of the Directory.

Note 3' - Because only the object entry and its superiors are involved, distinguished names of
objects can never involve alias entries.

8.4.2 It proves convenient to define the "distinguished name" of the root and of an alias entry,
although in neither case is the name also the distinguished name of an object. The distinguished
name of the root is defined to be the null sequence. The distinguished name of an alias entry is
defined to be the sequence of RDNs of the alias entry and those of all of its superior entries (in
descending order).

8.4.3 An example which illustrates the concepts of RDN and distinguished name appears in
Figure 4/X.501.

Root RDN Distinguished name

/ K/ C ountries \

□ J j j f i a
^-'O rgan iza tionS 'v .

O rganizational units

^ People]

H
C = GB O It o 00

0 = Telecom | C = GB, 0 = Telecom j

(OU = Sales,
L = Ipswich)

| C = GB , 0 = Telecom ,
(OU = Sales, L = Ipswich) j

CN = Sm ith 1C = GB, 0 = Telecom ,
‘ (OU = Sales, L = Ipswich),

CN = Sm ith |

T0704340-88

FIGURE 4/X.501

Determination of distinguished names

8.5 Alias names

8.5.1 An alias, or an alias name, for an object is a name at least one of whose RDNs is that of
an alias entry. Aliases permit object entries to achieve the effect of having multiple immediate
superiors. Therefore, aliases provide a basis for alternative names.

8.5.2 Just as the distinguished name of an object expresses its principal relationship to some
hierarchy of objects, so an alias expresses (in the general case) an alternative relationship to a
different hierarchy of objects.

8.5.3 An object with an entry in the DIT may have zero or more aliases. It, therefore, follows that
several alias entries may point to the same object entry. An alias entry may point to an object
entry that is not a leaf entry. Only object entries may have aliases. Thus aliases of aliases are not
permitted.

8.5.4 An alias entry shall have no subordinates, that is, an alias entry is a leaf entry.

8.5.5 The Directory makes use of the aliased object name attribute in an alias entry to identify and
to find the corresponding object entry.

30 Fascicle Vm.8 - Rec. X.501

9 Directory schema

9.1 Definitions

a) Directory Schema: The set of rules and constraints concerning DIT structure, object
class definitions, attribute types and syntaxes which characterize the DIB;

b) DIT Structure Rule: A rule, forming part of the Directory Schema which relates an object
class (the subordinate) to another object class (the superior) and which allows an entry
of the former class to be immediately subordinate to one of the latter classes in the DIT.
The rule also governs the attribute type(s) permitted to appear in the (subordinate)
entry’s RDN, and may impose additional conditions. The schema may contain many such
rules.

9.2 Overview

9.2.1 The Directory Schema is a set of definitions and constraints concerning the structure of the
DIT and the possible ways entries are named, the information that can be held in an entry, and the
attributes used to represent that information.

Note 1 - The schema enables the directory system to, for example:

prevent the creation of subordinate entries of the wrong object-class (e.g. a country as a
subordinate of a person);

prevent the addition of attribute-types to an entry inappropriate to the object-class
(e.g. a serial number to a person’s entry);

prevent the addition of an attribute value of a syntax not matching that defined for the
attribute type (e.g. a printable string to a bit string).

Note 2 - Dynamic mechanisms for the management of the directory schema are not presently
provided by this series of Recommendations.

9.2.2 Formally, the Directory Schema comprises a set of:

a) DIT Structure definitions (rules) that define the distinguished names that entries may
have and the ways in which they may be related to one another through the DIT;

b) Object Class definitions that define the set of mandatory and optional attributes that
must be present, and may be present, respectively, in an entry of a given class
(see § 6.2.3 of this Recommendation);

c) Attribute Type definitions that identify the object identifier by which an attribute is
known, its syntax, and whether it is permitted to have multiple values;

d) Attribute Syntax definitions that define for each attribute the underlying ASN.l data
type and matching rules.

Figure 5/X.501 summarizes the relationships between the schema definitions on the one side, and
the DIT, directory entries, attributes, and attribute values on the other.

9.2.3 The Directory Schema is distributed, like the DIB itself. Each Administrative Authority
establishes the part of the schema that will apply for those portions of the DIB administered by the
authority.

Note - Distribution of schema information across DSAs managed by different Administrative
Authorities is not supported by this series of Recommendations. Such distribution is handled
administratively by bilateral agreements.

9.2.4 The specification of what is involved in the definition of DIT structure, object classes,
attribute types and attribute syntaxes can be found in § 9.3 - § 9.6 respectively.

Fascicle VTII.8 - Rec. X.501 31

D efin itions D IT elem ents

T0704350-88

FIGURE 5/X.501

Overview of directory schema

"'t
9.3 DIT structure definition

9.3.1 A DIT Structure Rule defines the permitted hierarchical relationships between entries and their
permitted RDNs. The definition of a DIT Structure Rule involves:

identifying the subordinate and superior object classes;

identifying the attribute types which may be involved in subordinate entries’ RDNs; and
(optionally) additional information.

9.3.2 The Directory permits an entry to stand in the relationship of immediate subordinate to another
(its immediate superior) only if there exists a DIT Structure definition, contained in the schema
(see § 9.2.3) applicable to the portion of the DIB that would contain the entry, for which:

the entry is of the subordinate object class;
the immediate superior of the entry is of the superior object class;

the attribute type(s) forming the entry’s RDN is (are) among those permitted;
and

any conditions imposed by the additional information set element are satisfied.
Note 1 - Techniques for documenting DIT Structure or for representing structure rules in the

DIB are not presently provided by this series of Recommendations.
Note 2 - If a DIT Structure Rule permits subordinates or superiors belonging to a particular

class, it implicitly (unless explicitly overridden) also allows subordinates or superiors belonging
to any object class derived from that class (see § 9.4).

9.3.3 The Directory enforces the defined structure rules at every entry in the DIT. Any attempt to
modify the DIT in such a way as to violate the applicable structure rules fails.

9.3.4 A DIT Structure Rule in which an object class is the subordinate is termed a name binding for
that object class.

9.3.5 For an object class to be represented by entries in a portion of the DIB, at least one name
binding for that object class must be contained in the applicable part of the schema. The schema
contains additional name bindings as required.

Note - It is conceivable that an object class, occurring in two distinct schemas, might have
distinct name bindings in each schema.

9.4 Object class definition

9.4.1 The definition of an object-class involves:

a) optionally, assigning an object-identifier for the object-class;

32 Fascicle VUI.8 - Rec. X.501

b) indicating which classes this is to be a subclass of;

c) listing the mandatory attribute types that an entry of the
addition to the mandatory attribute types of all its superclasses.

object class must contain in

d) listing the optional attribute types that an entry of the
addition to the optional attributes of all its superclasses.

object class may contain in

Note - An object class without an assigned object identifier is intended for local use as a
means of conveniently adding new attribute types to a pre-defined superclass. "This addition allows
for a number of possibilities. For example, an Administrative Authority may define an unregistered
Object Class so as to permit a user to add any registered attribute to the entry. The Administrative
authority may limit the attributes for an entry for a particular object class to those on a locally
held list. It may also make particular attributes mandatory for a particular object class, over and
above those required by the registered object class definition."

9.4.2 There is one special object class, of which every other class is a subclass. This object class
is called "Top" and is defined in § 9.4.8.1.

9.4.3 Every entry shall contain an attribute of type ObjectClass to identify the object class and
superclasses to which the entry belongs. The definition of this attribute is given in § 9.5.4. The
attribute is multivalued. There shall be one value of the attribute for the object class and each of
its superclasses for which an object identifier is defined, except that the value of "Top" need not
be present so long as some other value is present.

Note 1 - The requirement that the ObjectClass attribute be present in every entry is
reflected in the definition of "Top".

Note 2 - Because an object class is considered to belong to all its superclasses, each member
of the chain of superclasses up to Top is represented by a value in the object class attribute (and
any value in the chain may be matched by a filter).

The ObjectClass attribute is managed by the Directory, i.e. it may not be modified by the
user.

9.4.4 The Directory enforces the defined object class for every entry in the DIB. Any attempt to
modify an entry that would violate the entry’s object class definition fails.

Note - In particular, the Directory will prevent:

a) attribute types absent from the object class definition being added
object class;

to an entry of that

b) an entry being created with one or more absent mandatory attribute
class of the entry;

types for the object

c) a mandatory attribute type for the object class of the entry being deleted.

The special object class Alias is defined in § 9.4.8.2. Every alias entry shall have an object
class which is a subclass of this class.

Note - The Directory’s dereferencing of alias entries ensures that the values of the
ObjectClass attribute of an alias entry are rarely seen. It is recommended that appropriate alias
object classes be derived from "Alias" without assigning an object identifier.

9.4.6 The following ASN.l macro may (but need not) be used to define an object class. The empty
production for SubclassOf is permitted only in defining Top:

OBJECT-CLASS MACRO
BEGIN

TYPENOTATTON SubclassOf
MandatoryAttributes
OptionalAttributes

Fascicle VT1L8 - Rec. X.501 33

VALUENOTATION ::=
value(VALUE OBJECT IDENTIFIER)

SubclassOf ::=
"SUBCLASS OF" Subclasses |
empty

Subclasses ::= Subclass | subclass
Subclasses

Subclass ::= value (OBJECT-CLASS)

Mandatory Attributes ::=
"MUST CONTAIN {"Attributes")" | empty

OptionalAttributes ::=
"MAY CONTAIN {"Attributes"}" | empty

Attributes ::= AttributeTerm | AttributeTerm Attributes

AttributeTerm ::= Attribute | AttributeSet

Attribute ::= value(ATTRIBUTE)

AttributeSet ::= value(ATTRIBUTE-SET)
END

The correspondence between the parts of the definition, as listed in § 9.4.1, and the various
pieces of the notation introduced by the macro, is as follows:

a) the object identifier to the object class is the value supplied in the value assignment of
the macro;

b) the superclasses of which this object class is a subclass are those identified by the
SubclassOf production, i.e. that following "SUBCLASS OF';

c) the mandatory attributes are those identified by the list of object identifiers produced
by the MandatoryAttributes production, i.e. those following "MUST CONTAIN";

d) the optional attributes are those identified by the list of object identifiers produced by
the OptionalAttributes production, i.e. those following "MAY CONTAIN".

Note 1 - The object identifiers in c) and d) identify both individual attributes and sets of
attributes (see § 9.4.7). The effective list in both cases is the set union of these. If an attribute
appears in both the mandatory set and the optional set, it shall be considered mandatory.

Note 2 - The macro is used in defining selected object classes in Recommendation X.521.

Should all of the pieces of notation introduced by the macro and described in b), c), and d)
above be empty, the resulting notation ("OBJECT-CLASS") can be used to denote any possible object
class.

9.4.7 An attribute set is a set of attributes identified by an object identifier. The definition
of an attribute set involves:

a) assigning an object identifier to the set;

b) listing the object identifiers of the attributes and other attribute sets whose members
together form the set.

The following ASN.l macro may (but need not) be used to define a set of attributes for use with
the OBJECT-CLASS macro:

ATTRIBUTE-SET-MACRO ::=

BEGIN

TYPE NOTATION ::= "CONTAINS" {"Attributes"}" | empty

VALUE NOTATION ::= value(VALUE OBJECT IDENTIFIER)

34 Fascicle VIIL8 - Rec. X.501

Attributes ::=
AttributeTerm | AttributeTerm Attributes

AttributeTerm ::= Attribute | AttributeSet
Attribute ::= value(ATTRIBUTE)
AttributeSet ::= value(ATTRIBUTE-SET)
END

The correspondence between the parts of the definition of an attribute set and the notation
introduced by the macro is as follows:

a) the object identifier assigned to the attribute set is the value supplied in the value
assignment of the macro;

b) the set of attributes comprising the attribute set is that formed by the set union of the
attributes and sets of attributes identified by the Attributes production, i.e. following
"CONTAINS".

Should the "empty" alternative of the notation be selected, the resulting notation ("ATTRIBUTE-
SET') can be used to denote any possible attribute set.

9.4.8 The object classes previously mentioned are defined in § 9.4.8.1, § 9.4.8.2.

Note - These are partial definitions: the object' identifiers are actually allocated for these
object classes in Recommendation X.521 so as to provide a single point of allocation of these object
identifiers in this series of Recommendations.

9.4.8.1 The object class "Top" is defined as follows:

Top
OBJECT-CLASS

MUST CONTAIN {ObjectClass}

9.4.8.2 The object class "Alias" is defined as follows:

Alias ::=
OBJECT-CLASS

SUBCLASS OF top
MUST CONTAIN {aliasedObjectName}

Note 1 - The object class "Alias" does not specify appropriate attribute types for the RDN of
an alias entry. Administrative Authorities may specify subclasses of the class "Alias" which specify
useful attribute types for RDNs of alias entries (see Recommendation X.521).

Note 2 - Entries of a subclass of the class "Alias" are alias entries.

9.5 Attribute type definition

9.5.1 The definition of an attribute type involves:

a) assigning an object identifier to the attribute type:

b) indicating'or defining the attribute syntax for the attribute type;
c) indicating whether an attribute of this type may have only one or may have more than one

value (recur).

9.5.2 The Directory ensures that the indicated attribute syntax is used for every attribute of this
type. The Directory also ensures that attributes of this type will have one and only one value in
entries if attributes of this type are defined to have only one value.

9.5.3 The following ASN.l macro may (but need not) be used to define an attribute type:

ATTRIBUTE MACRO ::=
BEGIN
TYPENOTATION ::= AttributeSyntax Multivalued | empty

Fascicle Vm.8 - Rec. X.501 35

VALUENOTATION ::= value (VALUE OBJECT IDENTIFIER)
AttributeSyntax ::=

"WITH ATTRIBUTE-SYNTAX" SyntaxChoice

Multivalued ::= "SINGLE VALUE"
| "MULTIVALUE" | empty

SyntaxChoice ::= value(ATTRIBUTE-SYNTAX)
Constraint | type MatchTypes

= "("ConstraintAlternative")" | empty
= StringConstraint | IntegerConstraint

= "SIZE" "("SizeConstraint")"

= SingleValue | Range

= value(INTEGER)

Constraint

ConstraintAlternative

StringConstraint

SizeConstraint

SingleValue

Range = value(INTEGER) ".." value
(INTEGER)

IntegerConstraint ::= Range

MatchTypes ::= "MATCHES FOR" Matches | empty

Matches ::= Match Matches | Match

Match ::= "EQUALITY" | "SUBSTRINGS" |
"ORDERING"

END

The correspondence between the parts of the definition, as listed in § 9.5.1, and the various
pieces of the notation introduced by the macro, is as follows:

a) the object identifier assigned to the attribute type is the value supplied in the value
assignment of the MACRO;

b) the attribute syntax for the attribute type is that identified by the AttributeSyntax
production. This either points to a separately defined attribute syntax, or explicitly
defines an attribute syntax by giving its ASN.l type and matching rules (see § 9.6). If a
separately identified attribute syntax is employed, a size constraint for underlying
string types or a value range for an underlying integer type may optionally be indicated;

c) the attribute is single valued if the Multivalued production is "SINGLE VALUE", and may
have one or more values if it is "MULTI VALUE" or empty.

Note - The macro is used in defining selected attribute types in Recommendation X.520.

Should the "empty" alternative of the type notation be selected, the resulting notation
("ATTRIBUTE") can be used to denote any possible attribute type.

9.5.4 The attribute types identified in § 7.3.3 which are known to and used by the Directory for its
own purposes are defined as follows:

ObjectClass ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX objectldentifierSyntax

AliasedObjectName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax
SINGLE VALUE

Note 1 - These are partial definitions: the object identifiers are actually allocated for
these attribute types in Recommendation X.520 so as to provide a single point of allocation of these
object identifiers in this series of Recommendations.

Note 2 - The attribute syntaxes referred to in these definitions are themselves defined in
§ 9.6.5.

36 Fascicle VHI.8 - Rec. X.501

9.6 Attribute syntax definition

9.6.1 The definition of an attribute syntax involves:

a) optionally, assigning an object identifier to the attribute syntax;

b) indicating the data type, in ASN.l of the attribute syntax;
c) defining appropriate rules for matching a presented value with a target attribute value

held in the DIB. None, some, or all of the following matching rules may be defined for a
particular attribute syntax:

i) equality. Applicable to any attribute syntax. The presented value must conform to
the data type of the attribute syntax;

ii) substrings. Applicable to any attribute syntax with a string data type. The
presented value must be a sequence ("SEQUENCE OF'), each of whose elements conforms
to the data type;

iii) ordering. Applicable to any attribute syntax for which a rule can be defined that
will allow a presented value to be described as less than, equal to, or greater than
a target value. The presented value must conform to the data type of the attribute
syntax.

9.6.2 If no equality matching rule is defined, the Directory:

a) treats values as attributes of this attribute syntax as having type ANY, i.e. the
Directory does not check that those values conform with the data type indicated for the
attribute syntax;

b) will not attempt to match presented values against target values of such an attribute
type.

Note - It follows that the Directory will not permit such an attribute to be used in a
distinguished name, nor allow for a specific value to be modified.

9.6.3 If an equality matching rule is defined, the Directory:

a) treats values of attributes of this attribute syntax as having type ANY DEFINED BY the
data type indicated for the attribute syntax;

b) will only match according to the matching rules defined for that attribute syntax;

c) will only match a presented value of a suitable data type as specified in § 9.6.1 c).

9.6.4 The following ASN.l macro may, but need not, be used to define attribute syntaxes:

ATTRIBUTE-SYNTAX MACRO ::=
BEGIN
TYPE NOTATION ::= Syntax

MatchTypes | empty
VALUE NOTATION ::=

value (VALUE OBJECT IDENTIFIER)

Syntax ::= type

MatchTypes ::= "MATCHES FOR" Matches | empty
Matches ::= Match Matches | Match

Match ::= "EQUALITY" | "SUBSTRINGS" | "ORDERING"

END

The correspondence between the parts of the definition, as listed in § 9.6.1, and the various
pieces of the notation introduced by the macro, is as follows:

a) the object identifier assigned to the attribute syntax is a value supplied in the value
assignment of the macro;

Fascicle VIIL8 - Rec. X.501 37

b) the data type of the attribute syntax is that identified by the Syntax production, i.e.
that following macro name;

c) the defined matching rules are equality, if "EQUALITY" appears in the MatchTypes
production, substrings if "SUBSTRINGS" appears, and ordering if "ORDERING" appears. If
the production is empty, then no matching rules are defined.

Should the "empty" alternative of the notation be selected, the resulting notation ("ATTRIBUTE­
SYNTAX") can be used to denote any possible attribute syntax.

Note 1 - No support is provided in the macro for actually defining the matching rules
themselves: this must be done by natural language or by other means.

Note 2 - The macro is used in defining selected attribute syntaxes in Recommendation X.520.

9.6.5 The attribute syntaxes used in § 9.5.4 are defined in §§ 9.6.5.1 and 9.6.5.2.

Note - These are partial definitions: the object identifiers are actually allocated for these
attribute syntaxes in Recommendation X.520 so as to provide a single point of allocation of these
object identifiers in this series of Recommendations.

9.6.5.1 ObjectldentifierSyntax is defined as follows:

ObjectldentifierSyntax ::=
ATTRIBUTE-S YNTAX

OBJECT IDENTIFIER
MATCHES FOR EQUALITY

The matching rule for equality is inherent in the definition of the ASN.l type object
identifier.

9.6.5.2 DistinguishedNameSyntax is defined as follows:

DistinguishedNameSyntax ::=
ATTRIBUTE-SYNTAX

DistinguishedName
MATCHES FOR EQUALITY

A presented distinguished name value is equal to a target distinguished name value if and only
if all of the following are true:

a) the number of RDNs in each is the same;
b) corresponding RDNs have the same number of AVAs;

c) corresponding AVAs (i.e. those with identical attribute types) have attribute values
which match for equality (in such a match, the attribute values take the same roles - i.e.
as presented or target value - as the distinguished name which contains them does in the
overall match).

SECTION 3 - Security model

10 Security

10.1 The directory exists in an environment where various authorities provide access to their
fragment of the DIB. Such access shall be in conformance to the security policy (see
Recommendation X.509) of the security domain in which the fragment of the DIB exists.

10.2 Two specific components of a security policy are addressed here:

a) the definition of an authorization policy;

b) the definition of an authentication policy.

38 Fascicle VIII.8 - Rec. X.501

10.3 The definition of authorization in the context of the Directory includes the methods to:

a) specify access rights;

b) enforce access rights (access control);

c) maintain access rights.

10.4 The definition of authentication in the context of the Directory includes the methods to
verify: (

a) the identity of DSAs and directory users;

b) the identity of the origin of received information at an access point.

The integrity of received information is a local matter and shall be in conformance to the
security policy in force.

10.5 This Recommendation does not define a Security Policy.
10.6 Annex F describes guidelines for specifying access rights.

10.7 Recommendation X.509 defines authentication procedures. The DAP and DSP may provide strong
authentication of the initiator by the signing of the request, data integrity of the request by
signing of the request, strong authentification of the responder and data integrity of the result by
signing the result. The DAP may provide simple authentication between a DUA and a DSA. The DSP may
provide simple authentication between two DSAs.
10.8 Administrative authorities of applications which make use of the Directory can use their own
security policy. The directory can support applications by holding authentication information (e.g.
distinguished names, passwords, certificates) about communication entities. This is further described
in Recommendation X.509.

ANNEX A

(to Recommendation X.501)

The mathematics of trees

This Annex is not part of the standard.

A tree is a set of points, called vertices, and a set of directed lines, called arcs; each
arc a leads from a vertex V to a vertex V '. For example, the tree in the Figure has seven vertices,
labelled V1 through V7, and six arcs, labelled a1 through a6.

Two vertices V and V ' are said to be the initial and final vertices, respectively, of an
arc a from V to V '. For example, V2 and V3 are the initial and final vertices, respectively, of
arc a2. Several different arcs may have the same initial vertex, but not the same final vertex. For
example, arcs a1 and a3 have the same initial vertex, V1, but no two arcs in the Figure have the same
final vertex.

Fascicle VIIL8 - Rec. X.501 39

The vertex that is not the final vertex of any arc is often referred to as the root vertex,
or even more informally as the "root" of the tree. For example, in the Figure, V1 is the root.

A vertex that is not the initial vertex of any arc is often referred to informally as a
leaf vertex, or even more informally, as a "leaf' of the tree graph. For example, vertices V3, V6,
and V7 are leaves.

An oriented path from a vertex V to a vertex V ' is a set of arcs (a1, a2, ..., an)
(n > 1) such that V is the initial vertex of arc a1, V ' is the final vertex of arc an, and the final
vertex of arc ak is also the initial vertex of arc ak+1 for 1 < k < n. For example, the oriented path
from vertex V1 to vertex V6 is the set of arcs (a3, a4, a5). The term "path" should be understood to
denote an oriented path from the root to a vertex.

ANNEX B

(to Recommendation X.501)

Object identifier usage

This Annex is part of the standard.

This Annex documents the upper retfbhes of the object identifier subtree in which all of the
object identifiers assigned in this series of Recommendations reside. It does so by providing an
ASN.l module called "UsefulDefinitions" in which all non-leaf nodes in the subtree are assigned
names.

UsefulDefinitions {joint-iso-ccitt ds(5) modules(l)
usefulDefinitions(O)}

DEFINITIONS ::=
BEGIN

EXPORTS
module, serviceElement, applicationContext, attributeType, attributeSyntax, ObjectClass,
algorithm, abstractSyntax, attributeSet,

UsefulDefinitions, informationFramework, directoryAbstractService,
directoryObjectldentifiers, algorithmObjectldentifiers, distributedOperations,
protocolObjectldentifiers, selectedAttributeTypes, selectedObjectClasses,
authenticationFramework, upperBounds,
dap,dsp

id-ac, id-ase, id-as, id-ot, id-pt;

ds OBJECT IDENTIFIER ::= {joint-iso-ccitt ds(5)}

— categories of information object —

module OBJECT IDENTIFIER
serviceElement OBJECT IDENTIFIER
applicationContext OBJECT IDENTIFIER
attributeType OBJECT IDENTIFIER
attributeSyntax OBJECT IDENTIFIER
ObjectClass OBJECT IDENTIFIER
attributeSet OBJECT IDENTIFIER
algorithm OBJECT IDENTIFIER
abstractSyntax OBJECT IDENTIFIER
object OBJECT IDENTIFIER
port OBJECT IDENTIFIER

{ds 1}
{ds 2}
{ds 3}
{ds 4}
{ds 5}
{ds 6}
{ds 7}
{ds 8}
{ds 9}
{ds 10}
{ds 11}

40 Fascicle Vm.8 - Rec. X.501

— modules —

usefulDefinitions
informationFramework
directory AbstractService
distributedOperations
protocolObjectldentifier
selected A ttributeTypes
selectedObjectClasses
authenticationFramework
algorithmObjectldentifiers
directoryObjectldentifiers
upperBounds
dap
dsp
distributedDirectoryObjectldentifiers

— synonyms —

OBJECT IDENTIFIER ::= {module 0}
OBJECT IDENTIFIER {module 1}
OBJECT IDENTIFIER {module 2}
OBJECT IDENTIFIER {module 3}
OBJECT IDENTIFIER {module 4}
OBJECT IDENTIFIER {module 5}
OBJECT IDENTIFIER ::= {module 6}
OBJECT IDENTIFIER {module 7}
OBJECT IDENTIFIER (module 8}
OBJECT IDEN TIFIER {module 9}
OBJECT IDEN TIFIER ::= {module 10}
OBJECT IDENTIFIER ::= {module 11}
OBJECT IDENTIFIER ::= {module 12}
OBJECT IDENTIFIER ::= {module 13}

id-ac OBJECT IDENTIFIER ::= applicationContext
id-ase OBJECT IDENTIFIER ::= serviceElement
id-as OBJECT IDENTIFIER ::= abstractSyntax
id-ot OBJECT IDENTIFIER ::= object
id-pt OBJECT IDENTIFIER ::= port

END

ANNEX C

(to Recommendation X.501)

Information framework in ASN.l

This Annex is part of the standard.

This Annex provides a summary of all of the ASN.l type, value, and macro definitions contained
in this Recommendation. The definitions form the ASN.l module "InformationFramework".

InformationFramework {joint-iso-ccitt ds(5) modules(l)
informationFramework(1)}

DEFINITIONS ::=
BEGIN

EXPORTS
Attribute, AttributeType, AttributeValue, AttributeValueAssertion,
DistinguishedName, Name, RelativeDistinguishedName,
OBJECT-CLASS,ATTRIBUTE,ATTRIBUTE-SET,ATTRIBUTE-SYNT AX,
Top, Alias,
ObjectClass, AliasedObjectName,
ObjectldentifierSyntax, DistinguishedNameSyntax;

IMPORTS
selectedAttributeTypes, selectedObjectClasses

FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l)
usefulDefinitions(O)}

top
FROM SelectedObjectClasses selectedObjectClasses

ObjectldentifierSyntax, distinguishedNameSyntax, ObjectClass, aliasedObjectName
FROM SelectedAttributeTypes selectedAttributeTypes;

Fascicle Vm.8 - Rec. X.501 41

— attribute data types —
Attribute ::= SEQUENCE{

type AttributeType
values SET OF AttributeValue
— at least one value is required --}

AttributeType

AttributeValue

AttributeValueAssertion

— naming data types —

Name ::= CHOICE {— only one possibility for now —
RDNSequence}

::= OBJECT IDENTIFIER

::= ANY

::= SEQUENCE {AttributeType, AttributeValue}

RDNSequence

DistinguishedName

RelativeDistinguishedName
— macros —

OBJECT-CLASS MACRO ::=
BEGIN

TYPENOTATION ::=

VALUENOTATION ::=

SubclassOf ::=
Subclasses ::=
Subclass ::=
MandatoryAttributes ::=
OptionalAttributes ::=
Attributes ::=

AttributeTerm ::=
Attribute ::=
AttributeSet ::=

END

ATTRIBUTE-SET-MACRO ::=
BEGIN

TYPE NOTATION ::=

VALUE NOTATION ::=

Attributes ::=

AttributeTerm
Attribute
AttributeSet
END

ATTRIBUTE MACRO
BEGIN

TYPENOTATION
VALUENOTATION

AttributeSyntax

Multivalued

SyntaxChoice

::= SEQUENCE OF
RelativeDistinguishedName

:= RDNSequence
:= SET OF AttributeValueAssertion

SubclassOf MandatoryAttributes
OptionalAttributes

value (VALUE OBJECT IDENTIFIER)

"SUBCLASS OF" Subclasses | empty
Subclass | Subclass "," Subclasses
value (OBJECT-CLASS)
"MUST CONTAIN {"Attributes"}" | empty
"MAY CONTAIN {"Attributes"}" | empty
AttributeTerm | AttributeTerm ","
Attributes
Attribute | AttributeSet
value(ATTRIBUTE)
value(ATTRIBUTE-SET)

"CONTAINS" "{Attributes"}" | empty

value(VALUEOBJECTIDENTIFIER)
AttributeTerm | AttributeTerm "," Attributes

::= Attribute | AttributeSet
::= value(ATTRIBUTE)
::= value(ATTRIBUTE-SET)

AttributeSyntax Multivalued | empty
value(VALUE OBJECT IDENTIFIER)
"WITH ATTRIBUTE-SYNTAX" SyntaxChoice

"SINGLE VALUE" | "MULTI VALUE" | empty
value(ATTRIBUTE-SYNT AX)
Constraint | type Match Types

Fascicle VHL8 - Rec. X.501

Constraint "("ConstraintAltemative")" | empty

ConstraintAlternative

StringConstraint

SizeConstraint

SingleValue

Range

IntegerConstraint

MatchTypes

Matches

Match

END

ATTRIBUTE-SYNTAX MACRO ::=
BEGIN

TYPENOTATION ::=
VALUENOTATION ::=

Syntax ::=

MatchTypes ::=
Matches ::=
Match ::=

END

— object classes —

Top ::= OBJECT-CLASS
MUST CONTAIN {ObjectClass}

Alias ::= OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {aliasedObjectName}

— attribute types —

ObjectClass ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX ObjectldentifierSyntax

AliasedObjectName ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX distinguishedNameSyntax
SINGLE VALUE

— attribute syntaxes —

ObjectldentifierSyntax ::=
ATTRIBUTE-SYNTAX
OBJECT IDENTIFIER
MATCHES FOR EQUALITY

DistinguishedNameSyntax ::=
ATTRIBUTE-SYNTAX
DistinguishedName
MATCHES FOR EQUALITY

END

Syntax MatchTypes | empty
value(VALUE OBJECT IDENTIFIER)

type

"MATCHES FOR "Matches | empty
Match Matches | Match
"EQUALITY" | "SUBSTRINGS" | "ORDERING"

StringConstraint | IntegerConstraint

"SIZE" "("SizeConstraint")"

SingleValue | Range

value(INTEGER)

value(INTEGER) value(INTEGER)

Range

"MATCHES FOR" Matches | empty

Match Matches | Match

"EQUALITY" | "SUBSTRINGS" | "ORDERING"

Fascicle VIII.8 - Rec. X.

ANNEX D

(to Recommendation X.501)

Alphabetical index of definitions

This Annex is not part of the standard.

This Annex alphabetically lists all of the terms defined in this Recommendation together with a
cross reference to the § in which they are defined.

A access point § 5
Administration Directory Management D om ain § 5
alias § 8
alias en try § 6
a ttr ib u te § 7
attribute ty p e § 7
attribute value § 7
attribute value assertion § 7

D the Directory § 5
Directory entry § 6
Directory Information Base (D IB) § 6
Directory Information Tree (D IT) § 6
Directory Management Domain (DMD) § 5
Directory name § 8
Directory schem a § 9
Directory System Agent (DSA) § 5
Directory User Agent (DUA) § 5
distinguished name § 8
DIT Structure Rule § 9

E en try § 6

I immediate(ly) subordinate § 6
immediate(ly) superior.. . § 6

N nam e § 8
naming authority § 8

O object (of interest) § 6
object class § 6
object e n tr y § 6

P Private Directory Management Domain § 5
purported n a m e § 8

R relative distinguished n am e § 8

/
S subordinate § 6

superior § 6

44 Fascicle VIII.8 - Rec. X.501

ANNEX E

(to Recommendation X.501)

Name design criteria

This Annex is not part of the standard.

The information framework is very general, and allows for arbitrary variety of entries and
attributes within the DIT. Since, as defined there, names are closely related to paths through the
DIT, this means that arbitrary variety in names is possible. This section suggests criteria to be
considered in the design of names. The appropriate criteria have been used in the design of the
recommended name forms which are to be found in Recommendation X.521. It is suggested that the
criteria also be used, where appropriate, in designing the names for objects to which the recommended
name forms do not apply.

Presently, only one criterion is addressed: that of user-friendliness.

Note - Not all names need to be user-friendly.

E.l User-friendliness

Names with which human beings must deal directly should be user-friendly. A user-friendly name
is one that takes the human user’s point of view, not the computer’s. It is one that is easy for
people to deduce, remember, and understand, rather than one that is easy for computers to interpret.

The goal of user-friendliness can be stated somewhat more precisely in terms of the following
two principles:

A human being usually should be able to correctly guess an object’s user-friendly name on
the basis of information about the object that he naturally possesses. For example, one
should be able to guess a business person’s name given only the information about her
casually acquired through normal business association.

When an object’s name is ambiguously specified, the Directory should recognize the fact
rather than conclude that the name identifies one particular object. For example, where
two people have the same last name, the last name alone should be considered inadequate
identification of either party.

The following subgoals follow from the goal of user-friendliness:

a) Names should not artificially remove natural ambiguities. For example, if two people
share the last name "Jones", neither should be required to answer to "WJones" or "Jones2".
Instead, the naming convention should provide a user-friendly means of discriminating
between the entities. For example, it might require first name and middle initial in
addition to last name.

b) Names should admit common abbreviations and common variations in spelling. For example,
if one is employed by the Conway Steel Corporation and the name of one’s employer figures
in one’s name, any of the nanies "Conway Steel Corporation", "Conway Steel Corp.", "Conway
Steel", and "CSC" should suffice to identify the organization in question.

c) In certain cases, alias names can be used to direct the search for a particular entry, in
order to be more user-friendly, or to reduce the scope of a search. The following example
demonstrates the use of an alias name for such a purpose: as shown in Figure E-1/X.501,
the branch office in Osaka can also be identified with the name {C = Japan, L = Osaka, O =
ABC, OU = Osaka-branch).

Fascicle Vffl.8 - Rec. X.501 45

C =Japan

FIGURE E-l/X.501

Aliasing example

d) If names are multi-part, both the number of mandatory parts and the number of optional
parts should be relatively small and thus easy to remember.

e) If names are multi-part, the precise order in which those parts appear should generally be
immaterial. '

f) User-friendly names should not involve computer addresses.

ANNEX F

(to Recommendation X.501)

Access control

This Annex is not part of the standard.

F.l Introduction

Directory users are granted access to the information in the DIB on the basis of their access
control rights in accordance with the access control policy in force protecting that information.

46 Fascicle VIII.8 - Rec. X.501

Access Control is left as a local matter in this series of Recommendations. However, it is
recognized that implementations will need to introduce means of controlling access and that future
versions of this series of Recommendations are likely to define standardized means of creating,
maintaining and applying access control information. This Annex describes the principles underlying
access control, and outlines two possible approaches to access control.

F.2 Principles

The two principles that will guide the establishment of procedures for managing access control
are:

a) there must be means of protecting information in the Directory from unauthorized
detection, examination, and modification, including protecting the DIT from unauthorized
modification;

b) the information required to determine a user’s rights to perform a given operation must be
available to the DSA(s) involved in performing the operation in order to avoid further
remote operations solely to determine these rights.

F.3 Protected items

These levels of protection are presently identified:

a) protection of an entire subtree of the DIT;

b) protection of an individual entry;

c) protection of an entire attribute within an entry;

d) protection of selected instances of attribute values.

F.4 Access categories

A need for at least five categories of access is envisaged. If access is not granted to a
protected item in any category, then the directory in so far as is possible responds as though their
protected item did not exist at all.

The categories of access are shown in Table F-1/X.501. The items column denotes whether the
item that can be so protected is an entry (E), an attribute (A) or both (EA).

TABLE F-l/X.501

Access categories

Category Items Description

detect A Allows the protected item to be detected.

compare A Allows a presented value to be compared to the protected item.

read A Allows the protected item to be read.

modify A Allows the protected item to be updated.

add/delete EA Allows the creation and deletion of new components (attributes or
attribute values) within the protected item.

naming E Allows the modification of the Relative Distinguished Name of, and
the creation and deletion of, entries which are immediately
subordinate to the protected entry.

i Fascicle VTII.8 - Rec. X.501 47

F.5 Determination o f access rights

One scheme for managing access control associates with every protected item, either explicitely
or implicitely, a list of access rights. Each item in such a list pairs a set of users with a set of
access categories.

Determining if a user is in one (or more) of the noted sets must be possible from the
information supplied with the request - either from the authenticated identity and credentials of the
user as supplied in BIND, or from information carried in the operation argument.

There at least two possibilities:

a) The sets are described in terms of the distinguished names of the users they identify
- either the distinguished name of the user or the distinguished name of a superior with a
flag specifying that the entire subtree is included.

b) The sets give only a capability, and implicitly include all users having that capability.
This scheme requires that such users’ capability be available locally or else carried in
the BIND or operation argument. The latter may require an extension to the currently
defined protocols.

Recommendation X.509

THE DIRECTORY - AUTHENTICATION FRAMEWORK *)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field o f application

2 References

3 Definitions

4 Notation and abbreviations

SECTION 1 - Simple authentication

5 Simple authentication procedure

SECTION 2 - Strong authentication

6 Basis o f strong authentication

7 Obtaining a user’s public key

Recommendations X.509 and ISO 9594-8, Information Processing Systems - Open Systems
Interconnection - The Directory - Authentication Framework, were developed in close
collaboration and are technically aligned.

48 Fascicle vm.8 - Rec. X.509

8 Digital signatures

9 Strong authentication procedures

10 Management o f keys and certificates

Annex A - Security requirements

Annex B - An introduction to public key cryptography

Annex C - The RSA public key cryptosystem

Annex D - Hash functions

Annex E - Threats protected against by the strong authentication method

Annex F - Data confidentiality

Annex G - Authentication framework in ASN.l

Annex H - Reference definition of algorithm object identifiers

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as OSI application-entities, people, terminals and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 Many applications have requirements for security to protect against threats to the
communication of information. Some commonly known threats, together with the security services and
mechanisms that can be used to protect against them, are briefly described in Annex A. Virtually all
security services are dependent upon the identities of the communicating parties being reliably
known, i.e. authentication.

0.4 This Recommendation defines a framework for the provision of authentication services by the
Directory to its users. These users include the Directory itself, as well as other applications and
services. The Directory can usefully be involved in meeting their needs for authentication and other
security services because it is a natural place from which communicating parties can obtain
authentication information of each other: knowledge which is the basis of authentication. The
Directory is a natural place because it holds other information which is required for communication
and obtained prior to communication taking place. Obtaining the authentication information of a
potential communication partner from the Directory is, with this approach, similar to obtaining an
address. Owing to the wide reach of the Directory for communications purposes, it is expected that
this authentication framework will be widely used by a range of applications.

Fascicle V m .8 - Rec. X.509 49

1 Scope and field of application

1.1 This Recommendation:

specifies the form of authentication information held by the Directory;

describes how authentication information may be obtained from the Directory;

states the assumptions made about how this authentication information is formed and placed
in the Directory;

defines three ways in which applications may use this authentication information to
perform authentication and describes how other security services may be supported by
authentication.

1.2 This Recommendation describes two levels of authentication: simple authentication, using a
password as a verification of claimed identity; and strong authentication, involving credentials
formed using cryptographic techniques. While simple authentication offers some limited protection
against unauthorized access, only strong authentication should be used as the basis for providing
secure services. It is not intended to establish this as a general framework for authentication, but
it can be of general use for applications which consider these techniques adequate.

1.3 Authentication (and other security services) can only be provided within the context of a
defined security policy. It is a matter for users of an application to define their own security
policy which may be constrained by the services provided by a standard.

1.4 It is a matter for standards defining applications which use the authentication framework to
specify the protocol exchanges which need to be performed in order to achieve authentication based
upon the authentication information obtained from the Directory. The protocol used by applications to
obtain credentials from the Directory is the Directory Access Protocol (DAP), specified in
Recommendation X.519.

1.5 The strong authentication method specified in this Recommendation is based upon public-key
cryptosystems. It is a major advantage of such systems that user certificates may be held within the
Directory as attributes, and may be freely communicated within the Directory System and obtained by
users of the Directory in the same manner as other Directory information. The user certificates are
assumed to be formed by "off-line" means, and placed in the Directory by their creator. The
generation of user certificates is performed by some off-line Certification Authority which is
completely separate from the DSAs in the Directory. In particular, no special requirements are placed
upon Directory providers to store or communicate user certificates in a secure manner.

A brief introduction to public-key cryptography can be found in Annex B.

1.6 In general, the authentication framework is not dependent on the use of a particular
cryptographic algorithm, provided it has the properties described in § 6.1. Potentially a number of
different algorithms may be used. However, two users wishing to authenticate must support the same
cryptographic algorithm for authentication to be performed correctly. Thus, within the context of a
set of related applications, the choice of a single algorithm will serve to maximize the community of
users able to authenticate and communicate securely. One example of a public key cryptographic
algorithm can be found in Annex C.

1.7 Similarly, two users wishing to authenticate must support the same hash function (see § 3.3 f))
(used in forming credentials and authentication tokens). Again, in principle, a number of alternative
hash functions could be used, at the cost of narrowing the communities of users able to authenticate.
A brief introduction to hash functions together with one example hash function can be found in
Annex D.

2 References

2.1 ISO 7498-2: Information Processing Systems - Open Systems Interconnection - Security
Architecture.

50 Fascicle VHI.8 - Rec. X.509

3 Definitions

3.1 This Recommendation makes use of the following general security-related terms defined in Part 2
of the OSI Reference Model on Security:

a) asymmetric (encipherment);

b) authentication exchange;

c) authentication information;

d) confidentiality;

e) credentials;

f) cryptography;

g) data origin authentication;

h) decipherment;

i) encipherment;

j) key;

k) password;

1) peer-entity authentication;

m) symmetric (encipherment).

3.2 The following terms used in this Recommendation are defined in Recommendation X.501:

a) attribute;

b) Directory Information Base;

c) Directory Information Tree;

d) distinguished name;

e) entry;

f) ob ject;

g) root.

3.3 The following specific terms are defined and used in this Recommendation:

a) authentication token (token): information conveyed during a strong authentication
exchange, which can be used to authenticate its sender;

b) user certificate (certificate): the public keys of a user, together with some other
information, rendered unforgeable by encipherment with the secret key of the certification
authority which issued it;

CcA)' c) certification authority: an authority trusted by one or more users to create and assign
certificates. Optionally the certification authority may create the user’s keys;

d) certification path: an ordered sequence of certificates of objects in the DIT which,
together with the public key of the initial object in the path, can be processed to obtain
that of the final object in the path;

e) cryptographic system, cryptosystem: a collection of transformations from plain text into
ciphertext and vice versa, the particular transformation(s) to be used being selected by
keys. The transformations are normally defined by a mathematical algorithm.

f) hash function: a (mathematical) function which maps values from a large (possibly very
large) domain into a smaller range. A "good" hash function is such that the results of
applying the function to a (large) set of values in the domain will be evenly distributed
(and apparently at random) over the range;

Fascicle Vm.8 - Rec. X.509 51

g) one-way function: a (mathematical) function f which is easy to compute, but which for a
general value y in the range, it is computationally difficult to find a value x in the
domain such that f(x) = y. There may be a few values y for which finding x is not
computationally difficult;

h) public key: (in a public key cryptosystem) that key of a user’s key pair which is
publicly known;

i) private key (secret key - deprecated): (in a public key cryptosystem) that key of a
user’s key pair which is known only by that user;

j) simple authentication: authentication by means of simple password arrangements;

k) security policy: the set of rules laid down by the security authority governing the use
and provision of security services and facilities;

1) strong authentication: authentication by means of cryptographically derived
credentials;

m) trust: generally, an entity can be said to "trust" a second entity when it (the first
entity) makes the assumption that the second entity will behave exactly as the first
entity expects. This trust may apply only for some specific function. The key role of
trust in the authentication framework is to describe the relationship between an
authenticating entity and a certification authority; an authenticating entity must be
certain that it can trust the certification authority to create only valid and reliable
certificates;

n) certificate serial number: an integer value, unique within the issuing CA, which is
unambiguously associated with a certificate issued by that CA.

4 Notation and abbreviations

4.1 The notation used in this Recommendation is defined in Table 1/X.509 below.

Note - In the table, the symbols X, Xlf X2 etc. occur in place of the names of users, while
the symbol I occurs in place of arbitrary information.

4.2 The following abbreviations are used in this Recommendation:

CA Certification Authority

DIB Directory Information Base

DIT Directory Information Tree

PKCS Public key cryptosystem.

52 Fascicle VIII.8 - Rec. X.509

TABLE 1/X.509

Notation

NOTATION MEANING

Xp Public key of a user X.

Xs Secret key of X.

Xp[I] Encipherment of some information, I, using the public key of X.

Xs [I] Encipherment of I using the secret key of X.

X {1} The signing of I by user X. It consists of I with an enciphered
summary appended.

CA(X) A certification authority of user X.

CAn (X) (where n > 1): CA(CA(...n times...(X))).

X-| <<0̂ 2 ̂ The certificate of user X2 issued by certification authority X<\ .

X-| « X 2 » X 2 « X j » A chain of certificates (can be of arbitrary length), where each
item is the certificate for the certification authority which
produced the next. It is functionally equivalent to the following
certificate X i « X n+1» . For example, possession of A « B » B « C »
provides the same capability as A « C » , namely the ability to find
out Cp given Ap.

X<| p ' Xi <"0̂ 2 The operation of unwrapping a certificate (or certificate chain) to
extract a public key. It is an infix operator, whose left operand is
the public key of a certification authority, and whose right operand
is a certificate issued by that certification authority. The outcome
is the public key of the user whose certificate is the right
operand. For example:

Ap - A « B » B « C »

denotes the operation of using the public key of A to obtain B's
public key, Bp, from its certificate, followed by using Bp to
unwrap C's certificate. The outcome of the operation is the public
key of C, Cp.

A —► B A certification path from A to B, formed of a chain of certificates,
starting with CA(A)«CA2 (A)» and ending with CA(B)«B».

Fascicle VHI.8 - Rec. X.509 53

SECTION 1 - Simple authentication

5 Simple authentication procedure

5.1 Simple authentication is intended to provide local authorization based upon a Distinguished
Name of a user, bilaterally agreed (optional) password and a bilateral understanding of the means of
using and handling this password within a single domain. Utilization of Simple Authentication is
primarily intended for local use only, i.e. for peer entity authentication between one DUA and one
DSA or between one DSA and one DSA. Simple authentication may be achieved by several means:

a) the transfer of the user’s distinguished name and (optional) password in the clear (non­
protected) to the recipient for evaluation;

b) the transfer of the user’s distinguished name, password, and a random number and/or a
timestamp, all of which are protected by applying a one-way function;

c) the transfer of the protected information described in b) together with a random number
and/or timestamp, all of which is protected by applying a one-way function.

Note 1 - There is no requirement that the one-way functions applied be different.

Note 2 - The signalling of procedures for protecting passwords may be a matter for extension
to the Document.

5.2 Where passwords are not protected, a minimal degree of security is provided for preventing
unauthorized access. It should not be considered a basis for secure services. Protecting the user’s
distinguished name and password provides greater degrees of security. The algorithms to be used for
the protection mechanism are typically non-enciphering one-way functions that are very simple to
implement.

5.3 The general procedure for achieving simple authentication is shown in Figure 1/X.509.

FIGURE 1/X.509

The unprotected simple authentication procedure

5.3.1 The following steps are involved:

1) an originating user A sends its distinguished name and password to a recipient user B;

2) B sends the purported distinguished name and password of A to the Directory, where the
password is checked against that held as the User Password attribute within the directory
entry for A (using the Compare operation of the Directory);

3) the Directory confirms (or denies) to B that the credentials are valid;

4) the success (or failure) of authentication may be conveyed to A.

54 Fascicle Vm.8 - Rec. X.509

5.3.2 The most basic form of simple authentication involves only step 1) and after B has checked the
distinguished name and password, may include step 4).
5.4 Figure 2/X.509 illustrates two approaches by which protected identifying information may be
generated. f x and f2 are one-way functions (either identical or different) and the timestamps and
random numbers are optional and subject to bilateral agreements.

Protected 1

*• Protected2

T0704390-88

A = user’s distinguished name

tA = timestamps

passwA = password of A

qA = random numbers, optionally with a counter included

FIGURE 2/X.509

Protected simple authentication

5.4.1 Figure 3/X.509 illustrates the procedure for protected simple authentication.

FIGURE 3/X.509

The protected simple authentication procedure

The following steps are involved (initially using fx only):

1) An originating user, User A, sends its protected identifying information (Authenticator 1)
to User B. Protection is achieved by applying the one-way function (f*) of Figure 2/X.509,
where the timestamp and/or random number (when used) is to minimize replay and to conceal
the password.

The protection of A’s password is of the form:

Protectedl = fx (tlA, q lA, passwA).

The information conveyed to B is of the form:
Authenticator 1 = t lA, q lA, A, Protectedl.

Fascicle VIIL8 - Rec. X.509 55

B verifies the protected identifying information offered by A by generating (using the
timestamp, distinguished name and, optionally, additional timestamp and/or random number
provided by A, together with a local copy of A’s password) a local protected copy of A’s
password (of the form of Protectedl). B compares (for equality) the purported identifying
information (Protectedl) with the locally generated value).

2) B confirms (or denies) to A the verification of the protected identifying information.

5.4.2 The procedure of § 5.4.1 can be modified to afford greater protection (using fx and f2).

The main differences are as follows:

1) A sends its (additionally) protected identifying information (Authenticator2) to B.
Additional protection is achieved by applying a further one-way function, f2, as
illustrated in Figure 2/X.509. The further protection is of the form:

Protected2 = f2 (t2A, q2A, Protectedl).

The information conveyed to B is of the form:

Authenticator2 = t l A, t2A, q lA, q2A, A, Protected2.

For comparison, B generates a local value of A’s additionally protected password and
compares it (for equality) with that of Protected2. (Similar in principle to step 1) of
§ 5.4.1.)

2) B confirms (or denies) to A the verification of the protected identifying information.

Note - The procedures defined in this § are specified in terms of A and B. As applied to the
Directory (specified in Recommendation X.511 and X.518), A could be a DUA binding to a DSA, B;
alternatively A could be a DSA binding to another DSA, B.

5.5 A User Password attribute type contains the password of an object. An attribute value for the
user password is a string specified by the object.

UserPassword ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

OCTET STRING (SIZE (O..ub-user-password))
MATCHES FOR EQUALITY

5.6 The following ASN.l macro may be used to define the data type arising from applying a one-way
function to a given other data type.

PROTECTED MACRO ::= SIGNATURE

SECTION 2 - Strong authentication

6 Basis of strong authentication

6.1 The approach to strong authentication taken in this Recommendation makes use of the properties
of a family of cryptographic systems, known as public-key cryptosystems (PKCS). These cryptosystems,
also described as asymmetric, involve a pair of keys, one secret and one public, rather than a single
key as in conventional cryptographic systems. Annex B gives a brief introduction to these
cryptosystems and the properties which make them useful in authentication. For a PKCS to be usable in
this authentication framework, at the present time, it must have the property that both keys in the
key pair can be used for encipherment with the secret key being used to decipher if the public key
was used, and the public key being used to decipher if the secret key was used. In other words
Xp • X8 = X8 • Xp where Xp/X 8 are encipherment/decipherment functions using the public/secret keys of
user X.

56 Fascicle VTII.8 - Rec. X.509

Note - Alternative types of PKCS, i.e., ones which do not require the property of
permutability and that can be supported without great modification to this Recommendation, are a
possible future extension.

6.2 This authentication framework does not mandate a particular cryptosystem for use. It is
intended that the framework will be applicable to any suitable public key cryptosystem, and will thus
support changes to the methods used as a result of future advances in cryptography, mathematical
techniques or computational capabilities. However, two users wishing to authenticate must support the
same cryptographic algorithm for authentication to be performed correctly. Thus, within the context
of a set of related applications, the choice of a single algorithm will serve to maximize the
community of users able to authenticate and communicate securely. One example of a cryptographic
algorithm can be found in Annex C.

6.3 Authentication relies on each user possessing a unique distinguished name. The allocation of
distinguished names is the responsibility of the Naming Authorities. Each user must therefore trust
the Naming Authorities not to issue duplicate distinguished names.

6.4 Each user is identified by its possession of its secret key. A second user is able to determine
if a communication partner is in possession of the secret key, and can use this to corroborate that
the communication partner is in fact the user. The validity of this corroboration depends on the
secret key remaining confidential to the user.

6.5 For a user to determine that a communication partner is in possession of another user’s secret
key, it must itself be in possession of that user’s public key. Whilst obtaining the value of this
public key from the user’s entry in the Directory is straightforward, verifying its correctness is
more problematic. There are many possible ways for doing this: § 7 describes a process whereby a
user’s public key can be checked by reference to the Directory. This process can only operate if
there is an unbroken chain of trusted points in the Directory between the users requiring to
authenticate. Such a chain can be constructed by identifying a common point of trust. This common
point of trust must be linked to each user by an unbroken chain of trusted points.

7 Obtaining a user’s public key

7.1 In order for a user to trust the authentication procedure, it must obtain the other user’s
public key from a source that it trusts. Such a source, called a certification authority (CA), uses
the public key algorithm to certify the public key, producing a certificate. The certificate, the
form of which is specified in § 7.2 has the following properties:

any user with access to the public key of the certification authority can recover the
public key which was certified;

no party other than the certification authority can modify the certificate without this
being detected (certificates are unforgeable).

Because certificates are unforgeable, they can be published by being placed in the Directory,
without the need for the latter to make special efforts to protect them.

Note - Although the CAs are unambiguously defined by a distinguished name in the DIT, this
does not imply that there is any relationship between the organization of the CAs and the DIT.

7.2 A certification authority produces the certificate of a user by signing (see § 8) a collection
of information, including the user’s distinguished name and public key. Specifically, the
certificate of a user with distinguished name A, produced by the certification authority CA, has the
following form:

C A « A » = CA {SN, AI, CA, A, Ap, TA)

where SN is the serial number of the certificate, AI is the identifier of the algorithm used to sign
the certificate, and TA indicates the period of validity of the certificate, and consists of two
dates, the first and last on which the certificate is valid. Since TA is assumed to be changed in

Fascicle VIII.8 - Rec. X.509 57

periods not less than 24 hours, it is expected that systems would use Coordinated Universal Time as a
reference time base. The signature in the certificate can be checked for validity by any user with
knowledge of CAP. The following ASN.l data type can be used to represent certificates.

Certificate ::= SIGNED SEQUENCE{
version
serialNumber
signature
issuer
validity
subject

[0]Version DEFAULT 1988,
SerialNumber,
Algorithmidentifier
Name
Validity,
Name,

subjectPublicKeylnfo SubjectPublicKeyInf0 }

Version INTEGER { 1988(0)}
SerialNumber ::= INTEGER

Validity ::=
SEQUENCE!

notBefore UTCTime,

Algorithmldentifier ::=
SEQUENCE!

algorithm OBJECT IDENTIFIER
parameters ANY DEFINED BY algorithm

OPTIONAL}

7.3 The directory entry of each user, A, who is participating in strong authentication, contains
the certificate(s) of A. Such a certificate is generated by a Certification Authority of A which is
an entity in the DIT. A Certification Authority of A, which may not be unique, is denoted CA(A), or
simply CA if A is understood. The public key of A can thus be discovered by any user knowing the
public key of CA. Discovering public keys is thus recursive.

7.4 If user A, trying to obtain the public key of user B, has already obtained the public key of
CA(B), then the process is complete. In order to enable A to obtain the public key of CA(B), the
directory entry of each Certification Authority, X, contains a number of certificates. These
certificates are of two types. First there are forward certificates of X generated by other
Certification Authorities. Second there are reverse certificates generated by X itself which are the
certified public keys of other certification authorities. The existence of these certificates enables
users to construct certification paths from one point to another.

7.5 A list of certificates needed to allow a particular user to obtain the public key of another,
is known as a certification path. Each item in the list is a certificate of the certification
authority of the next item in the list. A certification path from A to B (denoted A -*• B):

starts with a certificate produced by CA(A), namely C A (A)«X 1» for some entity X1;

A certification path logically forms an unbroken chain of trusted points in the Directory
Information Tree between two users wishing to authenticate. The precise method employed by users A
and B to obtain certification paths A — B and B — A may vary. One way to facilitate this is to
arrange a hierarchy of CAs, which may or may not coincide with all or part of the DIT hierarchy.
The benefit of this is that users who have CAs in the hierarchy may establish a certification
path between them using the Directory without any prior information. In order to allow for this
each CA may store one certificate and one reverse certificate designated as corresponding to its
superior CA.

not After UTCTime}

SubjectPublicKeylnfo ::=
SEQUENCE!

algorithm Algorithmldentifier
subjectKey BIT STRING}

continues with further certificates Xi« X i+1» ;

ends with the certificate of B.

58 Fascicle Vm.8 - Rec. X.509

7.6 Certificates are held within directory entries as attributes of type UserCertificate,
CACertificate and CrossCertificatePair. These attribute types are known to the Directory. These
attributes can be operated on using the same protocol operations as other attributes. The definition
of these types may be found in § 3.3 of this Recommendation, the specification of these attribute
types is as follows:

UserCertificate ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Certificate

CACertificate ATTRIBUTE
WITH ATTRIBUTE-SYNTAX Certificate

CrossCertificatePair ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CertificatePair

CertificatePair ::=
SEQUENCE{

forward [o] Certificate OPTIONAL
reverse [1] Certificate OPTIONAL
— at least one must be present —}

A user may obtain one or more certificates from one or more Certification Authorities. Each
certificate bears the name of the Certification Authority which issued it.

7.7 In the general case, before users can mutually authenticate, the Directory must supply the
complete certification and return certification paths. However, in practice, the amount of
information which must be obtained from the Directory can be reduced for a particular instance of
authentication by:

a) if the two users that want to authenticate are served by the same certification authority,
then the certification path becomes trivial, and the users unwrap each other’s
certificates directly;

b) if the CAs of the users are arranged in a hierarchy, a user could store the public keys,
certificates and reverse certificates of all certification authorities between the user
and the root of the DIT. Typically, this would involve the user in knowing the public keys
and certificates of only three or four certification authorities. The user would then only
require to obtain the certification paths from the common point of trust;

c) if a user frequently communicates with users certified by a particular other CA, that user
could learn the certification path to that CA and the return certification path from that
CA, making it necessary only to obtain the certificate of the other user itself from the
directory;

d) certification authorities can cross-certify one another by bilateral agreement. The
result is to shorten the certification path;

e) if two users have communicated before and have learned one another’s certificates, they
are able to authenticate without any recourse to the Directory.

In any case, having learned each other’s certificates from the certification path, the users
must check the validity of the received certificates.

7.8 (Example). Figure 4/X.509 illustrates a hypothetical example of a DIT fragment, where the CAs
form a hierarchy. Besides the information shown at the CAs, we assume that each user knows the public
key of its certification authority, and its own public and secret keys.

7.8.1 If the CAs of the users are arranged in a hierarchy, A can acquire the following certificates
from the directory to establish a certification path to B:

X « W » , W « V » , V « Y » , Y « Z » , Z « B »

When A has obtained these certificates, it can unwrap the certification path in sequence to
yield the contents of the certificate of B, including Bp:

Bp = Xp X « W » W « V » V « Y » Y « Z » Z « B »

In general, A also has to acquire the following certificates from the directory to establish
the return certification path from B to A:

Z « Y » , Y « V » , V « W » , W « X » , X « A » .

Fascicle YIII.8 - Rec. X.509 59

When B receives these certificates from A, it can unwrap the return certification path in
sequence to yield the contents of the certificate of A, including Ap:

Ap = Zp Z « Y » Y « V » V « W » W « X » X « A » .

T0704410-88

FIGURE 4/X.509

CA hierarchy - a hypothetical example

7.8.2 Applying the optimizations of § 7.7:

a) taking A and C, for example: both know Xp, so that A simply has to directly acquire the
certificate of C. Unwrapping the certification path reduces to:
Cp = Xp • X « C »

and unwrapping the return certification Path reduces to:
Ap = Xp • X « A »

b) assuming that A would thus know W « X » , Wp, V « W » , Vp, U « V » , Up, etc., reduces the
information which A has to obtain from the directory to form the certification path to:
V « Y » , Y « Z » , Z « B »

and the information which A has to obtain from the directory to form the return
certification path to:

Z « Y » , Y « V »

c) assuming that A frequently communicates with users certified by Z, it can learn (in
addition to the public keys learned in b) above) V « Y » , Y « V » , Y « Z » , and Z « Y » . To
communicate with B, it need therefore only obtain Z « B » from the directory;

d) assuming that users certified by X and Z frequently communicate, then X « Z » would be held
in the directory entry for X, and vice versa (this is shown in Figure 4/X.509). If A wants
to authenticate to B, A need only obtain:

X « Z » , Z « B »
to form the certification path, and

Z « X »

to form the return certification path;

60 Fascicle Vni.8 - Rec. X.509

e) assuming users A and C have communicated before and have learned one another’s
certificates, they may use each other’s public key directly, i.e.

Cp = Xp • X « C »

and

Ap = Xp • X « A » .

7.8.3 In the more general case the Certification Authorities do not relate in a hierarchical manner.
Referring to the hypothetical example in Figure 5/X.509, suppose a user D, certified by U, wishes to
authenticate to user E, certified by W. The directory entry of user D will hold the certificate
U « D » and the entry of user E will hold the certificate W « E » .

Let V be a CA with whom CAs U and W have at some previous time exchanged public keys in a
trusted way. As a result, certificates U « V » , V « U » , W « V » and V « W » have been generated and
stored in the Directory. Assume U « V » and W « V » are stored in the entry of V, V « U » is stored in
U’s entry, and V « W » is stored in W’s entry.

User D must find a certification path to E. Various strategies could be used. One such strategy
would be to regard the users and CAs as nodes, and the certificates as arcs in a directed graph, in
these terms, D has to perform a search in the graph to find a path from U to E, one such being
U « V » , V « W » , W « E » . When this path has been discovered, the reverse path W « V » , V « U » , U « D »
can also be constructed.

\\ \

T070442M S

FIGURE 5/X.509

Non-hierarchical certification path - an example

8 Digital signatures

This section is not intended to specify a standard for digital signatures in general, but to
specify the means by which the tokens are signed in the Directory.

8.1 Information (info) is signed by appending to it an enciphered summary of the information. The
summary is produced by means of a one-way hash function, while the enciphering is carried out using
the secret key of the signer (see Figure 6/X.509). Thus

X{Info) = Info,Xs[h (Info)]
Note - The encipherment using the secret key ensures that the signature cannot be forged.

The one-way nature of the hash function ensures that false information, generated so as to have the
same hash result (and thus signature), cannot be substituted.

8.2 The recipient of signed information verifies the signature by:

applying the one-way hash function to the information;
comparing the result with that obtained by deciphering the signature using the public key
of the signer.

Fascicle Vm.8 - Rec. X.509 61

Signer (X) R ecipient T07M430-8*

FIGURE 6/X.509

Digital signatures

8.3 This authentication framework does not mandate a single one-way hash function for use in
signing. It is intended that the framework will be applicable to any suitable hash function, and will
thus support changes to the methods used as a result of future advances in cryptography, mathematical
techniques or computational capabilities. However, two users wishing to authenticate must support the
same hash function for authentication to be performed correctly. Thus, within the context of a set of
related applications, the choice of a single function will serve to maximize the community of users
able to authenticate and communicate securely. An example hash function is specified in Annex D.

The signed information includes indicators that identify the hashing algorithm and the
encryption algorithm used to compute the digital signature.

8.4 The encipherment of some data items may be described using the following ASN.l MACRO:

ENCRYPTED MACRO ::=
BEGIN

TYPE NOTATION ::= type (ToBeEnciphered)
VALUE NOTATION ::= value (VALUE BIT STRING)
END

The value of the bit string is generated by taking the octets which form the complete encoding
(using the ASN.l Basic Encoding Rules) of the value of the ToBeEnciphered type and applying an
encipherment procedure to those octets.

Note 1 - The encryption procedure requires agreement on the algorithm to be applied,
including any parameters of the algorithm, such as any necessary keys, initialization values, and
padding instructions. It is the responsibility of the encryption procedures to specify the means by
which synchronization of the sender and receiver of data is achieved, which may include information
in the bits to be transmitted.

Note 2 - The encryption procedure is required to take as input a string of octets and to
generate a single string of bits as its result.

Note 3 - Mechanisms for secure agreement on the encryption algorithm and its parameters by
the sender and receiver of data are outside the scope of this Recommendation.

8.5 In the case where a signature must be appended to a data type, the following ASN.l macro may be
used to define the data type resulting from applying a signature to the given data type.

62 Fascicle Vm.8 - Rec. X.509

SIGNED MACRO ::=
BEGIN

TYPE NOTATION ::= type (ToBeSigned)

VALUENOTATION ::= value (VALUE

SEQUENCE{
ToBeSigned,
Algorithmldentifier,
— of the algorithm used to compute
— the signature
ENCRYPTED OCTET STRING
— where the octet string is the result
— of the hashing of the value of
— ’ToBeSigned’ —}

END — of SIGNED.)

8.6 In the case where only the signature is required, the following ASN.l macro may be used to
define the data type resulting from applying a signature to the given data type.

SIGNATURE MACRO ::=
BEGIN

TYPE NOTATION ::= type (OfSignature)

VALUE NOTATION ::= value (VALUE

SEQUENCE{
Algorithmldentifier,
— of the algorithm used to compute
— the signature
ENCRYPTED OCTET STRING
— where the octet string is a function (e.g. a
— compressed or hashed version) of the
— value ’OfSignature’, which may include
— the identifier of the algorithm used to
— compute the signature —}

END — of SIGNATURE.)

8.7 In order to enable the validation of SIGNED and SIGNATURE types in a distributed environment, a
distinguished encoding is required. A distinguished encoding of a SIGNED or SIGNATURE data value
shall be obtained by applying the Basic Encoding Rules defined in Recommendation X.209 with the
following restrictions:

a) the definite form of length encoding shall be used, encoded in the minimum number of
octets;

b) for string types, the constructed form of encoding shall not be used;

c) if the value of a type is its default value, it shall be absent;

d) the components of a Set type shall be encoded in ascending order of their tag value;

e) the components of a Set-of type shall be encoded in ascending order of their octet value;

f) if the value of a Boolean type is true, the encoding shall have its contents octet set to
’FF’ie i

g) each unused bits in the final octet of the encoding of a BitString value, if there are
any, shall be set to zero;

h) the encoding of a Real type shall be such that bases 8, 10 and 16 shall not be used, and
the binary scaling factor shall be zero.

Fascicle VIII.8 - Rec. X.509 63

9 Strong authentication procedures

9.1 Overview

9.1.1 The basic approach to authentication has been outlined above, namely the corroboration of
identity by demonstrating possession of a secret key. However, many authentication procedures
employing this approach are possible. In general it is the business of a specific application to
determine the appropriate procedures, so as to meet the security policy of the application. This
clause describes three particular authentication procedures, which may be found useful across a range
of applications.

Note - This Recommendation does not specify the procedures to the detail required for
implementation. However, additional standards could be envisaged which would do so, either in an
application-specific or in a general-purpose way.

9.1.2 The three procedures involve different numbers of exchanges of authentication information, and
consequently provide different types of assurance to their participants. Specifically,

a) one way authentication, described in § 9.2, involves a single transfer of information from
one user (A) intended for another (B), and establishes the following:

the identity of A, and that the authentication token actually was generated by A;

the identity of B, and that the authentication token actually was intended to be sent
to B;

the integrity and "originality" (the property of not having been sent two or more
times) of the authentication token being transferred.

The latter properties can also be established for arbitrary additional data accompanying
the transfer;

b) two-way authentication, described in § 9.3, involves, in addition, a reply from B to A.

It establishes, in addition, the following:

that the authentication token generated in the reply actually was generated by B and
was intended to be sent to A;

the integrity and originality of the authentication token sent in the reply;

(optionally) the mutual secrecy of part of the tokens;

c) three-way authentication, described in § 9.4, involves, in addition, a further transfer
from A to B. It establishes the same properties as the two-way authentication, but does so
without the need for association time stamp checking.

In each case where Strong Authentication is to take place, A must obtain the public key of B,
and the return certification path from B to A, prior to any exchange of information. This may involve
access to the Directory, as described in § 7 above. Any such access is not mentioned again in the
description of the procedures below.

The checking of timestamps as mentioned in the following sections only applies when either
synchronized clocks are used in a local environment, or if clocks are logically synchronized by
bilateral agreements. In any case, it is recommended that Coordinated Universal Time be used.

For each of the three authentication procedures described below, it is assumed that party A has
checked the validity of all of the certificates in the certification path.

9.2 One-way authentication

The following steps are involved, as depicted in Figure 7/X.509.

64 Fascicle VIII.8 - Rec. X.509

T0704440-88

FIGURE 7/X.509

One-way authentication

1) A generates rA, a non-repeating number, which is used to detect replay attacks and to
prevent forgery.

2) A sends the following message to B:

B -*• A, A{tA, rA, B)

where tA is a timestamp. tA consists of one or two dates: the generation time of the token
(which is optional) and the expire date. Alternatively, if data origin authentication of
"sgnData" is to be provided by the digital signature:

B -*• A, A{tA, rA, B, sgnData)

In cases where information is to be conveyed which will subsequently be used as a secret
key (this information is referred to as "encData"):

B — A, A{tA, rA, B, sgnData, Bp[encData]}.

The use of "encData" as a secret key implies that it must be chosen carefully, e.g. to be
a strong key for whatever cryptosystem is used as indicated in the "sgnData" field of the
token.

3) B carries out the following actions:

a) obtains Ap from B -»■ A, checking that A’s certificate has not expired;

b) verifies the signature, and thus the integrity of the signed information;

c) checks that B itself is the intended recipient;

d) checks that the timestamp is "current";

e) optionally, checks that rA has not been replayed,
achieved by having rA include a sequential part
implementation for its value uniqueness.

This could, for example, be
that is checked by a local

rA is valid until the expire date indicated by tA, rA is always accompanied by a sequential
part, which indicates that A will not repeat the token during the timerange tA and therefore that
checking of the value of rA itself is not required.

In any case it is reasonable for party B to store the sequential part together with timestamp
tA in the clear and together with the hashed part of the token during timerange tA.

9.3 Two-way authentication

The following steps are involved, as depicted in Figure 8/X.509.

Fascicle Vm.8 - Rec. X.509 65

T0704450-88

FIGURE 8/X.509

Two-way authentication

1) as for § 9.2.

2) as for § 9.2.

3) as for § 9.2.

4) B generates rB, a non-repeating number, used for similar purpose(s) to rA. ,

5) B sends the following authentication token to A:

B {tB, rB, A, rA)

where tB is a timestamp defined in the same way as tA.

Alternatively, if data origin authentication of "sgnData" is to be provided by the digital
signature:
B {tB, rB, A, rA, sgnData}

In cases where information is to be conveyed which will subsequently be used as a secret
key (this information is referred to as "encData"):
B {tB, rB, A, rA, sgnData, ApfencData]}.

The use of "encData" as a secret key implies that it must be chosen carefully, e.g. to be
a strong key for whatever cryptosystem is used as indicated in the "sgnData" field of the
token.

6) A carries out the following actions:
a) verifies the signature, and thus the integrity of the signed information;

b) checks that A is the intended recipient;

c) checks that the timestamp tB is "current";

d) optionally, checks that rB has not been replayed [see § 9.2 step 3) e)].

9.4 Three-way authentication

The following steps are involved, as depicted in Figure 9/X.509.

T0704460-S8

FIGURE 9/X.509

Three-way authentication

66 Fascicle YIII.8 - Rec. X.509

1) as for § 9.3.

2) as for § 9.3. Timestamp tA may be zero.

3) as for § 9.3, except that the timestamp need not be checked.

4) as for § 9.3.

5) as for § 9.3. Timestamp tB may be zero.

6) as for § 9.3, except that the timestamp need not be checked.

7) A checks that the received rA is identical to the rA which was sent.

8) A sends the following authentication token to B:

A{rB}.

9) B carries out the following actions:

a) checks the signature and thus the integrity of the signed information;

b) checks that the received rB is identical to the rB which was sent by B.

10 Management of keys and certificates

10.1 Generation o f key pairs

10.1.1 The overall security management policy of an implementation will define the lifecycle of key
pairs, and is thus outstide the scope of the authentication framework. However, it is vital to the
overall security that all secret keys remain known only to the user to whom they belong.

Key data is not easy for a human user to remember, so a suitable method for storing it in a
convenient transportable manner must be employed. One possible mechanism would be to use a "Smart
Card". This would hold the secret and (optionally) public keys of the user, the user’s certificate,
and a copy of the certification authority’s public key. The use of this card must additionally be
secured by e.g. at least use of a PIN (Personal Identification Number), increasing the security of
the system by requiring the user to possess the card and to know how to access it. The exact method
chosen for storing such data, however, is beyond the scope of this Recommendation.

10.1.2 There are three ways in which a user’s key pair may be produced, as described in § 10.1.2.1 to
§ 10.1.2.3.

10.1.2.1 The user generates its own key pair. This method has the advantage that a user’s secret
key is never released to another entity, but requires a certain level of competence by the user as
described in Annex C.

10.1.2.2 The key pair is generated by a third party. The third party must release the secret key to
the user in a physically secure manner, then actively destroy all information relating to the
creation of the key pair plus the keys themselves. Suitable physical security measures must be
employed to ensure that the third party and the data operations are free from tampering.

10.1.2.3 The key pair is generated by the CA. This is a special case of § 10.1.2.2, and the
considerations there apply.

Note - The certification authority already exhibits trusted functionality with respect to the
user, and will be subject to the necessary physical security measures. This method has the advantage
of not requiring secure data transfer to the CA for certification.

10.1.2.4 The cryptosystem in use imposes particular (technical) constraints on key generation.

10.2 Management o f certificates

10.2.1 A certificate associates the public key and unique distinguished name of the user it describes.
Thus:

a) a certification authority must be satisfied of the identity of a user before creating a
certificate for it;

Fascicle VIII.8 - Rec. X.509 67

b) a certification authority must not issue certificates for two users with the same name.

10.2.2 The production of a certificate occurs off-line and must not be performed with an automatic
query/response mechanism. The advantage of this certification is that because the secret key of the
certification authority, CAs, is never known except in the isolated and physically secure CA, the CA
secret key may then only be learnt by an attack on CA itself, making compromise unlikely.

10.2.3 It is important that the transfer of information to the certification authority is not
compromised, and suitable physical security measures must be taken. In this regard:

a) it would be a serious breach of security if the CA issued a certificate for a user with a
public key that had been tampered with;

b) if the means of generation of key pairs of § 10.1.2.3 is employed, no secure transfer is
needed;

c) if the means of generation of key pairs of § 10.1.2.1 or of § 10.1.2.2 is employed, the
user may use different methods (on-line or off-line) to communicate its public key to the
CA in a secure manner. On-line methods may provide some additional flexibility for remote
operations performed between the user and the CA.

10.2.4 A certificate is a publicly available piece of information, and no specific security measures
need to be employed with respect to its transportation to the Directory. As it is produced by an off­
line certification authority on behalf of a user who will be given a copy of it, the user need only
store this information in its directory entry on a subsequent access to the Directory. Alternatively
the CA could lodge the certificate for the user, in which case this agent must be given suitable
access rights.

10.2.5 Certificates will have a lifetime associated with them, at the end of which they expire. In
order to provide continuity of service, the CA shall ensure timely availability of replacement
certificates to supersede expired/expiring certificates. This has a number of aspects, as described
in §§ 10.2.5.1 and 10.2.5.2.

10.2.5.1 Validity of certificates may be designed so that each becomes valid at the time of expiry
of its predecessor, or an overlap may be allowed. The latter prevents the CA from having to install
and distribute a large number of certificates that may run out at the same expiration date.

10.2.5.2 Expired certificates will normally be removed from the Directory. It is a matter for the
security policy and responsibility of the CA to keep old certificates for a period of time if a non
repudiation of data service is provided.

10.2.6 Certificates may be revoked prior to their expiration time, e.g. if the user’s secret key is
assumed to be compromised, or the user is no longer to be certified by the CA, or if the CA’s
certificate is assumed to be compromised. This has a number of aspects, as described in
§§ 10.2.6.1-10.2.6.4.

10.2.6.1 The revocation of a user certificate or CA certificate shall be made known by the CA, and
a new certificate shall be made available, if appropriate. The CA may then inform the owner of the
certificate about its revocation by some off-line procedure.

10.2.6.2 The CA shall maintain:

a) a time-stamped list of the certificates it issued which have been revoked;

b) a time-stamped list of revoked certificates of all CAs known to the CA, certified by the
CA.

i

Both certified lists shall exist, even if empty.

10.2.6.3 The maintenance of Directory entries affected by the CA’s revocation lists is the
responsibility of the Directory and its users, acting in accordance with the security policy. For
example, the user may modify its object entry by replacing the old certificate with a new one. The
latter will then be used to authenticate the user to the Directory.

68 Fascicle VIII.8 - Rec. X.509

10.2.6.4 The revocation lists ("black-lists") are held within entries as attributes of types
"CertificateRevocationList" and "AuthorityRevocationList". These attributes can be operated on using
the same operations as other attributes. These attribute types are defined as follows:

CertificateRevocationList ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CertificateList

AuthorityRevocationList ::= ATTRIBUTE
WITH ATTRIBUTE-SYNTAX CertificateList

CertificateList ::= SIGNED SEQUENCEf
signature Algorithmldentifier,
issuer Name,
lastUpdate UTCTime,
revokedCertificates

SIGNED SEQUENCE OF SEQUENCEf
signature Algorithmldentifier,
issuer Name, CertificateSerialNumber subject,
revocationDate UTCTime}

OPTIONAL}

Note 1 - The checking of the entire list of certificates is a local matter.

Note 2 - If a non-repudiation of data service is dependent on keys provided by the CA the
service must ensure that all relevant keys of the CA (revoked or expired) and the timestamped
revocation lists are archived and certified by a current authority.

ANNEX A

(to Recommendation X.509)

Security requirements

This Annex does not form an integral part of this Recommendation.

[Additional material relevant to this topic can be found in OSI 7498 - Information Processing
Systems - OSI Reference Model - Part 2, Security Architecture.]

Many OSI applications, CCITT-defined services and non-CCITT-defined services will have
requirements for security. Such requirements derive from the need to protect the transfer of
information from a range of potential threats.

A.l Threats

Some commonly known threats are:

a) identity interception: the identity of one or more of the users involved in a
communication is observed for misuse;

b) masquerade: the pretense by a user to be a different user in order to gain access to
information or to acquire additional privileges;

c) replay: the recording and subsequent replay of a communication at some later date;
d) data interception: the observation of user data during a communication by an

unauthorized user;
e) manipulation: the replacement, insertion, deletion or misordering of user data during a

communication by an unauthorized user;

Fascicle Vm.8 - Rec. X.509 69

f) repudiation: the denial by a user of having participated in part or all of a
communication;

g) denial o f service: the prevention or interruption of a communication or the delay of
time-critical operations;

Note - This security threat is a more general one and depends on the individual
application or on the intention of the unauthorized disruption and is therefore not
explicitly within the scope of the authentication framework.

h) mis-routing: the mis-routing of a communication path intended for one user to another;

Note - Mis-routing will naturally occur in OSI layers 1 - 3. Therefore mis-routing is
outside of the scope of the authentication framework. However, it may be possible to avoid
the consequences of mis-routing by using appropriate security services as provided within
the authentication framework.

i) traffic analysis: the observation of information about a communication between users
(e.g. absence/presence, frequency, direction, sequence, type, amount, etc.).

Note - Traffic analysis threats are naturally not restricted to a certain OSI layer.
Therefore traffic analysis is generally outside the scope of the authentication framework.
However, traffic analysis can be partially protected against by generating additional
unintelligible traffic (traffic padding), using enciphered or random data.

A.2 Security services

In order to protect against perceived threats, various security services need to be provided.
Security services as provided by the authentication framework are performed by means of the security
mechanisms described in A.3 of this Annex.

a) peer entity authentication: this service provides corroboration that a user in a certain
instance of communication is the one claimed. Two different peer entity authentication
services may be requested:

single entity authentication (either data origin entity authentication or data
recipient entity authentication);

mutual authentication, where both users communicating authenticate each other.

When requesting a peer entity authentication service, the two users agree whether their
identities will be protected or not.

The peer entity authentication service is supported by the authentication framework. It
can be used to protect against masquerade and replay, concerning the user’s identities;

b) access control: this service can be used to protect against the unauthorized use of
resources. The access control service is provided by the Directory or another application
and is therefore not a concern of the authentication framework;

c) data confidentiality: this service can be used to provide for protection of data from
unauthorized disclosure. The data confidentiality service is supported by the
authentication framework. It can be used to protect against data interception;

d) data integrity: this service provides proof of the integrity of data in a communication.
The data integrity' service is supported by the authentication framework. It can be used to
detect and protect against manipulation;

e) non-repudiation: this service provides proof of the integrity and origin of data - both
in an unforgeable relationship - which can be verified by any third party at any time.

70 Fascicle VIII.8 - Rec. X.509

A.3 Security mechanisms

The security mechanisms outlined here perform the security services described in A.2.

a) authentication exchange: there are two grades of authentication framework:

simple authentication: relies on the originator supplying its name and password,
which are checked by the recipient;

strong authentication: relies on the use of cryptographic techniques to protect the
exchange of validating information. In the authentication framework, strong
authentication is based upon an asymmetric scheme.

The authentication exchange mechanism is used to support the peer entity authentication
service;

b) encipherment: the authentication framework envisages the encipherment of data during
transfer. Either asymmetric or symmetric schemes may be used. The necessary key exchange
for either case is performed either within a preceding authentication exchange or off-line
any time before the intended communication. The latter case is outside the scope of the
authentication framework. The encipherment mechanism supports the data confidentiality
service;

c) data integrity: this mechanism involves the encipherment of a compressed string of the
relevant data to be transferred. Together with the plain data, this message is sent to the
recipient. The recipient repeats the compressing and subsequent encipherment of the plain
data and compares the results with that created by the originator to prove integrity.

The data integrity mechanism can be provided by encipherment of the compressed plain data
by either an asymmetric scheme or a symmetric scheme. (With the symmetric scheme,
compression and encipherment of data might be processed simultaneously.) The mechanism is
not explicitely provided by the authentication framework. However it is fully provided as
a part of the digital signature mechanism (see below) using an asymmetric scheme.

The data integrity mechanism supports the data integrity service. It also partially
supports the non-repudiation service (that service also needs the digital signature
mechanism for its requirement to be fully met);

d) digital signature: this mechanism involves the encipherment, by the originator’s secret
key, of a compressed string of the relevant data to be transferred. The digital signature
together with the plain data is sent to the recipient. Similarly to the case of the data
integrity mechanism, this message is processed by the recipient to prove integrity. The
digital signature mechanism also proves the authenticity of the originator and the
unambiguous relationship between the originator and the data that was transferred.

i
The authentication framework supports the digital signature mechanism using an asymmetric
scheme.

The digital signature mechanism supports the data integrity service and also supports the
non-repudiation service.

A.4 Threats protected against by the security services

The table at the end of this Annex indicates the security threats which each security service
can protect against. The presence of an asterisk (*) indicates that a certain security service
affords protection against a certain threat.

Fascicle VIII.8 - Rec. X.509 71

A.5 Negotiation o f security services and mechanisms

The provision of security features during an instance of communication requires the negotiation
of the context in which security services are required. This entails agreement on the type of
security mechanisms and security parameters that are necessary to provide such security services.
The procedures required for negotiating mechanisms and parameters can either be carried out as an
integral part of the normal connection establishment procedure or as a separate process. The precise
details of these procedures for negotiation are not specified in this Annex.

THREATS

Identity Interception

Data interception

Masquerade

Replay

Manipulation

Repudiation

ANNEX B

(to Recommendation X.509)

An introduction to public key cryptography

This Annex does not form an integral part of this Recommendation.

In conventional cryptographic systems, the key used to encipher information by the originator
of a secret message is the same as that used to decipher the message by the legitimate recipient.

In public key cryptosystems (PKCS), however, keys come in pairs, one key of which is used for
enciphering and the other for deciphering. Each key pair is associated with a particular user X. One
of the keys, known as the public key (Xp) is publicly known, and can be used by any user to encipher
data. Only X, who possesses the complementary secret key (Xs) may decipher the data. (This is
represented notationally by D = Xs[Xp[D]].) It is computationally infeasible to derive the secret key
from knowledge of the public key. Any user can thus communicate a piece of information which only X
can find out, by enciphering it under Xp. By extension, two users can communicate in secret, by using
each other’s public key to encipher the data, as shown in Figure B -l /X.509.

SERVICES

Entity Data Data Non-
Authentication Confidentiality Integrity Repudiation

* (if req’d)

(identity) * (data)

72 Fascicle VTII.8 - Rec. X.509

@ x ' = As[e'l 0 e' = A plx ']

T0704470-4J

FIGURE B-l/X.509

Use of a PKCS to exchange secret information

User A has public key Ap and secret key As, and user B has another set of keys, Bp and Bs. A
and B both know the public keys of each other, but are unaware of the secret key of the other party.
A and B may therefore exchange secret information with one another using the following steps
(illustrated in Figure B-l/X.509):

1) A wishes to send some secret information x to B. A therefore enciphers x under B’s
enciphering key and sends the enciphered information e to B. This is represented by:
e = Bp[x].

2) B may now decipher this encipherment e to obtain the information x by using the secret
decipherment key Bs. Note that B is the only possessor of Bs, and because this key may
never be disclosed or sent, it is impossible for any other party to obtain the information
x. The possession of Bs determines the identity of B. The decipherment operation is
represented by:
x = Bs[e], or x = Bs[Bp[x]].

3) B may now similarly send some secret information, x 1, to A, under A’s enciphering key,
Ap:
e ’ = Ap[x'].

4) A obtains x ' by deciphering e ':
x' = As[e'], or x' = As[Ap[x']].

By this means, A and B have exchanged secret information x and x '. This information may not
be obtained by anyone other than A and B, providing that their secret keys are not revealed.

Such an exchange can, as well as transferring secret information between the parties, serve to
verify their identities. Specifically, A and B are identified by their possession of the secret
deciphering keys, As and Bs respectively. A may determine if B is in possession of the secret
deciphering key, Bs, by having returned part of his information x in B’s message x 1. This indicates
to A that communication is taking place with the possessor of Bs. B may similarly test the identity
of A.

It is a property of some PKCS that the steps of decipherment and encipherment can be reversed,
as in D = Xp[Xs[D]]. This allows a piece of information which could only have been originated by X,
to be readable by any user (who has possession of Xp). This can therefore be used in the certifying
of the source of information, and is the basis for digital signatures. Only PKCS which have this
(permutability) property are suitable for use in this authentication framework. One such algorithm is
described in Annex C.

For further information, see:
DIFFIE, W. and HELLMAN, M. E. (November 1976) - New Directions in Cryptography, IEEE Transactions on
Information Theory, IT-22, No. 6.

Fascicle Vm.8 - Rec. X.509 73

ANNEX C

(to Recommendation X.509)

The RSA public key cryptosystem

This Annex does not form an integral part of this Recommendation.

Note - The cryptosystem specified in this Annex, which was invented by R. L. Rivest,
A. Shamir and L. Adleman, is widely known as "RSA".

C.l Scope and field o f application

It is beyond the scope of this paper to discuss RSA fully. However, a brief description is
given on the method, which relies on the use of modular exponentiation.

C.2 References

For further information, see:

1) General

RIVEST, R. L., SHAMIR, A. and ADLEMAN, L. (February 1978) - A Method for Obtaining
Digital Signatures and Public-key Cryptosystems, Communications o f the ACM, 21, 2,
120-126.

2) Key Generation Reference

GORDON, J. - Strong RSA Keys, Electronics Letters, 20, 5, 514-516.

3) Decipherment Reference

QUISQUATER, J. J. and COUVREUR, C. (October 14, 1982) - Fast Decipherment Algorithm for
RSA Public-key Cryptosystems, Electronics Letters, 18, 21, 905-907.

C.3 Definitions

a) public key: the pair of parameters consisting of the Public Exponent and the Arithmetic
Modulus;

Note - The ASN.l data element subjectPublicKey defined as BIT STRING (see Annex G),
should be interpreted in the case of RSA as being of type:

SEQUENCE {INTEGER,INTEGER)

where the first integer is the Arithmetic Modulus and the second is the Public Exponent.
The sequence is represented by means of the ASN.l Basic Encoding Rules.

b) secret key: the pair of parameters consisting of the Secret Exponent and the Arithmetic
Modulus.

C.4 Symbols and abbreviations

X,Y data blocks which are arithmetically less than the modulus

n the Arithmetic Modulus

e the Public Exponent

d the Secret Exponent

p,q the prime numbers whose product forms the Arithmetic Modulus (n).

Note - While the prime numbers are preferably two in number, the use of a Modulus with three-
or more prime factors is not precluded.

mod n arithmetic modulo n.

74 Fascicle VEO - Rec. X.509

C.5 Description
This asymmetric algorithm uses the power function for transformation of data blocks such that:

Y = Xemod n with 0 < X < n

X = Ydmod n 0 < Y < n

which may be satisfied, for example, by
ed mod lcm (p-l,q-l= l,

ed mod (p -l)(q-l)= l

To effect this process, a data block must be interpreted as an integer. This is accomplished by
considering the entire data block to be an ordered sequence of bits (of length 1, say). The integer
is then formed as the sum of the bits after giving a weight of 21"1 to the first bit and dividing the
weight by 2 for each subsequent bit (the last bit has a weight of 1).

The data block length should be the largest number of octets containing fewer bits than the
modulus. Incomplete blocks should be padded in any way desired. Any number of blocks of additional
padding may be added.

C.6 Security requirements

C.6.1 Key lengths
It is recognized that the acceptable key length is likely to change with time, subject to the

cost and availability of hardware, the time taken, advances in techniques and the level of security
required. It is recommended that a value for the length of n of 512 bits be adopted initially, but
subject to further study.
C.6.2 Key generation

The security of RSA relies on the difficulty of factorizing n. There are many algorithms for
performing this operation, and in order to thwart the use of any currently known technique, the
values p and q must be chosen carefully, according to the following rules [e.g. see Reference 2),
Section C.2]:

a) they should be chosen randomly;

b) they should be large;

c) they should be prime;

d) |p-q| should be large;

e) (p+1) must possess a large prime factor;

0 (q+1) must possess a large prime factor;

g) (p-1) must possess a large prime factor, say r;

h) (q-1) must possess a large prime factor, say s;

i) (r-1) must possess a large prime factor;

j) (s-1) must possess a large prime factor.
After generating the public and secret keys, e.g. "Xp" and "Xs" as defined in § 3.3 and § 4.1

of this Recommendation which consist of d, e and n, the values p and q together with all other data
produced such as the product (p-1) (q-1) and the large prime factors should preferably be destroyed.
However, keeping p and q locally can improve throughput in decryption by two to four times. The
decision to keep p and q is considered to be a local matter [Reference 3)].

It must be ensured that e > log2(n) in order to prevent attack by taking the e’th root mod n to
disclose the plaintext.

C.7 Public exponent
The Public Exponent (e) could be common to the whole environment, in order to minimize the

length of that part of the public key that actually has to be distributed, in order to reduce
transmission capacity and complexity of transformation (see Note 1).

Fascicle VHI.8 - Rec. X.509 75

Exponent e should be large enough but such that exponentiation can be performed efficiently
with regard to processing time and storage capacity. If a fixed public exponent e is desired, there
are notable merits for the use of the Fermat Number F4 (see Note 2).

F4 = 22* + 1

= 65537 decimal, and

= 1 0000 0000 0000 0001 binary.

Note 1 - Although both Modulus n and Exponent e are public, the Modulus should not be the
part which is common to a group of users. Knowledge of Modulus "n", Public Exponent "e" and Secret
Exponent "d" is sufficient to determine the factorization of "n". Therefore if the modulus was
common, everyone could deduce its factors, thereby finding everyone else’s secret exponent.

Note 2 - The fixed exponent should be large and prime but it should also provide efficient
processing. Fermat Number F4 meets these requirements, e.g. authentication takes only 17
multiplications and is on the average 30 times faster than decipherment.

C.8 Conformance
Whilst this Annex specifies an algorithm for the public and secret functions, it does not

define the method whereby the calculations are carried out; therefore there may be different products
which comply with this Annex and are mutually compatible.

ANNEX D

(to Recommendation X.509)

Hash functions

This Annex does not form an integral part of this Recommendation.

D.l Requirements for hash functions
To use a hash function as a secure one-way function, it must not be possible to obtain easily

the same hash result from different combinations of the input message.

A strong hash function will meet the following requirements:

a) the hash function must be one-way, i.e. given any possible hash result it must be
computationally infeasible to construct an input message which hashes to this result;

b) the hash function must be collision-free, i.e. it must be computationally infeasible to
construct two distinct input messages which hash to the same result.

D.2 Description of a hash function
The following hash function ("square-mod n") performs the compression of the data on a block by

block basis.

Hashing is done in three major steps:

1) The string of data to be hashed is divided into blocks B of equal length. This length is
determined by the characteristics of the asymmetric cryptosystem used for signing. With
the RSA cryptosystem, this length (in octets) is the largest integer, 1, such that, with
modulus n, 16 1 < log2 n.

76 Fascicle VIII.8 - Rec. X.509

2) For non-invertibility reasons each octet of the block is split in half. Each of the halves
is headed ("padded") by binary ones. By this zoning, stiffness or redundancy is introduced
that increases the non-invertibility property of the hash function considerably. Each
block generated in step 1 is spread to the length of the modulus n.

3) Each block resulting from step 2 is added to the previous block modulo 2, squared, and
reduced modulo n, until all m blocks are processed.

The result is thus the value Hm, where

H0 = 0
Hi = (Hj.j © Bi)2 mod n, for 1 < i < m

If the last block of the data to be hashed is incomplete, it is padded with Ts.

ANNEX E

(to Recommendation X.509)

Threats protected against by the strong authentication method

This Annex does not form an integral part of this Recommendation.

The strong authentication method described in this Recommendation offers protection against the
threats as described in Annex A for strong authentication.

In addition, there is a range of potential threats that are specific to the strong
authentication method itself. These are:

Compromise of the user's secret key - one of the basic principles of strong authentication is
that the user’s secret key remain secure. A number of practical methods are available for the user to
hold his secret key in a manner that provides adequate security. The consequences of the compromise
are limited to subversion of communication involving that user.

Compromise of the CA’s secret key - that the secret key of a CA remain secure is also a basic
principle of strong authentication. Physical security and "need to know" methods apply. The
consequences of the compromise are limited to subversion of communication involving anV user
certified by that CA.

Misleading CA into producing an invalid certificate - the fact that CAs are off-line affords
some protection. The onus is on the CA to check that purported strong credentials are valid before
creating a certificate. The consequences of the compromise are limited to subversion of communication
involving the user for whom the certificate was created, and anyone impacted by the invalid
certificate.

Collusion between a rogue CA and user - such a collusive attack will defeat the method. This
would constitute a betrayal of the trust placed in the CA. The consequences of a rogue CA are limited
to subversion of communication involving any user certified by that CA.

Forging of a certificate - the strong authentication method protects against the forging of a
certificate by having the CA sign it. The method depends on maintaining the secrecy of the CA’s
secret key.

Forging of a token - the strong authentication method protects against the forging of a token
by having the sender sign it. The method depends on maintaining the secrecy of the sender’s secret
key.

Replay of a token - the one- and two-way authentication methods protect against the replay of
a token by the inclusion of a timestamp in the token. The three-way method does so by checking the
random numbers.

Attack on the cryptographic system - the likelihood of effective cryptanalysis of the system,
based on advances in computational number theory and leading to the need for a greater key length are
reasonably predictable.

Fascicle Vffl.S - Rec. X.509 77

ANNEX F

(to Recommendation X.509)

Data confidentiality

This Annex does not form an integral part of this Recommendation.

F.l Introduction
The process of data confidentiality can be initiated after the necessary keys for encipherment

have been exchanged. This might be provided by a preceding authentication exchange as described in
§ 9 or by some other key exchange process, the latter being outside the scope of this document.

Data confidentiality can be provided either by the application of an asymmetric or symmetric
enciphering scheme.

F.2 Data confidentiality by asymmetric encipherment

In this case Data Confidentiality is performed by means of an originator enciphering the data
to be sent using the intended recipient’s public key: the recipient will then decipher it using its
secret key.

F.3 Data confidentiality by symmetric encipherment
In this case Data Confidentiality is achieved by the use of a symmetric enciphering algorithm.

Its choice is outside the scope of the authentication framework.

Where an authentication exchange according to § 9 has been carried out by the two parties
involved, then a key for the usage of a symmetric algorithm can be derived. Choosing secret keys
depends on the transformation to be used. The parties must be sure that they are strong keys. This
Recommendation does not specify how this choice is made, although clearly this would need to be
agreed by the parties concerned, or specified in other standards.

ANNEX G

(to Recommendation X.509)

Authentication framework in ASN.l

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l type, macro and value definitions contained in this
Recommendation in the form of the ASN.l module, "AuthenticationFramework".

AuthenticationFramework {joint-iso-ccitt ds(5) modules(l)
authenticationFramework(7)}

DEFINITIONS
BEGIN

EXPORTS Algorithmldentifier, AuthorityRevocationList, CACertificate, Certificate,
Certificates, CertificationPath, CertificateRevocationList, UserCertificate,
CrossCertificatePair, UserPassword, ALGORITHM,
ENCRYPTED, PROTECTED, SIGNATURE, SIGNED;

78 Fascicle VIIL8 - Rec. X.509

IMPORTS
informationFramework, selectedAttributeTypes, upperBounds

FROM UsefulDefinitions {joint-iso-ccitt ds(5)modules(l)
usefulDefinitions(O)}

Name, ATTRIBUTE,ATTRIBUTE-SYNTAX
FROM InformationFramework informationFramework

ub-user-passwordFROM Upper Bounds upperBounds;

— types

Certificate

Version
SerialNumber

Validity

SIGNED SEQUENCE{
version
serialNumber
signature
issuer
validity
subject
subjectPublicKeylnfo

INTEGER { 1988(0)}
INTEGER

::= SEQUENCE{
notBefore
not After

SubjectPublicKeylnfo ::= SEQUENCE{
algorithm
subjectPublicKey

Algorithmldentifier ::= SEQUENCE{
algorithm
parameters

Certificates ::= SEQUENCE{
certificate
certificationPath

[0] Version DEFAULT 1988,
SerialNumber,
Algorithmldentifier,
Name,
Validity,
Name,
SubjectPublicKeylnfo}

UTCTime
UTCTime}

Algorithmldentifier
BIT STRING}

OBJECT IDENTIFIER,
ANY DEFINED BY algorithm OPTIONAL}

Certificate,
ForwardCertificationPath OPTIONAL}

ForwardCertificationPath ::= SEQUENCE OF CrossCertificates

CertificationPath SEQUENCER
UserCertificate
theCACertificates

CrossCertificates ::= SET OF Certificate

Certificate,
SEQUENCE OF CertificatePair

OPTIONAL}

CertificateList

CertificatePair

—attribute types

UserCertificate

CACertificate

SIGNED SEQUENCE{
signature
issuer
lastUpdate
revokedCertificates

SEQUENCE{
forward [0]
reverse [1]

Algorithmldentifier,
Name,
UTCTime,

SIGNEDSEQUENCE OF SEQUENCE(
signature Algorithmldentifier,
issuer Name,
UserCertificate SerialNumber,
revocationDate UTCTime}

OPTIONAL}

Certificate OPTIONAL,
Certificate OPTIONALreverse [ij ^eruncaie u r i iu w /

— at least one of the pair must be present —}

ATTRIBUTE
WITH ATTRIBUTE-SYNTAXCertificate

::= ATTRIBUTE
WITH ATTRIBUTE-SYNT AXCertif icate

Fascicle VHI.8 - Rec. X.509

CrossCertificatePair

CertificateRevocationList

AuthorityRevocationList

UserPassword

— macros

ALGORITHM MACRO
BEGIN
TYPE NOTATION
VALUE NOTATION
END — of ALGORITHM

ENCRYPTED MACRO
BEGIN

TYPE NOTATION n=
VALUENOTATION n

— the value o f the bit string is generated by
— taking the octets which form the complete
— encoding (using the ASN.l Basic Encoding Rules)
— of the value o f the ToBeEnciphered type and
— applying an encipherment procedure to those octets—

END

ATTRIBUTE
WITH ATTRIBUTE-SYNTAXCertificatePair

ATTRIBUTE
WITH ATTREBUTE-SYNTAXCertificateList

ATTRIBUTE
WITH ATTRIBUTE-SYNTAXCertificateList

ATTRIBUTE
WITH ATTRIBUTE-SYNTAX
OCTETSTRING(SIZE(0...ub-user-password))
MATCHES FOR EQUALITY

"PARAMETER" type
value(VALUE OBJECT IDENTIFIER)

type (ToBeEnciphered)
value (VALUE BIT STRING

SIGNED MACRO
BEGIN
TYPE NOTATION
VALUE NOTATION

type (ToBeSigned)
value(VALUE

SEQUENCE{
ToBeSigned,
Algorithmldentifier, — of the algorithm used to generate the signature
ENCRYPTED OCTET STRING
— where the octet string is the result
— of the hashing o f the value of
— "ToBeSigned" —)

)
END — of SIGNED

SIGNATURE MACRO
BEGIN

TYPE NOTATION

VALUE NOTATION

“= type (OfSignature)

n= value(VALUE

SEQUENCE{
Algorithmldentifier,
— o f the algorithm used to compute the signature
ENCRYPTED OCTET STRING
— where the octet string is a function (e.g. a compressed or hashed version)
— o f the value "OfSignature", which may include the identifier o f the
— algorithm used to compute the signature — }

)
END — of SIGNATURE
PROTECTED MACRO “= SIGNATURE

END — of Authentication Framework Definitions

Fascicle VHI.8 - Rec. X.509

ANNEX H

(to Recommendation X.509)

Reference Definition of algorithm object identifiers

This Annex is not an integral part of the Recommendation.

This Annex defines object identifiers assigned to authentication and encryption algorithms, in
the absence of a formal register. It is intended to make use of such a register as it becomes
available. The definitions take the form of the ASN.l module, AlgorithmObjectldentifiers.

)

AlgorithmObjectldentifiers {joint-iso-ccitt ds(5) modules(l)
algorithmObjectIdentifiers(8)}

DEFINITIONS n=
BEGIN

EXPORTS
encryptionAlgorithm, hashAlgorithm, signatureAlgorithm,
rsa,squareMod-n,sqMod-nWithRSA;

IMPORTS
algorithm,authenticationFramework

FROM UsefulDefinitions{joint-iso-ccitt ds(5)modules(l)
usefulDefinitions(0)}

ALGORITHM FROM AuthenticationFramework authenticationFramework;

— categories o f object identifier

encryptionAlgorithm OBJECT IDENTIFIER ::= {algorithm 1}

hashAlgorithm OBJECT IDENTIFIER ::= {algorithm 2}

signatureAlgorithm OBJECT IDENTIFIER ::= {algorithm 3}

— algorithms

rsa ALGORITHM
PARAMETER KeySize
n= {encryptionAlgorithm 1)

KeySize n— INTEGER

sqMod-n ALGORITHM
PARAMETER BlockSize
n= {hashAlgorithm 1}

BlockSize n= INTEGER
sqMod-nWithRSA ALGORITHM

PARAMETER KeyAndBlockSize
n= {signatureAlgorithm 1}

KeyAndBlockSize n= INTEGER

END — of Algorithm Object Identifier Definitions

Fascicle VHI.8 - Rec. X.509 81

Recomendacion X.511

LA GUIA - DEFINICION DEL SERVICIO ABSTRACTO :)

(Melbourne, 1988)

INDICE

0 Introduccion

1 Alcance y campo de aplicacion

SECCION 1 - Generalidades

2 Referencias

3 Definiciones

4 Abreviaturas

5 Convenios de descripcion

SECCION 2 - Servicio abstracto

6 Vision de conjunto del servicio de Guia

7 Tipos de informacion

8 Operaciones de vincular y desvincular

9 Operaciones de lectura de la guia

10 Operaciones de busqueda en la guia

11 Operacion de modificacion de la guia

12 Errores

Anexo A - Servicio abstracto en NSA.l

Anexo B - Identificadores de objeto de guia

1) La Recomendacion X.511 y la norma ISO 9594-3, Information Processing Systems - Open Systems
Interconnection - The Directory - Abstract Service Definition (Sistemas de procesamiento de
informacion - Interconexion de sistemas abiertos - La guia - Definicion del servicio abstracto)
se redactaron en estrecha colaboracion y estan tecnicamente alineadas.

82 Fasciculo VHI.8 - Rec. X.511

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application-entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation defines the capabilities provided by the Directory to its users.

0.4 Annex A provides the ASN.l module which contains all the definitions associated with the
abstract service.

1 Scope and field of application

1.1 This Recommendation defines in an abstract way the externally visible service provided by the
Directory.

1.2 This Recommendation does not specify individual implementation or products.

SECTION 1 - General

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model.
Recommendation X.208 - Specification of Abstract Syntax Notation One (ASN.l).
Recommendation X.500 - The Directory - Overview of Concepts, Models and Services.

Recommendation X.501 - The Directory - Models.
Recommendation X.518 - The Directory - Procedures for Distributed Operation.

Recommendation X.519 - The Directory - Protocol Specifications.
Recommendation X.520 - The Directory - Selected Attribute Types.

Recommendation X.521 - The Directory - Selected Object Classes.

Recommendation X.509 - The Directory - Authentication Framework.

Recommendation X.219 - Remote Operations - Model, Notation and Service Definition.

Recommendation X.229 - Remote Operations - Protocol Specification.
Recommendation X.407 - Abstract Service Definition Conventions.

Fascicle VIII.8 - Rec. X.511 83

Definitions
Basic Directory definitions
This Recommendation makes use of the following terms defined in Recommendation X.500:
a) Directory;
b) Directory Information Base (DIB);
c) (Directory) User.

Directory model definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a) Directory System Agent;
b) Directory User Agent.

Directory information base definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a) alias entry;

b) Directory Information Tree;

c) (Directory) entry;

d) immediate superior;

e) immediately superior entry/object;

f) object;

8) object class;

h) object entry;

i) subordinate;

j) superior.

Directory entry definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:

a) attribute;
b) attribute type;
c) attribute value;
d) attribute value assertion.

Name definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:
a) alias, alias name;
b) distinguished name;
c) (directory) name;
d) purported name;
e) relative distinguished name.

Distributed operations definitions

This Recommendation makes use of the following terms defined in Recommendation X.518:

a) chaining;
b) referral.

Fascicle Vm.8 - Rec. X.511

3.7 Abstract service definitions
This Recommendation defines the following terms: (
a) filter: an assertion about the presence or value

order to limit the scope of a search;
of certain attributes of an entry in

b) service controls: parameters conveyed as part of
various aspects of its performance;

an abstract-operation which constrain

c) originator: the user that originated an operation.

4 Abbreviations

This Recommendation makes use of the following abbreviations:
AVA Attribute Value Assertion
DIB Directory Information Base
DIT Directory Information Tree
DMD Directory Management Domain
DSA Directory System Agent

DUA Directory User Agent
RDN Relative Distinguished Name

5 Conventions

This Recommendation makes use of the abstract service definition conventions defined in
Recommendation X.407.

SECTION 2 - Abstract service

6 Overview of the directory service

6.1 As described in Recommendation X.501 the services of the Directory are provided through access
points to DUAs, each acting on behalf of a user. These concepts are depicted in Figure 1/X.511.

T07044SO-S8

FIGURE 1 /X.511

Access to the Directory

6.2 In principle, access points to the Directory may be of different types, providing different
combinations of services. It is valuable to consider the Directory as an object, supporting a
number of types of port. Each port defines a particular kind of interaction which the Directory can
participate in with a DUA. Each access point corresponds to a particular combination of port types.

Fascicle VIII.8 - Rec. X.511 85

6.3 Using the notation defined in Recommendation X.407 the Directory can be defined as follows:

directory
OBJECT

PORTS { readPort [S],
searchPort [S],
modifyPort [S]}

::= id-ot-directory

The Directory supplies operations via: Read Ports, which support reading information from a
particular named entry in the DIB; Search Ports, which allow more "exploration" of the DIB; and
Modify Ports, which enable the modification of entries in the DIB.

Note - It is intended that in the future there may be other types of Directory port.

6.4 Similarly, a DUA (from the viewpoint of the Directory) can be defined as follows:

dua
OBJECT

PORTS { readPort [C],
searchPort [C],
modifyPort [C]}

::= id-ot-dua

The DUA consumes the services provided by the Directory.

6.5 The ports cited from §§ 6.2 to 6.4 can be defined as follows:

readPort
PORT

CONSUMER INVOKES {
Read, Compare, Abandon}

::= id-pt-search

searchPort
PORT

CONSUMER INVOKES {
List, Search)

::= id-pt-search

modifyPort
PORT
CONSUMER INVOKES {

AddEntry, RemoveEntry,
ModifyEntry, ModifyRDN}

::= id-pt-modify

6.6 The operations from the readPort, searchPort and the modifyPort are defined in §§ 9, 10, and 11
respectively.

6.7 These ports are used only as a method of structuring the description of the Directory service.
Conformance to the Directory operations is specified in Recommendation X.519.

7 Information types

7.1 Introduction

7.1.1 This paragraph identifies, and in some cases defines, a number of information types which are
subsequently used in the definition of Directory operations. The information types concerned are
those which are common to more than one operation, are likely to be in the future, or which are
sufficiently complex or self-contained as to merit being defined separately from the operation which
uses them.

8 6 Fascicle VTII.8 - Rec. X.511

7.1.2 Several of the information types used in the definition of the Directory service are actually
defined elsewhere. Paragraph 7.2 identifies types and indicates the source of their definition. Each
of the remaining §§ (7.3 to 7.10) identifies and defines an information type.

7.2 Information types defined elsewhere
7.2.1 The following information types are defined in Recommendation X.501:

a) Attribute;

b) AttributeType;

c) AttributeValue;

d) AttributeValueAssertion;

e) DistinguishedName;

f) Name;

g) RelativeDistinguishedName.
7.2.2 The following information type is defined in Recommendation X.520:

a) PresentationAddress.

7.2.3 The following information types are defined in Recommendation X.509:

a) Certificate;

b) SIGNED,

c) CertificationPath.

7.2.4 The following information type is defined in Recommendation X.219:

a) InvokelD.

7.2.5 The following information types are defined in Recommendation X.518:

a) OperationProgress;

b) ContinuationReference.

7.3 Common arguments
7.3.1 The Common Arguments information may be present to qualify the invocation of each operation that
the Directory can perform.

CommonArguments ::= SET {
[30] ServiceControls DEFAULT { },
[29] SecurityParameters DEFAULT { },
requestor [28] DistinguishedName

OPTIONAL,
[27] OperationProgress DEFAULT notStarted,
aliasedRDNs [26] INTEGER OPTIONAL,
extensions [25] SET OF EXTENSION OPTIONAL]

Extension ::= SET {
identifier [0] INTEGER,
critical [1] BOOLEAN DEFAULT FALSE,
item [2] ANY DEFINED BY identifier]

7.3.2 The various components have the meanings as defined in §§ 7.3.2.1 to 7.3.2.4.

7.3.2.1 The ServiceControls component is specified in § 7.5. Its absence is deemed equivalent to
there being an empty set of controls.

7.3.2.2 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent
to there being an empty set of security parameters.

7.3.2.3 The requestor DistinguishedName identifies the originator of a particular abstract-
operation. It holds the name of the user as identified at the time of binding to the Directory. It
may be required when the request is to be signed (see § 7.10), and shall hold the name of the user
who initiated the request.

Fascicle VHI.8 - Rec. X.511 87

7.3.2.4 The OperationProgress defines the role that the DSA is to play in the distributed
evaluation of the request. It is more fully defined in Recommendation X.518.

7.3.2.5 The aliasedRDNs component indicates to the DSA that the object component of the operation
was created by the dereferencing of an alias on an earlier operation attempt. The integer value
indicates the number of RDNs in the object that came from dereferencing the alias. (The value would
have been set in the referral response of the previous operation.)

7.3.2.6 The extensions component provides a mechanism to express standardized extensions to the
form of the argument of a Directory abstract-operation.

Note - The form of the result of such an extended abstract-operation is identical to that of
the non-extended version. (Nonetheless, the result of a particular extended abstract-operation may
differ from its non-extended counterpart).

The subcomponents are as defined in §§ 7.3.2.6.1 to 7.3.2.6.3.

7.3.2.6.1 The identifier serves to identify a particular extension. Values of this component shall
be assigned only by future versions of this series of Recommendations.
7.3.2.6.2 The critical subcomponent allows the originator of the extended abstract-operation to
indicate that the performance of only the extended form of the abstract-operation is acceptable (i.e.
that the non-extended form is not acceptable). In this case the extension is a critical extension.
If the Directory, or some part of it, is unable to perform a critical extension it returns an
indication of unavailableCriticalExtension (as a ServiceError or PartialOutcomeQualifier). If the
Directory is unable to perform an extension which is not critical, it ignores the presence of the
extension.

7.3.2.6.3 The item subcomponent provides the information needed for the Directory to perform the
extended form of the abstract-operation.

7.4 Common results
7.4.1 The CommonResults information should be present to qualify the result of each retrieval
operation that the Directory can perform.

CommonResults SET {
[30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName

OPTIONAL,
aliasDereferenced [28] BOOLEAN

DEFAULT FALSE)
7.4.2 The various components have the meanings as defined in §§ 7.4.2.1 to 7.4.2.3.
7.4.2.1 The SecurityParameters component is specified in § 7.9. Its absence is deemed equivalent
to there being an empty set of security parameters.
7.4.2.2 The performer DistinguishedName identifies the performer of a particular operation. It may
be required when the result is to be signed (see § 7.10), and shall hold the name of the DSA which
signed the result.

7.4.2.3 The aliasDereferenced Component is set to TRUE when the purported name of an object or
base object which is the target of the operation included on alias which was dereferenced.
7.5 Service controls
7.5.1 A ServiceControls parameter contains the controls, if any, that are to direct or constrain the
provision of the service.

ServiceControls n= SET {
options [0] BIT STRING {

preferChaining(O)
chainingProhibited (1),
localScope (2),
dontUseCopy (3),
dontDereferenceAliases(4)}
DEFAULT {),

priority [1] INTEGER (
low (0),
medium (1),
high (2)) DEFAULT medium,

88 Fascicle Vm.8 - Rec. X.511

timeLimit [2] INTEGER OPTIONAL,

sizeLimit [3] INTEGER OPTIONAL,

scopeOfReferral [4] INTEGER {
dmd(O),
country(l)}
OPTIONAL }

7.5.2 The various components have the meanings as defined in §§ 7.5.2.1 to 1.52.5.

7.5.2.1 The options component contains a number of indications, each of which, if set, asserts the
condition suggested. Thus:

a) preferChaining indicates that the preference is that chaining, rather than referrals, be
used to provide the service. The Directory is not obliged to follow this preference;

b) chainingProhibited indicates that chaining, and other methods of distributing the request
around the Directory, are prohibited;

c) localScope indicates that the operation is to be limited to a local scope. The definition
of this option is itself a local matter. For example, within a single DSA or a single
DMD;

d) dontUseCopy indicates that copied information (as defined in Recommendation X.518) shall
not be used to provide the service;

e) dontDereference A liases indicate that any alias used to identify the entry affected by an
operation is not to be dereferenced;

Note - This is necessary to allow reference to an alias entry itself rather than the aliased
entry, e.g. in order to read the alias entry.

If this component is omitted, the following are assumed: no preference for chaining but
chaining not prohibited, no limit on the scope of the operation, use of copy permitted, and aliases
will be dereferenced (except for modify operations where aliases will never be dereferenced).

7.5.2.2 The priority (low, medium or high) at which the service is to be provided. Note that this
is not a guaranteed service in that Directory, as a whole, does not implement queuing. There is no
relationship implied with the use of "priorities" in underlying layers.

7.5.2.3 The timeLimit indicates the maximum elapsed time, in seconds, within which the service
shall be provided. If the constraint cannot be met, an error is reported. If this component is
omitted, no time limit is implied. In the case of time limit exceeded on a List or Search, the result
is an arbitrary selection of the accumulated results.

Note - This component does not imply the length of time spent processing the request during
the elapsed time: any number of DSAs may be involved in processing the request during the elapsed
time.

7.5.2.4 The sizeLimit is only applicable to List and Search operations. It indicates the maximum
number of objects to be returned. In the case of size limit exceeded, the results of List and Search
may be an arbitrary selection of the accumulated results, equal in number to the size limit. Any
further results shall be discarded.

7.5.2.5 The scopeOfReferral indicates the scope to which a referral returned by a DSA should be
relevant. Depending on whether the value dmd or country are selected, only referrals to other DSAs
within the selected scope will be returned.

This applies to the referrals in both a ReferralError and the unexplored parameter of List and
Search results.

7.5.3 Certain combinations of priority, timeLimit, and sizeLimit may result in conflicts. For
example, a short time limit could conflict with low priority; a high size limit could conflict with a
low time limit, etc.

7.6 Entry information selection
7.6.1 An EntrylnformationSelection parameter indicates what information is being requested from an
entry in a retrieval service.

Fascicle VHL8 - Rec. X.511 89

EntrylnformationSelection ::= SET {
attributeTypes

CHOICE {
allAttributes [0] NULL,
select [1]] SET OF AttributeType
— empty set implies no attributes
— are requested —}

DEFAULT allAttributes NULL,

InfoTypes [2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues (1) }
DEFAULT attributeTypesAndValues }

7.6.2 The various components have the meanings as defined in §§ 7.6.2.1 and 7.6.2.2.

7.6.2.1 The attributeTypes component specifies the set of attributes about which information is
requested:

a) if the select option is chosen, then the attributes involved are listed. If the list is
empty, then no attributes will be returned. Information about a selected attribute shall
be returned if the attribute is present. An AttributeError with the noSuchAttribute
problem shall only be returned if none of the attributes selected is present;

b) if the allAttributes option is selected, then information is requested about all
attributes in the entry.

Attribute information is only returned if access rights are sufficient. A SecurityError (with
an insufficientAccessRights problem) will only be returned in the case where access rights preclude
the reading of all attribute values requested.

7.6.2.2 The infoTypes component specifies whether both attribute type and attribute value
information (the default) or attribute type information only is requested. If the attributeTypes
component (§ 7.6.2.1) is such as to request no attributes, then this component is not meaningful.

7.7 Entry information

7.7.1 An Entrylnformation parameter conveys selected information from an entry.
Entrylnformation ::= SEQUENCE {

DistinguishedName,
fromEntry BOOLEAN DEFAULT TRUE,
SET OF CHOICE {

AttributeType,
Attribute) OPTIONAL }

7.7.2 The DistinguishedName of the entry is always included.

7.7.3 The fromEntry parameter indicates whether the information was obtained from the entry (TRUE) or
a copy of the entry (FALSE).

7.7.4 A set of AttributeTypes or Attributes are included, if relevant, each of which may be alone or
accompanied by one or more attribute values.

7.8 Filter

7.8.1 A Filter parameter applies a test that is either satisfied or not by a particular entry. The
filter is expressed in terms of assertions about the presence or value of certain attributes of the
entry, and is satisfied if and only if it evaluates to TRUE.

Note - A Filter may be TRUE, FALSE, or undefined.
Filter ::= CHOICE {

item [0] Filterltem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }

90 Fascicle VIIL8 - Rec. X.511

Filterltem ::= CHOICE {
equality [0] AttributeValueAssertion,
substrings [1] SEQUENCE {

type AttributeType,
strings SEQUENCE OF CHOICE {

Initial [0] AttributeValue,
any [1] AttributeValue,
final [2] AttributeValue}},

greaterOrEqual [2] AttributeValueAssertion,
lessOrEqual [3] AttributeValueAssertion,
present [4] AttributeType,
approximateMatch [5] AttributeValueAssertion }

7.8.2 A Filter is either a Filterltem (see § 7.8.3), or an expression involving simpler Filters
composed together using the logical operators and, or, and not. The Filter is undefined if it is a
Filterltem which is undefined, or if it involves one or more simpler Filters, all of which are
undefined. Otherwise, where the Filter is:

a) an item, it is TRUE if and only if the corresponding Filterltem is TRUE;

b) an and, it is TRUE unless any of the nested Filters is FALSE;

Note - Thus, if there are no nested Filters the and evaluates to TRUE.

c) an or, it is FALSE unless any of the nested Filters is TRUE;

Note - Thus, if there are no nested Filters the or evaluates to FALSE.

d) a not, it is TRUE if and only if the nested Filter is FALSE.

7.8.3 .A Filterltem is an assertion about the presence or value(s) of an attribute of a particular
type in the entry under test. Each such assertion is TRUE, FALSE, or undefined.

7.8.3.1 Every Filterltem includes an AttributeType which identifies the particular attribute
concerned. /

7 .8.3 .2 Any assertion about the value of such an attribute is only defined if the AttributeType is
known, and the purported AttributeValue(s) conforms to the attribute syntax defined for that
attribute type.

Note 1 - Where these conditions are not met the Filterltem is undefined.
Note 2 - Access control restrictions may require that the Filterltem be considered undefined.

7 .8.3.3 Assertions about the value of an attribute are evaluated using the matching rules
associated with the attribute syntax defined for that attribute type. A matching rule not defined for
a particular attribute syntax cannot be used to make assertions about that attribute.

Note - Where this condition is not met, the Filterltem is undefined.

7 .8.3.4 A Filterltem may be undefined (as described in §§ 7.8.3.2 and 7.8.3.3 above). Otherwise,
where the Filterltem asserts:

a) equality, it is TRUE if and only if there is a value of the attribute which is equal to
that asserted;

b) substrings, it is TRUE if and only if there is a value of the attribute in which the
specified substrings appear in the given order. The substrings shall be non-overlapping,
and may (but need not) be separated from the ends of the attribute value and from one
another by zero or more string elements.

If initial is present, the substring shall match the initial substring of the attribute
value; if final is present, the substring shall match the final substring of the attribute
value; if any is present, the substring may match any substring in the attribute value;

Fascicle VTII.8 - Rec. X.511 91

c) greaterOrEqual, it is TRUE if and only if the relative ordering (as defined by the
appropriate ordering algorithm) places the supplied value before or equal to any value of
the attribute;

d) lessOrEqual, it is TRUE if and only if the relative ordering (as defined by the
appropriate ordering algorithm) places the supplied value after or equal to any value of
the attribute;

e) present, it is TRUE if and only if such an attribute is present in the entry;

f) approximateMatch, it is TRUE if and only if there is a value of the attribute which
matches that which is asserted by some locally-defined approximate matching algorithm
(e.g. spelling variations, phonetic match, etc.). There are no specific guidelines for
approximate matching in this version of the Recommendation. If approximate matching is not
supported, this Filterltem should be treated as a match for equality.

7.9 Security Parameters

7.9.1 The SecurityParameters govern the operation of various security features associated with a
Directory operation.

Note - These parameters are conveyed from sender to recipient. Where the parameters appear in
the argument of an abstract-operation the requestor is the sender, and the performer is the
recipient. In a result, the roles are reversed.

SecurityParameters ::= SET {
certification-path [0]
CertificationPath OPTIONAL,
name [1] DistinguishedName

OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL

}

ProtectionRequest INTEGER {
none(O),
signed (1)}

7.9.2 The various components have the meanings as defined in §§ 7.9.2.1 to 7.9.2.5.
7.9.2.1 The CertificationPath component consists of the sender’s certificate, and, optionally, a
sequence of certificate pairs. The certificate is used to associate the sender’s public key and
distinguished name, and may be used to verify the signature on the argument or result. This parameter
shall be present if the argument or result is signed. The sequence of certification pairs consists of
certification authority cross certificates. It is used to enable the sender’s certificate to be
validated. It is not required if the recipient shares the same certification authority as the
sender. If the recipient requires a valid set of certificate pairs, and this parameter is not
present, whether the recipient rejects the signature on the argument or result, or attempts to
generate the certification path, is a local matter.

1.9.22 The name is the distinguished name of the first intended recipient of the argument or
result. For example, if a DUA generates a signed argument, the name is the distinguished name of the
DSA to which the operation is submitted.

7.9.2.3 The time is the intended expiry time for the validity of the signature, when signed
arguments are used. It is used in conjunction with the random number to enable the detection of
replay attacks.
7.9.2.4 The random component is a number which should be different for each unexpired token. It is
used in conjunction with the time parameter to enable the detection of replay attacks when the
argument or result has been signed.
7.9.2.5 The target ProtectionRequest may appear only in the request for an operation to be carried
out, and indicates the requestor’s preference regarding the degree of protection to be provided to
the result. Two levels are provided: none (no protection requested), and signed (the Directory is
requested to sign the result, the default). The degree of protection actually provided to the result
is indicated by the form of result and may be equal to or lower than that requested, based on the
limitations of the Directory.

92 Fascicle VIII.8 - Rec. X.511

7.10 OPTIONALLY-SIGNED

7.10.1 An OPTION ALLY-SIGNED information type is one whose values may, at the option of the generator,
be accompanied by their digital signature. This capability is specified by means of the following
macro:

OPTIONALLY-SIGNED MACRO ::=
BEGIN

TYPE NOTATION ::= type (Type)
VALUE NOTATION ::= value (VALUE

CHOICE { Type, SIGNED Type})
END

7.10.2 The SIGNED macro, which describes the form of the signed form of the information, is specified
in Recommendation X.509.

8 Bind and unbind operations

The DirectoryBind and DirectoryUnbind operations, defined in § 8.1 and § 8.2 respectively, are
used by the DUA at the beginning and end of a particular period of accessing the Directory.

8.1 Directory bind

8.1.1 A DirectoryBind operation is used at the beginning of a period of accessing the Directory.

DirectoryBind ::= ABSTR ACT-BIND
TO { readPort, searchPort, modifyPort }
BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

DirectoryBindArgument ::= SET {
credentials [0] Credentials OPTIONAL,
versions [1] Versions DEFAULT

vl988}

Credentials ::= CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
extemalProcedure [2] EXTERNAL }

SimpleCredentials SEQUENCE{
name [0] DistinguishedName,
validity [1] SET {

timel [0] UTCTime OPTIONAL,
Time2 [1] UTCTime OPTIONAL,
random 1 [2] BIT STRING OPTIONAL,
random2 [3] BIT STRING OPTIONAL } OPTIONAL,
— in most instances the argument for
— time and random are relevant in
— dialogues employing protected password
— mechanisms and derive their meaning
— as per bilateral agreements

password [2] OCTET STRING OPTIONAL }
— the value could be an unprotected
— password or Protectedl or Protected2
— as specified in Recommendation X.509.

StrongCredentials ::= SET {
certification-path[0] CertificationPath

OPTIONAL,
bind-token [1] Token }

Fascicle VTIL8 - Rec. X.511 93

Token ::= SIGNED SEQUENCE {
algorithm [0] Algorithmldentifier,
name [1] DistinguishedName,
time [2] UTCTime,
random [3] BIT STRING }

Versions ::= BIT STRING {vl988(0)}

DirectoryBindResult ::= DirectoryBindArgument
DirectoryBindError ::= SET {

versions [0] Versions DEFAULT vl988,
CHOICE {

serviceError [1] ServiceProblem
securityError [2] SecurityProblem

» >
8.1.2 The various arguments have the meanings as defined in §§ 8.1.2.1 to 8.1.2.2.

8.1.2.1 The Credentials of the DirectoryBindArgument allow the Directory to establish the identity
of the user. They may be either simple, strong (as described in Recommendation X.509) or externally
defined (externalProcedure).

8.1.2.1.1 SimpleCredentials consist of a name (always the distinguished name of an object) and
(optionally) a password. This provides a limited degree of security. If the password is protected as
described in § 5 of Recommendation X.509, then SimpleCredentials includes name, password and
(optionally) time and/or random numbers which are used to detect replay. In some instances a
protected password may be checked by an object which knows the password only after locally
regenerating the protection to its own copy of the password and computing the result with the value
in the bind argument (password). In other instances a direct compare may be possible.
8.1.2.1.2 StrongCredentials consist of a bind token and, optionally, a certificate and sequence of
certification-authority cross-certificate (as defined in Recommendation X.509). This enables the
Directory to authenticate the identity of the request establishing the association, and vice versa.

The arguments of the bind token are used as follows: algorithm is the identifier of the
algorithm employed to sign the information; name is the name of the intended recipient. The time
parameter contains the expiry time of the token. The random number is a number which should be
different for each unexpired token, and may be used by the recipient to detect replay attacks.

8.1.2.1.3 If externalProcedure is used then the semantics of the authentication scheme being used is
outside the scope of the Directory document.

8.1.2.2 The Versions argument of the DirectoryBindArgument identifies the versions of the service
which the DUA is prepared to participate in. For this version of the protocol the value shall be set
to vl988(0).

8.1.2.3 Migration to future versions of the Directory should be facilitated by:

a) any elements of DirectoryBindArgument other than those defined in this Recommendation
shall be accepted and ignored;

b) additional options for named bits of DirectoryBindArgument (e.g. Versions) not defined
shall be accepted and ignored.

8.1.3 Should the bind request succeed, a result will be returned. The result parameters have the
meanings as defined in §§ 8.1.3.1 and 8.1.3.2.

8.1.3.1 The Credentials of the DirectoryBindResult allow the user to establish the identity of the
DSA. They allow information identifying the DSA (that is directly providing the Directory service)
to be conveyed to the DUA. They shall be of the same form (i.e. CHOICE) as those supplied by the
user.

8.1.3.2 The Versions parameter of the DirectoryBindResult indicates which of the versions of the
service requested by the DUA is actually going to be provided by this DSA.

8.1.4 Should the bind request fail, a bind error will be returned as defined in §§ 8.1.4.1 and
8.1.4.2.
8.1.4.1 The Versions parameter of the DirectoryBindError indicates which versions are supported by
this DSA.

94 Fascicle VIII.8 - Rec. X.511

8.1.4.2 A securityError or serviceError shall be supplied as follows:
securityError inappropriateAuthentication

invalidCredentials

serviceError unavailable.

8.2 Directory unbind

8.2.1 A DirectoryUnbind operation is used at the end of a period of accessing the Directory.
DirectoryUnbind ::= ABSTRACT-UNBIND

FROM {readPort, searchPort, modifyPort }

8.2.2 The DirectoryUnbind has no arguments.

9 Directory read operations

There are two "read-like" operations: Read and Compare, defined in §§ 9.1 and 9.2,
respectively. The Abandon operation, defined in § 9.3, is grouped with the Read operations for
convenience.

9.1 Read
9.1.1 A Read operation is used to extract information from an explicitly identified entry. It may
also be used to verify a distinguished name. The arguments of the operation may optionally be signed
(see § 7.10) by the requestor. If so requested, the Directory may sign the result.

Read ::= ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ReadArgument ::= OPTIONALLY-SIGNED SET {
object [0] Name,
selection [1] Selection F13 EntrylnformationSelection

DEFAULT {}
COMPONENTS OF CommonArguments }

ReadResult ::= OPTIONALLY-SIGNED SET {
entry [0] Entrylnformation,
COMPONENTS OF CommonResults }

9.1.2 The various arguments have the meanings as defined in §§ 9.1.2.1 to 9.1.2.3.

9.1.2.1 The object argument identifies the object entry from which the information is requested.
Should the Name involve one or more aliases, they are dereferenced (unless this is prohibited by the
relevant service controls).
9.1.2.2 The selection argument indicates what information from the entry is requested (see
§ 7.6).
9.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying
to the request. For the purposes of this operation the sizeLimit component is not relevant and is
ignored if provided.

9.1.3 Should the request succeed, the result will be returned. The result parameters have the
meanings as defined in § 9.1.3.1 and § 7.4.
9.1.3.1 The entry result parameter holds the requested information (see § 7.7).

9.1.4 Should the request fail, one of the listed errors will be reported. If none of the attributes
explicitly listed in selection can be returned, then an AttributeError with problem noSuchAttribute
will be reported. The circumstances under which other errors will be reported are defined in § 12.

Fascicle Vm.8 - Rec. X.511 95

9.2 Compare

9.2.1 A Compare operation is used to compare a
' request) with the value(s) of a particular attribute

of the operation may optionally be signed (see
Directory may sign the result.

Compare ABSTRACT-OPERATION
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError)

CompareArgument ::= OPTIONALLY-SIGNED
SET {

object [0] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments }

CompareResult ::= OPTIONALLY-SIGNED
SET {

DistinguishedName OPTIONAL,
matched [0] BOOLEAN,
from Entry [1] BOOLEAN DEFAULT TRUE,
COMPONENTS OF CommonResults }

9.2.2 The various arguments have the meanings as defined in §§ 9.2.2.1 to 9.2.2.3.
9.2.2.1 The object argument is the name of the particular object entry concerned. Should the Name
involve one or more aliases, they are dereferenced (unless prohibited by the relevant service
control).
9.2.2.2 The purported argument identifies the attribute type and the value to be compared with
that in the entry.
9.2.2.3 The CommonArguments (see § 7.3) specify the service controls applying to the request. For
the purposes of this operation the sizeLimit component is not relevant and is ignored, if provided.

9.2.3 Should the request succeed (i.e. the comparison is actually carried out), the result will be
returned. The result parameters have the meanings as described in § 9.2.3.1, § 9.2.3.2 and § 7.4.
9.2.3.1 The DistinguishedName is present if an alias was dereferenced and represents the
distinguished name of the object itself.
9.2.3.2 The matched result parameter, holds the result of the comparison. The parameter takes the
value TRUE if the values were compared and matched, and FALSE if they did not.
9.2.3.3 If fromEntry is TRUE the information was compared against the entry; if FALSE some of the
information was compared against a copy.
9.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.

9.3 Abandon

9.3.1 Operations that interrogate the Directory may be abandoned using the Abandon operation if the
user is no longer interested in the result.

Abandon ::= ABSTRACT-OPERATION
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS {AbandonFailed}

AbandonArgument ::= SEQUENCE {
InvokelD [0] InvokelD)

AbandonResult ::= NULL

9.3.2 There is a single argument, the InvokelD which identifies the operation that is to be
abandoned. The value of the invokelD is the same invokelD which was used to invoke the operation
which is to be abandoned.

value (which is supplied as an argument of the
type in a particular object entry. The arguments
§ 7.10) by the requestor. If so requested, the

96 Fascicle VTIL8 - Rec. X.511

9.3.3 Should the request succeed, a result will be returned, although no information will be conveyed
with it. The original operation will fail with an Abandoned error.

9.3.4 Should the request fail, the AbandonFailed error will be reported. This error is described in
§ 12.3.

9.3.5 Abandon is only applicable to interrogation operations, i.e., Read, Compare, List and Search.

9.3.6 A DSA may abandon an operation locally. If the DSA has chained or multicasted the operation to
other DSAs, it may in turn request them to abandon the operation. A DSA may choose not to abandon the
operation and shall then return the AbandonFailed error.

10 Directory search operations

There are two "search-like" operations: List and Search, defined in § 10.1 and § 10.2
respectively.

10.1 List

10.1.1 A List operation is used to obtain a list of the immediate subordinates of an explicitly
identified entry. Under some circumstances, the list returned may be incomplete. The arguments of the
operation may optionally be signed (see § 7.10) by the requestor. If so requested, the Directory may
sign the result.

List ::= ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS{

NameError
ServiceError, Referral, Abandoned,
SecurityError }

List Argument ::= OPTIONALLY-SIGNED SET {
object [0] Name,
COMPONENTS OF CommonArguments }

ListResult ::= OPTIONALLY-SIGNED
CHOICE {

listlnfo SET {
DistinguishedName OPTIONAL,
subordinates [1] SET OF SEQUENCE {

RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE
fromEntry [1] BOOLEAN DEFAULT TRUE),

partialOutcomeQualifier [2]
PartialOutcomeQualifier OPTIONAL

COMPONENTS OF CommonResults },
uncorrelatedListlnfo [0] SET OF

ListResult }
PartialOutcomeQualifier ::= SET {

limitProblem [0] LimitProblem
OPTIONAL,

unexplored [1] SET OF
ContinuationReference OPTIONAL,

unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE }

LimitProblem ::= INTEGER {
timeLimitExceeded (0),
sizeLimitExceeded (1),
administrativeLimitExceeded (2) }

10.1.2 The various arguments have the meanings as defined in § 10.1.2.1 and § 7.3.

Fascicle YIH.8 - Rec. X.511 97

10.1.2.1 The object argument identifies the object entry (or possibly the root) whose immediate
subordinates are to be listed. Should the Name involve one or more aliases, they are dereferenced
(unless prohibited by the relevant service control).

10.1.3 The request succeeds if the object is located regardless of whether there is any subordinate
information to return. The result parameters have the meanings as defined in §§ 10.1.3.1 to 10.1.3.4
and § 7.4.

10.1.3.1 The DistinguishedName is present if an alias was dereferenced. It represents the
distinguished name of the object itself.

10.1.3.2 The subordinates parameter conveys the information on the immediate subordinate, if any,
of the named entry. Should any of the subordinate entries be aliases, they will not be dereferenced.

10.1.3.2.1 The RelativeDistinguishedName is that of the subordinate.

10.1.3.2.2 The fromEntry parameter indicates whether the information was obtained from the entry
(TRUE) or a copy of the entry (FALSE).

10.1.3.2.3 The aliasEntry parameter indicates whether the subordinate entry is an alias entry (TRUE)
or not (FALSE).

10.1.3.3 The PartialOutcomeQualifier consists of three subcomponents as defined in §§ 10.1.3.3.1 to
10.1.3.3.3. This parameter shall be present whenever the result is incomplete.

10.1.3.3.1 The LimitProblem parameter indicates whether the time limit, the size limit, or an
administrative limit has been exceeded. The results being returned are those which were available
when the limit was reached.

10.1.3.3.2 The unexplored parameter shall be present if regions of the DIT were not explored. Its
information allows the DUA to continue the processing of the List operation by contacting other
access points if it so chooses. The parameter consists of a set (possibly empty) of
ContinuationReferences, each consisting of the name of a base object from which the operation may be
progressed, an appropriate value of OperationProgress, and a set of access points from which the
request may be further progressed. The ContinuationReferences that are returned shall be within the
scope of referral requested in the operation service control.

10.1.3.3.3 The unavailableCriticalExtensions parameter indicates, if present, that one or more
critical extensions were unavailable in some part of the Directory.
10.1.3.4 When the DUA has requested a protection request of signed, the uncorrelatedListlnfo
parameter may comprise a number of sets of result parameters originating from and signed by different
components of the Directory. If no DSA in the chain can correlate all the results, the DUA must
assemble the actual result from the various pieces.
10.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.
10.2 Search

10.2.1 A Search operation is used to search a portion of the DIT for entries of interest and to return
selected information from those entries. The arguments of the operation may optionally be signed (see
§ 7.10) by the requestor. If so requested, the Directory may sign the result.

Search ::= ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError)

SearchArgument ::= OPTIONALLY-SIGNED
SET {

baseObject [0] Name,
subset [1] INTEGER {

baseObject (0),
oneLevel(l),
wholeSubtree(2)} DEFAULT baseObject,

filter [2] Filter DEFAULT and {}.

98 Fascicle VHI.8 - Rec. X.511

searchAliases [3] BOOLEAN DEFAULT TRUE,
selection [4] EntrylnformationSelection DEFAULT {}

COMPONENTS OF CommonArguments }

SearchResult ::= OPTIONALLY-SIGNED
CHOICE {
searchlnfo SET {
DistinguishedName OPTIONAL,
entries [0] SET OF Entrylnformation,
partialOutcomeQualifier

[2]PartialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },
uncorrelatedSearchlnfo [0] SET OF

SearchResult }

10.2.2 The various arguments have the meanings as defined in §§ 10.2.2.1 to 10.2.2.3, § 10.2.2.5, and
§ 7.3.
10.2.2.1 The baseObject argument identifies the object entry (or possibly the root) relative to
which the search is to take place.

10.2.2.2 The subset argument indicates whether the search is to be applied to:

a) the baseObject only;

b) the immediate subordinates of the base object only (oneLevel);

c) the base object and all its subordinates (wholeSubtree).

10.2.2.3 The filter argument is used to eliminate entries from the search space which are not of
interest. Information will only be returned on entries which satisfy the filter (see § 7.8).

10.2.2.4 Aliases shall be dereferenced while locating the base object, subject to the setting of
the dontDereferenceAliasesServiceControl. Aliases among the subordinates of the base object shall
be dereferenced during the search, subject to the setting of the searchAliases parameter. If the
searchAliases parameter is TRUE, aliases shall be dereferenced, if the parameter is FALSE, aliases
shall not be dereferenced. If the searchAliases parameter is TRUE, the search shall continue in the
subtree of the aliased object.

10.2.2.5 The selection argument indicates what information from the entries is requested (see
§ 7.6).

10.2.3 The request succeeds if the base object is located, regardless of whether there are any
subordinates to return.

Note - As a corollary to this, the outcome of an (unfiltered) Search applied to a single
entry may not be identical to a Read which seeks to interrogate the same set of attributes of the
entry. This is because the latter will return an AttributeError if none of the selected attributes
exist in the entry.

The result parameters have the meanings as defined in §§ 10.2.3.1 to 10.2.3.4 and § 7.3.

10.2.3.1 The DistinguishedName is present if an alias was dereferenced, and represents the
distinguished name of the base object.
10.2.3.2 The entries parameter conveys the requested information from each entry (zero or more)
which satisfied the filter (see § 7.5).
10.2.3.3 The PartialOutcomeQualifier consists of two subcomponents as described for the List
operation in § 10.1.3.4.
10.2.3.4 The uncorrelatedSearchlnfo parameter is as described for uncorrelatedListlnfo in
§ 10.1.3.4.
10.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.

Fascicle Vni.8 - Rec. X.511 99

11 Directory modify operations

There are four operations to modify the Directory: AddEntry, RemoveEntry, ModifyEntry and
ModifyRDN defined in §§ 11.1 to 11.4 respectively.

Note 1 - Each of these abstract-operations identifies the target entry by means of its
d is t in g u ish ed name.

Note 2 - The success of AddEntry, RemoveEntry, and ModifyRDN operations will be dependent on
the physical distribution of the DIB across the Directory. Failure will be reported with an
UpdateError and problem affectsMultipleDSAs. See Recommendation X.518.

11.1 Add entry
11.1.1 An AddEntry operation is used to add a leaf entry (either an object entry, or an alias entry)
to the DIT. The arguments of the operation may optionally be signed (see § 7.10) by the requestor.

AddEntry ::= ABSTRACT-OPERATION
ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError)

AddEntryArgument ::= OPTIONALLY-SIGNED
SET {

object [0] DistinguishedName,
entry [1] SET OF Attribute,
COMPONENTS OF CommonArguments }

AddEntryResult NULL

11.1.2 The various arguments have the meanings as defined in §§ 11.1.2.1 to 11.1.2.3.

11.1.2.1 The object argument identifies the entry to be added. Its immediate superior, which must
already exist for the operation to succeed, can be determined by removing the last RDN component
(which belongs to the entry to be created).

11.1.2.2 The entry argument contains the attribute information which, together with that from the
RDN, constitutes the entry to be created. The Directory shall ensure that the entry conforms to the
Directory schema. Where the entry being created is an alias, no check is made to ensure that the
aliasedObjectName attribute points to a valid entry.
11.1.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying
to the request. For the purposes of this operation the dontDereferenceAlias option and the sizeLimit
component are not relevant and are ignored if provided. Aliases are never dereferenced by this
operation.

11.1.3 Should the request succeed, a result will be returned, although no information will be conveyed
with it.

11.1.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.

11.2 Remove Entry
11.2.1 A RemoveEntry operation is used to remove a leaf entry (either an object entry or an alias
entry) from the DIT. The arguments of the operation may optionally be signed (see § 7.10) by the
requestor.

RemoveEntry ::= ABSTRACT-OPERATION
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS{

NameError, '
ServiceError, Referral, SecurityError,
UpdateError}

100 Fascicle VIIL8 - Rec. X.511

RemoveEntryArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
COMPONENTS OF CommonArguments }

RemoveEntryResult ::= NULL

11.2.2 The various arguments have the meanings as defined in §§ 11.2.2.1 and 11.2.2.2.

11.2.2.1 The object argument identifies the entry to be deleted. Aliases in the name will not be
dereferenced.

11.2.2.2 The CommonArguments (see § 7.3) include a specification of the service controls applying
to the request. For the purposes of this operation the dontDereferenceAlias option and the sizeLimit
component are not relevant and are ignored if provided. Aliases are never dereferenced by this
operation.

11.2.3 Should the request succeed, a result will be returned, although no information will be conveyed
with it.

11.2.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.

11.3 Modify Entry

11.3.1 The ModifyEntry operation is used to perform a series of one or more of the following
modifications to a single entry:

a) add a new attribute;

b) remove an attribute;

c) add attribute values;

d) remove attribute values;

e) replace attribute values;

f) modify an alias.

The arguments of the operation may optionally be signed (see § 7.10) by the requestor.
ModifyEntry ::= ABSTRACT-OPERATION

ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError)

ModifyEntryArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
changes [1] SEQUENCE OF EntryModification,
COMPONENTS OF CommonArguments }

ModifyEntryResult ::= NULL
EntryModification ::= CHOICE {

addAttribute [0] Attribute,
remove Attribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute)

11.3.2 The various arguments have the meanings as defined in §§ 11.3.2.1 and 11.3.2.2.

11.3.2.1 The object argument identifies the entry to which the modifications should be applied.
Any aliases in the name will not be dereferenced.
11.3.2.2 The changes argument defines a sequence of modifications, which are applied in the order
specified. If any of the individual modifications fails, then an AttributeError is generated and the
entry left in the state it was prior to the operation. That is, the operation is atomic. The end
result of the sequence of modifications shall not violate the Directory schema. However, it is
possible, and sometimes necessary, for the individual EntryModification changes to appear to do so.
The following types of modification may occur:

Fascicle YIII.8 - Rec. X.511 101

a) addAttribute: This identifies a new attribute to be added to the entry, which is fully
specified by the argument. Any attempt to add an already existing attribute results in an
AttributeError;

b) removeAttribute: The argument identifies (by its type) an attribute to be removed from the
entry. Any attempt to remove a non-existing attribute results in an AttributeError;

Note - This operation is not allowed if the attribute type is present in the RDN.

c) addValues: This identifies an attribute by the attribute type in the argument, and
specifies one or more attribute values to be added to the attribute. An attempt to add an
already existing value results in an error. An attempt to add a value to a non-existent
type results in an error;

d) removeValues: This identifies an attribute by the attribute type in the argument and
specifies one or more attribute values to be removed from the attribute. If the values
are not present in the attribute, this results in an AttributeError. If an attempt is made
to modify the object class attribute, an update error is returned.

Note - This operation is now allowed if one of the values is present in the RDN.

Values may be replaced by a combination of addValues and removeValues in a single ModifyEntry
operation.

11.3.2.3 The CommonArguments (see § 7.3) include a specification of the service controls applying
to the request. For the purposes of this operation the dontDereferenceAlias option and the sizeLimit
component are not relevant and are ignored if provided. Aliases are never dereferenced by this
operation.

11.3.3 Should the request succeed, a result will be returned although no information will be conveyed
with it.

11.3.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be reported are defined in § 12.
11.4 Modi f yRDN

11.4.1 The ModifyRDN operation is used to change the Relative Distinguished Name of a leaf entry
(either an object entry or an alias entry) in the DIT. The arguments of the operation may optionally
be signed (see § 7.10) by the requestor.

ModifyRDN ::= ABSTRACT-OPERATION
ARGUMENT ModifyRDN Argument
RESULT ModifyRDNResult
ERRORS{

NameError,
ServiceError, Referral, SecurityError,
UpdateError)

ModifyRDNArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
newRDN [1] RelativeDistinguishedName,
deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments)

ModifyRDNResult NULL
11.4.2 The various parameters have the meanings as defined in §§ 11.4.2.1 to 11.4.2.5.

11.4.2.1 The object argument identifies the entry whose Relative Distinguished Name is to be
modified. Aliases in the name will not be dereferenced. The immediate superior entry shall not have
any Non-Specific Subordinate References (see Recommendation X.518).

11.4.2.2 The newRDN argument specifies the new RDN of the entry.

11.4.2.3 If an attribute value in the new RDN does not already exist in the entry (either as part
of the old RDN or as a non-distinguished value) it is added. If it cannot be added, an error is
returned.

11.4.2.4 If the deleteOldRDN flag is set, all attribute values in the old RDN which are not in the
new RDN are deleted. If this flag is not set, the old values should remain in the entry (not as a
part of the RDN). The flag shall be set where a single value attribute in the RDN has its value
changed by the operation. If this operation removes the last attribute value of an attribute, that
attribute shall be deleted.

102 Fascicle Vm.8 - Rec. X.511

11.4.2.5 The Common Arguments (see § 7.3) include a specification of the service controls applying
to the request. For the purposes of this operation the dontDereferenceAlias option and the sizeLimit
component are not relevant and are ignored if provided. Aliases are never dereferenced by this
operation.

11.4.3 Should the request succeed, a result will be returned, although no information will be conveyed
with it.

11.4.4 Should the request fail, one of the listed errors will be reported. The circumstances under
which the particular errors will be returned are defined in § 12.

11.4.5 As defined in this Recommendation this operation may only be used on a leaf entry.

12 Errors

12.1 Error Precedence

12.1.1 The Directory does not continue to perform an operation beyond the point at which it determines
that an error is to be reported.

Note 1 - An implication of this rule is that the first error encountered can differ for
repeated instances of the same query, as there is not a specific logical order in which to process a
given query. For example, DSAs may be searched in different orders.

Note 2 - The rules of error precedence specified here apply only to the abstract service
provided by the Directory as a whole. Different rules apply when the internal structure of the
Directory is taken into account.

12.1.2 Should the Directory simultaneously detect more than one error, the following list determines
which error is reported. An error higher in the list has a higher logical precedence than one below
it and is the error which is reported.

a) NameError

b) UpdateError

c) AttributeError

d) SecurityError

e) ServiceError.

12.1.3 The following errors do not present any precedence conflicts:
a) AbandonFailed, because it is specific to one operation, Abandon, which can encounter no

other error;
b) Abandoned, which is not reported if an Abandon operation is received simultaneously with

the detection of an error. In this case an AbandonFailed error, reporting the problem
tooLate is reported along with the report of the actual error encountered;

c) Referral, which is not a "real" error, only an indication that the Directory has detected
that the DUA must present its request to another access point.

12.2 Abandoned

12.2.1 This outcome may be reported for any outstanding directory enquiry operation (i.e. Read,
Search, Compare, List) if the DUA invokes an Abandon operation with the appropriate InvokelD.

Abandoned ::= ABSTRACT-ERROR — not literally an "error"

12.2.2 There are no parameters associated with this error.

12.3 Abandon Failed

12.3.1 The AbandonFailed error reports a problem encountered during an attempt to abandon an
operation.

Fascicle VIIL8 - Rec. X.511 103

AbandonFailed ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] AbandonProblem,
operation [1] InvokelD}

AbandonProblem ::= INTEGER
noSuchOperation (1),
tooLate (2),
cannotAbandon (3) }

12.3.2 The various parameters have the meanings as defined in §§ 12.3.2.1 and 12.3.2.2.

12.3.2.1 The particular problem encountered is specified. Any of the following problems may be
indicated:

a) noSuchOperation, when the Directory has no knowledge of the operation which is to be
abandoned (this could be because no such invoke took place or because the Directory has
forgotten about it);

b) tooLate, when the Directory has already responded to the operation;

c) cannotAbandon, when an attempt has been made to abandon an operation for which this is
prohibited (e.g. modify), or the abandon could not be performed.

12.3.2.2 The identification of the particular operation (invocation) to be abandoned.

12.4 Attribute Error

12.4.1 An AttributeError reports an attribute-related problem.

AttributeError ::= ABSTRACT-ERROR
PARAMETER SET {

object [0] Name,
problems [1] SET OF SEQUENCE {

problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue

OPTIONAL }}
AttributeProblem ::= INTEGER {

noSuchAttributeOrValue (1),
InvalidAttributeSyntax (2),
undefined AttributeType (3),
InappropriateMatching (4),
constraintViolation (5)
attributeOrValueAlreadyExists (6) }

12.4.2 The various parameters have the meanings as described in §§ 12.4.2.1 and 12.4.2.2.

12.4.2.1 The object parameter identifies the entry to which the operation was being applied when
the error occurred.

12.4.2.2 . One or more problems may be specified. Each problem identified below is accompanied by an
indication of the attribute type, and if necessary to avoid ambiguity, the value, which caused the
problem:

a) noSuchAttributeOrValue: The named entry lacks one of the attributes or attribute values
specified as an argument of the operation;

b) invalidAttributeSyntax: A purported attribute value, specified as an argument of the
operation, does not conform to the attribute syntax of the attribute type;

c) undefinedAttributeType: An undefined attribute type was provided as an argument to the
operation. This error may occur only in relation to Add, Remove, Modify or ModifyRDN
operations;

d) inappropriateMatching: An attempt was made, e.g. in a filter, to use a matching rule not
defined for the attribute type concerned;

e) constraintViolation: An attribute or attribute value supplied in the argument of abstract-
operation does not conform to the constraints imposed by Recommendation X.501 or by the
attribute definition (e.g. the value exceeds the maximum size allowed);

104 Fascicle VTII.8 - Rec. X.511

f) attributeOrValueAlreadyExists: An attempt was made to add an attribute which already
existed in the entry, or a value which already existed in the attribute.

12.5 Name Error

12.5.1 A NameError reports a problem related to the name provided as an argument to an operation.
NameError ABSTRACT-ERROR

PARAMETER SET {
problem [0] NameProblem,
matched [1] Name} _

NameProblem ::= INTEGER (
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDereferencingProblem (4) }

12.5.2 The various parameters have the meanings as described in §§ 12.5.2.1 and 12.5.2.2.
12.5.2.1 The particular problem encountered. Any of the following problems may be indicated:

a) noSuchObject The name supplied does not match the name of any object;

b) aliasProblem: An alias has been dereferenced which names no object;

c) invalidAttributeSyntax: An attribute type and its accompanying attribute value in AVA in
the name are incompatible;

d) aliasDereferencingProblem: An alias was encountered in a situation where it was not
allowed.

12.5.2.2 The matched parameter contains the name of the lowest entry (object or alias) in the DIT
that was matched and is a truncated form of the name provided or, if an alias has been dereferenced,
of the resulting name.

Note - If there is a problem with the attribute types and/or values in the name offered in a
directory operation argument, this is reported via a NameError (with problem invalidAttributeSyntax)
rather than as an AttributeError or an UpdateError.

12.6 Referral
12.6.1 A Referral redirects the service-user to one or more access points better equipped to carry out
the requested operation.

Referral ::= ABSTRACT-ERROR — not literally cm "error"
PARAMETER SET {
candidate [0] ContinuationReference }

12.6.2 The error has a single parameter which contains a ContinuationReference which can be used to
progress the operation (see Recommendation X.518).

12.7 Security Error

12.7.1 A SecurityError reports a problem in carrying out an operation for security reasons.

SecurityError ::= ABSTRACT-ERROR
PARAMETER SET {
problem [0] SecurityProblem }

SecurityProblem ::= INTEGER {
Inappropriate Authentication (1),
InvalidCredentials (2),
InsufficientAccessRights (3),
InvalidSignature (4),
protectionRequired (5),
noinformation (6) }

12.7.2 The error has a single parameter, which reports the particular problem encountered. The
following problems may be indicated:

a) inappropriateAuthentication: The level of security associated with the requestor’s
credentials is inconsistent with the level of protection requested, e.g. simple
credentials were supplied while strong credentials were required;

Fascicle VIII.8 - Rec. X.511 105

b) invalidCredentials: The supplied credentials were invalid;

c) insufficientAccessRights: The requestor does not have the right to carry out the
operation;

requested

d) invalidSignature: The signature of the request was found to be invalid;

e) protectionRequired: The Directory was unwilling to carry out
because the argument was not signed;

the requested operation

f) noinformation: The requested operation produced a security error
is available.

for which no information

12.8 Service Error

12.8.1 A ServiceError reports a problem related to the provision of the service.

ServiceError ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] ServiceProblem },
ServiceProblem ::= INTEGER {

busy (1),
unavailable (2),
unwillingToPerform (3),
chainingRequired (4),
unableToProceed (5),
invalidReference (6),
timeLimitExceeded (7),
administrativeLimitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12))

12.8.2 The error has a single parameter, which reports the particular problem encountered. The
following problems may be indicated:

a) busy: The Directory, or some part of it, is presently too busy to perform the requested
operation, but may be able to do so after a short while;

b) unavailable: The Directory, or some part of it, is currently unavailable;

c) unwillingToPerform: The Directory, or some part of it, is not prepared to execute this
request, e.g. because it would lead to excessive consumption of resources or violate the
policy of an Administrative Authority involved;

d) chainingRequired: The Directory is unable to accomplish the request other than by
chaining, however chaining was prohibited by means of the chainingProhibited service
control option;

e) unableToProceed: The DSA returning this error did not have administrative authority for
the appropriate naming context and as a consequence was not able to participate in name
resolution;

f) invalidReference: The DSA was unable to perform the request as directed by the DUA (in
OperationProgress). This may have arisen due to using an invalid referral;

g) timeLimitExceeded: The Directory has reached the limit of time set by the user in a
service control. No partial results are available to return to the user;

h) administrativeLimitExceeded: The Directory has reached some limit set by an administrative
authority, and no partial results are available to return to the user;

i) loopDetected: The Directory is unable to accomplish the request due to an internal loop;

j) unavailableCriticalExtension: The Directory was unable to execute the request because one
or more critical extensions were not available;

106 Fascicle VIIL8 - Rec. X.511

k) outOfScope: No referrals were available within the requested scope;

1) ditErron The Directory is unable to accomplish the request due to a DIT consistency
problem.

12.9 Update Error

12.9.1 An UpdateError reports problems related to attempts to add, delete, or modify information in
the DIB.

UpdateError ABSTRACT-ERROR
PARAMETER SET {

problem [0] UpdateProblem }

UpdateProblem ::= INTEGER {
naming Violation (1),
objectClassViolation (2),
notAllowedOnNonLeaf (3),
notAllowedOnRDN (4),
entryAlreadyExists (5),
affectsMultipleDSAs (6),
objectClassModificationProhibited (7) }

12.9.2 The error has a single problem parameter, which reports the particular problem encountered.
The following problems may be indicated:

a) namingViolation: The attempted addition or modification would violate the structure rules
of the DIT as defined in the Directory schema and Recommendation X.501. That is, it would
place an entry as the subordinate of an alias entry, or in a region of the DIT not
permitted to a member of its object class or would define an RDN for an entry to include a
forbidden attribute type;

b) objectClassViolation: The attempted update would produce an entry inconsistent with the
definition provided by its object class or with the definitions of Recommendation X.501 as
they pertain to object classes;

c) notAllowedOnNonLeaf: The attempted operation is only allowed on leaf entries of the DIT;

d) notAllowedOnRDN: The attempted operation would affect the RDN (e.g. removal of an
attribute which is a part of the RDN);

e) entryAlreadyExists: An attempted AddEntry operation names an entry which already exists;

f) affectsMultipleDSAs: An attempted update would need to operate on multiple DSAs, which is
not permitted;

g) objectClassModificationProhibited: An operation attempted to modify the object class
attribute.

Note - The UpdateError is not used to report problems with attribute types, values or
constraint violations encountered in an AddEntry, RemoveEntry, ModifyEntry or ModifyRDN operation.
Such problems are reported' via an AttributeError.

ANNEX A

(to Recommendation X.511)

Abstract service in ASN.l

This Annex is part of the standard.

This Annex includes all of the ASN.l type, value and macro definitions contained in this
Recommendation in the form of the ASN.l module DirectoryAbstractService.

Fascicle VTII.8 - Rec. X.511 107

DirectoryAbstractService {joint-ISO-CCITT ds(5) modules(l) directoryAbstractService(2)}
DEFINITIONS ::=
BEGIN

EXPORTS
directory, readPort, searchPort, modifyPort,
DirectoryBind, DirectoryBind A rgument,
DirectoryUnbind,
Read, ReadArgument, ReadResult,
Abandon, AbandonArgument, AbandonResult,
Compare, CompareArgument, CompareResult,
List, ListArgument, ListResult,
Search, SearchArgument, SearchResult,
AddEntry, AddEntryArgument, AddEntryResult,
RemoveEntry, RemoveEntry Argument, RemoveEntryResult,
ModifyEntry, ModifyEntryArgument, ModifyEntryResult,
ModifyRDN, ModifyRDNArgument, ModifyRDNResult,
Abandoned, AbandonFailed, AttributeError, NameError,
Referral, SecurityError, ServiceError, UpdateError,
SecurityParameters;

IMPORTS
informationFramework, authenticationFramework,

distributedOperations, directoryObjectldentifiers
FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l)

usefulDefinitions(O)}

OBJECT, PORT, ABSTRACT-BIND, ABSTRACT-UNBIND,
ABSTRACT-OPERATION, ABSTRACT-ERROR

FROM AbstractServiceNotation {joint-iso-ccitt mhs-motis(6)
asdc(2) modules(O) notation(l) }

Attribute, AttributeType, AttributeValue, AttributeValueAssertion,
DistinguishedName, Name, RelativeDistinguishedName

FROM InformationFramework InformationFramework

id-ot-directory, id-ot-dua, id-pt-read, id-pt-search, id-pt-modify
FROM DirectoryObjectldentifiers directoryObjectldentifiers

ContinuationReference, OperationProgress
FROM DistributedOperations distributedOperations

Certificate, CertificationPath, SIGNED,
PROTECITBD, Algorithmldentifier

FROM AuthenticationFramework authenticationFramework
InvokelD,

FROM Remote-Operations-Notation {joint-iso-ccitt
remoteOperations(4) notation(O)};

— macro for representing optional signing —
OPTIONALLY-SIGNED MACRO
BEGIN

TYPENOTATION type (Type)
VALUE NOTATION ::= value (VALUE CHOICE { Type, SIGNED Type})

END

— objects and ports —

directory
OBJECT

PORTS {readPort [S].
searchPort [S],
modifyPort [S]}

::= id-ot-directory

Fascicle VHL8 - Rec. X.511

dua
OBJECT

PORTS { readPort [C],
searchPort [C]
modifyPort [C]}

::= id-ot-dua

readPort
PORT

CONSUMER INVOKES {
Read, Compare, Abandon}

::= id-pt-read

searchPort
PORT

CONSUMER INVOKES {
List, Search }

::= id-pt-search

modifyPort
PORT

CONSUMER INVOKES {
AddEntry, RemoveEntry,
ModifyEntry, ModifyRDN}

::= id-pt-modify

— bind and unbind —

DirectoryBind ::= ABSTRACT-BIND
TO { readPort, searchPort, modifyPort }
BIND
ARGUMENT DirectoryBindArgument
RESULT DirectoryBindResult
BIND-ERROR DirectoryBindError

DirectoryBindArgument ::= SET {
credentials [0] Credentials OPTIONAL,
versions [1] Versions DEFAULT vl988}

Credentials ::= CHOICE {
simple [0] SimpleCredentials,
strong [1] StrongCredentials,
externalProcedure [2] EXTERNAL }

SimpleCredentials ::= SEQUENCE {
name [0] DistinguishedName,
validity [1] SET {

timel [0] UTCTime OPTIONAL,
time2 [1] UTCTime OPTIONAL,
random 1 [2] BIT STRING OPTIONAL,
random2 [3] BIT STRING OPTIONAL }

OPTIONAL,
password [2] OCTET STRING OPTIONAL }

StrongCredentials SET {
certification-path [0] CertificationPath OPTIONAL,
bind-token [1] Token }

Token ::= SIGNED SEQUENCE {
algorithm [0] Algorithmldentifier
name [1] DistinguishedName,
time [2] UTCTime,
random [3] BIT STRING }

Versions BIT STRING (v l988(0)}
DirectoryBindResult ::= DirectoryBindArgument

Fascicle VIII.8 - Rec. X.511 109

DirectoryBindError ::= SET {
versions [0] Versions DEFAULT vl988,
CHOICE {

serviceError [1] ServiceProblem,
securityError [2] SecurityProblem }}

DirectoryUnbind ::= ABSTRACT-UNBIND
FROM {readPort, searchPort, modifyPort }

— operations, arguments, and results —

Read ABSTRACT-OPERATION
ARGUMENT ReadArgument
RESULT ReadResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ReadArgument OPTIONALLY-SIGNED SET {
object [0] Name,
selection [1] Entry InformationSelection

DEFAULT {},
COMPONENTS OF CommonArguments }

ReadResult ::= OPTIONALLY-SIGNED SET {
entry [0] Entrylnformation,
COMPONENTS OF CommonResults }

Compare ::= ABSTRACT-OPERATION
ARGUMENT CompareArgument
RESULT CompareResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

CompareArgument ::= OPTIONALLY-SIGNED SET {
object [0] Name,
purported [1] AttributeValueAssertion,
COMPONENTS OF CommonArguments }

CompareResult OPTIONALLY-SIGNED SET {
DistinguishedName OPTIONAL,
matched [0] BOOLEAN,
fromEntry [1] BOOLEAN DEFAULT TRUE,
COMPONENTS OF CommonResults }

Abandon ::= ABSTRACT-OPERATION
ARGUMENT AbandonArgument
RESULT AbandonResult
ERRORS {AbandonFailed}

AbandonArgument ::= SEQUENCE {
InvokelD [0] InvokelD}

AbandonResult ::= NULL

List ABSTRACT-OPERATION
ARGUMENT ListArgument
RESULT ListResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

ListArgument ::= OPTIONALLY-SIGNED SET {
object [0] Name,
COMPONENTS OF CommonArguments }

Fascicle VIII.8 - Rec. X.511

ListResult ::= OPTIONALLY-SIGNED CHOICE{
listlnfo SET {
DistinguishedName OPTIONAL
subordinates [1] SET OF SEQUENCE {

RelativeDistinguishedName,
aliasEntry [0] BOOLEAN DEFAULT FALSE,
fromEntry [1] BOOLEAN DEFAULT TRUE },
partialOutcomeQualifier [2] PartialOutcomeQualifier

OPTIONAL,
COMPONENTS OF CommonResults},

uncorrelatedListlnfo [0] SET OF
ListResult }

PartialOutcomeQualifier ::= SET {
limitProblem [0] LimitProblem OPTIONAL,
unexplored [1] SET OF

ContinuationReference OPTIONAL,
unavailableCriticalExtensions [2] BOOLEAN DEFAULT FALSE }

LimitProblem ::= INTEGER {
timeLimitExceeded (0),
sizeLimitExceeded (1),
administrativeLimitExceeded (2) }

Search ::= ABSTRACT-OPERATION
ARGUMENT SearchArgument
RESULT SearchResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, Abandoned,
SecurityError }

SearchArgument ::= OPTIONALLY-SIGNED SET {
baseObject [0] Name,
subset [1] INTEGER {

baseObject(O),
oneLevel(l),
wholeSubtree(2)} DEFAULT baseObject,

filter [2] Filter DEFAULT and {},
searchAliases [3] BOOLEAN DEFAULT TRUE,
selection [4] EntrylnformationSelection DEFAULT {},
COMPONENTS OF CommonArguments }

SearchResult ::= OPTIONALLY-SIGNED
CHOICE { , ■ .
searchlnfo SET {
DistinguishedName OPTIONAL,
entries [0] SET OF Entrylnformation,
partialOutcomeQualifier

[2] partialOutcomeQualifier OPTIONAL,
COMPONENTS OF CommonResults },
uncorrelatedSearchlnfo [0] SET OF

SearchResult }
AddEntry ::= ABSTRACT-OPERATION

ARGUMENT AddEntryArgument
RESULT AddEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError
UpdateError }

AddEntryArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
entry [1] SET OF Attribute,
COMPONENTS OF CommonArguments}

AddEntryResult NULL

Fascicle Vin.8 - Rec. X.511 111

RemoveEntry ::= ABSTRACT-OPERATION
ARGUMENT RemoveEntryArgument
RESULT RemoveEntryResult
ERRORS{

NameError,
ServiceError, Referral, SecurityError,
UpdateError}

RemoveEntryArgument ::= OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
COMPONENTS OF CommonArguments }

RemoveEntryResult NULL

ModifyEntry ::= ABSTRACT-OPERATION
ARGUMENT ModifyEntryArgument
RESULT ModifyEntryResult
ERRORS{

AttributeError, NameError,
ServiceError, Referral, SecurityError,
UpdateError}

ModifyEntryArgument OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
changes [1] SEQUENCE OF EntryModification,
COMPONENTS OF CommonArguments }

ModifyEntryResult NULL
EntryModification ::= CHOICE {

addAttribute [0] Attribute,
removeAttribute [1] AttributeType,
addValues [2] Attribute,
removeValues [3] Attribute}

ModifyRDN ABSTRACT-OPERATION
ARGUMENT ModifyRDNArgument
RESULT Modif yRDNResult
ERRORS{

NameError,
ServiceError, Referral, SecurityError,
UpdateError }

ModifyRDNArgument OPTIONALLY-SIGNED SET {
object [0] DistinguishedName,
newRDN [1] RelativeDistinguishedName,
deleteOldRDN [2] BOOLEAN DEFAULT FALSE,
COMPONENTS OF CommonArguments }

ModifyRDNResult NULL

— errors and parameters —

Abandoned ::= ABSTRACT-ERROR — not literally an "error"

AbandonFailed ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] AbandonProblem,
operation [1] InvokelD}

AbandonProblem ::= INTEGER {
noSuchOperation (1),
tooLate (2),
cannotAbandon (3)}

112 Fascicle VIII.8 - Rec. X.511

AttributeError ::= ABSTRACT-ERROR
PARAMETER SET {

object [0] Name,
problems [1] SET OF SEQUENCE {

problem [0] AttributeProblem,
type [1] AttributeType,
value [2] AttributeValue OPTIONAL }}

AttributeProblem ::=
INTEGER {

noSuchAttributeOrValue (1),
invalidAttributeSyntax (2),
undefinedAttributeType (3),
inappropriateMatching (4),
constraintViolation (S),

attributeOrValueAlreadyExists (6) }

NameError ::= ABSTRACT-ERROR
PARAMETER SET (

problem [0] NameProblem,
matched [1] Name}

NameProblem ::= INTEGER {
noSuchObject (1),
aliasProblem (2),
invalidAttributeSyntax (3),
aliasDereferencingProblem (4)}

Referral ::= ABSTRACT-ERROR — not literally an "error"
PARAMETER SET {

candidate [0] ContinuationReference}

SecurityError ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] SecurityProblem }

SecurityProblem INTEGER {
inappropriate Authentication (1),
invalidCredentials (2),
insufficientAccessRights (3),
invalidSignature (4),
protectionRequired (5),
noinformation (6) }

ServiceError ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] ServiceProblem }

ServiceProblem ::= INTEGER {
busy (1),
unavailable (2),
unwillingToPerform (3),
chainingRequired (4),
unableToProceed (5),
invalidReference (6),
timeLimitExceeded (7),
administrativeLimitExceeded (8),
loopDetected (9),
unavailableCriticalExtension (10),
outOfScope (11),
ditError (12) }

UpdateError ::= ABSTRACT-ERROR
PARAMETER SET {

problem [0] UpdateProblem }

Fascicle VTII.8 - Rec. X.511 113

UpdateProblem ::= INTEGER {
naming Violation (1),
objectClassViolation (2),
notAllowedOnNonLeaf (3),
notAllowedOnRDN (4),
entryAlreadyExists (5),
affectsMultipleDSAs (6),
objectClassModificationProhibited (7)}

— common arguments/results —

CommonArguments ::= SET {
[30] ServiceControls DEFAULT {}
[29] SecurityParameters DEFAULT {},
requestor [28] DistinguishedName OPTIONAL,
[27] OperationProgress DEFAULT notStarted,
aliasedRDNs [26] INTEGER OPTIONAL,
extensions [25] SET OF Extension OPTIONAL }

Extension ::= SET {
identifier [0] INTEGER,
critical [1] BOOLEAN DEFAULT FALSE,
item [2] ANY DEFINED BY identifier }

CommonResults ::= SET {
[30] SecurityParameters OPTIONAL,
performer [29] DistinguishedName OPTIONAL,
aliasDereferenced [28] BOOLEAN DEFAULT FALSE)

— common data types —

ServiceControls ::= SET {
options [0] BIT STRING [
preferChaining (0),
chainingProhibited (1),
localScope (2),
dontUseCopy (3),
dontDereferenceAliases(4)}

DEFAULT{),

priority [1] INTEGER {
low (0),
medium (1),
high (2)) DEFAULT medium,

timeLimit [2] INTEGER OPTIONAL,

sizeLimit [3] INTEGER OPTIONAL,

scopeOfReferral [4] INTEGER {
dmd(0),
country(l)}
OPTIONAL)

EntrylnformationSelection ::= SET {
attributeTypes

CHOICE {
allAttributes [0] NULL,
select [1] SET OF AttributeType
— empty set implies no attributes
— are requested —)

DEFAULT allAttributes NULL,

infoTypes [2] INTEGER {
attributeTypesOnly (0),
attributeTypesAndValues (1)) DEFAULT

attributeTypesandValues)

114 Fascicle VHI-8 - Rec. X.511

Entrylnformation ::= SEQUENCE {
DistinguishedName,
fromEntry BOOLEAN DEFAULT TRUE,
SET OF CHOICE {

AttributeType,
Attribute) OPTIONAL }

Filter ::= CHOICE {
item [0] Filterltem,
and [1] SET OF Filter,
or [2] SET OF Filter,
not [3] Filter }

Filterltem CHOICE {
equality [0] AttributeValueAssertion,
substrings [1] SEQUENCE {

type AttributeType,
strings SEQUENCE OF CHOICE {

initial [0] AttributeValue,
any [1] AttributeValue,
final [2] AttributeValue)),

greaterOrEqual [2]
lessOrEqual
present

approximateMatch

AttributeValueAssertion,
[3] AttributeValueAssertion,
[4] AttributeType,
[5] AttributeValueAssertion)

SecurityParameters ::= SET {
certification-Path [0] CertificationPath OPTIONAL,
name [1] DistinguishedName OPTIONAL,
time [2] UTCTime OPTIONAL,
random [3] BIT STRING OPTIONAL,
target [4] ProtectionRequest OPTIONAL)

ProtectionRequest INTEGER {
none(0),
signed (1))

ANNEX B

(to Recommendation X.511)

Directory object identifiers

This Annex is part of the standard.

This Annex includes all of the ASN.l object identifiers contained in this Recommendation in the
form of the ASN.l module "DirectoryObjectldentifiers".

DirectoryObjectldentifiers {joint-ISO-CCITT ds(5) modules(l)
directoryObjectIdentifiers(9))

DEFINITIONS ::=
BEGIN

EXPORTS
id-ot-directory, id-ot-dua, id-pt-read, id-pt-search, id-pt-modify;

IMPORTS
id-ot, id-pt

FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l),
usefulDefinitions(O));

Fascicle VTII.8 - Rec. X.511 115

— Objects —

id-ot-directory

id-ot-dua

— Port Types —

id-pt-read

id-pt-search

id-pt-modify

END

OBJECT IDENTIFIER ::= {id-ot 1}

OBJECT IDENTIFIER ::= {id-ot 2}

OBJECT IDENTIFIER

OBJECT IDENTIFIER

OBJECT IDENTIFIER

= {id-pt 1}

= {id-pt 2}

= {id-pt 3}

Recommendation X.518

THE DIRECTORY - PROCEDURES FOR DISTRIBUTED OPERATION *)

(Melbourne, 1988)

CONTENTS

SECTION 1 - Introduction

0 Introduction
1 Scope and field o f application
2 References
3 Definitions
4 Abbreviations

5 Notation

SECTION 2 - Overview

6 Overview

SECTION 3 - Distributed directory models

7 Distributed directory system model

8 DSA interactions model
8.1 Chaining
8.2 Multicasting
8.3 Referral
8.4 Mode determination

9 Directory distribution

*) Recommendation X.518 and ISO 9594-4, Information Processing Systems - Open Systems
Interconnection - The Directory - Procedures for Distributed Operation, were developed in close
collaboration and are technically aligned.

116 Fascicle Vm.8 - Rec. X.518

10 Knowledge

10.1 Minimal knowledge references
10.2 Root context
10.3 Knowledge references
10.4 Knowledge administration

SECTION 4 - DSA abstract service

11 Overview o f DSA abstract service

12 Information types
12.1 Introduction
12.2 Information types defined elsewhere ■
12.3 Chaining arguments
12.4 Chaining results
12.5 Operation progress
12.6 Trace information
12.7 Reference type
12.8 Access point
12.9 Continuation reference

13 Abstract-bind and abstract-unbind

13.1 DSA bind
13.2 Directory unbind

14 Chained abstract-operations
15 Chained abstract-errors

15.1 Introduction
15.2 DSA referral

SECTION 5 - Distributed operations procedures

16 Introduction

16.1 Scope and limits
16.2 Conceptual model
16.3 Individual and cooperative operation of DSAs

17 Distributed directory behaviour
17.1 Cooperative fulfillment of operations
17.2 Phases of operation processing
17.3 Managing distributed operations
17.4 Other considerations for distributed operation
17.5 Authentication of distributed operations

18 DSA behaviour
18.1 Introduction
18.2 Overview of the DSA behaviour
18.3 Specific operations
18.4 Operation dispatcher
18.5 Looping
18.6 Name resolution procedure
18.7 Object evaluation procedures
18.8 Result merging procedure
18.9 Procedures for distributed authentication

Annex A - ASN.l for distributed operations

Annex B - Modelling of knowledge
Annex C - Distributed use of authentication
Annex D - Distributed directory object identifiers

SECTION 1 - Introduction

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate
the interconnection of information processing systems to provide directory services. The set of all
such systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as OSI application entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation specifies the procedures by which the distributed components of the
Directory interwork in order to provide a consistent service to its users.

1 Scope and field of application

1.1 This Recommendation specifies the behaviour of DSAs taking part in the distributed Directory
application. The allowed behaviour has been designed so as to ensure a consistent service given a
wide distribution of the DIB across many DSAs.

1.2 The Directory is not intended to be a general purpose database system, although it may be built
on such systems. It is assumed that there is a considerably higher frequency of queries than of
updates.

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model
Recommendation X.208 - Open Systems Interconnection - Specification of Abstract Syntax Notation

(ASN.l)

Recommendation X.500 - The Directory - Overview of Concepts, Models and Services

Recommendation X.501 - The Directory - Models

Recommendation X.511 - The Directory - Abstract Service Definition

Recommendation X.519 - The Directory - Protocol Specifications

Recommendation X.520 - The Directory - Selected Attribute Types

Recommendation X.521 - The Directory - Selected Object Classes

Recommendation X.407 - Message Handling Systems - Abstract Service Definition Conventions

3 Definitions

The definitions contained in this paragraph make use of the abbreviations defined in § 4.

3.1 OSI Reference Model Definitions
This Recommendation makes use of the following term defined in X.200:

a) application entity title.

118 Fascicle Vm.8 - Rec. X.518

3.2 Basic Directory Definitions

This Recommendation makes use of the following terms defined in Recommendation X.500:
a) (the) Directory;

b) Directory Information Base.
3.3 Directory Model Definitions

This Recommendation makes use of the following terms defined in Recommendation X.501

a) access point;

b) alias;

c) distinguished name;

d) Directory Information Tree;

e) Directory System Agent;

9 Directory User Agent\

g) relative distinguished name.
3.4 Abstract Service Definition Conventions

This Recommendation makes use of the following terms defined in X.407:

a) abstract error;

b) abstract operation;

c) result.
I

3.5 Distributed Operation Definitions
This Recommendation makes use of the following terms, as defined here:

a) chaining: a mode of interaction optionally used by a DSA which cannot perform an
operation itself. The DSA chains by invoking an operation of another DSA and then relaying
the outcome to the original requestor;

b) context prefix: the sequence of RDNs leading from the Root of the DIT to the initial
vertex of a naming context, corresponds to the distinguished name of that vertex;

c) cross reference: a knowledge reference containing information about the DSA that holds
an entry. This is used for optimisation. The entry need have no superior or subordinate
relationship;

d) DIB fragment: the portion of the DIB that is held by one DSA, comprising one or more
naming contexts;

e) distributed name resolution: the process by which name resolution is performed in more
than one DSA;

f) internal reference: a knowledge reference containing an internal pointer to an entry
held in the same DSA;

g) knowledge information: the information which a particular DSA has about the entries it
holds and how to locate other entries in the directory;

h) knowledge reference: knowledge which associates, either directly or indirectly, a DIT
entry with the DSA in which it is located;

i) knowledge tree: the conceptual model of the knowledge information that a DSA holds to
enable it to perform distributed name resolution;

j) multicasting: a mode of interaction which may optionally be used by a DSA which cannot
perform an operation itself. The DSA multicasts the operation, i.e. invokes the same
operation of several other DSAs (in series or in parallel) and passes an appropriate
outcome to the original requestor;

k) name resolution: the process of locating an entry by sequentially matching each RDN in a
purported name to a vertex of the DIT;

1) naming context: a partial sub-tree of the DIT which starts at a vertex and extends
downwards to leaf and/or non-leaf vertices. Such vertices constitute the border of the

Fascicle Vffl.8 - Rec. X.518 119

naming context. Non-leaf vertices belonging to the border denote the start of further
naming contexts;

m) non-specific subordinate reference: a knowledge reference that holds information about
the DSA that holds one or more unspecified subordinate entries;

n) operation progress: a set of values which denotes the extent to which name resolution
has taken place;

o) reference path: a continuous sequence of knowledge references;
p) referral: an outcome which can be returned by a DSA which cannot perform an operation

itself, and which identifies one or more other DSAs more able to perform the operation;

q) request decomposition: decomposition of a request into subrequests each accomplishing a
part of the distributed operation;

r) root context: the naming context for the vertex whose name comprises the empty sequence
of RDNs;

s) subordinate reference: a knowledge reference containing information about the DSA that
holds a specific subordinate entry;

t) subrequest: a request generated by request decomposition;

u) superior reference: a knowledge reference containing information about the DSA that
holds a superior entry.

4 Abbreviations

The following abbreviations are used in this Recommendation:

DIB Directory Information Base

DIT Directory Information Tree

DSA Directory System Agent

DUA Directory User Agent

RDN Relative Distinguished Name

Notation

The notation used in this paragraph is defined as follows:

a) the data syntax notation, encoding and macro notation are defined in Recommenda­
tion X.208;

b) the notations for abstract models and abstract services are defined in Recommenda­
tion X.407.

SECTION 2 - Overview

6 Overview

The Directory Abstract Service allows the interrogation, retrieval and modification of
Directory information in the DIB. This service is described in terms of the abstract Directory object
as specified in Recommendation X.511.

Necessarily, the specification of the abstract Directory object does not in any way address the
physical realization of the Directory, in particular it does not address the specification of
Directory System Agents (DSA) within which the DIB is stored and managed, and through -which the
service is provided. Furthermore, it does not consider whether the DIB is centralized, i.e.
contained within a single DSA, or distributed over a number of DSAs. Consequently, the requirements
for DSAs to have knowledge of, navigate to, and cooperate with other DSAs, in order to support the
abstract service in a distributed environment, is also not covered by the service description.

120 Fascicle Vm.8 - Rec. X.518

This Recommendation specifies the refinement of the abstract Directory object, the refinement
being expressed in terms of a set of one or more DSA objects which collectively constitute the
distributed directory service. Inherent in this is the identification and specification of the DSA
ports that are internal to the Directory object. For each such port, this Recommendation specifies
the associated abstract services and its procedures.

In addition, this Recommendation specifies the permissible ways in which the DIB may be
distributed over one or more DSAs. For the limiting case where the DIB is contained within a single
DSA, the Directory is in fact centralized; for the case where the DIB is distributed over two or more
DSAs, knowledge and navigation mechanisms are specified which ensure that the whole of the DIB is
potentially accessible from all DSAs that hold constituent entries.

Additionally, request handling interactions are specified that enable particular operational
characteristics of the Directory to be controlled by its users. In particular, the user has control
over whether a DSA, responding to a directory enquiry pertaining to information held in other DSA(s),
has the option of interrogating the other DSA(s) directly (chaining/multicasting) or, whether it
should respond with information about other DSA(s) which could further progress the enquiry
(referral).

Generally, the decision by a DSA to chain/multicast or refer is determined by the service
controls set by the user, and by the DSA’s own administrative, operational, or technical
circumstances.

Recognizing that, in general, the Directory will be distributed, that directory enquiries will
be satisfied by an arbitrary number of cooperating DSAs which may arbitrarily chain/multicast or
refer according to the above criteria, this Recommendation specifies the appropriate procedures to be
effected by DSAs in responding to distributed directory enquiries. These procedures will ensure that
users of the distributed Directory service perceive it to be both user-friendly and consistent.

SECTION 3 - Distributed directory models

7 Distributed directory system model

The Directory abstract service as defined in Recommendation X.511 models the directory as an
object which provides a set of directory services to its users. The services of the directory are
modelled in terms of ports, where each port provides a particular set of directory services. Users of
the directory access its services through an access point. The directory may^ have one or more access
points and each access point is characterized by the services it provides and the mode of interaction
used to provide these services.

This paragraph addresses the internal structure of the directory object, identifying its
constituent objects and their ports, and thereby facilitates the specification of a distributed
directory service.

Figure 1 /X.518 illustrates the distributed directory which will be used as the basis for
specifying the distributed aspects of the directory. It illustrates the directory object as
comprising a set of one or more DSA-objects.

The directo ry

FIGURE 1/X.518

Objects of the distributed directory model

Fascicle Vm.8 - Rec. X.518 121

DSA objects are specified in detail in the subsequent clauses of this Recommendation. This
clause merely states a number of their characteristics in order to serve as an introduction and to
establish the relationship between this Recommendation and other Recommendations.

DSA objects are defined in order that distribution of the DIB can be accommodated and that a
number of physically distributed DSAs can interact in a prescribed, cooperative manner to provide
directory services to the users of the directory (DUAs).

DSA objects, like the Directory object, are characterized by their externally visible ports.
The ports associated with a DSA-object are of two types: service-ports and chained-service-ports.

The service-ports of a DSA object are identical to those of the Directory object, namely, read,
search and modify. Figure 1/X.518 illustrates that the service-ports associated with a DSA object
constitute an access-point through which directory services are made available.

The detailed specification of the read, search, and modify service-ports of the DSA object can
be found in Recommendation X.511. (The protocol specification for the corresponding OSI application
service elements, as derived from these port definitions, can be found in Recommendation X.519.)

In addition to the service-ports of the DSA object which accommodate access to the Directory
object, a second set of ports are defined, the chained-service-ports. These permit inter-DSA
communication in order that the Directory abstract service can be realized in a distributed
environment.

The chained-service-ports and the operations provided through them are in direct correspondence
to the similarly named service-ports, and are, respectively, chainedRead, chainedSearch, and
chainedModify.

The process of specifying the constituent objects of a more abstract object is termed
"refinement". The specification of the refinement of the Directory object into its component parts
(the DSAs), and the specification of the abstract service provided by each of them (the DSA Abstract
Service) is contained in Section Four of this Recommendation. The protocol specification of the
corresponding OSI application service elements, as derived from the chained port definitions, can be
found in Recommendation X.519.

8 DSA interactions model

A basic characteristic of the Directory is that, given a distributed DIB, a user should
potentially be able to have any service request satisfied (subject to security, access control and
administrator policies) irrespective of the access point at which the request originates. In
accommodating this requirement it is necessary that any DSA involved in satisfying a particular
service request have some knowledge (as specified in § 10 of this Recommendation) of where the
requested information is located and either return this knowledge to the requestor or attempt to have
the request satisfied on its behalf. (The requestor may either be a DUA or another DSA: in the latter
case both DSAs must have a chained port.)

Three modes of DSA interaction are defined to meet these requirements, namely "chaining",
"multicasting", and "referral". "Chaining" and "multicasting" are defined to meet the latter of the
above requirements whilst referrals address the former.

8.1 Chaining

This mode of interaction (depicted in Figure 2/X.518) may be used by one DSA, to pass on a
request to another DSA when the former has knowledge about naming contexts held by the latter.
Chaining may be used to contact a single DSA pointed to in a cross reference, a subordinate
reference, or a superior reference. Multicasting is a form of chaining, described in § 8.2.

122 Fascicle vm .8 - Rec. X.518

FIGURE 2/X.518

Chaining mode

Note - In Figure 2/X.518, tlie order of interactions is defined by the numbers associated with
the interaction lines.

8.2 Multicasting

This mode of interaction (depicted in Figures 3a/X.518 and 3b/X.5I8) may be used by a DSA, to
chain an identical request in parallel (a) or sequential (b) to one or more DSAs, when the former
does not know the complete naming contexts held by the other DSAs. Multicasting is only used by a DSA
to contact other DSAs pointed to in a non-specific subordinate reference. Each of the DSAs is passed
the identical request. Normally, during name resolution, only one of the DSAs will be able to
continue processing the remote operation, all of the others returning the unableToProceed
ServiceError. However, during the evaluation phase of search and list operations, all DSAs in a non­
specific subordinate reference should be able to continue processing the request.

Note - In Figures 3a/X.518 and 3b/X.518, the order of interactions is defined by the numbers
associated with the interaction lines.

FIGURE 3a/X.518

Multicasting mode

Fascicle VIIL8 - Rec. X.518 123

Unable to
proceed

(g) Response

FIGURE 3b/X.518

Multicasting mode

8.3 Referral

A referral (depicted in Figures 4a/X.518 and 4b/X.518) is returned by a DSA in its response to
a request which it had been requested to perform, either by a DUA, or by another DSA (in which case
both DSAs must have a chained-service port). The referral may constitute the whole response (in which
case it is categorized as an error) or just part of the response. The referral contains a knowledge
reference, which may be either a superior, subordinate, cross or non-specific subordinate reference.

The DSA (Figure 4a/X.518) receiving the referral may use the knowledge reference contained
therein, to subsequently chain or multicast (depending upon the type of reference) the original
operation to other DSAs. Alternatively, a DSA receiving a referral, may in turn pass the referral
back in its response. A DUA (Figure 4b/X.518) receiving a referral may use it to contact one or more
other DSAs to progress the request.

Referral to B Referral to C

FIGURE 4a/X.518

Referral mode - DSA with chained port

124 Fascicle Vm.8 - Rec. X.518

Referral to E Referral to F

FIGURE 4b/X.518

Referral mode - DUA requests DSAs with no chained ports

Note - In Figures 4a/X.518 and 4b/X.518, the order of interactions is defined by the numbers
associated with the interaction lines.

8.4 Mode determination
If a DSA cannot itself fully resolve a request, it must chain/multicast the request (or a

request formed by decomposing the original one), to another DSA, unless:

a) chaining is prohibited by the user via the service controls, in which case the DSA must
return a referral or a chainingRequired ServiceError (at its choice), or

b) the DSA has administrative, operational, or technical reasons for preferring not to chain,
in which case the DSA must return a referral.

Note 1 - A "technical reason" for not chaining/multicasting is that the DSA identified in the
knowledge reference has no chained service ports.

Note 2 - If the localScope service control is set, then the DSA (or DMD) must either resolve
the request or return an error.

Note 3 - If the user prefers referrals, the user should set chainingProhibited.

9 Directory distribution

This paragraph defines the principles according to which the DIB can be distributed.

Each entry within the DIB is administered by one, and only one, DSA’s Administrator who is said
to have administrative authority for that entry. Maintenance and management of an entry must take
place in a DSA administered by the administrative authority for the entry.

Although the Directory does not provide any support for the replication of entries, it is
nevertheless possible to realize replication in two ways:

Copies of an entry may be stored in other DSA(s) through bilateral agreement. The means
by which these copies are maintained and managed is a function of the bilateral agreement
and is not defined in this Recommendation.
Copies of an entry may be acquired by storing (locally and dynamically) a copy of an entry
which results from a request.

Note - The acquisition of cache entries is subject to access control.
The originator of the request is informed (via fromCopy) as to whether information returned in

response to a request is from a replicated entry or not. A service control, dontUseCopy, is defined
which allows the user to prohibit the use of replicated entries.

Each DSA within the Directory holds a fragment of the DIB. The DIB fragment held by a DSA is
described in terms of the DIT and comprises one or more naming contexts. A naming context is a

Fascicle VUI.8 - Rec. X.518 125

partial subtree of the DIT defined as starting at a vertex and extending downwards to leaf and/or
non-leaf vertices. Such vertices constitute the border of the naming context. Subordinates of the
non-leaf vertices belonging to the border denote the start of further naming contexts.

It is possible for a DSA’s administrator to have administrative authority for several disjoint
naming contexts. For every naming context for which a DSA has administrative authority, it must
logically hold the sequence of RDNs which lead from the root of the DIT to the initial vertex of the
subtree comprising the naming context. This sequence of RDNs is called the context prefix.

A DSA’s administrator may delegate administrative authority for any immediate subordinates of
any entry held locally to another DSA. A DSA that delegated authority is called a superior DSA and
the context that holds the superior entry of one for which the administrative authority was
delegated, is called the superior naming context. Delegation of administrative authority begins
with the root and proceeds downwards in the DIT; that is, it can only occur from an entry to its
subordinates.

Figure 5/X.518 illustrates a hypothetical DIT logically partitioned into five naming contexts
(named A, B, C, D and E), which are physically distributed over three DSAs (DSA1, DSA2, and DSA3).

From the example it can be seen that the naming contexts held by particular DSAs may be
configured so as to meet a wide range of operational requirements. Certain DSAs may be configured to
hold those entries that represent higher level naming domains within some logical part(s) of the DIB,
the organizational structure of a large company say, but not necessarily all the subordinate entries.
Alternatively, DSAs may be configured to hold only those naming contexts representing primarily leaf
entries.

From the above definitions, the limiting case for a naming context can be either a single entry
or the whole of the DIT.

Whilst the logical to physical mapping of the DIT onto DSAs is potentially arbitrary, the task
of information location and management is simplified if the DSAs are configured to hold a small
number of naming contexts.

In order for a DUA to begin processing a request it must hold some information, specifically
the presentation address, about at least one DSA that it can contact initially. How it acquires and
holds this information is a local matter.

During the process of modification of entries it is possible that the directory may become
inconsistent. This will be particularly likely if modification involves aliases or aliased objects
which may be in different DSAs. The inconsistency must be corrected by specific administrator action,
for example to delete aliases if the corresponding aliased objects have been deleted. The Directory
continues to operate during this period of inconsistency.

FIGURE 5/X.518

Hypothetical DIT

126 Fascicle Vm.8 - Rec. X.518

Note - The Root is not held by any DSA, however some indication must exist at the local level
to distinguish those vertices (e.g. C = VV, C = WW) which are immediate subordinates of the Root.

10 Knowledge

The DIB is potentially distributed across multiple DSAs with each DSA holding a DIB fragment;
the principles that govern distribution of the DIB are specified in § 9 of this Recommendation.

It is a requirement of the Directory that, for particular modes of user interaction, the
distribution of the directory be rendered transparent, thereby giving the effect that the whole of
the DIB appears to be within each and every DSA.

In order to support the operational requirements described above, it is necessary that each DSA
holding a fragment of the DIB be able to identify and optionally interact with other fragments of the
DIB held by other DSAs.

This paragraph defines knowledge as the basis for the mapping of a name to its location within
a fragment of the DIT.

Conceptually DSAs hold two types of information:

a) Directory Information;

b) Knowledge Information.

Directory Information is the collection of entries comprising the Naming Context(s) for which
the Administrator of a particular DSA has Administrative Authority.

Knowledge Information embodies the Naming Context(s) held by a particular DSA and denotes how
these fit into the overall DIT hierarchy. Name Resolution, the process of locating the DSA which has
Administrative Authority for a particular entry given that entry’s name, is based on knowledge
information.

A Context Prefix is the sequence of RDNs leading from the Root of the DIT to the initial
vertex of a naming context and corresponds to the distinguished name of that vertex.

A Naming Context comprises a collection of knowledge references and a Context Prefix. A
Naming Context must contain exactly the following knowledge references:

All the internal references which define the internal structure of the portion of the DIT
included in the Naming Context.

All the subordinate and non-specific subordinate references to other Naming Contexts.

10.1 Minimal knowledge references

It is a property of the Directory that each entry can be accessed independently of where a
request is generated.

To accomplish this, each DSA shall at least maintain the following knowledge references:

subordinate references as defined in § 10.3.2 and/or non-specific subordinate
references as defined in § 10.3.5; and

superior references as defined in § 10.3.3.

It is then possible to establish a reference path, as a continuous sequence of knowledge
references, to all naming contexts within the Directory.

Optionally, cross references, as defined in § 10.3.4 may form part of a reference path to
optimize performance.

10.2 Root context

Because of the autonomy of the different countries or global organizations, there is likely to
be no "single" DSA which holds the root context. The functionality of a "root-DSA" concerning the
name resolution process has to be provided by those DSAs which have administrative authority for
naming contexts that are immediately subordinate to the root. These DSAs are called First Level
DSAs. Each First Level DSA must be able to simulate the functionality of the "root-DSA". This

Fascicle Vm.8 - Rec. X.518 127

requires full knowledge about the root naming context. The root context is replicated onto each First
Level DSA and therefore has to be administered commonly by the autonomous first level administrative
authorities. Administration procedures have to be determined by multilateral agreements outside the
scope of this Recommendation.

Each first level DSA shall hold the root context, which implies a reference path to each
other first level DSA.

Each non-first level DSA shall have a superior reference, which implies a reference path
to any arbitrary first level DSA.

10.3 Knowledge references
The knowledge possessed by a DSA is defined in terms of a set of one or more knowledge

references where each reference associates, either directly or indirectly, entries of the DIB with
DSAs which hold those entries.

To be able to fulfill the requirements to reach every DIB entry from any DSA, every DSA is
required to have knowledge about the entries which it itself holds, and about subordinates and
possibly superiors thereof. This gives rise to the following types of knowledge references:

Internal references

Subordinate references

Superior references

Non-specific subordinate references.

Additionally, for optimization purposes the following type of optional reference is defined:

Cross references
In the event that the set of knowledge references associated with a particular DSA contain only

internal references, the DSA has no knowledge of other DSAs and the DIB is therefore centralized.
10.3.1 Internal references

An internal reference consists of:

the RDN corresponding to a DIB entry;

an internal pointer to where the entry is stored in the local DIB. (The specification of
this pointer is outside the scope of this Recommendation.)

All entries for which a particular DSA has Administrative Authority are represented by internal
references in the knowledge information of that DSA.

10.3.2 Subordinate references
A subordinate reference consists of:

an RDN corresponding to an immediate subordinate DIB entry;

the Access Point of the DSA to which Administrative Authority for that entry was
delegated.

All subordinate entries held by another DSA to which this DSA has delegated Administrative
Authority, must be represented by subordinate references (or non-specific subordinate references as
described in § 10.3.5).

10.3.3 Superior references

A superior reference consists of:

the Access Point of a DSA. ,

Each non-first level DSA maintains precisely one superior reference. The superior reference
shall form part of a reference path to the root. Unless some method outside of the standard is
employed to ensure this, for example within a DMD, this shall be accomplished by referring to a DSA
which holds a naming context whose context prefix has less RDNs than the context prefix with fewest
RDNs held by this DSA.

If a new non-first level DSA is introduced, it must have a minimal initial knowledge, which is
represented by the superior reference. Any further knowledge will be added by subordinate references

128 Fascicle Vm.8 - Rec. X.518

or cross references (as described in § 10.3.4). If a new first level DSA is introduced, it must
acquire the root context and advise all other first level DSAs. How this is accomplished is outside
the scope of this Recommendation.

10.3.4 Cross reference

A cross reference consists of:

a Context Prefix;

the Access Point of a DSA which has Administrative Authority for that Naming Context.

This type of reference is optional and serves to optimize Name Resolution. A DSA may hold any
number (including zero) of cross references.

10.3.5 Non-specific subordinate references

A non-specific subordinate reference consists of:

The Access Point of a DSA which holds one or more immediately subordinate Naming
Contexts.

This type of reference is optional, to allow for the case in which a DSA is known to contain
some subordinate entries but the specific RDNs of those entries is not known.

For each naming context which it holds, a DSA may hold any number (including zero) of non­
specific subordinate references, which will be evaluated if all specific internal and subordinate
references have been pursued. DSAs accessed via a non-specific reference must be able to resolve the
request directly (either success or failure). In the event of failure a ServiceError reporting a
problem of unableToProceed is returned to the requestor.

10.4 Knowledge administration

To operate a widely distributed Directory with an acceptable degree of consistency and
performance, procedures are required to maintain and extend the knowledge held by each DSA. The same
procedures are appropriate for creating initial knowledge.

Knowledge can be maintained by:

a) The DSA or its administrative authority propagating changes of knowledge to those DSAs
holding all kinds of references to it, whenever changes at that DSA cause the references
to become invalid. This is the only way superior, subordinate and non-specific subordinate
references can be maintained.

b) DSAs requesting and obtaining cross references to improve the performance through ordinary
directory operations.

This Recommendation does not define any procedures for propagating knowledge changes as
described in a). Bilateral agreements must be established locally for this.

10.4.1 Requesting cross reference

To improve the performance of the Directory System, the local set of cross references can be

expanded using ordinary Directory operations. If a DSA has a chained port it may request another DSA
(which also must have a chained port) to return those knowledge references which contain information
about the location of naming contexts related to the target object name of an ordinary Directory
operation.

If the retumCrossReference component of the ChainingArgument is set to TRUE, the
crossReference component of the ChainingResult may be present, consisting of a sequence of cross
reference items.

If a DSA is not able to chain a request to the next DSA a referral is returned to the
originating DSA. If the retumCrossReference component of the chaining argument was TRUE, the
referral may contain additionally the context prefix of the naming context which the referral refers
to. The contextPrefix component is absent if the referral is based on a non-specific subordinate
reference. The cross reference returned by a referral is only based on knowledge held by the DSA
which generated the referral.

Fascicle Vm.8 - Rec. X.518 129

In both cases (chaining result and referral) an administrative authority through its DSA may
elect to ignore the request for returning cross references.

10.4.2 Knowledge inconsistencies

The Directory has to support consistency-checking mechanisms to guarantee a certain degree of
knowledge consistency.

10.4.2.1 Detection o f knowledge inconsistencies

The kind of inconsistency and its detection varies for the different types of knowledge
references.

Cross and subordinate references:

This type of reference is invalid if the referenced DSA does not have a local naming context
with the context prefix contained in the reference. This inconsistency will be detected during the
determination of the initial naming context of the name resolution process by the operation progress
and reference type components of the ChainingArgument.

Non-specific Subordinate-references:

This type of reference is invalid if the referenced DSA does not have a local naming context
whose immediately superior context prefix is contained in the reference, i.e. the reference contains
that DSA’s local context prefix minus the last RDN. The consistency check is applied as above.

Superior references:

An invalid superior reference is one which does not form part of a reference path to the root.
The maintenance of superior references must be done by external means and is outside the scope of
this Recommendation.

Note - It is not always possible to detect an invalid superior reference.

10.4.2.2 Reporting o f knowledge inconsistencies

If chaining is used in performing a Directory request, all knowledge inconsistencies will be
detected by the DSA which holds the invalid knowledge reference, through receiving a ServiceError
with problem of invalidReference.

If a DSA returns a referral which is based on an invalid knowledge reference, the requestor
will be returned a ServiceError with problem of invalidReference if it uses the referral. How the
error condition will be propagated to the DSA which stores the invalid reference is not within the
scope of this Recommendation.

10.4.2.3 Treatment o f inconsistent knowledge references

After a DSA has detected an invalid reference it should try to re-establish knowledge
consistency. For example, this can be done by simply deleting an invalid cross reference or by
replacing it with a correct one which can be obtained using the requestCrossReferences mechanisms.

The way in which a DSA actually handles invalid references is a local matter, and outside the
scope of this Recommendation.

SECTION 4 - DSA abstract service

11 Overview of DSA abstract service

11.1 The abstract service of the directory is fully described in Recommendation X.511. When such a
service is provided in a distributed environment, as modelled in § 7 of this Recommendation, it can
be regarded as being provided by means of a set of DSAs. This is illustrated in Figure 1 /X.518.

11.2 To describe this model, the refinement of the directory object into its component dsa objects
can be expressed as:

130 Fascicle Vm.8 - Rec. X.518

DirectoryRefinement
dsa

readPort

::= REFINE directory AS
RECURRING

[S] VISIBLE
searchPort
modifyPort
chainedReadPort
chainedSearchPort
chainedModifyPort

[S] VISIBLE
[S] VISIBLE
PAIRED with dsa
PAIRED with dsa
PAIRED with dsa

11.3 The dsa object itself can be defined as follows:

dsa OBJECT
PORTS { readPort [S],

[S],
[S],

searchPort
modifyPort
chainedReadPort,
chainedSearchPort,
chainedModifyPort}

::= id-ot-dsa

The DSA supplies Read, Search and Modify ports, thus making visible those services to the users
of the directory object, namely the DUAs. In addition, a DSA supports "chained" versions of these
ports, namely Chained Read, Chained Search, and Chained Modify, which allow DSAs to propagate
requests for those services to other DSAs.

11.4 The ports cited from §§ 11.2 and 11.3 (excluding those which are defined in Recommen­
dation X.511) are defined as follows:

chainedReadPort PORT
ABSTRACT OPERATIONS {

ChainedRead, ChainedCompare,
ChainedAbandon)

::= id-pt-chained-read
chainedSearchPort PORT

ABSTRACT OPERATIONS {
ChainedList, ChainedSearch}

::= id-pt-chained-search
chainedModifyPort PORT

ABSTRACT OPERATIONS {
ChainedAddEntry,
ChainedRemoveEntry,
ChainedModifyEntry,
ChainedModifyRDN)

::= id-pt-chained-modify

12 Information types

12.1 Introduction

12.1.1 This paragraph identifies, and in some cases defines, a number of information types which
are subsequently used in the definition of various of the operations of the DSA abstract service.
The information types concerned are those which are common to more than one operation, are likely to
be in the future, or which are sufficiently complex or self-contained as to merit being defined
separately from the operation which uses them.
12.1.2 Several of the information types used in the definition of the DSA abstract service are
actually defined elsewhere. § 12.2 identifies these types and indicates the source of their
definition. Each of the remaining (§§ 12.3 to 12.9) identifies and defines an information type.

12.2 Information types defined elsewhere

12.2.1 The following information types are defined in Recommendation X.501:

a) aliasedObjectName;

Fascicle VTII.8 - Rec. X.518 131

b) DistinguishedName;

c) Name;

d) RelativeDistinguishedName.

12.2.2 The following information types are defined in Recommendation X.511:

(Abstract-bind)

a) DirectoryBind;

(Abstract-operations)

b) Abandon;

(Abstract-errors)

c) Abandoned;

d) AttributeError;

e) NameError,

f) SecurityError;

g) ServiceError,

h) UpdateError;

(Macro)

i) OPTIONALLY-SIGNED;

(Data Type)

j) SecurityParameters.

12.2.3 The following information type is defined in Recommendation X.520:
a) PresentationAddress.

12.3 Chaining arguments

12.3.1 The ChainingArguments are present in each Chained abstract-operation, to convey to a DSA the
information needed to successfully perform its part of the overall task:

ChainingArguments ::= SET {
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
OperationProgress [2] OperationProgress DEFAULT {notStarted},
tracelnformation [3] Tracelnformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

— absent unless aliasDereferenced is TRUE
retumCrossRefs [6] BOOLEAN DEFAULT FALSE,
referenceType [7] ReferenceType DEFAULT superior,
Info [8] Domainlnfo OPTIONAL,
timeLimit [9] UTCTime OPTIONAL,

[10] SecurityParameters DEFAULT {}}

12.3.2 The various components have the meanings as defined in §§ 12.3.2.1 to 12.3.2.11.

12.3.2.1 The originator component conveys the name of the (ultimate) originator of the request,
unless already specified in the security parameters. If requestor is present in CommonArguments, this
argument may be omitted.

12.3.2.2 The targetObject component conveys the name of the object whose directory entry is being
routed to. The role of this object depends on the particular abstract-operation concerned: it may be
the object whose entry is to be operated on, or which is to be the base object for a request or sub­
request involving multiple objects (e.g. ChainedList or ChainedSearch). This component may be omitted
only if it would have had the same value as the base object parameter in XArgument (see § 14.3.1), in
which case its implied value is that value.

132 Fascicle Vm.8 - Rec. X.518

12.3.2.3 The OperationProgress component is used to inform the DSA of the progress of the operation,
and hence of the role which it is expected to play in its overall performance. The information
conveyed in this component is specified in § 12.5.
12.3.2.4 The tracelnformation component is used to prevent looping among DSAs when chaining is in
operation. A DSA adds a new element to trace information prior to chaining an operation to another
DSA. On being requested to perform an operation, a DSA checks, by examination of the trace
information, that the operation has not formed a loop. The information conveyed in this component is
specified in § 12.6.
12.3.2.5 The aliasDereferenced component is a Boolean value which is used to indicate whether or not
one or more alias entries have so far been encountered and dereferenced during the course of
distributed name resolution. The default value of FALSE indicates that no alias entry has been
dereferenced.
12.3.2.6 The aliasedRDNs component indicates how many of the RDNs in the targetObject Name have been
generated from the aliasedObjectName attributes of one (or more) alias entries. The integer value is
set whenever an alias entry is encountered and dereferenced. This component shall be present if and
only if the aliasDereferenced component is TRUE.
12.3.2.7 The retumCrossRefs component is a Boolean value which indicates whether or not knowledge
references, used during the course of performing a distributed operation, are requested to be passed
back to the initial DSA, as cross references, along with a result or referral. The default value of
FALSE indicates that such knowledge references are not to be returned.
12.3.2.8 The referenceType component indicates, to the DSA being asked to perform the abstract-
operation, what type of knowledge was used to route the request to it. The DSA may therefore be able
to detect errors in the knowledge held by the invoker. If such an error is detected it shall be
indicated by a ServiceError with the invalidReference problem. ReferenceType is described fully in
§ 12.7.

Note - If the referenceType is missing, then the value superior shall be assumed.

12.3.2.9 The info component is used to convey DMD-specific information among DSAs which are involved
in the processing of a common request. This component is of type Domainlnfo, which is of unrestricted
type:

Domainlnfo ::= ANY

12.3.2.10 The timeLimit component, if present, indicates the time by which the operation is to be
completed.
12.3.2.11 The SecurityParameters component is specified in Recommendation X.511. Its absence is
deemed equivalent to there being an empty set of security parameters.

12.4 Chaining results

12.4.1 The ChainingResults are present in the result of each abstract-operation and provide
feedback to the DSA which invoked the abstract-operation.

ChainingResults ::= SET {
Info [0] Domainlnfo OPTIONAL,
crossReferences [1] SEQUENCE OF CrossReference OPTIONAL,

[2] SecurityParameters DEFAULT {}}

12.4.2 The various components have the meanings as defined in §§ 12.4.2.1 to 12.4.2.3.

12.4.2.1 The info component is used to convey DMD-specific information among DSAs which are involved
in the processing of a common request. This component is of type Domainlnfo, which is of unrestricted
type.
12.4.2.2 The crossReferences component is not present in the ChainingResults unless the
retumCrossRefs component of the corresponding request had the value TRUE. This component consists of
a sequence of CrossReference items, each of which contains a contextPrefix and an accessPoint
descriptor (see § 12.8).

CrossReference ::= SET{
contextPrefix [0] DistinguishedName,
accessPoint [1] AccessPoint)

A CrossReference may be added by a DSA when it matches part of the targetObject argument of an
abstract-operation with one of its context prefixes. The administrative authority of a DSA may have a
policy not to return such knowledge, and will in this case not add an item to the sequence.

Fascicle VHI.8 - Rec. X.518 133

12.4.2.3 The SecurityParameters component is specified in Recommendation X.511. Its absence is deemed
equivalent to there being an empty set of security parameters.

12.5 Operation progress

12.5.1 An OperationProgress value describes the state of progress in the performance of an
abstract-operation which several DSAs must participate in.

OperationProgress ::= SET {
nameResolutionPhase [0]

ENUMERATED {
notStarted (1),
proceeding (2), '
completed (3)},

nextRDNToBeResolved [I]
INTEGER OPTIONAL)

12.5.2 The various components have the meanings as defined in §§ 12.5.2.1 and 12.5.2.2.

12.5.2.1 The nameResolutionPhase component indicates what phase has been reached in handling the
targetObject name of an operation. Where this indicates that name resolution has notStarted, then a
DSA has not hitherto been reached with a naming context containing the initial RDN(s) of the name.
If name resolution is proceeding, then the initial part of the name has been recognized, though the
DSA holding the target object has not yet been reached. The nextRDNToBeResolved indicates how much of
the name has already been recognized (§ 12.5.2.2). If name resolution is completed, then the DSA
holding the target object has been reached, and performance of the operation proper is proceeding.

12.5.2.2 The nextRDNToBeResolved indicates to the DSA which of the RDNs in the targetObject name is
the next to be resolved. It takes the form of an integer in the range one to the number of RDNs in
the name. This component is only present if the nameResolutionPhase component has the value
proceeding.

12.6 Trace information

12.6.1 A Tracelnformation value carries forward a record of the DSAs which have been involved in
the performance of an operation. It is used to detect the existence of, or avoid, loops which might
arise from inconsistent knowledge or from the presence of alias loops in the DIT.

Tracelnformation ::= SEQUENCE OF Traceltem
Traceltem ::= SET {

dsa [0] Name,
targetObject [1] Name OPTIONAL,
OperationProgress [2] OperationProgress)

12.6.2 Each DSA which is propagating an operation to another adds a new item to the trace

information. Each such Traceltem contains:
a) the Name of the dsa which is adding the item;

b) the targetObject Name which the DSA adding the item received on the incoming request.
This parameter is omitted if the query being chained came from a DUA (in which case its
implied value is the object or baseObject in XOperation), or if its value is the same as
the (actual or implied) targetObject in the ChainingArgument of the outgoing request;

c) the OperationProgress which the DSA adding the item received on the incoming request.

12.7 Reference type

12.7.1 A ReferenceType value indicates one of the various kinds of reference defined in § 10.

ReferenceType

ENUMERATED {
superior (1),
subordinate (2),
cross (3),
nonSpecificSubordinate (4)}

134 Fascicle VTIL8 - Rec. X.518

12.8 Access point

12.8.1 An AccessPoint value identifies a particular point at which access to the Directory,
specifically to a DSA, can occur. The access point has a Name, that of the DSA concerned, and a
PresentationAddress, to be used in OSI communications to that DSA.

AccessPoint ::= SET {
ae-title [0] Name,
address [1] Presentation Address }

12.9 Continuation reference

12.9.1 A ContinuationReference describes how the performance of all or part of an abstract-
operation can be continued at a different DSA or DSAs. It is typically returned as a referral when
the DSA involved is unable or unwilling to propagate the request itself.

ContinuationReference ::= SET {
targetObject [0] Name,
aliasedRDNs [1] INTEGER OPTIONAL,
OperationProgress [2] OperationProgress,
rdnsResolved [3] INTEGER OPTIONAL,
referenceType [4] ReferenceType OPTIONAL,

— only present in the DSP
accessPoints [5] SET OF AccessPoint}

12.9.2 The various components have the meanings as defined in §§ 12.9.2.1 to 12.9.2.6.

12.9.2.1 The targetObject Name which is proposed to be used in continuing the operation. This might
be different from the targetObject Name received on the incoming request if, for example, an alias
has been dereferenced, or the base object in a search has been located.

12.9.2.2 The aliasedRDNs component indicates how many (if any) of the RDNs in the target object name
have been produced by dereferencing an alias. The argument is only present if an alias has been
dereferenced.

12.9.2.3 The OperationProgress which has been achieved, and which will govern the further performance
of the abstract-operation by the DSAs named, should the DSA or DUA receiving the
ContinuationReference follow it up.

12.9.2.4 The rdnsResolved component value, (which need only be present if some of the RDNs in the
name have not been the subject of full name resolution, but have been assumed to be correct from a
cross reference) indicates how many RDNs have actually been resolved, using internal references
only.

12.9.2.5 The referenceType component, which is only present in the DSA abstract service, indicates
what type of knowledge was used in generating this continuation.

12.9.2.6 The accessPoints component indicates the access points which are to be followed up to
achieve this continuation. Where Nonspecific Subordinate References are involved there may be more
than one AccessPoint listed, and each should be followed up, e.g. by multicasting.

13 Abstract-bind and abstract-unbind

DSABind and DSAUnbind, respectively, are used by a DSA at the beginning and at the end of a
period accessing another DSA.

13.1 DSA bind

13.1.1 A DSABind abstract-bind-operation is used by a DSA to bind its chainedRead, chainedSearch,
and chainedModify ports to those of another DSA.

DSABind ::= ABSTRACT-BIND
TO {chainedRead,

chainedSearch,
chainedModify)

DirectoryBind

Fascicle VTII.8 - Rec. X.518 135

13.1.2 The components of the DSABind are identical to their counterparts in the DirectoryBind
(see Recommendation X.511) with the following differences.
13.1.2.1 The Credentials of the DirectoryBindArgument allows information identifying the AE-Title
of the initiating DSA to be sent to the responding DSA. The AE-Title must be in the form of a
Directory Distinguished Name.

13.1.2.2 The Credentials of the DirectoryBindResult allows information identifying the AE-Title of
the responding DSA to be sent to the initiating DSA. The AE-Title must be in the form of
Distinguished Name.

13.2 DSA unbind

13.2.1 A DSAUnbind operation is used to unbind the Chained Read, Chained Search and Chained
Modify ports of a pair of DSAs.

DSAUnbind ::= ABSTRACT-UNBIND
FROM {chainedRead,

chainedSearch,
chainedModify)

13.2.2 There are no arguments, results or errors.

14 Chained abstract-operations

14.1 Corresponding to each of the ports of the Directory abstract service is a port of the DSA which
allows the abstract service to be provided by cooperating DSAs. The abstract-operations in the
corresponding ports are also in one-to-one correspondence. The names of the ports and the abstract-
operations have been chosen to reflect this correspondence, with the port or abstract-operation in
the DSA abstract service being formed from that of the Directory abstract service by prefixing the
word "Chained". The resulting ports and abstract-operations are as follows:

ChainedReadPort ChainedRead,
ChainedCompare,
ChainedAbandon

ChainedSearchPort ChainedList,
ChainedSearch

ChainedModifyPort Chained AddEntry,
ChainedRemoveEntry,
ChainedModifyEntry,
ChainedModifyRDN

14.2 The arguments, results, and errors of the chained abstract-operation are, with one exception,
formed systematically from the arguments, results, and errors of the corresponding abstract-
operations in the Directory abstract service (as described in § 14.3). The one exception is the
ChainedAbandon abstract-operation, which is syntactically equivalent to its Directory abstract-
service counterpart (described in § 14.4).
14.3 A ChainedX abstract-operation is used to propagate between DSAs a request which (normally)
originated as a DUA invoking an X abstract-operation at a DSA, that DSA having elected to chain it.
The arguments of the abstract-operation may optionally be signed by the invoker, and, if so
requested, the performing DSA may sign the results.

14.3.1 The systematic derivation of a Chained abstract-operation ChainedX from its counterpart X is
as follows:

given:

X ::=
ABSTRACT-OPERATION

ARGUMENT XArgument
RESULT XResult
ERRORS {..., Referral,...)

136 Fascicle VTII.8 - Rec. X.518

ChainedX ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED SET{
ChainingArgument,
[0] XArgument}

RESULT OPTIONALLY-SIGNED SET(
ChainingResult,
[0] XResult)

ERRORS {....DsaReferral,...}

Note - The definitive specification of the DSA abstract service in Annex A applies this
derivation in full to the Chained abstract-operations.

14.3.2 The arguments of the derived abstract-operation have the meanings as described in
§§ 14.3.2.1 and 14.3.2.2.

14.3.2.1 The ChainingArgument contains that information, over and above the original DUA-supplied
arguments, which is needed in order for the performing DSA to carry out the operation. This
information type is defined in § 12.3.

14.3.2.2 The XArgument contains the original DUA-supplied arguments, as specified in the appropriate
clause of Recommendation X.511.

14.3.3 Should the request succeed, the result will be returned. The result parameters have the
meanings as described in §§ 14.3.3.1 and 14.3.3.2.

14.3.3.1 The ChainingResult contains the information, over and above that to be supplied to the
originating DUA, which may be needed by previous DSAs in a chain. This information type is defined in
§ 12.4.

14.3.3.2 The XResult contains the result which is being returned by the performer of this abstract-
operation, and which is intended to be passed back in the result to the originating DUA. This
information is as specified in the appropriate clause of Recommendation X.511.

14.3.4 Should the request fail, one of the listed errors will be returned. The set of errors which
may be reported are as described for the corresponding abstract-operation in Recommendation X.511,
except that DSAReferral is returned instead of Referral. The various errors are defined or referenced
in § 15.

14.4 A ChainedAbandon abstract-operation is used by one DSA to indicate to another that it is no
longer interested in having a previously invoked chained operation performed. This may be for any of
a number of reasons, of which the following are examples:

a) the operation which led to the DSA originally chaining has itself been abandoned, or has
implicitly been aborted by the breakdown of an association;

b) the DSA has obtained the necessary information in another way, e.g. from a faster
responding DSA involved in a multicast.

A DSA is never obliged to issue a ChainedAbandon, or indeed to actually abandon an operation if
requested to do so.

If ChainedAbandon actually succeeds in stopping the performance of an operation, then a result
will be returned, and the subject operation will return an Abandoned abstract-error. If the
ChainedAbandon does not succeed in stopping the operation, then it itself will return an
AbandonFailed error.

the Chained abstract-operation is derived as:

15 Chained abstract-errors

15.1 Introduction

15.1.1 For the most part, the same abstract-errors can be returned in the DSA abstract service
which can be returned in the Directory abstract-service. The exceptions are that the DSAReferral
"error" is returned (see § 15.2), instead of Referral, and the following service problems have the
same abstract syntax but different semantics.

Fascicle VTIL8 - Rec. X.518 137

a) invalidReference.

b) loopDetected.

15.1.2 The precedence of the abstract-errors which may occur is as for their precedence in the
Directory abstract service, as specified in Recommendation X.511.

15.2 DSA Referral

15.2.1 The DSAReferral abstract-error is generated by a DSA when, for whatever reason, it doesn’t
wish to continue performing an abstract-operation by chaining or multicasting the abstract-operation
to one or more other DSAs. The circumstances where it may return a referral are described in § 8.4.

DSAReferral
ABSTRACT-ERROR

PARAMETER SET{
[0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL }

15.2.2 The various parameters have the meanings as described in §§ 15.2.2.1 and 15.2.2.2.

15.2.2.1 The ContinuationReference contains the information needed by the invoker to propagate an
appropriate further request, perhaps to another DSA. This information type is specified in § 12.9.

15.2.2.2 If the returnCrossRefs component of the ChainingArguments for this abstract-operation had
the value TRUE, and the referral is being based upon a subordinate or cross-reference, then the
contextPrefix parameter may optionally be included. The administrative authority of any DSA will
decide which knowledge references, if any, can be returned in this manner (the others, for example,
may be confidential to that DSA).

SECTION 5 - Distributed operations procedures

16 Introduction

16.1 Scope and limits

This paragraph specifies the procedures for distributed operation of the Directory which are
performed by DSAs. Each DSA individually performs the procedures described below: the collective
action of all DSAs produces the full set of services provided to users by the Directory.

The description of procedures for a single DSA is based on the models in §§7 to 10 of this
Recommendation.

It should be noted that the model and procedures are included for expositional purposes only
and are not intended to constrain or govern the implementation of an actual DSA.

This paragraph is divided into three sub-paragraphs: this introduction, a conceptual model for
describing directory behaviour and an introduction of both DSA-Centred and Operation-Centred models
of DSA operations.

16.2 Conceptual model

The complexity of the Directory’s distributed operation gives rise to a need for conceptual
modelling using both narrative and pictorial descriptive techniques. However, neither the narrative
nor graphic diagrams should be construed as a formal description of distributed directory operation.

16.3 Individual and cooperative operation o f DSAs

The model views DSA operation from two separate perspectives, which, taken together, provide a
complete, operational picture of the Directory.

138 Fascicle VIIL8 - Rec. X.518

a) DSA-Centred Perspective. In this perspective the set of procedures that support the
directory is described from the viewpoint of a single DSA. This makes it possible to
provide a definitive specification of each procedure and to fully account for their
interrelationships and overall control structure. § 18 describes the DSA procedures from a
DSA-centred perspective.

b) Operation-Centred Perspective. The DSA-centred view provides complete detail but makes it
difficult to understand the structure of individual operations, which may undergo
processing by multiple DSAs. Consequently § 17 adopts a primarily operation-centred view
to introduce the processing phases applicable to each.

To support the distributed operation of the directory, each DSA must perform actions needed to
realize the intent of each operation and additional actions needed to distribute that realization
across multiple DSAs. § 17 explores the distinction between these two kinds of actions. In § 18 both
kinds of actions are specified in detail.

17 Distributed directory behaviour

17.1 Cooperative fulfillment o f operations

Each DSA is equipped with procedures capable of completely fulfilling all Directory operations.
In the case that a DSA contains the entire DIB all operations are, in fact, completely carried out
within that DSA. In the case that the DIB is distributed across multiple DSAs the completion of a
typical operation is fragmented, with just a portion of that operation carried out in each of
potentially many cooperating DSAs.

In the distributed environment, the typical DSA sees each operation as a transitory event; the
operation is invoked by a DUA or some other DSA; the DSA carries out processing on the object and
then directs it toward another DSA for further processing.

An alternate view considers the total processing experienced by an operation during its
fulfillment by multiple, cooperating DSAs. This perspective reveals the common processing phases that
apply to all operations.

17.2 Phases o f operation processing
Every Directory operation may be thought of as comprising three distinct phases:

a) the Name Resolution phase - in which the name of the object on whose entry a particular
operation is to be performed is used to locate the DSA which holds the entry;

b) the Evaluation phase - in which the operation specified by a particular directory request
(e.g. read) is actually performed;

c) the Results Merging phase - in which the results of a specified operation are returned to
the requesting DUA. If a chaining mode of interaction was chosen, the Results Merging
phase may involve several DSAs, each of which chained the original request or sub-request
(as defined in § 17.3.1 Request Decomposition) to another DSA during either or both of the
preceding phases.

In the case of the operations Read, Compare, List, Search, and ModifyEntry, name resolution
takes place on the object name provided in the argument of the operation. In the case of AddEntry,
RemoveEntry, and ModifyRDN, name resolution takes place on the name of the immediately superior
object (derived by removing the final RDN from the name provided in the operation argument).

An operation on a particular entry may initially be directed at any DSA in the Directory. That
DSA used its knowledge, possibly in conjunction with other DSAs to process the operation through the
three phases.

17.2.1 Name resolution phase

Name Resolution is the process of sequentially matching each RDN in a purported Name to an arc
(or vertex) of the DIT, beginning logically at the Root and progressing downwards in the DIT.
However, because the DIT is distributed between arbitrarily many DSAs, each DSA may only be able to
perform a fraction of the name resolution process. A given DSA performs its part of the Name
Resolution process by traversing its local knowledge. This process is described in § 18.6 and the

Fascicle Vm.8 - Rec. X.518 139

accompanying diagrams (Figures 11/X.518 to 13/X.518). When a DSA reaches the border of its naming
context, it will know from the knowledge information contained therein, whether the resolution can be
continued by another DSA or whether the name is erroneous.

17.2.2 Evaluation phase
When the name resolution phase has been completed, the actual operation required (e.g. read or

search) is performed.

Operations that involve a single entry - Read, Compare, AddEntry, RemoveEntry, ModifyRDN and
ModifyEntry - can be carried out entirely within the DSA in which that entry has been located.
AddEntry, RemoveEntry and ModifyRDN may affect knowledge in more than one DSA. See § 18.7.1.

Operations that involve multiple entries - List and Search - need to locate subordinates of the
target, which may or may not reside in the same DSA. If they do not all reside in the same DSA,
operations need to be directed to the DSAs specified in the subordinate references to complete the
evaluation process.

17.2.3 Results merging phase

The results merging phase is entered once some of the results of the evaluation phase are
available.

In those cases where the operation affected only a single entry, the result of the operation
can simply be returned to the requesting DUA. In those cases where the operation has affected
multiple entries on multiple DSAs, results need to be combined.

The permissible responses returned to a requestor after results merging include:

a) a complete result of the operation;

b) a result which is not complete because some parts of the DIT remain unexplored (applies to
List and Search only). Such a partial result may include continuation references for
those parts of the DIT not explored;

c) an error (a referral being a special case);

d) and if the requestor was a DSA, a ChainingResult.

17.3 Managing distributed operations

Information is included in the argument of each abstract-operation which a DSA may be asked to
perform indicating the progress of each operation as it traverses various of the DSAs of the
Directory. This makes it possible for each DSA to perform the appropriate aspect of the processing
required, and to record the completion of that aspect before directing the operation outward toward
further DSAs.

Additional procedures are included in the DSA to physically distribute the operations and
support other needs arising from their distribution.

17.3.1 Request decomposition

Request decomposition is a process performed internally by a DSA prior to communication with
one or more other DSAs. A request is decomposed into several sub-requests such that each of the
latter accomplishes a part of the original task. Request decomposition can be used, for example, in
the search operation, after the base object has been found. After decomposition, each of the sub­
requests may then be chained or multicast to other DSAs, to continue the task.

17.3.2 DSA as Request responder

A DSA that receives a request can check the progress of that request using the Operation
Progress parameter. This will determine whether the operation is still in the name resolution phase
or has reached the evaluation phase, and what portion of the operation the DSA should attempt to
satisfy. If the DSA cannot fully satisfy the request it must either pass the operation on to one or
more DSAs which can help to fulfill the request (by chaining or multicasting) or return a referral to
another DSA or terminate the request with an error.

140 Fascicle VIIL8 - Rec. X.518

Each DSA that has initiated an operation or propagated an operation to one or more other DSAs
must keep track of that operation’s existence until each of the other DSAs has returned a result or
error, or the operation’s maximum time limit has expired. This requirement applies to all operations,
propagation modes and processing phases. It ensures the orderly closing down of distributed
operations that have propagated out into the Directory.

17.4 Other considerations for distributed operation

17.4.1 Request validation

On receipt of a directory operation a DSA must initially validate the operation to ensure that
it can be progressed. Circumstances such as loops within the DIT caused by inappropriate use of
aliases or the use of erroneous knowledge may cause operations to be sent to DSAs that cannot be
processed.

In the simple case these erroneous circumstances are adequately handled by name resolution
procedures as described in § 18. However, where circumstances cause operations to loop (as described
in § 17.4.3) name resolution alone is inadequate.

The request validation actions ensures that a loop is detected before any attempt is made to
progress an operation through the erroneous data caused by the loop. The detection process is carried
out by the loop detection procedure specified in § 18.5.1.

Where security procedures are in force request validation also verifies the identity of the
requesting DSA or DUA, and the validity of the request.

17.4.2 State and trace information
The progression of an operation within the directory and the presence of loop conditions are

determined by an operation’s "state", where state is defined to be the following:

the name of the DSA currently processing the operation;
the name of the targetObject as contained within the argument of the operation;

the OperationProgress as contained within the argument of the operation and as defined in
§ 12.5.

In addition to the current state of an operation, a DSA also needs to know all previous states
for that operation. These are recorded in the tracelnformation argument and conveyed with the
operation.

The tracelnformation argument forms the basis of loop avoidance/detection strategies as
specified in § 17.4.3.

17.4.3 Looping
Within the context of a particular directory operation a loop occurs if at any time the

operation returns to a previous state (as defined above). Looping is managed using the
tracelnformation argument. Two strategies are defined to handle loops. In loop detection a DSA
determines whether a loop has occurred in an incoming operation and, if so returns an error. In loop
avoidance a DSA determines whether an operation, if forwarded, would yield a loop.

17.4.4 Service controls
Some service controls need special consideration in the distributed environment in order that

the operation is processed the way that was requested.
a) chainingProhibited: A DSA consults this service control when determining the mode of

propagation of an operation. If it is set then the DSA always uses referral mode. If,
however, it is not set, the DSA can choose whether to use chaining or referral depending
on its capabilities.

b) timeLimit A DSA needs to take account of this service control to ensure that the time
limit is not exceeded in that DSA. A DSA requested to perform an operation by a DUA,
initially heeds the timeLimit expressed by the DUA as the available elapsed time in
seconds for completion of the operation. If chaining is required, the timeLimit is
included in the chaining argument to be passed to the next DSA(s). In this case the same
value of the limit is used for each chained request, and is the (UTC) time by which the

17.3.3 Completion o f operations

Fascicle Vm.8 - Rec. X.518 141

operation must be completed to meet the originally specified constraint. On receiving a
chaining argument with a timeLimit specified, the receiving DSA respects this limit.

c) sizeLimit A DSA needs to take account of this service control to ensure that the list of
results does not exceed the size specified. The limit, as included in the common argument
of the original request, is conveyed unchanged as the request is chained/multicast. If
request decomposition is required, the same value is included in the argument to be passed
to the next DSA: that is, the full limit is used for each sub-request. When the results
are returned the requestor DSA resolves the multiple results and applies the limit to the
total to ensure that only the requested numbers are returned. If the limit has been
exceeded, this is indicated in the reply.

d) Priority: In all modes of propagation, each DSA is responsible for ensuring that the
processing of operations is ordered so as to support this service control if present.

e) localScope: The operation is limited to a locally defined scope and cannot be propagated
by any of the modes.

f) scopeOfReferral: If the DSA returns a referral or partial result to a List or Search
operation, then the embedded ContinuationReferences shall be within the requested scope.

All other service controls need to be respected, but their use does not require any special
consideration in the distributed environment.

17.4.5 Extensions

17.4.5.1 If a DSA encounters an extended abstract-operation in the name resolution phase of
processing and determines that the abstract-operation should be chained to one or more other DSAs, it
shall include unchanged in the chained abstract-operation any extensions present.

Note - An Administrative Authority may determine that it is appropriate to return a
ServiceError with problem unwillingToPerform if it does not wish to propagate an extension.

17.4.5.2 If a DSA encounters an extension in the execution phase of processing, two possibilities may
arise. If the extension is not critical, the DSA shall ignore the extension. If the extension is
critical, the DSA shall return a ServiceError with problem unavailableCriticalExtension.

A critical extension to a multiple object operation may result in both results and service
errors of this variety. A DSA merging such results and errors shall discard these service errors and
employ the unavailableCriticalExtension component of PartialOutcomeQualifier as described in § 10.1.1
of Recommendation X.511.

17.4.6 Alias Dereferencing

Alias dereferencing is the process of creating a new target object name, by replacing the alias
entry distinguished name part of the original target object name with the Aliased Object Name
attribute value from the alias entry. The object name in the operation is not affected by alias
dereferencing.

17.5 Authentication o f distributed operations

Users of the Directory together with administrative authorities that provide directory services
may, at their discretion, require that directory operations be authenticated. For any particular
directory operation the nature of the authentication process will depend upon the security policy in
force.

Two sets of authentication procedures are available which collectively enable a range of
authentication requirements to be met. One set of procedures are those provided by Bind: these
facilitate authentication between two directory application-entities for the purposes of establishing
an association. The Bind procedures accommodate a range of authentication exchanges from a simple
exchange of identities to strong authentication.

142 Fascicle VIIL8 - Rec. X.518

In addition to the peer entity authentication of an association as provided by Bind, additional
procedures are defined within the directory to enable individual operations to be authenticated. Two
distinct sets of directory authentication procedures are defined. One facilitates originator
authentication services, which address the authentication, by a DSA, of the initiator of the original
service request. The second set facilitates results authentication services which address the
authentication, by an initiator, of any results that are returned.

For originator authentication two procedures are defined, one based upon a simple exchange of
identities, termed identity based authentication, and one based upon digital signature techniques,
termed signature based authentication. The former of these procedures is rudimentary in nature since
the identity exchange is based upon the exchange of distinguished names which are transmitted in the
clear.

For authentication of results a single results authentication procedure is defined, based upon
digital signature techniques; due to the generally complex nature of results collation a simpler,
identity-based procedure is not defined.

Authentication of error responses is not supported by these procedures.

The services described above are to be considered as augmenting those provided by the Bind
service; Bind procedures are assumed to have been effected successfully prior to authentication of
directory operations.

The procedures to be effected by a DSA in providing originator and results authentication are
specified in § 18.9.

18 DSA behaviour

18.1 Introduction

Corresponding to each operation invoked by a requestor (e.g. DUA or DSA) the performing DSA
must behave in accordance with well-defined procedures so that an appropriate response will be
returned deterministically. This paragraph specifies the allowed behaviour by modelling a DSA in
terms of processes implementing a particular collection of procedures. It is important to realize
that a DSA need conform only to the externally visible behaviour implied by these procedures, and not
to the procedures themselves.

18.2 Overview o f the DSA behaviour

The behaviour of the distributed Directory as a whole is the sum of the behaviour of its
cooperating DSAs. Each of these DSAs can be viewed as a process, supported internally by a set of
procedures.

Figure 6/X.518 illustrates the internal view of the DSA behaviour.

The Operation Dispatcher is the main controlling procedure in a DSA. It guides each operation
through the three phases of processing described in § 17.2.

The procedures which support the Operation Dispatcher are: Name Resolution, Find Naming
Context, Local Name Resolution, Evaluation, Single Object Evaluation, Multiple Object Evaluation, and
Result Merging. The relationships among these procedures are shown graphically in Figure 6/X.518.

Fascicle VIII.8 - Rec. X.518 143

D S A

T0704560-88

FIGURE 6/X.518

DSA Behaviour - Internal view

18.2.1 The operation dispatcher

Upon initially receiving an operation, the Operation Dispatcher validates it, checking for loop
or authentication errors. If none is found, it calls Name Resolution, which returns either a Found
indication, a Reference, or an error indication. References are handled by a referral or by a Chain
or Multicast action, Found indications by calling the Evaluation procedure, which actually performs
the intended operation. Once returned, internal or external results are collated by Results Merging,
and, in the absence of errors, returned to the calling DUA or DSA.

18.2.2 Name resolution

Name Resolution calls Find Naming Context. If the returned context is local, then Local Name
resolution is called, otherwise Name Resolution returns a reference or an error and terminates. If
Local Name Resolution encounters an alias, it is dereferenced (if permitted) and Name Resolution
repeats the analysis from the beginning. Otherwise Local Name Resolution returns a Found indication,
an error or a Referral, which is passed back to the Operation Dispatcher.

18.2.3 Find naming context

Find Naming Context attempts to match the Purported Name against Context Prefixes. If none
matches, then Find Naming Context attempts to identify a cross or superior reference. If a context
prefix is matched, Find Naming Context returns a cross reference relating downwards in the DIT, or an
indication that a suitable naming context was found locally, and sets NameResolutionPhase to
"proceeding".

18.2.4 Local Name Resolution

The Local Name Resolution procedure attempts to match RDNs in the Purported Name internally
until it can return a Found indication. If unable to match all RDNs internally, it attempts to
identify first specific, then non-specific subordinate references, and return these to Name
Resolution. If an alias is encountered, and dereferencing is allowed by the service controls, a
dereferenced alias indication is returned. If dereferencing is not allowed, a Found indication is
returned if and only^ if all RDNs had matched at the time the alias was encountered, otherwise a
nameError is returned.

144 Fascicle VIIL8 - Rec. X.518

18.2.5 Evaluation
The Evaluation procedure actually executes the requested Directory operation against the target

object. Depending on the type of operation, Single Object Evaluation or Multiple Object Evaluation is
invoked.

18.2.6 Single object evaluation
Single object evaluation is invoked for Read, Compare, AddEntry, RemoveEntry, ModifyEntry, and

ModifyRDN. It is in this procedure that attributes are actually retrieved, checked, or changed.

18.2.7 Multiple object evaluation
The Multiple Object Evaluation procedure is invoked for the Search and List operations to check

filters, retrieve results, and if necessary, dispatch sub-requests.

18.2.8 Result merging
The Results Merging procedure collates results or errors received from other DSAs with locally

retrieved results.

18.3 Specific operations
The operations fall into three categories of operations (in each case the operation and its

Chained counterpart are both in the same category).

a) Single-Object Operations: Read, Compare, AddEntry, ModifyEntry, ModifyRDN, RemoveEntry.

b) Multiple-Object Operations: List, Search.

c) Abandon Operation, i.e. Abandon.

~\
The handling of these categories are described in §§ 18.3.1 to 18.3.3 respectively. Since there

is considerable similarity between the way that a DSA behaves in performing an operation of a
service-port and in performing its counterpart chained operation of a chained service-port, there is
a single description applying to both, with exceptions to this rule being noted.

18.3.1 Single-object operations
Single-object operations are those which affect a single entry, and which therefore can be

carried out entirely within the DSA which contains the entry on which the operation is to be
performed. Such operations can be commonly described by the following sequence of events:

1) Activate the Operation Dispatcher.
2) Perform Name Resolution to locate the object whose name was specified as the argument of

the operation.

3) Perform the single-object evaluation procedure.
4) Service controls, such as time limit, should be checked during the course of the operation

to enforce the constraints specified by the user.
5) Return the results to the DUA or DSA which forwarded the request.

18.3.2 Multiple-object operations
Multiple-object operations are those which affect several entries which may or may not be co­

located in the same DSA. Such operations may thus entail a cooperative effort by several DSAs to
locate and operate on all the entries affected by the requested operation. The common behaviour of
such operations can be summarized as follows:

1) Activate the Operation Dispatcher.
2) Perform the Name Resolution procedures to locate the object whose name was specified as

the argument of operation.
3) Once the target object of the operation has been located, perform the multiple-object

evaluation procedures.

Fascicle VTIL8 - Rec. X.518 145

4) If request decomposition has taken place in one of the multiple-object evaluation
procedures and sub-requests have been chained/multicasted, the Operation Dispatcher
maintains the current local results, waits for chained responses, and activates Results
Merging.

5) Service Controls such as time limit, size limit should be checked during the course of the
operation to remain within the constraints specified in the common argument.

6) Return the results or errors to the DUA or DSA which forwarded the request.

18.3.3 Abandon operation ,

On receipt of an abandon operation, a DSA determines whether it can abandon the specified
operation, and, if so, abandons it and returns a result (the operation that was abandoned returns an
Abandoned error). If it cannot abandon the specified operation, it returns an AbandonFailed error.

The following specifies the procedure specific to the Abandon operation.

1) Locate the operation whose invoke identifier is specified as the argument of the Abandon
operation.

2) Optionally compose request(s) with the proper invoke-id to abandon any outstanding
chained/multicast operations to other DSAs.

3) Optionally, the abandon operation is performed locally as defined in Recommendation X.511.

4) Return result or error to the DUA or DSA which forwarded the request.

18.4 Operation dispatcher

18.4.1 Introduction

The Operation Dispatcher utilizes the Name Resolution described in § 18.6 of this
Recommendation and all the interactions (i.e. DSA to DSA or DUA to DSA) necessary to locate target
entries in a distributed directory environment. Figure 7/X.518 shows a detailed diagram describing
the Operation Dispatcher. The algorithm is summarized below.

146 Fascicle VIIL8 - Rec. X.518

\

FIGURE 7/X.518

Operation Dispatcher

Fascicle VIIL8 - Rec. X.518 147

18.4.2 Implicit actions

18.4.2.11 Security

It should be noted that although the checking of signatures is not explicitly included in this
algorithm, this action is always the first step when a signed operation, result or error arrives to
the DSA.

Note - This does not include embedded signatures.

Should the signature be invalid, or absent in a case when it should be present, a SecurityError
is returned. All processing of the operation is terminated and the operation dispatcher goes to its
idle state.

The signing of an operation result if required is likewise an implicit last step before sending
it off.

18.4.2.2 ServiceControls

Although the ServiceControls are not explicitly mentioned, they are respected. For example,
the checking of the timeLimit of an arriving operation and the checking of sizeLimit before sending a
result are regarded as mandatory. These are discussed in § 17.4.4.

18.4.2.3 Tracelnformation

Tracelnformation is always updated with the state it arrived to the DSA in, before including it
in the ChainingArguments. That is not explicitly stated in the text below.

18.4.3 Arguments

Chaining arguments for the particular operation.

18.4.4 Results

Chaining results for the particular operation.

18.4.5 Errors

Any error defined in this Recommendation.

18.4.6 Algorithm

1) Receive operation.

If the operation originates from another DSA it will comprise the chaining arguments,
including: OperationProgress, aliasDereferenced, aliasedRDNs, targetObject Name and
tracelnformation as well as the parameters contained in the original operation.
If the operation originates from a DUA it will not contain the aliasDereferenced
indication: thus adopt the value of FALSE. The argument also does not include any
Tracelnformation, so no loop checking needs to be performed. Set targetObject Name to the
name of the target object for the operation (see § 17.2). Other chaining arguments are set
according to the parameters in the DAP operation. Originator is set to the name of the
user.

2) If the operation came from a DSA, check the trace information for loops (activate Loop
Detection). If a loop is detected, return ServiceError with a problem of loopDetected and
terminate the processing.

3) Perform security checks to the operation (originating either from a DUA or a DSA). If
there is a violation, a SecurityError is returned. Otherwise, set OperationProgress and
aliasDereferenced according to the operation argument or by default.

4) Perform the Name Resolution Procedure.
The Name Resolution Procedure will return a found indication, a remote reference, or an
error indication.

5) One of the following errors may be raised:

ServiceError (UnableToProceed) - if a DSA determines that it was forwarded an operation
pertaining to information which it does not hold.

148 Fascicle VTIL8 - Rec. X.518

ServiceError (invalidReference) - if a DSA determines that an invalid knowledge reference
was used.

NameError (noSuchObject) - if the purported name specified in the operation request is
determined to be invalid.

NameError (aliasProblem) - if an alias has been dereferenced which names no object.

Name Error (aliasDereferencingProblem) - if an alias was encountered in a situation where
it is not allowed.

On receipt of any one of these errors, the Operation Dispatcher terminates and an error is
returned to the DSA or DUA which originated the distributed operation.

6) If Found is returned, activate the Evaluation Procedure.

7) If a remote reference is returned (whether from Name Resolution or Evaluation) it may be
any one of the following: a cross reference, a subordinate reference, a superior reference
or a non-specific subordinate reference.

If any such reference is returned it signifies that the Name Resolution or Evaluation
cannot be completed in this DSA, but must involve the DSA identified in the reference.

The Operation Dispatcher then checks for referral or chaining mode.

8) If the referral mode or interaction has been selected, then, subject to scopeOfReferral,
either the information contained in the returned reference will be returned to the
originating DUA or DSA as a referral, or outOfScope ServiceError will be returned. The
processing of this operation will then terminate.

Note - If retumCrossRefs is true and reference is not a non-specific subordinate reference
or superior reference and, in addition, the administrative authority is willing to provide
knowledge, then the context prefix in the referral can be set.

9) If the chaining mode of interaction has been selected, the operation is forwarded to the
DSA specified in the reference. In the case of a non-specific subordinate reference, the
operation must be forwarded to each DSA whose name was attained as part of a non-specific
subordinate reference. Such forwarding may be accomplished either by multicasting or by
sequentially chaining the operation.

10) Perform Loop Avoidance for each operation to be sent. If the avoidance turns out to be
not applicable or no loop is detected, assign values to the chaining arguments, including
an updated version of tracelnformation, and send the operations.

If no operations were sent (because of looping problems), return a serviceError (with
problem of loopDetected) and terminate the processing of this operation.

Note - If the decomposed operation was aborted because of loop avoidance in this step it is a
local matter whether to return a partial result or to abort the whole operation and return an
error. If the latter is chosen then return ServiceError (with problem loopDetected) and
terminate processing.

11) Wait for the responses then perform the Results Merging procedure.

18.5 Looping

Within the context of a particular directory operation a loop occurs if at any time the
operation returns to a previous state (as defined in § 17.4.2). This does not mean that an operation
cannot be processed multiple times by a particular DSA. However, it does mean that the DSA will not
process the same operation in the same state multiple times.

Looping is managed using the tracelnformation argument as defined in § 12.6. Two strategies are
defined to determine loops: loop detection and loop avoidance, described in §§ 18.5.1 and 18.5.2
respectively.

Fascicle Vm.8 - Rec. X.518 149

18.5.1 Loop detection

Loop detection requires that a DSA, when receiving an incoming operation, determines whether
the current state of the operation appears in the sequence of previous states recorded in the
tracelnformation argument for that operation. If it does, the operation is looping and a ServiceError
(with problem of loopDetected) is returned. Otherwise the DSA continues processing the operation
according to the procedures specified in § 18.4.

18.5.2 Loop avoidance

Loop avoidance requires that a DSA, immediately prior to forwarding an operation to another DSA
(as part of a chaining, multicasting, or request decomposition procedure), determines whether the
consequential state of the operation (if known) appears on the sequence of previous states recorded
in the trace-information argument for the original incoming operation. The consequential state is the
value of Traceltem which will be added to Tracelnformation by the receiving DSA.

In the event that the original incoming operation was to a service-port (rather than a chained-
service-port) there will be no trace information and the loop avoidance procedure will not be
relevant.

If the consequential state of the operation is known and does appear within the
tracelnformation, the operation, if invoked, would cause a loop. Under this circumstance the
appropriate response to the original operation is a ServiceError (with problem of loopDetected).

18.6 Name resolution procedure

This paragraph describes in detail the Name Resolution procedure, its input and output
parameters, and its possible error conditions. Figure 7/X.518 shows the overall procedure in the form
of a diagram. The Name Resolution procedure calls two component procedures:

1) Find Naming Context (Figure 8/X.518).

150 Fascicle VTII.8 - Rec. X.518

1'

M atch p u rpo rted name

.............. -..... , r

against locally heid Match pu rp o rted name
co n tex t prefixes against locally held
(excluding last RDN) co n tex t prefixes

Service
erro r "invalid
reference"

No-
(or elected not
to check)

N am eR esolutionPhase «-
proceeding
nextR D N T oB eR esolved «-
#R D N s in co n tex t
prefix + 1

R eturn \
naming >
co n tex t

. /
R eturn
ro o t con tex t

FIGURE 8/X.518

Find Naming Context

Fascicle VIII.8 - Rec. X.518 151

2) Local Name Resolution (Figure 9/X.518).

FIGURE 9/X.518

Local Name Resolution

152 Fascicle VTO.8 - Rec. X.518

The Name Resolution procedure conveys back to the Operation Dispatcher the results of the above
mentioned component procedures, except in the following two cases. The first one is when the Find
Naming Context procedure identifies a suitable context which has to be further examined, and returns
the local naming context. The second case is when the Local Name Resolution procedure indicates that
it has dereferenced an alias. In the former case, the Name Resolution procedure calls the Local Name
Resolution procedure. In the latter case, the Name Resolution procedure is reactivated with the new
target object name.

18.6.1 Arguments

The procedure makes use of the following arguments:

the target object name (the purported name);
- • operation progress;

the value of the dontDereferenceAliases service control;
the value of the aliasedRDNs parameter;

the value of the aliasDereferenced parameter.

18.6.2 Results

There are two cases of successful outcome.

The first of these returns:

a reference;

operation progress (updated appropriately);

aliasDereferenced indication and, optionally, aliasedRDNs.

The second of these returns:

an indication that the naming context was found (together with the local pointer to the
entry);

operation progress (updated appropriately);

aliasDereferenced indication and, optionally, aliasedRDNs.

18.6.3 Errors

One of the following errors may be returned:

ServiceError (unableToProceed);

ServiceError (invalidReference);
NameError (aliasProblem, noSuchObject or aliasDereferencingProblem).

18.6.4 Procedure

1) Activate the Find Naming Context procedure.

2) Wait for response from Find Naming Context procedure.

3) Receive returned results or error, i.e. Local Naming Context Found, Remote Reference,
Unable to Proceed Error, Name Error, or invalidReference.

4) Perform functions based on returned results or error.
a) If the local naming context has been found, activate the Local Name Resolution

procedure. This procedure may return an Internal Reference Found, a Remote Reference,
an Alias Dereference, or a NameError. Each of these causes the Name Resolution to be
terminated with the outcome reported, except that if an alias has been dereferenced,
the procedure is restarted at step 1).

b) Any other outcome is passed back to the Operation Dispatcher.

Fascicle VTIL8 - Rec. X.518 153

18.6.5 Find naming context procedure

18.6.5.1 Introduction

Figure 8/X.518 shows this procedure in the form of a diagram. Below is a textual description.
In this it is assumed that the current value of Operation Progress is always returned upon exit of
the procedure.

18.6.5.2 Arguments

The procedure makes use of the following arguments:

the target object name (the purported name);

operation progress.

18.6.5.3 Results

There are two cases of successful outcome.

■The first of these returns:

a reference;

operation progress (updated appropriately).

The second of these returns:

an indication that a suitable naming context was found locally;

operation progress (updated appropriately).

18.6.5.4 Errors

One of the following errors may be returned:
ServiceError (unableToProceed);

ServiceError (invalidReference).

18.6.5.5 Procedure

1) If nameResolutionPhase is set to completed on entry, attempt to match the purported name
against the context prefixes of the superior naming contexts of all the locally held
naming contexts. If a match is found, return all the appropriate locally held naming
contexts. If no match is found, return an invalidReference ServiceError.

2) If nameResolutionPhase is not set to completed, attempt to match context prefixes against
a sequence of one or more RDNs in the initial portion of the purported name. For a match
to be found, all RDNs in a context prefix must be matched. The context prefixes used are
those of Naming Contexts for which this DSA has administrative authority. In case of
multiple matches the one with the maximum number of matched RDNs is chosen.

If a match is found, execute (3).

If a match is not found, execute (5).

3) If nameResolutionPhase is notStarted, execute (4). If the number of RDNs in the initial
portion of the purported name, matched as described in (2) above, is greater or equal to
the nextRDNToBeResolved component of OperationProgress, then , execute (4), otherwise
execute (9).

4) The nextRDNToBeResolved is set to the number of matched RDNs plus 1 and the
nameResolutionPhase is set to Proceeding. The context is returned and this procedure
terminated.

As a performance enhancement, the DSA may optionally match the purported name against the
cross references held by the DSA. If more RDNs are matched against a cross reference than
against the locally held context prefixes, then execute step (7).

154 Fascicle VIII.8 - Rec. X.518

Note - The Name Resolution procedure will in case of this outcome call the Local Name
Resolution.

5) If no match was found, the value of the nameResolutionPhase is checked. If the
nameResolutionPhase is notStarted, execute (6).

If the nameResolutionPhase is proceeding or completed, then execute (9).

6) Using Cross Reference context prefixes, attempt to match against a sequence of one or more
RDNs in the initial portion of the purported name. In case of multiple matches, the one
with the maximum number of matched RDNs is chosen.

7) If a match was found to a cross reference, set the nextRDNToBeResolved to the number of
RDNs in the chosen cross reference. The cross reference is returned and this procedure is
terminated.

8) If no match was found to a cross reference, determine if the DSA is a first level DSA. If
not, it will have a superior reference. Return this and terminate the procedure.

If the DSA is a first level DSA, set nextRDNToBeResolved to one, and nameResolutionPhase
to proceeding. Return the root naming context and terminate the procedure.

9) Check the value of the referenceType component of the ChainingArgument. If a non-specific
subordinate reference was used, or the request came from a DUA, execute (10); otherwise,
return ServiceError with invalidReference problem and terminate the procedure.

10) Compare the initial portion of the purported name to the context prefixes (minus their
last RDN) of the locally held naming contexts. This effectively is a comparison to some of
the naming contexts of the immediate superior to this DSA.

If there is no match, return ServiceError with invalidReference problem and terminate the
procedure.

If a match is found, and the number of RDNs matched is less than in nextRDNToBeResolved -
1, return ServiceError with invalidReference problem; otherwise, return ServiceError
unableToProceed problem. Terminate the procedure.

18.6.6 Local Name Resolution

18.6.6.1 Introduction

The Local Name Resolution matches RDNs in the purported name against internal knowledge
references. It returns Found, Remote Reference, Alias Dereferenced, or Error indication.

Figure 9/X.518 shows this procedure in the form of a diagram. Below is a textual description.

18.6.6.2 Arguments

The procedure makes use of the following arguments:

internal reference to naming context (with pointer to the entry whose name is the same as
the context prefix);

the target object name (the purported name);

operation progress;

the value of the dontDereferenceAliases service control;

the value of the aliasedRDNs parameter;

the value of the aliasDereferenced parameter.

18.6.6.3 Results

There are three cases of successful outcome.

The first of these returns:

a reference;

Fascicle Vffl.8 - Rec. X.518 155

operation progress (updated appropriately).

The second of these returns:

an indication that the entry was found locally;

operation progress (updated appropriately).

The third of these returns:

an indication that an alias was dereferenced;

operation progress (set back to "not started").

18.6.6.4 Errors

One of the following errors may be returned:

name error.

18.6.6.5 Procedure

The naming context returned by FindNaming Context will point to the entry of the root of the
subtree. In the case of the root context, the entry is only a null entry.

1) If the internal reference is for an alias entry, execute step (7), otherwise step (2).

2) If all the RDNs in the purported name have been matched, then the target entry has been
found. Set nameResolutionPhase to completed. An internal pointer is returned and the
procedure terminated.

Otherwise step (3) should be executed.

Note - The matching could be attained with the context prefix on its own, or with the
context prefix plus successive RDNs contained in internal references in the knowledge
tree.

3) If an internal reference entry is found subordinate to the current entry in the knowledge
tree which matches the next RDN in the purported name, then increment the
nextRDNToBeResolved, set current entry to subordinate entry, and execute step (1) of this
procedure again.

4) If the current entry has a subordinate reference whose RDN matches the next one in the
purported name, return it and terminate the procedure.

5) If there are any non-specific subordinate references, subordinate to the current entry in
the knowledge tree, return them as references and terminate the procedure.

6) If an internal reference, subordinate reference, or non-specific subordinate reference is
not found, then check the number of RDNs in the purported name that have been matched. If
more RDNs have been matched than in the aliasedRDNs component of
ChainingArgument, then return NameError with noSuchObject problem. If less RDNs have been
matched, then return NameError with aliasProblem.

7) If the number of RDNs in the purported name that have been matched is less than or equal
to the aliasedRDNs component of ChainingArgument (if any), then the previous alias that
was dereferenced (if any) points to another alias. If so, return NameError with
aliasDereferencingProblem.

8) If the aliasedRDNs component is missing, or if the number of RDNs matched is greater than
aliasedRDNs component of ChainingArgument, then check the dontDereferenceAlias service
control. If aliases can be dereferenced, then execute step (9), otherwise step (10).

9) Dereference the alias. Set nameResolutionPhase of OperationProgress to notStarted. Set
aliasDereferenced component of ChainingArgument to TRUE, and aliasedRDNs to the number of
RDNs in the aliasedObjectName attribute of the alias entry. Set targetObject to the new
name. Terminate the procedure. (The process of Name Resolution will be restarted.)

156 Fascicle Vm.8 - Rec. X.518

10) If all the RDNs in the purported name have been matched, execute step (2). Otherwise,
return NameError with aliasDereferencingProblem.

18.7 Object evaluation procedures

The object evaluation procedures specified comprise two categories of procedures:

a) single-object evaluation procedure;

b) multiple-object evaluation procedures.

Figure 10/X.518 shows the object evaluation procedure.

FIGURE 10/X.518

Evaluation and result merging

18.7.1 Single-object evaluation procedures

Single-object evaluation procedures, which are common to the class of operations concerned with
accessing a single object are carried out directly, with the result or error being returned to the
invoker.

These operations comprise Read, Compare, AddEntry, RemoveEntry, ModifyEntry and ModifyRDN, and
their Chained counterparts.

The action required on the entry is as described in the appropriate paragraph of
Recommendation X.511.

AddEntry, RemoveEntry, and ModifyRDN operations affect knowledge. If the immediate superior of
the entry is in a different DSA, correct external knowledge references shall be maintained. How this
is done is outside the scope of this Recommendation.

Fascicle VHI.8 - Rec. X.518 157

How the DSA is chosen to contain the entry created by AddEntry is outside the scope of this
Recommendation.

If the immediate superior of an entry to be created by AddEntry or modified by ModifyRDN has
non-specific subordinate references, procedures outside the scope of this Recommendation shall be
followed to ensure that no two entries have the same distinguished name.

Requests which cannot be satisfied under these conditions shall fail with an UpdateError with
problem affectsMultipleDSAs.

18.7.2 Multiple-object evaluation procedures

Multiple-object evaluation procedures, which are common to the class of operations concerned
with accessing multiple objects, are specified in the following subparagraphs.

These operations comprise List and Search, and their Chained counterparts.

18.7.2.1 List

This paragraph specifies the evaluation procedure specific to List and ChainedList. (In what
follows the term "List" applies to both.)

18.7.2.1.1 List procedure (I)

This procedure applies where the List request has nameResolutionPhase component of
OperationProgress set to notStarted or proceeding and where the DSA, after performing Name Resolution
finds that it holds the base object.

The base object will be denoted by "e".

1) Get each locally held immediate subordinate of e to form a local set of results. Set
aliasEntry and fromEntry in ListResult as appropriate.

2) Get the set of non-specific subordinate references and subordinate references to DSAs
which hold immediate subordinates of "e".

3) Pass the subrequest with base object = e, and OperationProgress set to completed to the
Operation Dispatcher which subsequently forwards it to each DSA which holds immediate
subordinates of e.

Note - If the DSA holds subordinate references with an indication of whether or not the
subordinate entry are aliases, and the dontUseCopy is FALSE, then this step can be omitted for those
entries. The information about the subordinates is available directly.

18.7.2.1.2 List Procedure (II)

This procedure applies to a List request with the nameResolutionPhase component of
OperationProgress set to completed.

The base object will be denoted by "e".

1) Get each locally held immediate subordinate of e to form a local set of results. Set
aliasEntry and fromEntry in ListResult as appropriate.

2) Pass the results to the Operation Dispatcher which forwards them to the requesting DUA or
DSA.

18.7.2.2 Search

This paragraph specifies the evaluation procedure specific to Search and ChainedSearch. (In
what follows the term "Search" applies to both.)

Note that two circumstances exist, requiring two separate procedures. The first procedure
(§ 18.7.2.2.1) applies when the DSA executing the Search contains the targetObject as a local entry.
The second procedure (§ 18.7.2.2.2) applies when the DSA executing the Search does not hold the
targetObject, but only subordinates of the targetObject.

18.7.2.2.1 Search procedure (I)

This procedure applies to a Search request with the nameResolutionPhase component of
OperationProgress set to notStarted or proceeding and where the DSA, after performing Name
Resolution, determines that it holds the target object.

158 Fascicle VIIL8 - Rec. X.518

The base object will be denoted by "e".

1) If the subset argument is baseObject or wholeSubtree, then apply the filter argument
specified in the Search to the entry e, to form a set of local results. Return the results
for Results Merging. If the subset argument is baseObject, terminate the procedure,
otherwise continue at (2).

2) If the subset argument is oneLevel or wholeSubtree form a set E from the locally-held
immediate subordinates of e, except that:

If aliases are to be dereferenced, i.e. the searchAliases parameter is TRUE, then any
alias entries that are found are handled in paragraph 5) below and do not contribute to
these results.

Apply the filter arguments to E to give a filtered subset E 'gE; return
this set E ' of local results for Results Merging.

3) Other subordinates of e may reside in other DSAs, and if so will be referenced as
subordinate or non-specific subordinate references. For each DSA which is so referenced,
prepare a new Search with targetObject = e, and with nameResolutionPhase of
OperationProgress set to completed. Return each Search subrequest to the Operation
Dispatcher for forwarding. If any error result is returned from a subrequest, it is
ignored, as if no subrequest had been sent.

4) If the subset argument is oneLevel, the Search is now complete so terminate the
procedure.

If the subset argument is wholeSubtree, then:

if the set E from paragraph (2) is empty, then the whole subtree held in this DSA has been
searched, so terminate the procedure;

otherwise continue processing as follows:

let each entry that was in set E be denoted by e. Repeat the Search procedure from
paragraph (2), for each entry e.

5) If aliases are to be dereferenced, any alias entries found in step (2)^are placed in set
D. For each entry, d in D, dereference the alias, and formulate a new Search with
nameResolutionPhase set to notStarted, and targetObject created from the aliasedObjectName
attribute and the old targetObject name.

If the subset argument was oneLevel, set it to baseObject in the new subrequest, otherwise
set it to wholeSubtree.

If any error result is returned from the subrequest, it is ignored, as if no
subrequest had been made.

18.7.2.2.2 Search Procedure (II)

This procedure applies to a Search request with the nameResolutionPhase component of
OperationProgress set to completed.

The target object will be denoted by "e".

For each locally held immediate subordinate e ' of e, formulate a new request with
targetObject = e '. If the subset argument was oneLevel, set it to baseObject, otherwise leave it as
wholeSubtree. Now carry out the procedure defined in steps (1) to (5) in § 18.7.2.2.1. If there are
no such subordinates, return unableToProceed ServiceError.

18.8 Result merging procedure

This procedure is called when external results and/or errors are present. There might also be
one internal result. All results and errors are assumed to be held within the DSA until the procedure
completes.

The external information could be due to chaining, multicasting or request decomposition.

Fascicle VIII.8 - Rec. X.518 159

In the case of chaining there will be a single result or error. In the case of multicasting
there might be either no result, one result or several identical results. In addition, there may be
some errors. If there is more than one result, all but one of them are arbitrarily discarded. A
result is always returned in preference to an error. If there are no results, an error is returned,
with the following exceptions:

i) If invalidReference was returned, the reference is marked as such, and the DSA may either
use an appropriate alternate external reference to continue the request, or return
ditError to the requestor. (The handling of invalid external references is beyond the
scope of this Recommendation.)

ii) In the case of multicasting, unableToProceed errors should be ignored, unless all
responses are of this type in which case NameError noSuchObject should be returned to the
responder. If at least one result is returned, then all errors can be ignored.

iii) In the case of referrals, these need not be treated as errors, and may be acted upon.

If the merging is required due to a request decomposition, the merging amounts to forming the
union of the results.

In the case of decomposition, when there are both results and errors to be merged, an
incomplete result is returned to the requestor.

A DSA might at this stage choose to extract referrals from the incoming results and errors that
should be merged. It might then decide to explore all or some of these further, in which case
operations are chained. The old result will have to be saved and later merged with the results or
errors produced by the chaining.

The handling of signatures which may be present with the results being returned is specified in
§ 18.9.2 below.

18.9 Procedures for distributed authentication

T his ' paragraph specifies the procedures necessary to support the directory distributed
authentication services. These services, and hence the procedures, are categorized as:

originator authentication, which is supported in either an unprotected (simple identity
based) or secure (based upon digital signatures) form; and

results authentication which , is similarly protected (again based upon digital
signatures).

18.9.1 Originator authentication
18.9.1.1 Identity based authentication

The identity based authentication service enables DSAs to authenticate the original requestor
of information for the purpose of effecting local access controls. DSAs wishing to exploit this
service must adopt the following procedure:

for a DSA requiring to authenticate a DAP request, the DSA acquires the distinguished
name of the requestor through the Bind procedures at the time a DUA association (DUA or
DSA) is established. Successful conclusion of these procedures does not in any way
prejudice the level of authentication that may subsequently be required for processing
operations using that association;

the DSA with which the DUA association exists must insert the requestor’s distinguished
name in the initiator field of the ChainingArgument for all subsequent chained operations
to other DSAs;
a DSA, on receiving a chained-operation, may satisfy that operation, or not, depending
upon the determination of access rights (a locally defined mechanism). If the outcome is
not satisfactory a SecurityError may be returned with SecurityProblem set to
insufficientAccessRights.

18.9.1.2 Signature-based originator authentication

This signature-based originator authentication service enables a DSA to authenticate (in a
secure manner) the originator of a particular service request. The procedures to be effected by a DSA
in realizing this service are described in this paragraph.

160 Fascicle VIII.8 - Rec. X.518

The signature-based authentication service is invoked by a DUA using the SIGNED variant of an
optionally-signed service request.

A DSA, on receiving a signed request from another DSA, shall remove that DSA’s signature prior
to processing the operation. Assuming the result of any signature verification proves to be
satisfactory, the DSA will continue to progress the operation. If, during processing, the DSA
requires to perform chaining, multicasting or request decomposition, the argument set for each
associated chained operation shall be constructed as follows:

the DSA forms an argument set which may be optionally signed; the argument set comprises
the incoming signed argument set together with a modified ChainingArgument.

In the event that the DSA is able to contribute information to the response, originator
authentication, based upon the signed service request, may be used for the determination of access
rights to that information.

If a DSA receives an unsigned service request for information which will only be released
subject to originator authentication, a SecurityError will be returned with SecurityProblem set to
protectionRequired.

18.9.2 Results authentication

This service is provided to enable requestors of directory operations (either DUA or DSAs) to
verify (in a secure manner using digital signature techniques) the source of results. The results
authentication service may be requested irrespective of whether originator authentication is to be
used.

The results authentication service is initiated using the signed value of the protectionRequest
component as contained within the argument set of directory operations; a DSA receiving an operation
with this option selected may then optionally sign any subsequent results. The signed option in the
protectionRequest serves as an indication, to the DSA, of the requestor’s preference; the DSA may, or
may not, actually sign any subsequent results.

In the case where a DSA performs chaining, multicasting or request decomposition of such a
request, the DSA has a number of options in terms of the form of results sent back to the requestor,
namely:

a) return a composite response (signed or unsigned) to the requestor;

b) return a set of two or more uncollated partial responses (signed or unsigned) to the
requestor; within this set zero or more members may be signed and zero or one unsigned.
In the event that an unsigned partial result is present, this member may in fact be a
collation of one or more unsigned partial responses which have been received from other
DSAs, contributed by this DSA, or both.

ANNEX A

(to Recommendation X.518)

ASN.l for distributed operations

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l type, value and macro definitions contained in this
Recommendation in the form of the ASN.l module Distributed Operations.

DistributedOperations {joint-iso-ccitt ds(5) modules(l) distributedOperations(3)}
DEFINITIONS ::=
BEGIN

Fascicle Vm.8 - Rec. X.518 161

EXPORTS
DirectoryRefinement, chainedReadPort, chainedSearchPort, chainedModifyPort,
DSABind, DSABindArgument,
DSAUnbind,
ChainedRead, ChainedCompare, ChainedAbandon,
ChainedList, ChainedSearch,
ChainedAddEntry, ChainedRemoveEntry, '
ChainedModifyEntry, ChainedModifyRDN,
DsaReferral, ContinuationReference;

IMPORTS
InformationFramework, abstractService, distributedOperations,
directoryObjectldentifiers, selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)}

DistinguishedName, Name, RelativeDistinguishedName
FROM InformationFramework informationFramework

id-ot-dsa, id-pt-chained-read, id-pt-chained-search, id-pt-chained-modify
FROM DistributedDirectoryObjectldentifiers, distributedDirectoryObjectldentifiers

PresentationAddress
FROM SelectedAttributeTypes selectedAttributeTypes

directory, readPort, searchPort, modifyPort
DirectoryBind,
ReadArgument, ReadResult,
CompareArgument, CompareResult,
Abandon
ListArgument, ListResult,
SearchArgument, SearchResult,
AddEntryArgument, AddEntryResult,
RemoveEntryArgument, RemoveEntryResult,
ModifyEntryArgument, ModifyEntryResult,
ModifyRDNArgument, ModifyRDNResult,
Abandoned, AttributeError, NameError, ServiceError, SecurityError, UpdateError
OPTIONALLY-SIGNED, SecurityParameters

FROM DirectoryAbstractService directoryAbstractService
— objects and ports —
DirectoryRefinement ::= REFINE directory AS

dsa RECURRING
readPort [S] VISIBLE
searchPort [S] VISIBLE
modifyPort [S] VISIBLE
chainedReadPort PAIRED WITH dsa
chainedSearchPort PAIRED WITH dsa
chainedModifyPort PAIRED WITH dsa

dsa OBJECT
PORTS { readPort [S],

searchPort [S],
modifyPort [S],
chainedReadPort,
chainedSearchPort
chainedModifyPort}

::= id-ot-dsa

chainedReadPort PORT
ABSTRACT OPERATIONS {

ChainedRead, ChainedCompare,
ChainedAbandon}

::= id-pt-chained-read

chainedSearchPort PORT
ABSTRACT OPERATIONS {

ChainedList, ChainedSearch}
::= id-pt-chained-search

162 Fascicle VIIL8 - Rec. X.518

chainedModifyPort PORT
ABSTRACT-OPERATIONS {

ChainedAddEntry, ChainedRemoveEntry,
ChainedModifyEntry, ChainedModifyRDN)

::= id-pt-chained-modify

DSABind ABSTRACT-BIND
TO {chainedRead,

chainedSearch,
chainedModify)

DirectoryBind

DSAUnbind::= UNBIND
FROM {chainedRead,

chainedSearch,
chainedModify}

— operations, arguments and results —

ChainedRead ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED

RESULT OPTIONALLY-SIGNED

ERRORS{
DsaReferral, Abandoned, AttributeError,
ServiceError, SecurityError}

ChainedCompare ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED

RESULT OPTIONALLY-SIGNED

ERRORS{
DsaReferral, Abandoned, AttributeError,
ServiceError, SecurityError}

ChainedAbandon ::= Abandon

ChainedList ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED

RESULT OPTIONALLY-SIGNED

ERRORS{
DsaReferral, Abandoned, AttributeError,
ServiceError, SecurityError }

ChainedSearch ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED

RESULT OPTIONALLY-SIGNED

ERRORS{
DsaReferral, Abandoned, AttributeError,
ServiceError, SecurityError}

SET{
ChainingArgument,
[0] ReadArgument}
SET{
ChainingResult,
[0] ReadResult}

NameError,

SET{
ChainingArgument,
[0] CompareArgument}
SET{
ChainingResult,
[0] CompareResult}

NameError,

SET{
ChainingArgument,
[0] ListArgument}
SET(
ChainingResult,
[0] ListResult}

NameError,

SET{
ChainingArgument,
[0] SearchArgument}
SET{
ChainingResult,
[0] SearchResult}

NameError,

Fascicle VHI.8 - Rec. X.518 163

ChainedAddEntry ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED SET{
ChainingArgument,
[0] AddEntryArgument}

RESULT OPTIONALLY-SIGNED SET{
ChainingResult,
[0] AddEntryResult}

ERRORS{
DsaReferral, Abandoned, AttributeError, NameError,
ServiceError, SecurityError, UpdateError}

ChainedRemoveEntry ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED SET{
ChainingArgument,
[0] RemoveEntryArgument}

RESULT OPTIONALLY-SIGNED SET{
ChainingResult,
[0] RemoveEntryResult}

ERRORS{
DsaReferral, Abandoned, NameError,
ServiceError, SecurityError, UpdateError}

ChainedModifyEntry ::=
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED SET{
ChainingArgument,
[0] ModifyEntryArgument}

RESULT OPTIONALLY-SIGNED SET{
ChainingResult,
[0] ModifyEntryResult}

ERRORS{
DsaReferral, Abandoned, AttributeError, NameError,
ServiceError, SecurityError, UpdateError}

ChainedModifyRDN
ABSTRACT-OPERATION

ARGUMENT OPTIONALLY-SIGNED SET{
ChainingArgument,
[0] ModifyRDNArgument}

RESULT OPTIONALLY-SIGNED SET{
ChainingResult,
[0] ModifyRDNResult}

ERRORS{
DsaReferral, Abandoned, NameError,
ServiceError, SecurityError, UpdateError}

— errors and parameters —

DSAReferral ::=
ABSTRACT-ERROR

PARAMETER SET {
[0] ContinuationReference,
contextPrefix [1] DistinguishedName OPTIONAL}

— common arguments/results - -

ChainingArguments ::= SET {
originator [0] DistinguishedName OPTIONAL,
targetObject [1] DistinguishedName OPTIONAL,
OperationProgress [2] OperationProgress DEFAULT (notStarted}
tracelnformation [3] Tracelnformation,
aliasDereferenced [4] BOOLEAN DEFAULT FALSE,
aliasedRDNs [5] INTEGER OPTIONAL,

— absent unless aliasDereferenced is TRUE

164 Fascicle Vin.8 - Rec. X.518

I

retumCrossRefs
referenceType
info
timeLimit

ChainingResults ::=
info
crossReferences

CrossReference ::=
contextPrefix [0]
accessPoint

ReferenceType ::=
superior
subordinate
cross

[6] BOOLEAN DEFAULT FALSE,
[7] ReferenceType DEFAULT superior,
[8] Domaininfo OPTIONAL,
[9] UTCTime OPTIONAL,
[10] SecurityParameters DEFAULT { }}
SET {
[0] Domaininfo OPTIONAL,
[1] SEQUENCE OF CrossReference OPTIONAL,
[2] SecurityParameters DEFAULT { }}

SET {
DistinguishedName,
[1] AccessPoint}
ENUMERATED {

nonSpecificSubordinate

(1),
(2),
(3),
(4)}

Tracelnformation ::=
SEQUENCE {

targetObject
dsa Name,
OperationProgress}

OperationProgress ::=
nameResolutionPhase

nextRDNToBeResolved

Domainlnfo ::= ANY

ContinuationReference
targetObject
aliasedRDNs
OperationProgress
rdnsResolved
referenceType

SEQUENCE OF

Name,

SET {

accessPoints

[0] ENUMERATED {
notStarted (1),
proceeding (2),
completed (3)},

[1] INTEGER OPTIONAL}

::= SET {
[0] Name,
[1] INTEGER OPTIONAL,
[2] OperationProgress
[3] INTEGER OPTIONAL,
[4] ReferenceType OPTIONAL,
— only present in the DSP —
[5] SET OF AccessPoint }

AccessPoint
ae-title
address

SET {
[0]
[1]

Name,
PresentationAddress }

ANNEX B

(to Recommendation X.518)

Modelling of knowledge

This Annex is not part of the Recommendation.

B.l Example o f knowledge modelling

The following example illustrates the knowledge information that would have to be maintained by
the DSAs shown in Figure 5/X.518 (§ 9). Figure 5/X.518 depicts a hypothetical DIT logically
partitioned into five Naming Contexts (A, B, C, D and E) and physically distributed over three DSAs
(DSA1, DSA2, DSA3). In the example, DSA1 holds context C, DSA2 holds contexts A, B, and E, and DSA3
holds context D.

Fascicle Vin.8 - Rec. X.518 165

The following abbreviations have been used in Figures B-1/X.518 to B-3/X.518.

SUPR: superior reference

SUBR: subordinate reference

INTR: internal reference

NSSR: non-specific subordinate reference

CROSSR: cross reference

DSAn: Distinguished Name of DSAn

PS: Presentation Address

CP: context prefix

RDN: Relative Distinguished name
DSA: Distinguished name of a DSA
PTR: Pointer v

AON: Aliased Object Name.

Note - The following figures are intended
defined in this paragraph. How knowledge information is actually stored and managed in a particular
DSA implementation is a local matter and is outside the scope of this Recommendation.

FIGURE B-l/X.518

, Knowledge information for DSA1

Figure B-l/X.518 illustrates the knowledge information that must be held by DSA1. This must
include the following context prefixes and set of references:

Context Prefixes:
Cross References:
Superior References:
Internal References
for Context C:

{C=WW, 0=ABC}, context C.
{ }
{DSA2, presentation address of DSA2}

{C=WW, 0=ABC},
{OU=G}, {OU=H}
{OU=G, CN=1},
{OU=G, CN=m),
{OU=G, CN=n}.

166 Fascicle Vin.8 - Rec. X.518

Subordinate References: { }

Non-specific subordinate
References: {DSA2, presentation address of DSA2}.

cp: {C=WW}

INTR
rdn: C=UK
ptr: xxx

SUPR
"R o o t"
ps: null

SUBR rdn: 0=ABC
dsa: DSA1
ps: yyy

cp: {c=yv}

INTR
rdn: C=USA
p tr: xxx

SUPR
"R o o t"
ps: null

SUBR rdn: 0= D E F
dsa: DSA3
ps: yyy

Context A Context B

-------------------- T07CM620-88

FIGURE B-2/X.518

Knowledge information for DSA2

Figure B-2/X.518 illustrates the knowledge information that must be held by DSA2. This must
include the following context prefixes and set of references:

Context Prefixes:

Cross References:

Superior References:

Internal References
for Context A:

Internal References
for Context B:

Internal References
for Context E:

Subordinate References
for Context A:
Subordinate References
for Context B:

Non-specific subordinate
References:

{C=WW}, context A
{C=VV}, context B
{C=WW}, 0=ABC, OU=I}, context E.

{}

{ }

{C=WW}

{C=VV}

{C=WW, 0=ABC, OU=I},
{CN=o},
{CN=p},
{CN=q}.

{C=WW, 0=ABC}

{C=VV, 0=DEF}

{ }

Fascicle VIII.8 - Rec. X.518 167

FIGURE B-3/X.518

Knowledge information for DSA3

Figure B-3/X.518 illustrates the knowledge information that must be held by DSA3. This must
include the following context prefixes and set of references:

Context Prefixes:

Cross References:

Superior References:

Internal References
for Context D:

Subordinate References:

Non-specific subordinate
References:

{C=VV, 0=DEF}, context D
{{C=WW, 0=ABC, OU=H), DSA1, presentation address of DSA1} (not shown
in the figure above)
{DSA2, presentation address of DSA2} '

{DSA1, presentation address of DSA1}
{C=YV, 0=DEF},
{OU=J},
{OU=K} alias for {C=WW, 0=ABC, OU=I, CN=o)
(alias information is not part of the knowledge)

{)

{)

B.2 Example o f distributed name resolution

The following is an example of how Distributed Name Resolution is used to process different
directory requests. The example is based on the hypothetical DIT shown in Figure 5/X.518 (§ 9) and
the corresponding DSA configuration(s) shown in Figures B-l/X.518 to B-3/X.518 (Annex B).

Assuming a chaining mode of propagating, the following requests addressed to DSA1 would be
processed as follows:

1) A request with distinguished name {C=WW, 0=ABC, OU=G, CN=1}
Will match context prefix {C=WW, 0=ABC) of context C for which DSA1 has
administrative authority. Therefore, name resolution will begin in DSA1 with
context C.
Name resolution will proceed downwards in context C successfully matching each
remaining RDN, until CN=1 is located.

168 Fascicle VTIL8 - Rec. X.518

2) A request with distinguished name {C=WW, 0=JPR}

Will not match any context prefix held by DSA1, therefore DSA1 will use its superior
reference to forward the request to its superior DSA, DSA2.

In DSA2, the request will match context prefix {C=WW} and name resolution will begin
in DSA2 with context A.

Name resolution will not find a subordinate of C=WW to match RDN 0=JPR, therefore the
request will fail and the name will be determined to have been invalid (i.e.
reference a non-existent object).

3) A request with distinguished name {C=VV, 0=DEF, OU=K}

Will not match any context prefix held by DSA1.

DSA1 will therefore forward the request to its superior DSA, DSA2.

The request will match context prefix {C=VY} of context B held by DSA2. Therefore,
name resolution will begin in DSA2 with context B.

As name resolution attempts to match 0=DEF, it will find a subordinate reference
indicating that {C=VV, 0=DEF} is the start of a new context held in DSA3.

Name resolution will continue in DSA3 until {C=VV, 0=DEF, CN=K} is located.

Assuming that aliases are to be dereferenced, a new name will be constructed using
the aliased name contained in the entry {C=VV, 0=DEF, CN=K}. The resulting new name
will be: {C=WW, 0=ABC, OU=I, CN=o}.

DSA3 will resume processing of the request using the new name obtained by
dereferencing.

ANNEX C

(to Recommendation X.518)

Distributed use of authentication

This Annex is not part of the Recommendation.

C.l Summary

The security model is defined in § 10 of Recommendation X.501. The following is a summary of
the main points of the model.

a) Simple Authentication of the operation initiator is not supported in the DSP.

b) Strong Authentication, by the signing of the request and of the result, is supported in
the DSP.

c) Encryption of the request, or of the result, is not supported in the DSP.

d) Authentication of errors, including referrals, is not supported in the DSP.

This Annex describes how b) above is realized in the distributed Directory. It makes use of
terminology and notation defined in Recommendation X.509.

C.2 Simple authentication

The DUA will be authenticated as part of the Bind Operation of the DAP. Thereafter, only the
name of the DUA will be carried in the DSP, in the initiator field of the Chaining Argument.

Fascicle Vm.8 - Rec. X.518 169

C.3 Distributed authentication model

FIGURE C-l /X.518

Distributed authentication model

Figure C-l/X .518 illustrates the model to be used to specify the distributed authentication
procedures. The model identifies the sequence of information flows for the general case of a list or
search operation. The operation is considered as originating from DUA "a" citing a target object
which resides in DSA "c"; in performing the operation, DSAs "b", "c", "d" and "e" are to be
involved.

DUA "a" initially contacts any DSA (DSA "b") which does not hold the target object, but which
is able to navigate, via chaining, to the DSA (DSA "c") holding the target object. If all the DSAs
were operating in referral mode, then the model would be significantly simplified, and each DUA/DSA
exchange would equate, in authentication terms, to the interaction between DUA "a" and DSA "b".

C.4 DUA to DSA

Originator authentication is realized as a consequence of exchange (1). In Figure C-l/X.518 the
authentication procedure is as follows:

Let
OA = the Operation Argument i.e. Search, Read, Compare etc. Argument as defined in Part 3.
and
a(OA) = the Operation Argument signed by DUA "a".

Authentication will be determined by verification of the signature.

C.5 Transference from the DAP to the DSP

This procedure is effected by DSA "b" in Figure C-l/X.518 and represents the transference of
the signed identity of the initiator from the DAP to the DSP.

DSA "b" formulates the appropriate Chaining Argument as described in § 12.3 of this
Recommendation and combines it with the Operation Argument from the DAP thus forming a Chained
Operation, i.e. Chained Read, Search, List etc. of the DSP. The Chained Operation so formed will be
signed prior to passing it to other DSAs (DSA "c" in Figure C-l/X.518). The data structure can be
represented as:

b{ChA,a{OA}} =the Chained Operation signed by
DSA b

where

ChA = Chaining Argument.

170 Fascicle Vni.8 - Rec. X.518

Authentication information carried in the DSP between two DSAs [labelled exchange (2) in
Figure C-l/X.518] therefore comprises two parts:

the Operation Argument, signed by the initiator, which allows authentication of the
initiator;

the Chained Operation, signed by the sending DSA, which allows authentication of the
sending DSA.

C.6 Chaining through intermediate DSAs

This procedure would be effected by DSA "c" in the model depicted in Figure C-l/X.518. DSA "c"
will discard the signature provided by the sending DSA (DSA "b" in Figure C-l/X.518), and will modify
the Chaining Argument, as described in § 12.3 of this Recommendation. DSA "c" shall then combine the
modified Chaining Argument with the signed Operation Argument, and sign the result to create a
modified signed Chained Operation. This can be represented by:

c{ChA', a{OA}} = the Chained Operation signed by DSA "c"

where

ChA' = modified Chaining Argument.

The modified Chained Operation is represented in Figure C -l /X.518 by exchange (3). Depending
upon the nature of the operation, and upon the type of knowledge held, DSA "c" may perform request
decomposition prior to chaining or multicasting any resultant operation(s). This has been represented
in Figure C-l/X .518 by DSA "c" sending operations to DSA "d" and DSA "e"; in each case the
authentication procedure is identical.

C.7 Results authentication
The results authentication service is requested by an initiator of a directory operation using

the signed option within the protectionRequest SecurityParameter. In providing a response to such a
request a DSA may optionally decide whether or not to sign any or all of the results; the results
authentication service does not provide for the authentication of error responses.

Within the context of a particular DSA processing results from an arbitrary number of DSAs
(each of which are associated with a particular service request) the following distinct cases are
possible:

the DSA provides a complete set of results for an operation without the need to perform
any collating function (represented by DSA "d" and DSA "e" in Figure C-l/X.518);

the DSA collates local results (sourced by this DSA) with the results from one or more
other DSAs (represented by DSA "c" in Figure C-l/X.518);
the DSA chains a result from a DSA to either another DSA or a DUA and does not contribute
to the result set as it does so (represented by DSA "b" in Figure C-l/X.518).

C.7.1 DSA results - no collation
This paragraph addresses the role of a DSA in being the sole source of results to a particular

operation request, i.e. the DSA has no collation function to perform. The paragraph considers the
case for both the DSP and the DAP.
C.7.1.1 DSP

The DSA can choose to perform either of the following procedures:

return the results unsigned, this can be represented by:

ChR,OR = Chained Operation Result (unsigned)

where
ChR = Chaining Results

OR = Operation Result;
sign only the Operation Result, this can be represented by:

ChR, d(OR) = Operation Result signed by DSA "d";

sign only the Chained Operation Result, which can be represented as:

Fascicle VHI.8 - Rec. X.518 171

d (ChR, OR) = Chained Operation Result signed by DSA "d"
sign both the Operation Result and the Chained Operation Result, which can be represented

by:

d{ChR, D{OR}} = Operation Result and Chained Operation Result
signed by DSA "d".

Note - For the case where the Operation Result is signed, the signed result will be carried
back to the initiator; for the case where the Chained Operation Result has been signed, the receiving
DSA will have to discard the signature in order to modify the Chaining Results argument prior to
forwarding the Chained Operation Result.

C.7.1.2 DAP

This is fully described in Recommendation X.511, a summary is reproduced here for
completeness.

The DSA can choose to either return the results unsigned, which can be represented by:
OR = Operation Result

or, signed, which can be represented by:

d{OR} = Operation Result signed by DSA "d".

C.7.2 DSA results - collation included

This paragraph addresses the role of a DSA in returning the result of particular service
requests where collation and integration of results from other DSAs is a necessary prerequisite. The
paragraph considers the case for both the DSP and the DAP.

C.7.2.1 DSP

Recognizing that zero or more results received from other DSAs may be signed, this procedure
enables a DSA to collate and integrate the results and sign zero or more constituent parts of the
composite result and optionally, sign the composite result as a whole.

C.7.2.1.1 Production o f the chaining results argument

This procedure requires that a DSA (represented by DSA "c" in Figure C-l/X.518) remove all of
the Chained Operation Result signatures from the results received from external DSAs (DSA "d" and
DSA "e" in Figure C-l/X.518). DSA "c" then possesses a set of unsigned Chaining results, a set of
signed Operation Results, and a set of unsigned Operation Results.

All the Chaining Results are manipulated as described in § 12.4 of this Recommendation to
create a single modified Chaining Result, denoted by:

 i) ChR' = modified Chaining Results.

C.7.2.1.2 Unsigned locally derived result

If the DSA does not wish to sign the locally generated results, the set of unsigned Operation
Results are merged with the local result to form a modified set of Operation Results, denoted by:

OR' = Merged Operation Result.

The complete set of Operation Results is then the union of the set of externally signed
Operation Results denoted by:

d{OR), e{OR} ...

and the Merged Operation Result, collectively denoted by:

 (ii) O R '. dfOR). efOR) ... = Operation Result.

C.7.2.1.3 Signed locally derived result

If the DSA does wish to sign the locally generated results, then the externally generated set
of unsigned Operation Results are first merged together. The complete set of Operation Results is

172 Fascicle VIII.8 - Rec. X.518

then the union of the locally signed set of Operation Results denoted by C{OR), the merged set of
externally unsigned Operation Results denoted by, OR", and the set of externally signed Operation
Results denoted by:

d{OR}, e{OR}, ..., which are collectively denoted as:

 (iii) cfORl. OR". dfOR). efORl. ... = Operation Result.

C.7.2.1.4 Unsigned chained operation result
If the DSA does not wish to sign the Chained Operation Result, then the latter will comprise

the Chaining Results (identified in (i) above) added to the Operation Result identified in either
(ii) or (iii) above, collectively, these are denoted by:

either:

C hR ', O R ', d{OR), e{OR), ... = Chained Operation Result (unsigned),
or,

C hR ', c{OR), OR", d{OR), e{OR), ... = Chained Operation Result (unsigned) and Operation
Result signed by DSA "c".

C.7.2.1.5 Signed chained operation result
If the DSA does wish to sign the Chained Operation Result, then the result will comprise the

Chaining Results (identified in (i) above) added to the Operation Result (identified in either (ii)
or (iii) above), collectively denoted as:

either:

c{ChR', O R ', d{OR), e{OR), ...} = Chained Operation Result signed by DSA "c"

or,
c{ChR', c{OR), OR", d{OR), e{OR}, ...} = Chained Operation Result and Operation

Result signed by DSA "c".
C.7.2.2 DAP

The procedure is very similar to that described in § C.7.2.1, with the exception that the
Chaining Results argument is not passed in the DAP.

C.7.3 DSA chained results
This paragraph addresses the procedures to be effected by a DSA in chaining an operation result

back to the requestor, DSA or DUA, within the DSP and DAP respectively.

C.7.3.1 DSP
The DSA initially removes the signature (if one exists) from the Chained Operation Result. It

then manipulates the Chaining Results argument as described in this Recommendation, to produce a
modified Chaining Results argument. The latter is then merged back with the Operation Result argument
to produce a modified Chained Operation Result. Finally, the DSA may optionally sign the Chained
Operation Result before passing it to the next DSA in the chain.

C.7.3.2 DAP
A DSA (represented by DSA "b" in Figure C-l/X.518) first removes the signature (if one exists)

from the Chained Operation Result. It then analyses and discards the Chaining Results argument and,
finally, it optionally signs the remaining Operation Result argument before passing the result to the
DUA.

ANNEX D

(to Recommendation X.518)

Distributed directory object identifiers

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l object identifiers contained in this Recommendation in the
form of the ASN.l module DistributedDirectoryObjectldentifiers.

Fascicle VIII.8 - Rec. X.518 173

DistributedDirectoryObjectldentifiers {joint-iso-ccitt ds(5) modules(l)
distributedDirectoryObjectldentifiers(13)}

DEFINITION:^
BEGIN

EXPORTSKITS
id-ot-dsa, id-pt-chainedRead, id-pt-chainedSearch, id-pt-chainedModify;

, id-pt
FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)};

IMPORTS
id-ot, id-pt

— objects —

id-ot-dsa OBJECT IDENTIFIER {id-ot 3}

— part types —

id-pt-chainedRead OBJECT IDENTIFIER
id-pt-chainedSearch OBJECT IDENTIFIER
id-pt-chainedModify OBJECT IDENTIFIER

END

{id-pt 4}
{id-pt 5}

= {id-pt 6}

Recommendation X.519

THE DIRECTORY - PROTOCOL SPECIFICATIONS1)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope

2 References

3 Definitions

3.1 OSI Reference Model Definitions
3.2 Basic Directory Definitions
3.3 Distributed Operation Definitions

4 Abbreviations

5 Conventions

x) Recommendation X.519 and ISO 9594-5, The Directory - Protocol Specifications, were developed
in close collaboration and are technically aligned.

174 Fascicle VIII.8 - Rec. X.519

6 Protocol Overview

6.1 Directory Protocol Model
6.2 Directory Access Protocol
6.3 Directory System Protocol
6.4 Use of Underlying Services

7 Directory Protocol Abstract Syntax

7.1 Abstract Syntaxes
7.2 Directory Application Service Elements
7.3 Directory Application Contexts
7.4 Errors

8 Mapping onto Used Services

8.1 Mapping onto ACSE
8.2 Mapping onto ROSE

9 Conformance

9.1 Conformance by DUAs
9.2 Conformance by DSAs

Annex A - DAP in ASN.l

Annex B - DSP in ASN.l

Annex C - Reference Definition of Protocol Object Identifiers

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;
under different managements;
of different levels of complexity; and

of different ages.
0.3 This Recommendation specifies the application service elements and application contexts for two
protocols - the Directory Access Protocol (DAP) and the Directory System Protocol (DSP). The DAP
provides for access to the Directory to retrieve or modify Directory information. The DSP provides
for the chaining of requests to retrieve or modify Directory information to other parts of the
distributed Directory System where the information may be held.

1 Scope

This Recommendation specifies the Directory Access Protocol and the Directory System Protocol,
fulfilling the abstract services specified in Recommendations X.511 and X.518.

Fascicle VIII.8 - Rec. X.519 175

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model

Recommendation X.208 - Open Systems Interconnection - Specification of Abstract Syntax Notation
(ASN.l)

Recommendation X.209 - Open Systems Interconnection - Specification of Basic Encoding rules for
Abstract Syntax Notation One (ASN.l)

Recommendation X.500 - The Directory - Overview of Concepts, Models and Services
Recommendation X.501 - The Directory - Information Framework

Recommendation X.511 - The Directory - Abstract Service Definition

Recommendation X.518 - The Directory - Procedures for Distributed Operation

Recommendation X.520 - The Directory - Selected Attribute Types

Recommendation X.521 - The Directory - Selected Object Classes

Recommendation X.219 - Remote Operations - Model, Notation and Service Definition

Recommendation X.229 - Remote Operations - Protocol Specification

Recommendation X.217 - Open Systems Interconnection - Association Control: Service Definition

Recommendation X.227 - Open Systems Interconnection - Association Control: Protocol Specification

Recommendation X.216 - Open Systems Interconnection - Presentation Layer Service Definition.

3 Definitions

The definitions contained in this paragraph make use of the abbreviations defined in § 4.

3.1 OSI Reference Model definitions
This Recommendation is based on the concepts developed in Recommendation X.200 and makes use of

the following terms defined therein:

a) application-service-element;

b) appl ication-protocol-control -in formation;

c) application-control-data-unit;

d) application-context;

e) application-entity;

0 abstract-syntax.

3.2 Basic Directory definitions

This Recommendation makes use of the following terms defined in Recommendation X.501:
a) the Directory;
b) (Directory) user:;

c) Directory System Agent (DSA);
d) Directory User Agent (DUA).

3.3 Distributed Operation definitions
This Recommendation makes use of the following terms defined in Recommendation X.518:

a) chaining;
b) referral.

176 Fascicle VTII.8 - Rec. X.519

4 Abbreviations

The following abbreviations are used in this Recommendation:

AC Application Context

I ACSE Association Control Service Element

AE Application Entity

APCI Application Protocol Control Information

APDU Application Protocol Data Unit

ASE Application Service Element

DAP Directory Access Protocol

DSA Directory System Agent

DSP Directory System Protocol

DUA Directory User Agent

ROSE Remote Operations Service Element.

5 Conventions

The Recommendation makes use of the following conventions:

a) the abstract syntax definitions in § 7 are defined using the abstract syntax notation
defined in Recommendation X.208;

b) the remote operation macros (RO-notation), and the application-service-element and
application-context macros are defined in Recommendation X.219;

c) the words of defined terms and the names and values of service parameters and protocol
fields, unless they are proper names, begin with a lower-case letter and are linked by a
hyphen thus: defined-term. Proper names begin with an upper case letter and are not linked
by a hyphen thus: Proper Name.

6 Protocol Overview

6.1 Directory Protocol Model

Recommendation X.511 defines the abstract service between a DUA and the Directory to support a
user accessing Directory services. The Directory is further modelled as being represented by a DSA
which supports the particular access point concerned. Recommendation X.518 defines the interactions
between a pair of DSAs within the Directory to support user requests which are chained. These
concepts are illustrated in Figure 1 /X.519.

FIGURE 1 /X.519

Directory interactions

Fascicle VIII.8 - Rec. X.519 177

When a DUA is in a different open system from a DSA with which it is interacting, these
interactions are supported by the Directory Access Protocol (DAP), which is an OSI application layer
protocol. Similarly, when a pair of DSAs which are interacting are in different open systems, the
interactions are supported by the Directory System Protocol (DSP), which is also in the application
layer.

Both the DAP and the DSP are protocols to provide communication between a pair of application
processes. In the OSI environment this is represented as communication between a pair of application-
entities (AEs) using the presentation service. The function of an AE is provided by a set of
application-service-elements (ASEs). The interaction between AEs is described in terms of their use
of the services provided by the ASEs. The two ASEs common to both of the directory protocols are
summarized in this paragraph.

The Remote Operations Service Element (ROSE) supports the request/reply paradigm of the
abstract operation that occurs at the ports in the abstract model. The Directory ASEs provide the
mapping function of the abstract-syntax notation of the directory abstract-service onto the services
provided by the ROSE.

The Association Control Service Element (ACSE) supports the establishment and release of an
application-association between a pair of AEs. Associations between a DUA and a DSA may be
established only by the DUA. Only the initiator of an established association can release it.

6.2 Directory Access Protocol

The Directory Access Protocol (DAP) is used to realise the Directory Abstract Service. It
comprises three directory specific ASEs in addition to ROSE and ACSE. These are: readASE, searchASE,
and modifyASE. They correspond to the readPort, searchPort, and modifyPort of the abstract service.
The directoryAccessAC application context identifies the combination of: readASE, searchASE, and
modifyASE, aCSE, rOSE.

6.3 Directory System Protocol

The Directory System Protocol (DSP) is used to realise the functionality of distributed
operation described in Recommendation X.518. It comprises three directory specific ASEs in addition
to ROSE and ACSE. These are: chainedReadASE, chainedSearchASE, and chainedModifyASE. They correspond
to the chainedReadPort, chainedSearchPort, and chainedModifyPort of the abstract service. The
directorySystemAC application context identifies the combination of: chainedReadASE,
chainedSearchASE, and chainedModifyASE, aCSE, rOSE.

6.4 Use o f Underlying Services

The DAP and DSP protocols make use of underlying services as described below.

6.4.1 Use o f ROSE services

The Remote Operations Service Element (ROSE) is defined in Recommendation X.219.

The ROSE supports the request/reply paradigm of remote operations.
The Directory ASEs are users of the RO-INVOKE, RO-RESULT, RO-ERROR, RO-REJECT-U and

RO-REJECT-P services of the ROSE.

The remote operations of the DAP and the DSP are Class 2 (asynchronous) operations. Note that
as the DUA is a consumer of the DAP it may choose to operate in a synchronous manner.

DAP uses Association Class 1. This means that the DSA cannot invoke operations on the DUA. DSP
uses Association Class 3. This means that the responding DSA can invoke operations on the initiating
DSA and vice versa.

6.4.2 Use o f ACSE services
The Association Control Service Element (ACSE) is defined in Recommendation X.217.

The ACSE provides for the control (establishment, release, abort) of application-associations
between AEs.

The Directory Bind and Directory Unbind (or DSA Bind and DSA Unbind) are the sole users of the
A-ASSOCIATE and A-RELEASE services of the ACSE in normal mode. The application-process is the user
of the A-ABORT and A-P-ABORT services of the ACSE.

178 Fascicle Vni.8 - Rec. X.519

6.4.3 Use o f the Presentation Service
The presentation-service is defined in Recommendation X.216.
The Presentation Layer coordinates the representation (syntax) of the Application Layer

semantics that are to be exchanged.

In normal mode, a different presentation-context is used for each abstract-syntax included in
the application-context.

The ACSE is the sole user of the P-CONNECT, P-RELEASE, P-U-ABORT and P-P-ABORT services of
the presentation-service.

The ROSE is a user of the P-DATA service of the presentation-service.

6.4.4 Use o f Lower Layer Services

The session-service is defined in Recommendation X.215. The Session Layer structures the
dialogue of the flow of information between the end-systems.

The Kernel and Duplex functional units of .the session-service are used by the Presentation
Layer.

The transport-service is defined in Recommendation X.214. The Transport Layer provides for the
end-to-end transparent transfer of data over the underlying network connection.

The choice of the class of transport-service used by the Session Layer depends on the
requirements for multiplexing and error recovery. Support for Transport Class 0 (non-multiplexing)
is mandatory. Transport Expedited Service is not used.

Support for other classes is optional. A multiplexing class may be used to multiplex the DAP or
DSP and other protocols over the same network connection. An error recovery class may be chosen over
a network connection with an unacceptable residual error rate.

An underlying network supporting the OSI network-service defined in Recommendation X.213 is
assumed.

A network-address is as defined in Recommendation X.121, Recommendations E. 163/E. 164, or
Recommendation X.200 (OSI NSAP-address).

7 Directory Protocol Abstract Syntax

7.1 Abstract Syntaxes

The Directory ASEs specified in §§ 7.2.1, 7.2.3 and 7.2.5 share a single abstract syntax, id-
as-directory-AccessAS. Those specified in §§ 7.2.2, 7.2.4 and 7.2.6 also share a single abstract
syntax id-as-directorySystemAS. In each case, this defines application-protocol-control-information
(APCI) which, when used in conjunction with the ROSE, defines a set of APDUs. The Directory APDUs
are defined by the abstract-syntax of the Directory ASEs and ROSE. These plus the abstract-syntax of
ACSE form the complete definition of APDUs used during a Directory association.

The ACSE abstract-syntax id-as-acse is needed to establish the associations.

These abstract syntaxes shall (as a minimum) be encoded according to the ASN.l Basic Encoding
Rules. '

7.2 Directory Application Service Elements

This paragraph specifies the ASEs which are used as "building blocks" in the construction of
the various Directory application contexts in § 7.3.

Note - These ASEs are used for the construction of the application contexts defined in this
Recommendation. They are not intended to allow for claims of conformance to individual, or other
combinations of, ASEs.

Fascicle VIII.8 - Rec. X.519 179

7.2.1 Read ASE

The readASE supports the abstract-operations of the readPort, namely Read, Compare, and
Abandon, as defined in Recommendation X.511.

readASE
APPLICATION-SER VICE-ELEMENT

CONSUMER INVOKES
{read, compare, abandon}

::= id-ase-readASE

read Read ::= 1

compare Compare ::= 2
abandon Abandon ::= 3

7.2.2 Chained Read ASE

The chainedReadASE supports the abstract-operation of the ChainedReadPort, i.e. ChainedRead,
ChainedCompare and ChainedAbandon, as defined in Recommendation X.518.

chainedReadASE
APPLICATION-SER VICE-ELEMENT

OPERATIONS {
chainedRead,
ChainedCompare
ChainedAbandon}

::= id-ase-chainedReadASE

chainedRead ChainedRead ::= 1

ChainedCompare ChainedCompare ::= 2
ChainedAbandon ChainedAbandon ::= 3

7.2.3 Search ASE

The searchASE supports the abstract-operations of the SearchPort, namely List and Search, as
defined in Recommendation X.511.

searchASE
APPLICATION-SER VICE-ELEMENT

CONSUMER INVOKES { list, search}
::= id-ase-searchASE}

list List ::= 4
search Search ::= 5

7.2.4 Chained Search ASE
The chainedSearchASE supports the abstract-operations of the ChainedSearchPort, namely

ChainedList and ChainedSearch, as defined in Recommendation X.518.

chainedSearchASE
APPLICATION-SER VICE-ELEMENT

OPERATIONS {
ChainedList, chainedSearch}

id-ase-chainedSearchASE
ChainedList ChainedList 4
chainedSearch ChainedSearch 5

7.2.5 Modify ASE
The modifyASE supports the abstract-operations of the ModifyPort, namely AddEntry, RemoveEntry,

ModifyEntry, and ModifyRDN, as defined in Recommendation X.511.

180 Fascicle VTIL8 - Rec. X.519

modifyASE
APPLICATION-SERVICE-ELEMENT

CONSUMER INVOKES
{addEntry, removeEntry,
modifyEntry, modifyRDN}

::= id-ase-modifyASE
addEntry AddEntry ::= 6
removeEntry RemoveEntry ::= 7
modifyEntry ModifyEntry ::= 8
modifyRDN ModifyRDN ::= 9

7.2.6 Chained Modify ASE
The chainedModifyASE supports the abstract-operations of the ChainedModifyPort, namely

ChainedAddEntry, ChainedRemoveEntry, ChainedModifyEntry and ChainedModifyRDN, as defined in
Recommendation X.518.

chainedModifyASE
APPLICATION-SERVICE-ELEMENT

OPERATIONS
{ChainedAddEntry,
ChainedRemoveEntry,
ChainedModifyEntry,
ChainedModifyRDN}

id-ase-chainedModifyASE
ChainedAddEntry ChainedAddEntry
ChainedRemoveEntry ChainedRemoveEntry
ChainedModifyEntry ChainedModifyEntry
ChainedModifyRDN ChainedModifyRDN

7.3 Directory Application Contexts

= 6
= 7
= 8
= 9

7.3.1 Directory Access Application Context
The directoryAccessAC allows the DUA to access the operations of the following ASEs: readASE,

searchASE, modifyASE.
directoryAccessAC

APPLIC ATION-CONTEXT
APPLICATION SERVICE ELEMENTS

{aCSE}
BIND DirectoryBind
UNBIND DirectoryUnbind
REMOTE OPERATIONS {rOSE}
INITIATOR CONSUMER OF {

readASE,
searchASE,
modifyASE}

ABSTRACT SYNTAXES {
id-as-acse,
id-as-directoryAccessAS}

::= id-ac-directoryAccessAC

7.3.2 Directory System Application Context

The directorySystemAC allows DSAs to communicate for the purpose of chaining operations.

directorySystemAC
APPLIC ATION-CONTEXT

APPLICATION SERVICE ELEMENTS
{aCSE}

BIND DSABind
UNBIND DSAUnbind

Fascicle VIIL8 - Rec. X.519 181

REMOTE OPERATIONS {rOSE}
OPERATIONS OF

{chainedReadASE,
chainedSearchASE,
chainedModifyASE}

ABSTRACT SYNTAXES {
id-as-acse,
id-as-directorySystemAS}

::= id-ac-directorySystemAC

7.4 Errors

Corresponding to each abstract-error defined in the Abstract Service is an error value which
may be conveyed by the protocol. The assignments follow:

abandoned Abandoned ::= 5
attributeError AttributeError 1
nameError NameError ::= 2
referral Referral ::= 4
securityError SecurityError ::= 6
serviceError ServiceError ::= 3
UpdateError UpdateError ::= 8
dSAReferral DSAReferral ::= 9
abandonFailed AbandonFailed ::= 7

8 Mapping onto Used Services

\

This paragraph defines the mapping of the DAP and DSP onto the used services.

8.1 Mapping onto ACSE

This paragraph defines the mapping of the abstract-bind (DirectoryBind or DSABind) and
abstract-unbind (DirectoryUnbind or DSAUnbind) services onto the services of the ACSE. The ACSE is
defined in Recommendation X.217.

8.1.1 Abstract-bind onto A-ASSOCIATE

The abstract-bind service is mapped onto the A-ASSOCIATE service of the ACSE. The use of the
parameters of the A-ASSOCIATE service is qualified in the following subparagraphs.

8.1.1.1 Mode

This parameter shall be supplied by the initiator of the association in the A-ASSOCIATE request
primitive, and shall have the value "normal mode".

8.1.1.2 Application Context Name
The initiator of the association shall propose either the directoryAccessAC or the

directorySystemAC application-context.

8.1.1.3 User information

The mapping of the bind-operation of the abstract-bind service onto the User Information
parameters of the A-ASSOCIATE request primitive is defined in Recommendation X.219.

8.1.1.4 Presentation Context Definition List
The initiator of the association shall supply the Presentation Context Definition List in the

A-ASSOCIATE request primitive which shall contain the ACSE abstract-syntax (id-as-acse) and either
the DAP abstract-syntax (id-as-directoryAccessAS) or the DSP abstract-syntax (id-as-
directorySystemAS).

182 Fascicle VHI.8 - Rec. X.519

8.1.1.5 Quality o f service

This parameter shall be supplied by the initiator of the association in the A-ASSOCIATE request
primitive, and by the responder of the association in the A-ASSOCIATE response primitive. The
parameters "Extended Control" and "Optimized Dialogue Transfer" shall be set to "feature not
desired". The remaining parameters shall be such that default values are used.

8.1.1.6 Session requirements

This parameter shall be set by the initiator of the association in the A-ASSOCIATE request
primitive, and by the responder of the association in the A-ASSOCIATE response primitive. The
parameter shall be set to specify the following functional units:

a) Kernel;
b) Duplex.

8.1.1.7 Application Entity Title and Presentation Address
These parameters shall be supplied by the initiator and the responder of the association

(Application Entity Title is optionally supplied). For a DUA establishing an association for an
initial request, these parameters are obtained from locally held information.

For a DUA (or DSA) establishing an association with a DSA to which it has been referred, these
parameters are obtained from the AccessPoint value of a ContinuationReference. For a DSA establishing
an association, this parameter is obtained from its Knowledge Information, i.e. an external
reference.

8.1.2 Abstract-unbind onto A-RELEASE

The abstract-unbind service is mapped onto the A-RELEASE service of the ACSE. The use of the
parameters of the A-RELEASE service is qualified in the following subparagraph.

8.1.2.1 Result

This parameter shall have the value "affirmative".

8.1.3 Use o f A-ABORT and A-P-ABORT services

The application-process is the user of the A-ABORT and A-P-ABORT services of the ACSE.

8.2 Mapping onto ROSE

The Directory ASE services are mapped onto the RO-INVOKE, RO-RESULT, RO-ERROR,
RO-REJECT-U and RO-REJECT-P services of the ROSE. The mapping of the abstract-syntax notation of the
Directory ASEs onto the ROSE services is as defined in Recommendation X.219.

9 Conformance

This paragraph defines the requirements for conformance to this Recommendation.

9.1 Conformance by DUAs

A DUA implementation claiming conformance to this Recommendation shall satisfy the requirements
specified in §§ 9.1.1 to 9.1.3.

9.1.1 Statement requirements
The following shall be stated:
a) the operations of the directoryAccessAC application-context that the DUA is capable of

invoking for which conformance is claimed; and
b) the security-level(s) for which conformance is claimed (none, simple, strong).

Fascicle Vm.8 - Rec. X.519 183

9.1.2 Static requirements

A DUA shall:

a) have the capability of supporting the directoryAccessAC application-context as defined by
its abstract syntax in § 7.

9.1.3 Dynamic requirements

A DUA shall:

a) conform to the mapping onto used services defined in § 8.

9.2 Conformance by DSAs

A DSA implementation claiming conformance to this Recommendation shall satisfy the requirements
specified in §§ 9.2.1 to 9.2.3.

9.2.1 Statement requirements

The following shall be stated:

a) the application-contexts for which conformance is claimed: directoryAccessAC,
directorySystemAC, or both. If a DSA is such that knowledge of it has been disseminated
causing knowledge references to the DSA to be held by other DSA(s) outside of its own DMD,
then it shall claim conformance to the directorySystemAC;
Note - An application context shall not be divided, except as stated herein: in
particular, conformance may not be claimed to particular ports or operations.

b) whether or not the DSA is capable of acting as a first-level DSA, as defined in
Recommendation X.518;

c) if conformance is claimed to the directorySystemAC application-context, whether or not the
chained mode of operation is supported, as defined in Recommendation X.518;

d) the security-level(s) for which conformance is claimed (none, simple, strong);

e) the selected attribute types defined in Recommendation X.520 and any other attribute
types, for which conformance is claimed; and

f) the selected object classes defined in Recommendation X.521 and any other object classes,
for which conformance is claimed.

9.2.2 Static requirements

A DSA shall:

a) have the capability of supporting the application-contexts for which conformance is
claimed as defined by their abstract syntax in § 7;

b) have the capability of supporting the information framework defined by its abstract syntax
in Recommendation X.501;

c) conform to the minimal knowledge requirements defined in Recommendation X.518;

d) if conformance is claimed as a first-level DSA, conform to the requirements for support of
the root context, as defined in Recommendation X.518;

e) have the capability of supporting the attribute types for which conformance is claimed as
defined by their abstract syntaxes; and

f) have the capability of supporting the object classes for which conformance is claimed, as
defined by their abstract syntaxes.

184 Fascicle VTIL8 - Rec. X.519

9.2.3 Dynamic requirements

A DSA shall:

a) conform to the mapping onto used services defined in § 8 of this Recommendation;
b) conform to the procedures for distributed operation of the Directory related to referrals,

as defined in Recommendation X.518;

c) if conformance is claimed to the directoryAccessAC application-context, conform to the
procedures of Recommendation X.518 as they relate to the referral mode of the DAP;

d) if conformance is claimed to the directorySystemAC application-context, conform to the
referral mode of interaction, as defined in Recommendation X.518;

e) if conformance is claimed to the chained mode of interaction, conform to the chained mode
of interaction, as defined in Recommendation X.518.

Note - Only in this case is it necessary for a DSA to be capable of invoking operations
using the directorySystemAC.

ANNEX A

(to Recommendation X.519)

DAP in ASN.l

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l type and value definitions contained in this
Recommendation in the form of the ASN.l module, DirectoryAccessProtocol.

DirectoryAccessProtocol {joint-iso-ccitt ds(5) modules(l) dap(ll)}
DEFINITIONS ::=
BEGIN

EXPORTS
directoryAccessAC, readASE, searchASE, modifyASE;

IMPORTS
abstractService
FROM UsefulDefinitions

{joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)}

APPLICATION-SERVICE-ELEMENT, APPLICATION-CONTEXT, aCSE
FROM Remote-Operations-Notation-extension

{joint-iso-ccitt remoteOperations(4) notation-extension(2)}

id-ac-directoryAccessAC, id-ase-readASE, id-ase-searchASE,
id-ase-modifyASE, id-as-directoryAccessAS, id-as-acse
FROM ProtocolObjectldentifiers

{joint-iso-ccitt ds(5) modules(l)
protocolObjectIdentifiers(4))

DirectoryBind, DirectoryUnbind, Read, Compare, Abandon, List,
Search, AddEntry, RemoveEntry, ModifyEntry, ModifyRDN, Abandoned, AbandonFailed,
AttributeError, NameError, Referral, SecurityError, ServiceError,
UpdateError
FROM DirectoryAbstractService

directoryAbstractService;

— Application Contexts —

directoryAccessAC
APPLICATION-CONTEXT

APPLICATION SERVICE ELEMENTS {aCSE}
BIND DirectoryBind

Fascicle VTII.8 - Rec. X.519 185

UNBIND DirectoryUnbind
REMOTE OPERATIONS {rOSE}

INITIATOR CONSUMER OF {readASE, searchASE, modifyASE}
ABSTRACT SYNTAXES {

id-as-acse, id-as-directoryAccessAS}
::= id-ac-directoryAccessAC

— Read ASE —

readASE
APPLICATION-SERVICE-ELEMENT

CONSUMER INVOKES {read, compare, abandon}
::= id-ase-readASE

— Search ASE —

searchASE
APPLICATION-SERVICE-ELEMENT

CONSUMER INVOKES {list, search}
::= id-ase-searchASE

— Modify ASE —

modifyASE
APPLICATION-SERVICE-ELEMENT

CONSUMER INVOKES
{addEntry, removeEntry,
modifyEntry, modifyRDN}

::= id-ase-modifyASE

— Remote Operations —
read Read = 1

compare Compare = 2
abandon Abandon = 3
list List = 4
search Search = 5
addEntry AddEntry = 6
removeEntry RemoveEntry = 7
modifyEntry ModifyEntry = 8
modifyRDN ModifyRDN = 9

— Remote Errors —
attributeError AttributeError = 1

nameError NameError = 2
serviceError ServiceError = 3
referral Referral = 4

abandoned Abandoned = 5

securityError SecurityError = 6

abandonFailed AbandonFailed = 7

updateError UpdateError = 8

END

Fascicle VIII.8 - Rec. X.519

ANNEX B

(to Recommendation X.519)

DSP in ASN.l

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l type and value definitions contained in this
Recommendation in the form of the ASN.l module, DirectorySystemProtocol.

DirectorySystemProtocol {joint-iso-ccitt ds(5) modules(l) dsp(12)}
DEFINITIONS ::=
BEGIN

EXPORTS
directorySystemAC, chainedReadASE, chainedSearchASE, chainedModifyASE;

IMPORTS
distributedOperations, directoryAbstractService
FROM UsefulDefinitions

{joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)}

APPLICATION-SERVICE-ELEMENT, APPLICATION-CONTEXT, aCSE
FROM Remote-Operations-Notation-extension

{joint-iso-ccitt remoteOperations(4) notation-extension(2)}

id-ac-directorySystemAC, id-ase-chainedReadASE,
id-ase-chainedSearchASE, id-ase-chainedModifyASE,
id-as-directorySystemAS, id-as-acse;
FROM ProtocolObjectldentifiers

{joint-iso-ccitt ds(5) modules(l)
protocolObjectIdentifiers(4)}

Abandoned, AttributeError, AbandonFailed,
NameError, DSAReferral, SecurityError, ServiceError, UpdateError
FROM DirectoryAbstractService directoryAbstractService

DSABind, DSAUnbind,
ChainedRead, ChainedCompare, ChainedAbandon,
ChainedList, ChainedSearch,
ChainedAddEntry, ChainedRemoveEntry, ChainedModifyEntry,
ChainedModifyRDN, DSAReferral,
FROM DistributedOperations

distributedOperations;

— Application Contexts —
directorySystemAC

APPLICATION-CONTEXT
APPLICATION SERVICE ELEMENTS {aCSE}
BIND DSABind
UNBIND DSAUnbind
REMOTE OPERATIONS {rOSE}

OPERATIONS OF {
chainedReadASE, chainedSearchASE, chainedModifyASE}

ABSTRACT SYNTAXES {
id-as-acse, id-as-directorySystemAS}

::= {id-ac-directorySystemAC}
— Chained Read ASE —

v chainedReadASE
APPLICATION-SERVICE-ELEMENT

OPERATIONS {chainedRead, ChainedCompare, ChainedAbandon}
::= id-ase-chainedReadASE

Fascicle Vni.8 - Rec. X.519 187

— Chained Search ASE —
chainedSearchASE

APPLICATION-SERVICE-ELEMENT
OPERATIONS {ChainedList, chainedSearch}

::= id-ase-chainedSearchASE

— Chained Modify ASE —

chainedModify ASE
APPLICATION-SERVICE-ELEMENT

OPERATIONS
{ChainedAddEntry, ChainedRemoveEntry,
ChainedModifyEntry, chainedModifyRDN}

::= id-ase-chainedModifyASE

— Remote Operations —

chainedRead ChainedRead ::= 1

ChainedCompare ChainedCompare ::= 2
ChainedAbandon ChainedAbandon ::= 3

chainedlist ChainedList ::= 4
chainedSearch ChainedSearch ::= 5
ChainedAddEntry ChainedAddEntry ::= 6

ChainedRemoveEntry ChainedRemoveEntry ::= 7
ChainedModifyEntry ChainedModifyEntry ::= 8
ChainedModifyRDN ChainedModifyRDN ::= 9
— Remote Errors —
attributeError AttributeError ::= 1

nameError NameError ::= 2

serviceError ServiceError ::= 3

abandoned Abandoned ::= 5
securityError SecurityError ::= 6

abandonFailed AbandonFailed ::= 7
updateError UpdateError ::= 8

dsaReferral DSAReferral ::= 9
END

ANNEX C

(to Recommendation X.519)

Reference definition of protocol object identifiers

This Annex is part of the Recommendation.

This Annex includes all of the ASN.l Object Identifiers assigned in this Recommendation
form of ASN.l module, ProtocolObjectldentifiers.

ProtocoIObjectldentifiers {joint-iso-ccitt ds(5) modules(l) protocolObjectldentifiers(4)}
DEFINITIONS ::=
BEGIN

188 Fascicle vm .8 - Rec. X.519

EXPORTS
id-ac-directoryAccessAC, id-ac-directorySystemAC, id-ase-readASE, id-ase-searchASE,
id-ase-modifyASE, id-ase-chainedReadASE,
id-ase-chainedSearchASE, id-ase-chainedModifyASE, id-as-acse,
id-as-directoryAccessAS, id-as-directorySystemsAS;

IMPORTS
id-ac, id-ase, id-as
FROM UsefulDefinitions

{joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)};

— Application Contexts —

id-ac-directoryAccessAC OBJECT IDENTIFIER ::= {id-ac 1}

id-ac-directorySystemAC OBJECT IDENTIFIER ::== {id-ac 2}

— ASEs —

id-ase-readASE OBJECT IDENTIFIER ::= {id-ase 1}

id-ase-searchASE OBJECT IDENTIFIER ::= {id-ase 2}

id-ase-modifyASE OBJECT IDENTIFIER ::= {id-ase 3}

id-ase-chainedReadASE OBJECT IDENTIFIER ::= {id-ase 4}

id-ase-chainedSearchASE OBJECT IDENTIFIER ::= {id-ase 5}

id-ase-chainedModifyASE OBJECT IDENTIFIER ::= {id-ase 6}

— ASs — ,

id-as-directoryAccessAS OBJECT IDENTIFIER ::= {id-as 1}

id-as-directorySystemAS OBJECT IDENTIFIER ::= {id-as 2}

id-as-acse OBJECT IDENTIFIER ::=
{joint-iso-ccitt association-control(2) abstract-syntax(l) apdus(O)
versionl(l)}

END

Recommendation X.520

THE DIRECTORY - SELECTED ATTRIBUTE TYPES *)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field o f application

2 References

3 Definitions

4 Notation

x) Recommendation X.520 and ISO 9594-6, Information Processing Systems - Open Systems
Interconnection - The Directory - Selected attribute types, were developed in close
collaboration and are technically aligned.

Fascicle VIII.8 - Rec. 520 189

SECTION 1 - Selected Attribute Types

5 Definition o f Selected Attribute Types

5.1 System Attribute Types
5.2 Labelling Attribute Types
5.3 Geographical Attribute Types
5.4 Organizational Attribute Types
5.5 Explanatory Attribute Types
5.6 Postal Addressing Attribute Types
5.7 Telecommunications Addressing Attribute Types
5.8 Preferences Attribute Types
5.9 OSI Application Attribute Types
5.10 Relational Attribute Types
5.11 Security Attribute Types

SECTION 2 - Attribute Syntaxes

6 Definition o f Attribute Syntaxes

6.1 Attribute Syntaxes Used by the Directory
6.2 String Attribute Syntaxes
6.3 Miscellaneous Attribute Syntaxes

Annex A - Selected Attribute Types in ASN.l

Annex B - Index o f Attribute Types and Syntaxes

Annex C - Upper Bounds

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation defines a number of attribute types which may be found useful across a
range of applications of the Directory. One particular use for many of the attributes defined herein
is in the formation of names, particularly for the classes of object defined in Recommendation X.521.
This Recommendation also defines a number of standard attribute syntaxes.

0.4 Annex A, which is part of this Recommendation, provides the ASN.l notation for the complete
module which defines the attributes and attribute syntaxes.

0.5 Annex B, which is not part of this Recommendation, provides an alphabetical index of attribute
types, for easy reference.

190 Fascicle Vm.8 - Rec. 520

1 Scope and field of application

1.1 This Recommendation defines a number of attribute types which may be found useful across a
range of applications of the Directory.

1.2 Attribute types (and attribute syntaxes) fall into three categories, as described in §§ 1.2.1
to 1.2.3.

1.2.1 Some attribute types (syntaxes) are used by a wide variety of applications or are understood
and/or used by the Directory itself.

Note - It is recommended that an attribute type (syntax) defined in this document be used, in
preference to the generation of a new one, whenever it is appropriate for the application.

1.2.2 Some attribute types (syntaxes) are internationally-standardized, but are application-specific.
These are defined in the standards associated with the application concerned.

1.2.3 Any administrative authority can define its own attribute types (syntaxes) for any purpose.
These are not internationally standardized, and are available to others beyond the administrative
authority which created them only by bilateral agreement.

2 References

ISO 3166 - Codes for the representation of names of countries

Recommendation X.121 - International numbering plan for public data networks

Recommendation X.208 - Open Systems Interconnection - Specification of Abstract Syntax Notation
(ASN.l) (see also ISO 8824)

Recommendation X.501 - The Directory - Models (see also ISO 9594-2)

Recommendation X.521 - The Directory - Selected Object Classes (see also ISO 9594-7)

Recommendation E.123 - Notation for National and International Telephone Numbers

3 Definitions
This Recommendation makes use of the following definitions from Recommendation X.501:
a) attribute type\

b) attribute syntax;

c) object class.

4 Notation

Attribute types and attribute syntaxes are defined in this document by the use of special
notation, defined as ASN.l macros in Recommendation X.501. There are two such macros, ATTRIBUTE and
ATTRIBUTE-SYNTAX.

Two "generic" object identifiers (attributeType and attributeSyntax) are used in defining the
object identifiers being allocated to attribute types and attribute syntaxes respectively. Their
definitions can be found in Annex B of Recommendation X.501.

Examples of the use of the attribute types are described using an informal notation, where

attribute type and value pairs are represented by an acronym for the attribute type, followed by an
equals sign ("="), followed by the example value for the attribute.

SECTION 1 - Selected Attribute Types

5 Definition of Selected Attribute Types

This Recommendation defines a number of attribute types which may be found useful across a
range of applications of the Directory.

5.1 System Attribute Types

These attribute types are concerned with information about objects known to the Directory.

Fascicle VHI.8 - Rec. 520 191

5.1.1 Object Class

The Object Class attribute type, which is known to the Directory, is specified, except for
the allocation of an object identifier, in Recommendation X.501.

ObjectClass ObjectClass ::= {attributeType 0}

5.1.2 Aliased Object Name

This attribute type is defined, except for the allocation of an object identifier, in
Recommendation X.501.

aliasedObjectName AliasedObjectName ::= {attributeType 1}

5.1.3 Knowledge information

The Knowledge Information attribute type specifies a human readable accumulated description
of knowledge mastered by a specific DSA.

knowledgelnformation ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
::= {attributeType 2}

5.2 Labelling Attribute Types

These attribute types are concerned with information about objects which has been explicitly
associated with the objects by a labelling process.

5.2.1 Common Name

The Common Name attribute type specifies an identifier of an object. A Common Name is not a
directory name; it is a (possibly ambiguous) name by which the object is commonly known in some
limited scope (such as an organization) and conforms to the naming conventions of the country or
culture with which it is associated.

An attribute value for common name is a string chosen either by the person or organization it
describes or the organization responsible for the object it describes for devices and application
entities. For example, a typical name of a person in an English-speaking country comprises a personal
title (e.g. Mr, Ms, Dr, Professor, Sir, Lord), a first name, middle name(s), last name, generational
qualifier (if any, e.g. Jr.) and decorations and awards (if any, e.g. QC).

Examples:

CN = "Mr. Robin Lachlan McLeod BSc(Hons) CEng MIEE"

CN = "Divisional Coordination Committee"

CN = "High Speed Modem".

Any variants should be associated with the named object as separate and alternative attribute
values.

Other common variants should also be admitted, e.g. use of a middle name as a preferred first
name; use of "Bill" in place of "William", etc.

commonName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-common-name))

::= {attributeType 3)

5.2.2 Surname

The Surname attribute type specifies the linguistic construct which normally is inherited by
an individual from the individual’s parent or assumed by marriage, and by which the individual is
commonly known.

192 Fascicle VHI.8 - Rec. 520

An attribute value for Surname is a string, e.g. "McLeod".

surname ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-sumame))

::= {attributeType 4}

5.2.3 Serial Number

The Serial Number attribute type specifies an identifier, the serial number of a device.

An attribute value for Serial Number is a printable string.

serialNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

printableStringSyntax
(SIZE(1 ..ub-serial-number))

(attributeType 5}

5.3 Geographical Attribute Types

These attribute types are concerned with geographical positions or regions with which objects
are associated.

5.3.1 Country Name

The Country Name attribute type specifies a country. When used as a component of a directory
name, it identifies the country in which the named object is physically located or with which it is
associated in some other important way.

An attribute value for country name is a string chosen from ISO 3166.

countryName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

PrintableString (SIZE(2)) - IS 3166 codes only
MATCHES FOR EQUALITY
SINGLE VALUE
::= {attributeType 6}

The matching rule for values of this type is the same as that for caselgnoreStringSyntax.

5.3.2 Locality Name

The Locality Name attribute type specifies a locality. When used as a component of a
directory name, it identifies a geographical area or locality in which the named object is physically
located or with which it is associated in some other important way.

An attribute value for Locality Name is a string, e.g. L = "Edinburgh".

localityName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-locality-name))

::= {attributeType 7}

5.3.3 State or Province Name

The State or Province Name attribute type specifies a state or province. When used as a
component of a directory name, it identifies a geographical subdivision in which the named object is
physically located or with which it is associated in some other important way.

An attribute value for State or Province Name is a string, e.g. S = "Ohio".

'StateOrProvinceName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-state-name))

{attributeType 8}

Fascicle VHI.8 - Rec. 520 193

5.3.4 Street Address

The Street Address attribute type specifies a site for the local distribution and physical
delivery in a postal address, i.e. the street name, place, avenue, and the house number. When used as
a component of a directory name, it identifies the street address at which the named object is
located or with which it is associated in some other important way.

An attribute value for Street Address is a string, e.g. "ArnulfstraBe 60".

streetAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-street-address))

::= {attributeType 9}

5.4 Organizational Attribute Types

These attribute types are concerned with organizations and can be used to describe objects in
terms of organizations with which they are associated.

5.4.1 OrganizationName

The Organization Name attribute type specifies an organization. When used as a component of a
directory name it identifies an organization with which the named object is affiliated.

An attribute value for OrganizationName is a string chosen by the organization (e.g. O =
"Scottish Telecommunications pic"). Any variants should be associated with the named Organization as
separate and alternative attribute values.

OrganizationName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-organization-name))

::= {attributeType 10}

5.4.2 Organizational Unit Name

The Organizational Unit Name attribute type specifies an organizational unit. When used as a
component of a directory name it identifies an organizational unit with which the named object is
affiliated.

The designated organizational unit is understood to be part of an organization designated by an
OrganizationalName attribute.

It follows that if an Organizational Unit Name attribute is used in a directory name, it must
be associated with an OrganizationName attribute.

An attribute value for Organizational Unit Name is a string chosen by the organization of which
it is part (e.g. OU = "Technology Division"). Note that the commonly used abbreviation "TD" would be
a separate and alternative attribute value.

Examples:
O = "Scottel",OU = "TD"

organizationalUnitName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-organizational-unit-name))

::= {attributeType 11}

5.4.3 Title

The Title attribute type specifies the designated position or function of the object within
an organization.

An attribute value for Title is a string.

Example:
T = "Manager,Distributed Applications"

194 Fascicle VTII.8 - Rec. 520

title ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-title))

::= {attributeType 12}

5.5 Explanatory Attribute Types

These attribute types are concerned with explanations (e.g. in a natural language) of something
about an object.

5.5.1 Description

The Description attribute type specifies text which describes the associated object.

For example, the object "Standards Interest" might have the associated description
"distribution list for exchange of information about intra-company standards development".

An attribute value for Description is a string.

description ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-description))

::= {attributeType 13}

5.5.2 Search Guide

The Search Guide attribute type specifies information of suggested search criteria which may
be included in some entries expected to be a convenient base-object for the search operation, e.g.
country or organization.

Search criteria consists of an optional identifier for the class of object sought and
combinations of attribute types and logical operators to be used in the construction of a filter. It
is possible to specify for each search criteria item the matching level, e.g. approximate match.

The Search Guide attribute may recur to reflect the various types of requests, e.g. search for
a Residential Person or an Organizational Person, which may be fulfilled from the given base-object
where the Search Guide is read.

searchGuide ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

Guide
::= {attributeType 14}

Guide ::= SET {
ObjectClass
criteria

Criteria ::=
CHOICE{

Type
and
or
not

[0] OBJECT-CLASS OPTIONAL,
[1] Criteria}

[0] Criterialtem,
[1] SET OF Criteria,
[2] SET OF Criteria,
[3] Criteria

Criterialtem
CHOICE {

equality
substrings
greaterOrEqual
lessOrEqual
approximateMatch

[0] AttributeType,
[1] AttributeType,
[2] AttributeType,
[3] AttributeType,
[4] AttributeType}

Example: The following is a potential value of the Search Guide attribute that could be stored
in entries of object-class Locality to indicate how entries of object-class Residential Person might
be found.

Fascicle VTIL8 - Rec. 520 195

residential-person-guide Guide ::= {
ObjectClass residentialPerson,
criteria and {

type substrings commonName,
type substrings streetAddress }}

The construction of a Filter from this value of Guide is straightforward.

Step (1) produces the intermediate Filter value:

intermediate-filter Filter and {
item substrings {

type commonName,
strings {any T61 String "Dubois" }}, - value supplied for Common Name

item substrings {
type streetAddress
strings {any T61 String "Hugo" }}} - value supplied for Street Address

Step (2) produces a filter for matching Residential Person entries in the subtree:

residential-person-filter Filter ::= {
and {

item equality {
ObjectClass,
OBJECT-CLASS residentialPerson },

intermediate-filter }}

5.5.3 Business Category

The Business Category attribute type specifies information concerning the occupation of some
common objects, e.g. people. For example, this attribute provides the facility to interrogate the
Directory about people sharing the same occupation.

businessCategory ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-business-category))

::= {attributeType 15))

5.6 Postal Addressing Attribute Types

These attribute types are concerned with information required for physical postal delivery to
an object.

5.6.1 Postal address

The Postal Address attribute type specifies the address information required for the physical
delivery of postal messages by the postal authority to the named object.

An attribute value for Postal Address will be typically composed of selected attributes from
MHS Unformatted Postal O/R Address version 1 according to Recommendation F.401 and limited to 6 lines
of 30 characters each, including a Postal Country Name. Normally the information contained in such an
address could include an addressee’s name, street address, city, state or province, postal code and
possibly a Post Office Box number depending on the specific requirements of the named object.

postalAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX PostalAddress
MATCHES FOR EQUALITY
::= {attributeType 16}

PostalAddress ::= SEQUENCE SIZE(l..ub-postal-line) OF CHOICE {
T61 String (SIZE(1 ..ub-postal-string)),
PrintableString (SIZE(1 ..ub-postal-string))}

The matching rule for values of this type is the same as that for caselgnoreListSyntax.

196 Fascicle Vm.8 - Rec. 520

5.6.2 Postal Code

The Postal Code attribute type specifies the postal code of the named object. If this
attribute value is present it will be part of the object’s postal address.

An attribute value for Postal Code is a string.

postalCode ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(I ..ub-postal-code))

::= {attributeType 17}

5.6.3 Post Office Box

The Post Office Box attribute type specifies the Post Office Box by which the object will
receive physical postal delivery. If present, the attribute value is part of the object’s postal
address.

postOfficeBox ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-post-office-box))

::= {attributeType 18}

5.6.4 Physical Delivery Office Name

The Physical Delivery Office Name attribute type specifies the name of the city, village,
etc. where a physical delivery office is situated.

An attribute value for Physical Delivery Office Name is a string.

physicalDeliveryOfficeName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-physical-office-name))

::= (attributeType 19}

5.7 Telecommunications Addressing Attribute Types

These attribute types are concerned with addressing information needed to communicate with the
object using telecommunication means.

5.7.1 Telephone Number

The Telephone Number attribute type specifies a telephone number associated with an object.

An attribute value for Telephone Number is a string that complies with the internationally
agreed format for showing international telephone numbers. Recommendation E.123 (e.g.
"+44 582 10101").

telephoneNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

telephoneNumberSyntax
::= {attributeType 20}

5.7.2 Telex Number

The Telex Number attribute type specifies the telex number, country code, and answerback code
of a telex terminal associated with an object.

telexNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX TelexNumber
::= {attributeType 21}

Fascicle VTIL8 - Rec. 520 197

TelexNumber ::= SEQUENCE{
telexNumber PrintableString,

(SIZE(1 ..ub-telex-number)),
countryCode PrintableString,

(SIZE(1 ..ub-country-code)),
answerback PrintableString,

(SIZE(1 ..ub-answerback))}

5.7.3 Teletex Terminal Identifier
The Teletex Terminal Identifier attribute type specifies the Teletex terminal identifier (and

optionally parameters) for a teletex terminal associated with an object.

An attribute value for Teletex Terminal Identifier is a string which complies with CCITT
Recommendation F.200 and an optional set whose components are according to Recommendation T.62.

teletexTerminalldentifier ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

TeletexTerminalldentifier
::= {attributeType 22)

TeletexTerminalldentifier SEQUENCE {
teletexTerminal PrintableString

(SIZE(1 ..ub-teletex-terminal-id)),
parameters TeletexNonBasicParameters

OPTIONAL)

5.7.4 Facsimile Telephone Number

The Facsimile Telephone Number attribute type specifies a telephone number for a facsimile
terminal (and optionally its parameters) associated with an object.

An attribute value for the facsimile telephone number is a string that complies with the
internationally agreed format for showing international telephone numbers, Recommendation E.lxx (e.g.
"+81 3 347 7418") and an optional bit string (formatted according to Recommendation T.30).

facsimileTelephoneNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

Facsimile TelephoneNumber
::= {attributeType 23)

FacsimileTelephoneNumber ::= SEQUENCE{
telephoneNumber PrintableString

(SIZE(1 ..ub-telephone-number)),
parameters G3FacsimileNonBasicParameters

OPTIONAL)

5.7.5 X.121 Address

The X.121 Address attribute type specifies an address as defined by CCITT Recommenda­
tion X.121 associated with an object.

xl21Address ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

NumericString
(SIZE(1 ..ub- x 121 -address))

MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeType 24}

The matching rules for values of this type are the same as those for numericStringSyntax.

5.7.6 International ISDN Number

The International ISDN Number attribute type specifies an International ISDN Number
associated with an object.

198 Fascicle VIII.8 - Rec. 520

An attribute value for International ISDN Number is a string which complies with the
internationally agreed format for ISDN addresses given in CCITT Recommendation E.164.

intemationallSDNNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

NumericString
(SIZE(1 ..ub-isdn-address))

::= {attributeType 25}

The matching rule for values of this type is the same as that for numericStringSyntax.

5.7.7 Registered Address

The Registered Address attribute type specifies a mnemonic for an address associated with an
object at a particular city location. The mnemonic is registered in the country in which the city is
located and is used in the provision of the Public Telegram Service (according to Recom­
mendation F.l).

registeredAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX PostalAddress
::= {attributeType 26}.

5.7.8 Destination Indicator

The Destination Indicator attribute type specifies (according to Recommendations F.l and - F.3)
the country and city associated with the object (the addressee) needed to provide the Public Telegram
Service.

An attribute value for Destination Indicator is a string.

destinationlndicator ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

PrintableString
(SIZE(1 ..ub-destination-indicator))

- alphabetical characters only
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeType 27}

The matching rules for values of this type are the same as those for caselgnoreStringSyntax.

5.8 Preference Attribute Types

These attribute types are concerned with the preferences of an object.

5.8.1 Preferred Delivery Method

The Preferred Delivery Method attribute type specifies the object’s priority order regarding
the method to be used for communicating with it.

preferredDeliveryMethod ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

SEQUENCE OF INTEGER {
any-delivery-method (0),
mhs-delivery (1),
physical-delivery (2),
telex-delivery (3),
teletex-delivery (4),
g3-facsimile-delivery (5),
g4-facsimile-delivery (6),
ia5-terminal-delivery (7),
videotex-delivery (8),
telephone-delivery (9)}

SINGLE VALUE

::= {attributeType 28}

Fascicle VTIL8 - Rec. 520 199

5.9 OSI Application Attribute Types

These attribute types are concerned with information regarding objects in the OSI Application
Layer.

5.9.1 Presentation Address

The Presentation Address attribute type specifies a presentation address associated with an
object representing an OSI application entity.

An attribute value for Presentation Address is a presentation address as defined in
Recommendation X.200.

presentationAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

PresentationAddress
MATCHES FOR EQUALITY
SINGLE VALUE
::= {attributeType 29}

PresentationAddress ::= SEQUENCE
pSelector [0] OCTET STRING OPTIONAL,
sSelector [1] OCTET STRING OPTIONAL,
tSelector [2] OCTET STRING OPTIONAL,
nAddresses [3] SET SIZE(L.MAX) OF OCTET STRING)

The matching rule for values of this type is that a presented Presentation Address matches a
stored one if and only if the selectors are equal and the presented nAddresses are a subset of the
stored ones.

5.9.2 Supported Application Context

The Supported Application Context attribute type specifies the object identifier(s) of
application context(s) that the object (an OSI application entity) supports.

supportedApplicationContext ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

ObjectldentifierSyntax '
::= {attributeType 30}

5.10 Relational Attribute Types

These attribute types are concerned with information regarding the objects which are related to
a particular object in certain ways.

5.10.1 Member

The Member attribute type specifies a group of names associated with the object.

An attribute value for Member is a distinguished name.

member ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 31}

5.10.2 Owner

The Owner attribute type specifies the name of some object which has some responsibility for
the associated object.

An attribute value for Owner is a distinguished name (which could represent a group of names)
and can recur.

owner ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 32}

200 Fascicle VHI.8 - Rec. 520

5.10.3 Role Occupant

The Role Occupant attribute type specifies the name of an object which fulfills an
organizational role.

An attribute value for Role Occupant is a distinguished name.

roleOccupant ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 33}

5.10.4 See Also

The See Also attribute type specifies names of other Directory objects which may be other
aspects (in some sense) of the same real world object.

An attribute value for See Also is a distinguished name.

seeAlso ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 34}

5.11 Security Attribute Types

These attribute types are concerned with the security or security privileges of an object.
These attribute types are specified, except for the allocation of an object identifier, in
Recommendation X.509.

5.11.1 User Password

userPassword UserPassword
::= {attributeType 35}

5.11.2 User Certificate

UserCertificate UserCertificate
::= {attributeType 36}

5.11.3 CA Certificate

CACertificate CACertificate
::= {attributeType 37}

5.11.4 Authority Revocation List

authorityRevocationList AuthorityRevocationList
::= {attributeType 38}

5.11.5 Certificate Revocation List

CertificateRevocationList CertificateRevocationList
{attributeType 39}

5.11.6 Cross Certificate Pair

CrossCertificatePair CrossCertificatePair
::= {attributeType 40}

SECTION 2 - Attribute Syntaxes

6 Definition of Attribute Syntaxes

6.1 Attribute Syntaxes used by the Directory

Fascicle VUI.8 - Rec. 520 201

6.1.1 Undefined

The Undefined attribute syntax is intended for attributes whose values are not expected to be
compared by the Directory.

Specifying this attribute syntax for an attribute is equivalent to specifying the data type ANY
and no matching rules in the ATTRIBUTE macro for the attribute.

undefined ATTRIBUTE-SYNTAX
ANY
::= {attributeSyntax 0}

6.1.2 Distinguished Name

The Distinguished Name attribute syntax is intended for attributes whose values are
distinguished names. It is defined, except for the allocation of an object identifier, in
Recommendation X.501.

distinguishedNameSyntax DistinguishedNameSyntax
::= {attributeSyntax 1}

6.1.3 Object Identifier

The Object Identifier attribute syntax is intended for attributes whose values are object
identifiers. It is defined, except for the allocation of an object identifier, in
Recommendation X.501.

ObjectldentifierSyntax ObjectldentifierSyntax
::= {attributeSyntax 2}

6.2 String Attribute Syntaxes

In the syntaxes specified in §§ 6.2.1 to 6.2.4, the following spaces are regarded as not
significant:

leading spaces (i.e. those preceding the first printing character);

trailing spaces (i.e. those following the last printing character);

multiple consecutive internal spaces (these are taken as equivalent to a single space
character).

Attributes conforming to these syntaxes shall be matched in a form which omits those spaces
which are not significant according to these rules.

6.2.1 Case Exact String

The Case Exact String attribute syntax is intended for attributes whose values are strings
(either T.61 Strings or Printable Strings), where the case (upper or lower) is significant for
comparison purposes (e.g. "Dundee" and "DUNDEE" do not match).

caseExactString ATTRIBUTE-SYNTAX
CHOICE {T61 String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 3}

For two strings having this syntax to match for equality, the strings must be the same length
and corresponding characters must be identical. A Printable String can be compared with a T.61
String: where the corresponding characters are both in the Printable String character set then
comparison proceeds as normal. However if the character in the T.61 String is not in the Printable
String character set then matching fails.

6.2.2 Case Ignore String

The Case Ignore String attribute syntax is intended for attributes whose values are strings
(either T.61 Strings or Printable Strings), but where the case (upper or lower) is not significant
for comparison purposes (e.g. "Dundee" and "DUNDEE" match).

202 Fascicle VHI.8 - Rec. 520

caselgnoreStringSyntax ATTRIBUTE-SYNTAX
CHOICE {T61 String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS

{attributeSyntax 4}

The rules for matching are identical to those for the Case Exact String attribute syntax,
except that characters that differ only in their case are considered identical.

6.2.3 Printable String

The Printable String attribute syntax is intended for attributes whose values are Printable
Strings.

printableStringSyntax ATTRIBUTE-SYNTAX
PrintableString
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 5}

The rules for matching are identical to those for the Case Exact String attribute syntax.

6.2.4 Numeric String

The Numeric String attribute syntax is intended for attributes whose values are Numeric
Strings.

numericStringSyntax ATTRIBUTE-SYNTAX
NumericString
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 6}

The rules for matching are identical to those for the Case Exact String attribute syntax,
except that all space characters are skipped during comparison.

6.2.5 Case Ignore List

The Case Ignore List attribute syntax is intended for attributes whose values are sequences
of strings (either T.61 Strings or Printable Strings), but where the case (upper or lower) is not
significant for comparison purposes.

caselgnoreListSyntax ATTRIBUTE-SYNTAX
SEQUENCE OF

CHOICE {T61 String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 7}

Two Case Ignore Lists match for equality if and only if the number of strings in each is the
same, and corresponding strings match. The latter matching is as for Case Ignore String attribute
syntax (§ 6.1.3).

6.3 Miscellaneous Attribute Syntaxes

6.3.1 Boolean

The Boolean attribute syntax is intended for attributes whose values are Boolean (i.e.
represent true or false).

booleanSyntax ATTRIBUTE-SYNTAX
BOOLEAN
MATCHES FOR EQUALITY
::= {attributeSyntax 8}

Two attribute values of this syntax match for equality if they are both true or both false.

Fascicle VIIL8 - Rec. 520 203

6.3.2 Integer

The Integer attribute syntax is intended for attributes whose values are integers.

integerSyntax ATTRIBUTE-SYNTAX
INTEGER
MATCHES FOR EQUALITY ORDERING

{attributeSyntax 9}

Two attribute values of this syntax match for equality if the integers are the same. The
ordering rules for integers apply.

6.3.3 Octet String

The Octet String attribute syntax is intended for attributes whose values are Octet Strings.
octetStringSyntax ATTRIBUTE-SYNTAX

OCTET STRING
MATCHES FOR EQUALITY SUBSTRINGS ORDERING
::= {attributeSyntax 10}

For two strings having this attribute syntax to match, the strings must be the same length and
corresponding octets must be identical. Ordering is determined by the ordering relation between the
first octets to differ on comparing the strings from the beginning.

6.3.4 UTC Time

The UTC Time attribute syntax is intended for attributes whose values represent absolute
time.

uTCTimeSyntax ATTRIBUTE-SYNTAX
UTCTime
MATCHES FOR EQUALITY ORDERING
::= {attributeSyntax 11}

Two attribute values of this syntax match for equality if they represent the same time. An
earlier time is considered "less" than a later time.

6.3.5 Telephone Number

The Telephone Number attribute syntax is intended for attributes whose values are telephone
numbers.

telephoneNumberSyntax ATTRIBUTE-SYNTAX
PrintableString

(SIZE{l..ub-telephone-number)) ‘
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 12}

The rules for matching are identical to those for the Case Exact attribute syntax, except that
all space and characters are skipped during the comparison.

ANNEX A

(to Recommendation X.520)

Selected Attribute Types in ASN.l

This Annex is part of the Recommendation.

204 Fascicle Vm.8 - Rec. 520

This Annex includes all of the ASN.l type and value definitions contained in this
Recommendation in the form of the ASN.l module SelectedAttributeTypes.

SelectedAttributeTypes (joint-iso-ccitt ds(5) modules(l)
selectedAttributeTypes(5)}

DEFINITIONS
BEGIN
— Exports everything —
IMPORTS

informationFramework, authenticationFramework, attributeType,
upperBounds
FROM UsefulDefinitions (joint-ISO-CCITT ds(5) modules(l)

usefulDefinitions(0) },
ATTRIBUTE, ATTRIBUTE-SYNTAX, AttributeType, OBJECT-CLASS,
ObjectClass, AliasedObjectName,
DistinguishedNameSyntax, ObjectldentifierSyntax

FROM InformationFramework informationFramework
G3FacsimileNonBasicParameters,
TeletexNonBasicParameters

FROM MTSAbstractService (joint-ISO-CCITT mhs-motis(6)
mts(3) modules(O) mts-abstract-service(l)}

UserCertificate, CACertificate, CrossCertificatePair, CertificateRevocationList,
AuthorityRevocationList, UserPassword

FROM AuthenticationFramework, authenticationFramework
ub-answerback,
ub-common-name, ub-surname, ub-serial-number,
ub-locality-name, ub-state-name,
ub-street-address, ub-organization-name,
ub-organizational-unit-name, ub-title,
ub-description, ub-business-category, ub-postal-line,
ub-postal-string, ub-postal-code, ub-post-office-box,
ub-physical-office-name, ub-telex-number,
ub-country-code, ub-teletex-terminal-id,
ub-telephone-number, ub-x 121 -address,
ub-international-isdn-number, ub-destination-indicator,
ub-user-password

FROM UpperBounds upperBounds;
— attribute types —
ObjectClass ObjectClass ::= {attributeType 0}

aliasedObjectName AliasedObjectName {attributeType 1}

knowledgelnformation ATTRIBUTE
WITH ATTRIBUTE-SYNTAX caselgnoreStringSyntax
::= {attributeType 2}

commonName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-common-name))

{attributeType 3)

surname ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-surname))

::= {attributeType 4}

serialNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

printableStringSyntax
(SIZE(1 ..ub-serial-number))

{attributeType 5)

Fascicle VHI.8 - Rec. 520 205

countryName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

PrintableString (SIZE(2)) — IS 3166 codes only
MATCHES FOR EQUALITY
SINGLE VALUE
::= {attributeType 6}

localityName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-locality-name))

::= {attributeType 7}
stateOrProvinceName ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
caselgnoreStringSyntax

(SIZE(1 ..ub-state-name))
::= {attributeType 8}

streetAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-street-address))

::= {attributeType 9}
OrganizationName ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
caselgnoreStringSyntax

(SIZE(1 ..ub-organization-Name))
::= {attributeType 10}

organizationalUnitName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-organizational-unit-name))

::= {attributeType 11}
title ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
caselgnoreStringSyntax

(SIZE(L.ub-title))
::= {attributeType 12}

description ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

::= {attributeType 14}
Guide ::= SET {

ObjectClass [0] OBJECT-CLASS OPTIONAL,
criteria [1] C riteria}

Criteria ::=
CHOICE {

caselgnoreStringSyntax
(SIZE(1 ..ub-description))

::= {attributeType 13}
searchGuide ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
Criteria

type
and
or
not

[0] Criterialtem,
[1] SET OF Criteria
[2] SET OF Criteria
[3] Criteria}

Criterialtem ::=
CHOICE {

equality [0] AttributeType
substrings [1] AttributeType
greaterOrEqual [2] AttributeType
lessOrEqual [3] AttributeType
approximateMatch [4] AttributeType

206 Fascicle VIII.8 - Rec. 520

)

businessCategory ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-business-category))

::= {attributeType 15}
postalAddress ATTRIBUTE

WITH ATTRIBUTE-SYNTAX PostalAddress
MATCHES FOR EQUALITY

{attributeType 16}
PostalAddress ::= SEQUENCE SIZE(l..ub-postal-line) OF

CHOICE {
T61 String (SIZE(1 ..ub-postal-string)),
PrintableString (SIZE(1 ..ub-postal-string))}

postalCode ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-postal-code))

::= {attributeType 17}
postOfficeBox ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
caselgnoreStringSyntax

(SIZE(1 ..ub-post-office-box))
::= {attributeType 18}

physicalDeliveryOfficeName ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

caselgnoreStringSyntax
(SIZE(1 ..ub-physical-office-name))

::= {attributeType 19}
telephoneNumber ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
telephoneNumberSyntax

::= {attributeType 20}
telexNumber ATTRIBUTE

WITH ATTRIBUTE-SYNTAX TelexNumber
::= {attributeType 21}

TelexNumber ::= SEQUENCE {
telexNumber PrintableString

(SIZE(1 ..ub-telex-number)),
countryCode PrintableString,

(SIZE(1 ..ub-country-code)),
answerback PrintableString

(SIZE(1 ..ub-answerback))}
teletexTerminalldentifier ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
TeletexTerminalldentifier

::= {attributeType 22}
TeletexTerminalldentifier ::= SEQUENCE {

teletexTerminalPrintableString
(SIZE(1 ..ub-teletex-terminal-id)),

parameters TeletexNonBasicParameters
OPTIONAL}

facsimileTelephoneNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

FacsimileTelephoneNumber
{attributeType 23}

FacsimileTelephoneNumber ::= SEQUENCE {
telephoneNumber PrintableString

(SIZE(1 ..ub-telephone-number)),
parameters G3FacsimileNonBasicParameters OPTIONAL}

Fascicle VHI.8 - Rec. 520 207

x l21 Address ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

NumericString
(SIZE(1 ..ub-x 121 -address))

MATCHES FOR EQUALITY SUBSTRINGS
{attributeType 24)

intemationaUSDNNumber ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

NumericStriug
(SIZE(1 ..ub-isdn-address))

::= {attributeType 25}

registeredAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX PostalAddress

{attributeType 26}
destinationlndicator ATTRIBUTE

WITH ATTRIBUTE-SYNTAX
PrintableString

(SIZE(1 ..ub-destination-indicator))
- alphabetical characters only
MATCHES FOR EQUALITY SUBSTRINGS

{attributeType 27}

preferredDeliveryMethod ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

SEQUENCE OF INTEGER {
any-delivery-method (0),
mhs-delivery (1),
physical-delivery (2),
telex-delivery (3),
teletex-delivery (4),
g3-facsimile-delivery (5),
g4-facsimile-delivery (6),
ia5-terminal-delivery (7),
videotex-delivery (8),
telephone-delivery (9)}

SINGLE VALUE
{attributeType 28}

presentationAddress ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

PresentationAddress
MATCHES FOR EQUALITY
SINGLE VALUE
::= {attributeType 29}

PresentationAddress ::= SEQUENCE {
pSelector [0] OCTET STRING OPTIONAL,
sSelector [1] OCTET STRING OPTIONAL,
tSelector [2] OCTET STRING OPTIONAL,
nAddresses [3] SET SIZE(1..MAX) OF OCTET STRING}

supportedApplicationContext ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

ObjectldentifierSyntax
{attributeType 30}

member ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
{attributeType 31}

owner ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 32}

Fascicle Vm.8 - Rec. 520

roleOccupant ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 33}

seeAlso ATTRIBUTE
WITH ATTRIBUTE-SYNTAX

distinguishedNameSyntax
::= {attributeType 34}

userPassword UserPassword
::= {attributeType 35}

UserCertificate UserCertificate
{attributeType 36}

CACertificate CACertificate
::= {attributeType 37}

authorityRevocationList AuthorityRevocationList
::= {attributeType 38}

CertificateRevocationList CertificateRevocationList
{attributeType 39}

CrossCertificatePair CrossCertificatePair
::= {attributeType 40}

— attribute syntaxes —

undefined ATTRIBUTE-SYNTAX
ANY
::= {attributeSyntax 0}

distinguishedNameSyntax DistinguishedNameSyntax
{attributeSyntax 1}

ObjectldentifierSyntax ObjectldentifierSyntax
::= {attributeSyntax 2}

caseExactStringSyntax ATTRIBUTE-SYNTAX
CHOICE {T61String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 3}

caselgnoreSyntax ATTRIBUTE-SYNTAX
CHOICE {T61 String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS

{atrributeSyntax 4}

printableStringSyntax ATTRIBUTE-SYNTAX
PrintableString
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 5}

numericStringSyntax ATTRIBUTE-SYNTAX
NumericString
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 6}

caselgnoreListSyntax ATTRIBUTE-SYNTAX
SEQUENCE OF

CHOICE {T61String, PrintableString}
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 7}

booleanSyntax ATTRIBUTE-SYNTAX
BOOLEAN
MATCHES FOR EQUALITY
::= {attributeSyntax 8}

integerSyntax ATTRIBUTE-SYNTAX
INTEGER
MATCHES FOR EQUALITY ORDERING

{attributeSyntax 9}

octetStringSyntax ATTRIBUTE-SYNTAX
OCTET STRING
MATCHES FOR EQUALITY SUBSTRINGS ORDERING

{attributeSyntax 10}

uTCTimeSyntax ATTRIBUTE-SYNTAX
UTCTime
MATCHES FOR EQUALITY ORDERING
::= {attributeSyntax 11}

telephoneNumberSyntax ATTRIBUTE-SYNTAX
PrintableString

(SIZE(1 ..ub-telephone-number))
MATCHES FOR EQUALITY SUBSTRINGS
::= {attributeSyntax 12}

ANNEX B

(to Recommendation X.520)

Index of Attribute Types and Syntaxes

ATTRIBUTE TYPES ATTRIBUTE SYNTAXES

A Aliased Object Name * § 5.1.2 B Boolean § 6.3.1
Authority Revocation List § 5.11.4

C Case Exact String § 6.2.1
B Business Category § 5.5.3 Case Ignore List § 6.2.5

Case Ignore String § 6.2.3
C CA Certificate § 5.11.3

Certificate Revocation List § 5.11.5 D Distinguished Name * § 6.1.2
Common Name § 5.2.1
Country Name § 5.3.1 I Integer § 6.3.2
Cross Certificate Pair § 5.11.6

N Numeric String § 6.2.4
D Description § 5.5.1

Destination Indicator § 5.7.8 O Object Identifier * § 6.1.3
Object String § 6.3.2

F Facsimile Telephone Number § 5.7.4
P Printable String § 6.2.3

I International ISDN Number § 5.7.6
T Telephone Number § 6.3.5

K Knowledge Information § 5.1.3
U UTC Time § 6.3.4

L Locality Name § 5.3.2 Undefined § 6.1.1

M Member § 5.10.1

0 Object Class * § 5.1.1
Organization Name § 5.4.1
Organizational Unit Name § 5.4.2
Owner § 5.10.2

* Known to and used by the Directory itself.

210 Fascicle VIII.8 - Rec. 520

ATTRIBUTE TYPES

P Physical Delivery Office Name § 5.6.4
Post Office Box § 5.6.3
Postal Address § 5.6.1
Postal Code § 5.6.2
Preferred Delivery Method § 5.8.1
Presentation Address § 5.9.1

R Registered Address § 5.7.7
Role Occupant § 5.10.3

S Search Guide § 5.5.2
See Also § 5.10.4
Serial Number § 5.2.3
State or Province Name § 5.3.2
Street Address § 5.3.4
Supported Application Context § 5.9.2
Surname § 5.2.2

T Telephone Number § 5.7.1
Teletex Terminal Identifier § 5.7.3
Telex Number § 5.7.2
Title § 5.4.3

U UserCertificate § 5.11.2
User Password § 5.11.1

X X.121 Address § 5.7.5

ANNEX C

(to Recommendation X.520)

Upper Bounds

This Annex is part of the Recommendation.
UpperBounds {joint-ISO-CCITT ds(5) modules(l)

iipperBounds(10)}

DEFINITIONS ::=
BEGIN

— Exports everything —
ub-answerback INTEGER ::= 8

ub-common-name INTEGER ::= 64

ub-surname INTEGER ::= 64

ub-serial-number INTEGER ::= 64

ub-locality-name INTEGER ::= 128

ub-state-name INTEGER ::= 128

ub-street-address INTEGER ::= 128

ub-organization-name INTEGER ::= 64

ub-organizational-unit-name INTEGER ::= 64

ub-title INTEGER ::= 64

Fascicle Yin.8 - Rec. 520 211

ub-description INTEGER ::= 1024
ub-business-category INTEGER ::= 128
ub-postal-line INTEGER ::= 6
ub-postal-string INTEGER ::= 30
ub-postal-code INTEGER ::= 40
ub-post-office-box INTEGER ::= 40
ub-physical-office-name INTEGER ::= 128
ub-telex-number INTEGER ::= 14
ub-country-code INTEGER ::= 4
ub-teletex-terminal-id INTEGER 24
ub-telephone-number INTEGER ::= 32
ub-x 121 -address INTEGER ::= 15
ub-international-isdn-number INTEGER ::= 16
ub-destination-indicator INTEGER 128
ub-user-password INTEGER ::= 128

END

Recommendation X.521

THE DIRECTORY - SELECTED OBJECT CLASSES *)

(Melbourne, 1988)

CONTENTS

0 Introduction

1 Scope and field o f application

2 References

3 Definitions and abbreviations

3.1 OSI Reference Model Definitions

3.2 Directory Model Definitions

4 Notation

J) Recommendation X.521 and ISO 9594-7, Information Processing Systems - Open Systems
Interconnection - The Directory - Selected object classes, were developed in close
collaboration and are technically aligned.

212 Fascicle Vm.8 - Rec. X.521

SECTION 1 - Selected Object Classes

5 Definitions o f Useful Attribute Sets

5.1 Telecommunication Attribute Set
5.2 Postal Attribute Set
5.3 Locale Attribute Set
5.4 Organizational Attribute Set

6 Definition o f Selected Object Classes

6.1 Top
6.2 Alias
6.3 Country
6.4 Locality
6.5 Organization
6.6 Organizational Unit
6.7 Person
6.8 Organizational Person
6.9 Organizational R61e
6.10 Group of Names
6.11 Residential Person
6.12 Application Process
6.13 Application Entity
6.14 DSA
6.15 Device
6.16 Strong Authentication User
6.17 Certification Authority

Annex A - Selected Object Classes in ASN.l

Annex B - Suggested Name Forms and DIT Structures

0 Introduction

0.1 This document, together with the others of the series, has been produced to facilitate the
interconnection of information processing systems to provide directory services. The set of all such
systems, together with the directory information which they hold, can be viewed as an integrated
whole, called the Directory. The information held by the Directory, collectively known as the
Directory Information Base (DIB), is typically used to facilitate communication between, with or
about objects such as application entities, people, terminals, and distribution lists.

0.2 The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow,
with a minimum of technical agreement outside of the interconnection standards themselves, the
interconnection of information processing systems:

from different manufacturers;

under different managements;

of different levels of complexity; and

of different ages.

0.3 This Recommendation defines (in section one) a number of attribute sets and object classes
which may be found useful across a range of applications of the Directory.

0.4 Annex A, which is a part of the standard, provides an ASN.l module containing all of the type
and value definitions which appear in this document.

0.5 Annex B, which is not part of the Recommendation provides some common naming and structure
rules which may or may not be used by Administrative authorities.

Fascicle VHL8 - Rec. X.521 213

1.1 This Recommendation defines a number of selected attribute sets and object classes which may be
found useful across a range of applications of the Directory. The definition of an attribute set
involves identifying the attributes that it contains, and facilitates the definition of object
classes. The definition of an object class involves optionally allocating an Object Identifier to it,
and listing a number of attribute types which are relevant to objects of that class. These
definitions are used by the administrative authority which is responsible for the management of the
Directory information.

1.2 Any Administrative Authority can define its own object classes and subclasses for any purpose.

Note 1 - These definitions may or may not use the notation specified in Recommen­
dation X.501. 1

Note 2 - It is recommended that an object class defined in this document, or a subclass
derived from one, be used in preference to the generation of a new one, whenever the semantics is
appropriate for the application.

1.3 Administrative authorities may support some or all the selected object classes, and may also
add object classes.

All Administrative authorities shall support the object classes which the directory uses for
its own purpose (the top, alias and DSA object classes).

1 Scope and field of application

2 References

Recommendation X.200 - Open Systems Interconnection - Basic Reference Model (see also ISO 7498)

Recommendation X.500 - The Directory - Overview of Concepts, Models and Services (see also
ISO 9594-1)

Recommendation X.501 - The Directory - Models (see also ISO 9594-2)

3 Definitions and abbreviations

3.1 OSI Reference Model Definitions
This Recommendation makes use of the following definitions from Recommendation X.200:
a) application-entity;
b) application-process.

3.2 Directory Model Definitions

This Recommendation makes use of the following definitions from Recommendation X.501

a) attribute;
b) attribute type;
c) Directory Information Tree (DIT);
d) Directory System Agent (DSA);
e) attribute set;
f) entry;
g) name;
h) object class;
i) subclass.

4 Notation

Object classes are defined in this document by the use of special notation, defined as an ASN.l
macro, OBJECT-CLASS, in Recommendation X.501. One "generic" object identifier (objectClass) is used
in specifying the object identifiers being allocated to object classes. Its definition can be found
in Annex B of the same Recommendation.

214 Fascicle Vm.8 - Rec. X.521

Attribute sets are defined in this document by the use of special notation, defined as an ASN.l
macro ATTRIBUTE-SET, in Recommendation X.501. One "generic" object identifier (attributeSet) is used
in specifying the object identifiers being allocated to attribute set definitions. Its definition can
be found in Annex B of the same Recommendation.

SECTION 1 - Selected Object Classes

5 Definition of Useful Attribute Sets

5.1 Telecommunication Attribute Set
This set of attributes is used to define those which are commonly used for business

communications.

telecommunicationAttributeSet ATTRIBUTE-SET
CONTAINS {

facsimileTelephoneNumber,
iSDNAddress,
telephoneNumber,
teletexTerminalldentifier,
telexNumber, X121 Address,
preferredDeliveryMethod,
destinationlndicator,
registeredAddress)
::= {attributeSet 0}

5.2 Postal Attribute Set v

This set of attributes is used to define those which are directly associated with postal
delivery.

postalAttributeSet ATTRIBUTE-SET
CONTAINS {

physicalDeliveryOfficeName,
postalAddress,
postalCode,
postOfficeBox,
streetAddress}
::= {attributeSet 1}

5.3 Locale Attribute Set
This set of attributes is used to define those which are commonly used for search purposes to

indicate the locale of an object.

localeAttributeSet ATTRIBUTE-SET
CONTAINS {

IocalityName,
stateOrProvinceName,
streetAddress}
::= {attributeSet 2}

5.4 Organizational Attribute Set
This set of attributes is used to define the attributes that an organization or organizational

unit may typically possess.
organizationalAttributeSet ATTRIBUTE-SET

CONTAINS {
description,
localeAttributeSet,
postalAttributeSet,
telecommunicationAttributeSet,
businessCategory,
seeAlso,
searchGuide,
userPassword}
::= {attributeSet 3}

Fascicle Vm.8 - Rec. X.521 215

6 Definition of Selected Object Classes

6.1 Top

The top object class, of which every other object class is a subclass, is defined, except for
the allocation of an object identifier, in Recommendation X.501.

top Top ::= {objectClass 0}

6.2 Alias

The alias object class, from which classes for alias entries may be derived, is defined,
except for the allocation of an object identifier, in Recommendation X.501.

alias Alias ::= {objectClass 1}

6.3 Country

A Country object class is used to define country entries in the DIT.
country OBJECT-CLASS

SUBCLASS OF top
MUST CONTAIN {

countryName)
MAY CONTAIN {

description,
searchGuide)

::= {objectClass 2}
6.4 Locality

The Locality object class is used to define locality in the DIT.

locality OBJECT-CLASS
SUBCLASS OF top
MAY CONTAIN {

description,
localityName,
stateOrProvinceName,
searchGuide,
seeAlso,
streetAddress}

::= {objectClass 3}

At least one of Locality Name or State or Province Name must be present.
6.5 Organization

The Organization object class is used to define organization entries in the DIT.

organization OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

OrganizationName}
MAY CONTAIN {

organizationalAttributeSet}
{objectClass 4}

6.6 Organizational Unit

The Organizational Unit object class is used to define entries representing subdivisions or
organizations.

organizationalUnit OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

organizationalUnitName}
MAY CONTAIN {

organizationalAttributeSet}
::= {objectClass 5}

216 Fascicle VHL8 - Rec. X.521

6.7 Person

The Person object class is used to define entries representing people generically.

person OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName,
surname}

MAY CONTAIN {
description,
seeAlso,
telephoneNumber,
userPassword}

::= (objectClass 6}

6.8 Organizational Person

The Organizational Person object class is used to define entries representing people employed
by, or in some other important way associated with, an organization.

organizationalPerson OBJECT-CLASS
SUBCLASS OF person
MAY CONTAIN {

localeAttributeSet,
organizationalUnitName,
postalAttributeSet,
telecommunicationAttributeSet,
title}

::= {objectClass 7}

6.9 Organizational Role

The Organizational Role object class is used to define entries representing an organizational
role, i.e. a position or rdle within an organization. An organizational role is normally considered
to be filled by a particular organizational person. Over its lifetime, however, an organizational
r61e may be filled by a number of different organizational people in succession. In general, an
organizational r61e may be filled by a person or a non-human entity.

organizationalRole OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localeAttributeSet,
organizationalUnitName,
postalAttributeSet,
preferredDeliveryMethod,
roleOccupant,
seeAlso,
telecommunicationAttributeSet}

::= {objectClass 8}

6.10 Group o f Names

The Group o f Names object class is used to define entries representing an unordered set of
names which represent individual objects or other groups of names. The membership of a group is
static; that is, it is explicitly modified by administrative action, rather than dynamically
determined each time the group is referred to.

Fascicle YIII.8 - Rec. X.521 217

The membership of a group can be reduced to a set of individual object’s names by replacing
each group with its membership. This process could be carried out recursively until all constituent
group names have been eliminated, and only the names of individual objects remain.

groupOfNames OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName,
member}

MAY CONTAIN {
description,
OrganizationName,
organizationalUnitName,
owner,
seeAlso,
businessCategory}

::= {objectClass 9}

6.11 Residential Person

The Residential Person object class is used to define entries representing a person in the
residential environment.

residentialPerson OBJECT-CLASS
SUBCLASS OF person
MUST CONTAIN {

localityName)
MAY CONTAIN {

localeAttributeSet,
postalAttributeSet,
preferredDeliveryMethod,
telecommunicationAttributeSet,
businessCategory}

::= {objectClass 10}
6.12 Application Process

The Application Process object class is used to define entries representing application
processes. An application process is an element within a real open system which performs the
information processing for a particular application (see Recommendation X.200).

applicationProcess OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localityName,
organizationalUnitName,
seeAlso}

::= {objectClass 11}

6.13 Application Entity
The Application Entity object class is used to define entries representing application

entities. An application entity consists of those aspects of an application-process pertinent to
OSI.

applicationEntity OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName,
presentationAddress}

MAY CONTAIN {
description,
localityName,

218 Fascicle VIII.8 - Rec. X.521

OrganizationName,
organizationalUnitName,
seeAlso,
supportedApplicationContext}

::= {objectClass 12}

Note - If Application Entity is represented as a Directory object that is distinct from an
Application Process, the commonName attribute is used to carry the value of Application Entity
Qualifier.

6.14 DSA

The DSA object class is used to define entries representing DSAs. A DSA is as defined in
Recommendation X.501.

dSA OBJECT-CLASS
SUBCLASS OF applicationEntity
MAY CONTAIN {

knowledgelnformation}
::= {objectClass 13}

6.15 Device

The Device object class is used to define entries representing devices. A device is a
physical unit which can communicate, such as a modem, disk drive, etc.

device OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localityName,
OrganizationName,
organizationalUnitName,
owner,
seeAlso,
serialNumber}

::= {objectClass 14}

Note - At least one of localityName, serialNumber, owner, should be included. The choice is
dependent on device type.

6.16 Strong Authentication User

The Strong Authentication User object class is used in defining entries for objects which
participate in strong authentication, as defined in Recommendation X.509.

strongAuthenticationUser OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {UserCertificate}
::= {objectClass 15}

6.17 Certification Authority

The Certification Authority object class is used in defining entries for objects which act as
certification authorities, as defined in Recommendation X.509.

certification Authority OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

CACertificate,
CertificateRevocationList,
authorityRevocationList }

MAY CONTAIN {CrossCertificatePair}
::= {objectClass 16}

Fascicle VIII.8 - Rec. X.521 219

ANNEX A

(to Recommendation X.521)

Selected Object Classes in ASN.l

This Annex includes all of the ASN.l type and value definitions contained in this
Recommendation in the form of the ASN.l module, SelectedObjectClasses.

SelectedObjectClasses {joint-ISO-CCITT ds(5) modules(l)
selectedObjectClasses(6)}

DEFINITIONS ::=
BEGIN
— exports everything
IMPORTS

objectClass, attributeSet, informationFramework, selectedAttributeTypes
FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(l) usefulDefinitions(O)}

OBJECT-CLASS,ATTRIBUTE-SET, Top, Alias
FROM InformationFramework informationFramework

authorityRevocationList, businessCategory, CACertificate, CertificateRevocationList,
commonName, countryName, description, destinationlndicator, facsimileTelephoneNumber,
intemationallSDNNumber, knowledgelnformation, localityName, member, OrganizationName,
organizationalUnitName, owner, physicalDeliveryOfficeName, postOfficeBox, postalAddress,
postalCode, preferredDeliveryMethod, presentationAddress, registeredAddress,
roleOccupant, searchGuide, seeAlso, serialNumber, stateOrProvinceName, streetAddress,
supportedApplicationContext, surname, telephoneNumber, teletexTerminalldentifier,
telexNumber, title, UserCertificate, userPassword, x l21 Address

FROM SelectedAttributeTypes selectedAttributeTypes;
telecommunicationAttributeSet ATTRIBUTE-SET

CONTAINS {
facsimileTelephoneNumber,
iSDNAddress,
telephoneNumber,
teletexTerminalldentifier,
telexNumber,
x l21 Address, preferredDeliveryMethod, destinationlndicator,
registeredAddress}
::= {attributeSet 0}

postalAttributeSet ATTRIBUTE-SET
CONTAINS {

physicalDeliveryOfficeName,
postalAddress,
postalCode,
postOfficeBox,
streetAddress}
::= {attributeSet 1}

localeAttributeSet ATTRIBUTE-SET
CONTAINS {

localityName,
StateOrProvinceName,
streetAddress}

{attributeSet 2}
organizationalAttributeSet ATTRIBUTE-SET

CONTAINS {
description,
localeAttributeSet,
postalAttributeSet,
telecommunicationAttributeSet,
businessCategory,

220 Fascicle VTEL8 - Rec. X.521

seeAlso,
searchGuide,
userPassword}
::= {attributeSet 3}

top Top ::= {objectclass 0}

alias Alias ::= {objectClass 1}

country OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

countryName)
MAY CONTAIN {

description,
searchGuide}

::= {objectClass 2}

locality OBJECT-CLASS
SUBCLASS OF top
MAY CONTAIN {

description,
localityName,
StateOrProvinceName,
searchGuide,
seeAlso,
streetAddress}

::= {objectClass 3}

organization OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

OrganizationName}
MAY CONTAIN {

organizationalAttributeSet}
{objectClass 4}

organizationalUnit OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

organizationalUnitName}
MAY CONTAIN {

organizationalAttributeSet}
::= {objectClass 5}

person OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName,
surname}

MAY CONTAIN {
description,
seeAlso,
telephoneNumber,
userPassword}

::= {objectClass 6}

organizationalPerson OBJECT-CLASS
SUBCLASS OF person
MAY CONTAIN {

localeAttributeSet,
organizationalUnitName,
postalAttributeSet,
telecommunicationAttributeSet,
title}

::= {objectClass 7}

Fascicle VHL8 - Rec. X.521 221

organizationalRole OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localeAttributeSet,
organizationalUnitName,
postalAttributeSet,
preferredDeliveryMethod,
roleOccupant,
seeAlso,
telecommunicationAttributeSet)

::= {objectClass 8}

groupOfNames OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName,
member}

MAY CONTAIN {
description,
OrganizationName,
organizationalUnitName,
owner,
seeAlso,
businessCategory}

::= {objectClass 9}

residentialPerson OBJECT-CLASS
SUBCLASS OF person
MUST CONTAIN {

localityName}
MAY CONTAIN {

localeAttributeSet,
postalAttributeSet,
preferredDeliveryMethod,
telecommunicationAttributeSet,
businessCategory}

::= {objectClass 10}

applicationProcess OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localityName,
organizationalUnitName,
seeAlso}

::= {objectClass 11}
applicationEntity OBJECT-CLASS

SUBCLASS OF top
MUST CONTAIN {

commonName,
presentationAddress}

MAY CONTAIN {
description,
localityName,
OrganizationName,
organizationalUnitName,
seeAlso,
supportedApplicationContext}

::= {objectClass 12}

222 Fascicle VIII.8 - Rec. X.521 \

dSA OBJECT-CLASS
SUBCLASS OF applicationEntity
MAY CONTAIN {

knowledgelnformation}
::= {objectclass 13}

device OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

commonName}
MAY CONTAIN {

description,
localityName,
OrganizationName,
organizationalUnitName,
owner,
seeAlso,
serialNumber}

::= {objectClass 14}

strongAuthenticationUser OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

UserCertificate}
::= {objectClass 15}

certification Authority OBJECT-CLASS
SUBCLASS OF top
MUST CONTAIN {

CACertificate,
CertificateRevocationList,
authorityRevocationList}

MAY CONTAIN {
CrossCertificatePair}

::= {objectClass 16}

END

ANNEX B

(to Recommendation X.521)

Suggested Name Forms and DIT Structures

This Annex is not part of this Recommendation.

This Annex suggests some common naming practices and DIT structures that may or may not be used
by an Administrative authority. Naming practices and DIT structure definitions for an object class
include specification of the attributes used for naming and which object classes its superior entry
or its subordinate entry in the DIT can have. All entries of a given object class must include at
least the attributes used for naming. Users of the Directory should be informed of the suggested name
forms to be able to predict names of objects with which they communicate. The following paragraphs
suggest naming and structure rules for some object classes.

The structure rules are depicted in Figure B-l/X.521.

Fascicle Vm.8 - Rec. X.521 223

FIGURE B-l/X.521

Suggested DIT structure

B.l Country

Attribute countryName is used for naming.

The Root is the immediate superior to entries of object class country.

B.2 Organization

Attribute OrganizationName is used for naming.
The Root, country or locality can be immediate superior to entries of object class

organization.

Note - When the organization is directly under the root, this denotes an international
organization. The values of the OrganizationName attribute for international organizations must all
be distinct.

B.3 Locality

Attribute localityName or stateOrprovinceName is used for naming.

The Root, country, locality, organization or organizationalUnit can be immediate superior to
entries of object class locality.

B.4 Organizational Unit

Attribute organizationalUnitName is used for naming.

organization, organizationalUnit or locality can be immediate superior to entries of object
class organizationalUnit.

224 Fascicle Vffl.8 - Rec. X.521

B.5 Organizational Person
Attribute commonName and optionally organizationalUnitName is used for naming.

organization or organizationalUnit can be immediate superior to entries of object class
organizationalPerson.

Note - There are two ways that an organizationalUnitName attribute may be acquired in names:
by having an organizationalUnit object as superior or by having such an attribute directly.

B.6 Organizational Role

Attribute commonName is used for naming.

organization or organizationalUnit can be immediate superior to entries of object class
organizationalRole.

Note - There are two ways that an organizationalUnitName attribute may be acquired in names:
by having an organizationalUnit object as superior or by having such an attribute directly.

B.7 Group o f Names

Attribute commonName is used for naming.

locality, organization or organizationalUnit can be immediate superior to entries of object
class groupOfNames.

Note - There are two ways that an organizationalUnitName attribute may be acquired in names:
by having an organizationalUnit object as superior or by having such an attribute directly.

B.8 Residential Person
Attribute commonName and optionally streetAddress is used for naming,

locality is the immediate superior to entries of object class residentialPerson.

B.9 Application Entity
Attribute commonName is used for naming. The commonName should contain an application-entity

qualifier (see Recommendation X.200).

applicationProcess is the immediate superior to entries of object class applicationEntity.

B.10 Device
Attribute commonName is used for naming.
organization or organizationalUnit can be immediate superior to entries of object class device.

Note - There are two ways that an organizationalUnitName attribute may be acquired in names:
by having an organizationalUnit object as superior or by having such an attribute directly.

B .ll Application Process
Attribute commonName is used for naming.
organization or organizationalUnit can be immediate superior to entries of object class

applicationProcess.
Note 1 - How commonName should be chosen for an Application Entity is documented in

Recommendation X.200.
Note 2 - There are two ways that an organizationalUnitName attribute may be acquired in

names: by having an organizationalUnit object as superior or by having such an attribute directly.

Fascicle VEO - Rec. X.521 225

ISBN 92-61-03731-3

	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE NINTH PLENARY ASSEMBLY (1988)
	CONTENTS OF FASCICLE VHI.8 TO THE BLUE BOOK
	Recommendations X.500 to S.521 - DATA COMMUNICATION NETWORKS: DIRECTORY
	X.500
	X.501
	X.509
	X.511
	X.518
	X.519
	X.520
	X.521

