

This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothèque et des archives de
l'Union internationale des télécommunications (UIT) à partir d'un document papier original des collections
de ce service.

Esta versión electrónica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unión
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

 (ITU) للاتصالات الدولي الاتحاد في والمحفوظات المكتبة قسم أجراه الضوئي بالمسح تصوير نتاج (PDF) الإلكترونية النسخة هذه
 .والمحفوظات المكتبة قسم في المتوفرة الوثائق ضمن أصلية ورقية وثيقة من نقلا◌ً

此电子版（PDF版本）由国际电信联盟（ITU）图书馆和档案室利用存于该处的纸质文件扫描提供。

Настоящий электронный вариант (PDF) был подготовлен в библиотечно-архивной службе
Международного союза электросвязи путем сканирования исходного документа в бумажной форме из
библиотечно-архивной службы МСЭ.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

YELLOW BOOK

VOLUME VI - FASCICLE VI.8

CCITT HIGH LEVEL LANGUAGE (CHILL)

RECOMMENDATION Z.200

VII™ PLENARY ASSEM BLY
GENEVA, 10-21 NOVEMBER 1980

Geneva 1981

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE, COMMITTEE

YELLOW BOOK

CORRIGENDUM TO FASCICLE VI.8

CCITT HIGH LEVEL LANGUAGE (CHILL)

First list o f clerical errors in R eco m m en d a tio n Z .2 0 0

VIIth PLENARY ASSEM BLY
GENEVA. 10-21 NOVEMBER 1980

CORRIGENDUM TO FASCICLE VI.8

OF THE YELLOW BOOK

First lis t o f c ler ica l errors in R e c o m m e n d a t io n Z .2 0 0

C C ITT H igh L evel L a n g u a g e (CHILL)

1. Introduction

This paper is the first list of corrections of "clerical errors" in the
CHILL definition, recommendation Z.200.

A "clerical error" is defined to be an error which, when corrected, does
not change the interpretation that knowledgeable people would have given
to the definition.

The number Cl) in front of each correction refers to the fact that this is
the first list of clerical errors. Possible future corrections will be
included in this list and will be numbered (2), (3), etc.

2. List of corrections to clerical errors

(1) page 16, lines 10, 11

- replace :...if it is an M-value class or an M-derived class...

by: ...if it is an H-value class or an M-derived class or an
M-reference class...

(1) page 25, section 3.4.6

- add third static condition (Mhich applies to the derived syntax for
range modes) :

The integer literal expression in case Of BIN
should deliver a non-negative value.

(1) page 27, section 3.6.4

- add a static condition :

The referenced origin mode, if it is a structure
mode, must be parameterizable

(1) page 42,

- in line 6,

replace : With declarations and formal parameter.........

by: With declarations, parameter and result

- replace syntax line (3)

by : <step> ::= (3)

- replace syntax line (4)

by : <pos> ($)

(1) page 51, section 4.1.2

- replace first static condition

by : The class of the value or constant
value must be compatible with the mode
and the delivered value should be one of the values
defined by the mode .

2

- replace first dynamic condition

by : When accessing via a loc-identitv name, it must
not denote an undefined location.

- replace in second dynamic condition : When accessing via based
name...

by : When accessing via a based name...

- in third dynamic condition, second line, underline: variant

(1) page 74, semantics, 3rd paragraph, last line

- replace:see section 9.1.4).

by :see section 9.1.3).

(1) page 76, section 5.2.5, item 6, line 4

- replace : not (ELSE) must be...

by : ...not (ELSE) nor <i rrelevant> must be....

Cl) page 82, section 5.2.10, static conditions, line 1:

- replace : must be strong The...

by:must be strong. The

(1) page 87, section 5.2.16, semantics of GETSTACKt line 2

- replace :section 7.4..

by:section 7.9...

- second static property, line 1

replace : routine call is the class...

by: routine call is the resulting class...

(1) page 55, section $.2.2

3

(1) page 88

- add a new static condition before : The array expression as an....:

The static mode location argument of SIZE
must be referable.

- the sixth static condition (about getstack argument)* second part*
should start as follows :

• The variant structure mode must be parameterizable and there must
be as many expressions....

(1) page 105* line 4

- replace :... Each case label defines...

by: ... Each case label list defines...

(1) page 107* syntax lines (6.1) and (8.1)

- replace : <expression>

by: <discrete expression>

(1) page 108* line 12

- replace : do action.

by: do action* or if the handler of the do action is entered
and fall through* or if the do action is left by a return
or a stop action.

(1) page 113* section 6.7* semantics* line 1

- replace : A call action causes...

by: A call action causes either the call of a procedure or of
a built-in routine. A procedure call causes...

(1) page 114* static conditions* fourth compatibility requirement (LOC attr.)

- add : If the procedure call is not regional*
the (actual) location must not be regional
(see section 8.2.2).

4

Cl) page 123, section 6.19.2, semantics, line 10 from bottom

- replace :.....introduced value names....

by: introduced value receive names...

(1) page 127, section 7.1, lines 1 and 2

- replace :....,region/ delay case action, receive case action,.,

by: ...9 region, receive case action,..

(1) page 136, section 7.6

- add the following static condition :

All names mentioned in exception list must be different.

(1) page 137, section 7.7, semantics, line 2

- replace :....data object for....

by:data objects for..

(1) page 161, section 8.2.1, line 8

- replace :....if and only if it...

by:if either it...

(1) page 163, section 8.2.2, paragraph 2 (value), line 6

- replace : It is a location contents which is regional...

by: It is a location contents Of Which the
location contained in it is regional...

(1) page 165, section 8.6

- add new paragraph before "Receive buffer case action":

Receive expression (see section 5.2.18)

When a process evaluates a receive expression, it re-activates
another process if and only if the set of delayed sending processes
of the specified buffer location is not empty. In that case, it
receives a value of the highest priority among the values in the
buffer location or the delayed sending processes. Receiving a

value from a buffer, the process removes the value from the buffer
and a delayed sending process Mith the value of the highest
priority is selected to become active according to an
implementation defined scheduling algorithm. This re-activated
process is thus removed from the set of delayed sending processes
and its value is stored in the buffer* Mith the specified priority.
Receiving a value directly from a delayed sending process* the
delayed process carrying the value Mith the highest priority is
selected to become active according to an implementation defined
scheduling algorithm. This re-activated process is thus removed
from the set of delayed sending processes and its value is
received.

(1) page 150* section 9.1.1.7* line 1

- replace :....is not a composite mode* has...

by:is a discrete mode or a string mode* has...

(1) page 157* section 9.1.2.4* definition* line 1

- replace :.....is restrictable to a...

by: is restrictable to a...

(1) page 158* section 9.1.2.5, rule 3* item 3* paragraph 3

- replace : if V is a variant structure mode....

by: if V is a variant structure mode....

(1) page 159* section 9.1.2.6* rule 6* item 3* paragraph 3* last line

- replace :....denote the list of values of N.

by:denote the list of values of M.

(1) page 180* section 11.6* line 1

- replace :....one syntatic description...

by:one syntactic description...

(1) page 193* line numbered 34

- replace : END stacks-1;

6

by: END stacks_l;

- insert between lines numbered 140 and 141 :

140a DCL c column;

(1) page 199

- replace lines numbered 28-32

by : 27a MANIPULATE :
27b MODULE

(1) page 198

27 c
25
29
50
31

SEIZE NODE, REMOVE, INSERT;
DCL NODE_A NODE :=(:NULL, NULL, 536
REMOVE ();
REMOVE ();
INSERT (NODE_A>;

31a END MANIPULATE;
32 END CIRCULARJLIST;

(1) page 201, line numbered 6

- replace lets calla through

by lets calls through

(1) page 202

- replace line numbered 15

by 15 ACQUIRE, RELEASE, CONGESTED, STEP, READOUT, READY;

(1) page 214

- replace syntax diagram of PROC by

7

- replace syntax diagram of ARRAY by:

-̂ ARBAY^»(T)^^iscrets model ♦m DH
»fiiteral expression literal expression j- *

element layout ff»

(1) page 216
- complete in the syntax diagram of location the box around row

expression and the arrou leaving from it :

m •e-

(1) page 219,

- replace syntax diagram of handler by:

I
O

action statement >(J*D

(1) page 239

- replace : synonymouth Mith

by: synonymous Mith

8

Printed in Switzerland — ISBN 9 2 -6 1 -0 1 1 2 1 -7

INTERNATIONAL TELECOMMUNICATION UNION

CCITT
THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

YELLOW BOOK

VOLUME VI - FASCICLE VI.8

CCITT HIGH LEVEL LANGUAGE (CHILL)

RECOMMENDATION Z.200

VIIth PLENARY ASSEMBLY
GENEVA, 10-21 NOVEMBER 1980

Geneva 1981

ISBN 92-61-01121-7

© I.T.U.

CO N TE N T S OF TH E CCITT BOOK

A P PL IC A B L E A FT E R TH E SE V E N T H PL E N A R Y A SSEM BLY (1980)

Volume I

Volume II

FASCICLE II. 1

FASCICLE II.2

FASCICLE II.3

FASCICLE II.4

Volume III

FASCICLE III.l

FASCICLE III.2

FASCICLE III.3

FASCICLE III.4

Volume IV

FASCICLE IV. 1

FASCICLE IV.2

FASCICLE IV.3

FASCICLE IV.4

YELLOW BOOK

- Minutes and reports of the Plenary Assembly.
Opinions and Resolutions.
Recommendations o n :
- the organization and working procedures of the CCITT (Series A);
- means of expression (Series B);
- general telecommunication statistics (Series C).
List of Study Groups and Questions under study.

- General tariff principles - Charging and accounting in international telecommunications
services. Serie D Recommendations (Study Group III).

- International telephone service - Operation. Recommendation E. 100 - E.323 (Study Group II).

- International telephone service - Network management - Traffic engineering. Recommenda
tions E.401 - E.543 (Study Group II).

- Telegraph and “telematic services”1) operations and tariffs. Series F Recommendations
(Study Group I).

- General characteristics of international telephone connections and circuits. Recommendations
G.101 - G.171 (Study Group XV, XVI, CMBD).

- International analogue carrier systems. Transmission media - characteristics. Recommenda
tions G.211 - G.651 (Study Group XV, CMBD).

- Digital networks - transmission systems and multiplexing equipments. Recommendations
G.701 - G.941 (Study Group XVIII).

- Line transmission of non telephone signals. Transmission of sound programme and television
signals. Series H, J Recommendations (Study Group XV).

- Maintenance; general principles, international carrier systems, international telephone circuits.
Recommendations M.10 - M.761 (Study Group IV).

- Maintenance; international voice frequency telegraphy and facsimile, international leased
circuits. Recommendations M.800 - M. 1235 (Study Group IV).

- Maintenance; international sound programme and television transmission circuits. Series N
Recommendations (Study Group IV).

- Specifications of measuring equipment. Series O Recommendations (Study Group IV).

^ “Telematic services” is used provisionally.

Volume V Telephone transmission quality. Series P Recommendations (Study Group XII).

Volume VI

FASCICLE VI. 1

FASCICLE VI.2

FASCICLE VI.3

FASCICLE VI.4

FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

Volume VII

FASCICLE VII. 1

FASCICLE VII.2

Volume VIII

FASCICLE VIII. 1

FASCICLE VIII.2

FASCICLE VIII.3

Volume IX

Volume X

FASCICLE X .l

FASCICLE X.2

General Recommendations on telephone switching and signalling. Interface with the maritime
service. Recommendations Q .l - Q.118 bis (Study Group XI).

Specifications of signalling systems Nos. 4 and 5. Recommendations Q.120 - Q.180 (Study
Group XI).

Specifications of signalling system No. 6. Recommendations Q.251 - Q.300 (Study Group XI).

Specifications of signalling systems R1 and R2. Recommendations Q.310 - Q.480 (Study
Group XI).

Digital transit exchanges for national and international applications. Interworking of signalling
systems. Recommendations Q.501 - Q.685 (Study Group XI).

Specifications of signalling system No. 7. Recommendations Q.701 - Q.741 (Study Group XI).

Functional Specification and Description Language (SDL). Man-machine language (MML).
Recommendations Z.101 -Z.104 and Z.311 -Z.341 (Study Group XI).

CCITT high level language (CHILL). Recommendation Z.200 (Study Group XI).

Telegraph transmission and switching. Series R, U Recommendations (Study Group IX).

Telegraph and “telematic services” 1) terminal equipment. Series S, T Recommendations
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks; services and facilities, terminal equipment and interfaces.
Recommendations X .l - X.29 (Study Group VII).

Data communication networks; transmission, signalling and switching, network aspects,
maintenance, administrative arrangements. Recommendations X.40 - X .l 80 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Protection of
cable sheaths and poles. Series L Recommendations (Study Group VI).

Terms and definitions.

Index of the Yellow Book.

^ “Telematic services” is used provisionally.

Recommendation Z.200

CCITT HIGH LEVEL LANGUAGE (CHILL)
(GENEVA, 1980)

CONTENTS

1.0 Introduction ... 1
1.1 General .. 1
1.2 Language survey 2
1.3 Modes and classes ... 2
1.4 Locations and their accesses 3
1.5 Values and their operations 4
1.6 Actions .. 5
1.7 Program structure ... 6
1.8 Concurrent execution ... 6
1.9 General semantic properties 7
1.10 Exception handling ... 8
1.11 Implementation options 8

2.0 Preliminaries .. 10
2.1 The metalanguage 10

2.1.1 The context-free syntax description 10
2.1.2 The semantic description 11
2.1.3 The examples .. 11
2.1.4 The binding rules in the metalanguage 12

2.2 Vocabulary 12
2.3 The use of spaces ..13
2.4 Comments 13
2.5 Format effectors 13
2.6 Compiler directives .. 14

5.0 Modes and classes ... 1 5
3.1 General ... 15

3.1.1 Modes ...15
3.1.2 Classes 15
3.1.3 Properties of, and relations between, modes and classes . . 16

3.2 Mode definitions ..17
3.2.1 General 17
3.2.2 Synmode definitions 18
3.2.3 Newmode definitions 19

3.3 Mode classification . .. 20
3.4 Discrete modes ... 20

3.4.1 General * ..20
3.4.2 Integer modes .. 21
3.4.3 Boolean modes .. 21
3.4.4 Character modes ...22
3.4.5 Set modes ... 22
3.4.6 Range modes ... 24

3.5 Powerset modes ..25
3.6 Reference modes ..26

3.6.1 General ...26
3.6.2 Bound reference modes 26
3.6.3 Free reference mode ...27
3.6.4 Row modes 27

3.7 Procedure modes 28
3.8 Instance modes ..29

FASCICLE VI.8 Table of contents

3.9 Synchronisation modes .. 29
3.9.1 General 29
3.9.2 Event modes ... 30
3.9.3 Buffer modes ... 30

3.10 Composite modes ... 31
3.10.1 General 31
3.10.2 String modes ... 32
3.10.3 Array modes ... 33
3.10.4 Structure modes 35
3.10.5 Level structure notation 40
3.10.6 Layout description for array modes and structure modes . . 42

3.11 Dynamic modes ... 47
3.11.1 General ... 47
3.11.2 Dynamic string modes 48
3.11.3 Dynamic array modes 48
3.11.4 Dynamic parameterised structure modes 48

4.0 Locati ons and their accesses50
4.1 Declarations...50

4.1.1 General 50
4.1.2 Location declarations 50
4.1.3 Loc-identity declarations 52
4.1.4 Based declarations . ..52

4.2 Locations ...53
4.2.1 General ...53
4.2.2 Access names 54
4.2.3 Dereferenced bound references 55
4.2.4 Dereferenced free references 56
4.2.5 String elements ... 56
4.2.6 Substrings 57
4.2.7 Array elements 53
4.2.8 Sub-arrays ... 59
4.2.9 Structure fields 60
4.2.10 Location procedure calls 61
4.2.11 Location built-in routine calls 61
4.2.12 Location conversions 61
4.2.13 String slices ... 62
4.2.14 Array slices 63
4.2.15 Dereferenced rows 64

5.0 Values and their operations 65
5.1 Synonym definitions ..65
5.2 Primitive value 66

5.2.1 General ...66
5.2.2 Location contents................................... 67
5.2.3 Value names 67
5.2.4 Literals 68

5.2.4.1 General 68
5.2.4.2 Integer literals 69
5.2.4.3 Boolean literals 70
5.2.4.4 Set literals ... 70
5.2.4.5 Emptiness literal 70
5.2.4.6 Procedure literals 71
5.2.4.7 Character string literals 71

fascicle VI.8 Table of contents

5.2.4.8 Bit string literals 72
5.2.5 Tuples .. 73
5.2.6 Value string elements 79
5.2.7 Value substrings ... 79
5.2.S Value string slices 80
5.2.9 Value array elements 81
5.2.10 Value sub-arrays .. 81
5.2.11 Value array slices 83
5.2.12 Value structure fields 83
5.2.13 Referenced locations 84
5.2.14 Expression conversions 85
5.2.15 Value procedure calls 85
5.2.16 Value built-in routine calls 85
5.2.17 Start expressions .. 89
5.2.18 Receive expressions 90
5.2.19 Zero-adic operator 91

5.3 Values and expressions ...91
5.3.1 General ... 91
5.3.2 Expressions ...92
5.3.3 Operand-1 93
5.3.4 Operand-2 94
5.3.5 Operand-3 ...95
5.3.6 Operand-4 ...97
5.3.7 Operand-5 98
5.3.8 Operand-6 ... 100

6.0 Ac t i ons ... 101
6.1 General .. 101
6.2 Assignment action ... 102
6.3 If action ... 103
6.4 Case action 104
6.5 Do action 106

6.5.1 General 106
6.5.2 For control........................... 107
6.5.3 While control Ill
6.5.4 With part.. Ill

6.6 Exit action 112
6.7 Call action .. 113
6.8 Result and return action 115
6.9 Goto action 116
6.10 Assert action 117
6.11 Empty action .. 117
6.12 Cause action 117
6.13 Start action .. 118
6.14 stop action ... 118
6.15 Continue action ... 118
6.16 Delay action 119
6.17 Delay case action 119
6.18 Send action 120

6.18.1 General 120
6.18.2 Send signal action 121
6.18.3 Send buffer action 121

6.19 Receive case action 122
6.19.1 General ... 122

FASCICLE VI.8 Table of contents

6.19.2 Receive signal case action 123
6.19.3 Receive buffer case action * 124

7.0 Program structure ... 127
7.1 General .. 127
7.2 Reaches and nesting ... 128
7.3 Begin-end blocks ... 131
7.4 Procedure definitions 131
7.5 Process definitions 136
7.6 Modules .. 137
7.7 Regions 137
7.8 Program ... 138
7.9 Storage allocation and lifetime 138

3.0 Concur rent execution 140
8.1 Processes and their definitions 140
8.2 Mutual exclusion and regions 140

8.2.1 General ... 141
8.2.2 Regionality ... 142

8.3 Delaying of a process 144
8.4 Re-activation of a process 145
8.5 Signal definition statements 146

9.0 General semantic properti es 147
9.1 Mode checking ... 147

9.1.1 Properties of modes and classes 147
9.1.1.1 Novelty 147
9.1.1.2 Read-only modes 148
9.1.1.3 Read-only property 148
9.1.1.4 Referencing property 148
9.1.1.5 Tagged parameterised property 149
9.1.1.6 Synchronisation property 149
9.1.1.7 Root mode ... 150
9.1.1.8 Resulting class 150

9.1.2 Relations on modes and classes 151
9.1.2.1 The relation "defined by” 151
9.1.2.2 Equivalence relations on modes 151
9.1.2.3 The relation "read-compatible" 156
9.1.2.4 The relation "restrictable to" 157
9.1.2.5 Compatibility between a mode and a class 158
9.1.2.6 Compatibility between classes 158

9.1.3 Case selection ... 159
9.1.4 Definition and summary of semantic categories 162

9.1.4.1 Names 162
9.1.4.2 Locations ... 164
9.1.4.3 Expressions 164
9.1.4.4 Miscellaneous semantic categories 165

9.2 visibi lity and name binding 166
9.2.1 General ... 166
9.2.2 Visibility and name creation 167
9.2.3 Implied names ... 168
9.2.4 Visibility in reaches 169
9.2.5 Visibility and blocks 170
9.2.6 Visibility and moduli ons 170

FASCICLE VI.8 Table of contents

9.2.6.1 General .. 170
9.2.6.2 Grant statements..... 171
9.2.6.3 Seize statements..... 172

9.2.7 Visibility of field names 173
9.2.8 Name binding .. 173

10.0 Excepti on handli ng 176
10.1 General ... 176
10.2 Handlers 176
10.3 Handler identification 177

11.0 Implementation options 179
11.1 Implementation defined built-in routines 179
11.2 implementation defined integer modes 179
11.3 Implementation defined register names 180
11.4 Implementation defined process names and exception names . . 180
11.5 Implementation defined handlers 180
11.6 Syntax options ... ISO

Appendix A: Character sets for CHILL programs 182
A.1 CCITT alphabet no. 5 International reference version 182
A.2 Minimal character set for representing CHILL programs 183

Appendix B: Special symbols 184

Appendix C: CHILL special names 185
C.l Reserved names ... 185
C.2 Predefined names ... 186
C.3 CHILL exception names 186
C.4 CHILL directives 186

Appendix D: Program examples 187

Appendix E: Syntax diagrams 210

Appendix F: Index of producti on rules 220

Appendix G: Index .. 229

FASCICLE VI.8 Table of contents v

1.0 INTRODUCTION

This recommendation defines the CCITT high level programming language
CHILL. CHILL stands for CCITT High Level Language.

An alternative definition of CHILL, in a strict mathematical form, Mill be
contained in CCITT Manual. Another CCITT Manual knoun as 'Introduction to
CHILL* serves as an introduction to the language.

1.1 GENERAL

CHILL was designed primarily for programming SPC telephone exchanges.
However, it is considered to be general enough for other applications
(e.g. message switching, packet switching, modelling, etc.).

CHILL was designed with the following requirements in mind (refer to
Question 8/XI of the study period 1977-1980):

• enhance reliability by allowing for extensive compile-time checking;

• permit the generation of highly efficient object code;

• be flexible and powerful in order to cover the required range of
applications and to exploit various kinds of hardware;

• encourage modular and structured program development;

• be easy to learn and use.

CHILL does imply the existence of an environment for program development.
This environment may implement, amongst other items, separate
compilation, input/output and debugging tools. These items are not
defined by this recommendation.

CHILL programs can be written in a machine independent manner for the
class of machines known to be used, or proposed for use, in SPC telephone
exchanges.

CHILL does not attempt to provide specific constructs for every
application mentioned above, but rather it has a general base with a
number of possibilities suitable for the particular application.

CHILL as a language is machine independent. A particular implementation
may, however, contain implementation defined language objects. Programs
containing such objects will in general, not be portable.

CHILL is designed under the assumption that it will be compiled from
source text to object code, it is not specifically designed to make
one-pass compilation feasible nor to minimise compiler size.

FASCICLE VI.8 Rec. Z.200 1

To allow security without an unacceptable loss of efficiency, much
checkins can be done statically. A feu language rules can be tested only
at run time. A violation of such a rule results in a run-time exception.
However, the generation of run-time checks for these exceptions is
optional, unless a programmer defined exception handler is specified.

1.2 LANGU/GE SURVEY

A CHILL program consists essentially of three parts:

• a description of data objects;

• a description of actions which are to be performed upon the data
objects;

• a description of the program structure.

Data objects are described by data statements (declaration and definition
statements), actions are described by action statements and the program
structure is determined by program structuring statements.

The manipulatable data objects of CHILL are values and locations where
values can be stored. The actions define the operations to be performed
upon the data objects and the order in which values are stored into and
retrieved from locations. The program structure determines the lifetime
and visibility of data objects.

CHILL provides for extensive static checking upon the usage of data
objects in a given context.

In the following sections, a summary of the various CHILL concepts is
given. Each section is an introduction to a chapter, with the same title,
describing the concept in detail.

1.3 MODES AND CLASSES

The manipulatable data objects of CHILL are values and locations where
values can be stored.

A location has a mode attached to it. The mode of a location defines the
set of values which may reside in that location and other properties
associated with the location and the values it may contain (note that not
all properties of a location are determinable by its mode alone).
Properties of locations are: size, internal structure, read-onlyness,
referability etc. Properties of values are: internal representation,
ordering, applicable operations etc.

2 FASCICLE VI.8 Rec. 2.200

A value has a class attached to it. The class of a value determines the
modes of the locations that may contain the value.

CHILL provides the following categories of modes:

discrete modes

powsrset modes

reference modes

composite modes

procedure modes

instance modes

integer, character, boolean, set (symbolic) modes
and ranges thereof;

sets of elements of some discrete mode;

bound references, free references and rows used as
references to locations;

string, array and structure modes;

procedures considered as manipulatable data
objects;

identifications for processes;

synchronisation modes event and buffer modes for process synchronisation
and communication.

CHILL provides denotations for a set of standard modes. Program defined
modes can be introduced by means of mode definitions. Some language
constructs have a so-called dynamic mode attached. A dynamic mode is a
mode of which soma properties can only be determined dynamically. Dynamic
modes are always parameterised modes with run-time parameters. A mode
which is not dynamic, is called a static mode. An explicitly denoted mode
in a CHILL program is always static.

Neither dynamic modes nor classes have a denotation in CHILL. They are
only introduced in the metalanguage to describe static and dynamic context
conditions.

l.» LOCATIONS AND THEIR ACCESSES

Locations are (abstract) places where values can be stored or from which
values can be obtained. In order to store or obtain a value, the location
has to be accessed.

Declaration statements define names to be used for accessing a location.

There are:

1. location declarations;’

2. loc-identity declarations;

3. based declarations.

FASCICLE VI.8 Rec. Z.200 3

The first one creates locations and establishes access names to the newly
created locations. The latter two establish new access names for locations
created elsewhere.

Apart from location declarations, new locations can be created by means of
a GETST4CK built-in routine which will yield a reference value (see below)
to the newly created location.

A location may be referable. This means that a corresponding reference
value exists for the location. This reference value is obtained as the
result of the referencing operation, applied to the referable location. By
dereferencing a reference value, the referred location is obtained. CHILL
requires certain locations to be always referable, but for other locations
it is left to the implementation to decide whether or not they are
referable. Referability must be a statically determinable property of
locations.

A location may be read-only, which means that it can only be accessed to
obtain a value and not to store a new value into it (except when
initialising).

A location may be composite, which means that it has sub-locations which
can be accessed separately. A sub-location is not necessarily referable. A
location containing at least one read-only sub-location, is said to have
the read-only property. The accessing methods delivering sub-locations
(or sub-values) are substringing, indexing and slicing for strings and for
arrays, and selection for structures.

A location has a mode attached. If this mode is dynamic, the location is
called a dynamic mode location. (Note that the word dynamic is only used
in relation to the mode; the location is not dynamic in the sense that it
varies at run time; only that its properties cannot be completely
determined statically.)

The following properties of a location, although statically determinable,
are not part of the mode:

referabilitv: whether or not a reference value exists for the location;

storage class: whether or not it is statically allocated;

regionalitv: whether or not the location is declared within a region.

1.5 VALUES AND THEIR OPERATIONS

Values are basic objects on which specific operations are defined. A value
is either a (CHILL) defined value or an undefined value (in the CHILL
sense). The usage of an undefined value in specified contexts results in
an undefined situation (in the CHILL sense) and the program is considered
to be incorrect.

A FASCICLE VI.8 Rec. Z.200

CHILL allows locations to be used in contexts where values are required.
In this case, the location is accessed to obtain the value contained.

A value has a class attached. Strong values are values that besides their
class also have a mode attached. In that case the value is always one of
the values defined by the mode. The class is used for compatibility
checking and the mode for describing properties of the value, some
contexts require those properties to be known and a strong value will then
be required.

A value may be literal, in which case it denotes an implementation
independent discrete value, known at compile time. A value may be constant
in which case it always delivers the same value, i.e. it need only be
evaluated once. Both a literal and a constant value are assumed to be
evaluated before run time and cannot generate a run-time exception. A
value may be regional, in which case it can refer somehow to regional
locations. A value may be composite, i.e. containing sub-values.

Synonym definition statements establish new names to denote constant
values.

1.6 ACTIONS

Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more
locations. The procedure call invokes a procedure, a built-in routine call
invokes a built-in routine (a built-in routine is a procedure whose
definition is not written in CHILL and with a more general parameter and
result mechanism). To return from and/or establish the result of a
procedure call, the result and return actions are used.

To control the sequential action flow, CHILL provides the following flow
of control actions:

if action for a two-way branch;

case action for a multiple branch. The selection of the branch may be
based upon several values, similar to a decision table;

do action for iteration or bracketing;

exit action for leaving a bracketed action in a structured manner;

cause action to cause a specific exception;

goto action for unconditional transfer to a labelled program point.

Action and data statements can be grouped together to form a module or
begin-end block, which form a (compound) action.

FASCICLE VI.8 Rec. 2.200 5

To control the concurrent action flow, CHILL provides the start, stop,
delay, continue, send, delay case and receive case actions or the
evaluation of a receive expression.

1.7 PROGRAM STRUCTURE

The program structuring statements are the begin-end block, module,
procedure, process and region. The program structuring statements provide
the means of controlling the lifetime of locations and the visibility of
names.

The lifetime of a location is the time during which a location exists
within the program. Locations can be explicitly declared (in a location
declaration) or generated (GETST^CK built-in routine call), or they can be
implicitly declared or generated as the result of the use of language
constructs.

A name is said to be visible at a certain point in the program if it may be
used at that point. The scope of a name encompasses all the points where
it is visible, i.e. where the denoted object is identified by that name.

Begin-end blocks determine both visibility of names and lifetime of
locations.

Modules are provided to restrict the visibility of names to protect
against unauthorised usage. By means of visibility statements, it is
possible to exercise control over the visibility of names in various
program parts.

A procedure is a (possibly parameterised) sub-program which may be invoked
(called) at different places within a program. It may return a value
(value procedure) or a location (location procedure), or deliver no
result. In the latter case the procedure can only be called in a procedure
call action.

Processes and regions provide the means by which a structure of concurrent
executions can be achieved.

A complete CHILL program is a list of modules or regions, which is
considered to be surrounded by an (imaginary) process definition. This
outermost process is started by the system under whose control the program
is executed.

1.5 CONCURRENT EXECUTION

CHILL allows for the concurrent execution of program units. A process is
the unit of concurrent execution. The start action causes the creation of
a new process of the indicated process definition. The process is then

6 FASCICLE VI.8 Rec. 2.200

considered to be executed concurrently with the starting process. CHILL
allows for one or more processes with the same or different definition to
be active at one time. The stop action, executed by a process, causes its
termination.

A process is always in one of two states; it can be active or delaved. The
transition from active to delayed is called the delaying of the process,
the transition from delayed to active is called the re-activation of the
process. The execution of delaying actions on events, or receiving actions
on buffers or signals, or sending actions on buffers, can cause the
executing process to become delayed. The execution of a continue action on
events, or sending actions on buffers or signals, or receiving actions on
buffers, can cause a delayed process to become active again.

Buffers and events are locations with restricted usage. The operations
send, receive and receive case are defined on buffers; the operations
delay, delay case and continue are defined on events. Buffers are a means
of synchronising and transmitting information between processes. Events
are only used for synchronisation. Signals are defined in signal
definition statements. They denote functions for composing and
decomposing lists of values,transmitted between processes, send actions
and receive case actions provide for communication of a list of values and
for synchronisation.

A region is a special kind of module. Its use is to provide for mutually
exclusive access to data structures, which are shared by several
processes.

1.9 GENERAL SEMANTIC PROPERTIES

The semantic (non context-free) conditions of CHILL are the mode and class
compatibility conditions (mode checking) and the visibility conditions
(scope checking). The mode checking rules determine how names may be used,
the scope checking rules determine where names may be used.

The mode checking rules are formulated in terms of compatibility
requirements between modes, between classes and between modes and
classes. The compatibility requirements between modes and classes and
between classes themselves are defined in terms of equivalence relations
between modes. If dynamic modes are involved, mode checking is partly
dynamic.

The scope rules define the visibility of names which is determined by the
program structure and explicit visibility statements. The explicit
visibility statements determine the scope of the mentioned names and also
of possibly implied names of the mentioned names.

Names introduced in a program have a place where they are defined or
declared. This place is called the defining occurrence of the name. The
places where the name is used, are called applied occurrences of the name.
The name binding rules associate a unique defining occurrence with each

FASCICLE VI.8 Rec. 2.200 7

applied occurrence of the name.

1.10 EXCEPTION HANDLING

The dynamic semantic conditions of CHILL are those (non context-free)
conditions which, in general, cannot be statically determined. (It is left
to the implementation to decide whether or not to generate coda to test
the dynamic conditions at run time.) The violation of a dynamic semantic
rule causes a run-time exception.

Exceptions can also be caused by the execution of a cause action or,
conditionally, by the execution of an assert action. When, at a given
program point, an exception occurs, control is transferred to the
associated handler for that exception, if specifiable (i.e. it has a name)
and specified. Whether or not a handler is specified for an exception at a
given point, can be statically determined. If no explicit handler is
specified, control may be transferred to an implementation defined
exception handler.

Most exceptions have a name. This name is either a CHILL defined exception
name, an implementation defined exception name, or a program defined
exception name. Note that when a handler is specified for a CHILL defined
exception name, the associated dynamic condition must be checked.

1.11 IMPLEMENTATION OPTIONS

CHILL allows for implementation defined integer modes, implementation
defined built-in routines, implementation defined process definitions and
implementation defined exception handlers.

An implementation defined integer mode must be denoted by an
implementation defined mode name. This name is considered to be defined in
a newmoda definition statement which is not specified in CHILL. Extending
the existing CHILL-defined arithmetic operations to the implemantation
defined integer modes is allowed within the framework of the CHILL
syntactic and semantic rules. Examples of implementation defined integer
modes are long integers, and short integers.

A built-in routine is a procedure whose definition is not specified in
CHILL with a more general parameter passing and result transmission scheme
than CHILL procedures.

A built-in process name is a process name whose definition is not
specified in CHILL. A CHILL process may cooperate with implementation
defined processes or start such processes.

8 FASCICLE VI.8 Rec. 2.200

An implementation defined exception handler is a handler appended to the
imaginary outermost process definition. If this handler receives control
after the occurrence of an exception, the implementation may decide which
actions are to be taken.

FASCICLE VI.8 Rec. Z.200 9

2.0 PRELIMINARIES

2.1 THE METALANGUAGE

The CKILL description consists of two parts:

• the description of the context-free syntax;

• the description of the semantic conditions.

2.1.1 THE CONTEXT-FREE SYNTAX DESCRIPTION

The context-free syntax is described using an extension of the Backus-Naur
Form. Syntactic categories are indicated by one or more English words,
written in italic characters, enclosed between angular brackets C< and >).
This indicator is called a non-terminal symbol. For each non-terminal
symbol, a production rule is given in an appropriate syntax section. A
production rule for a non-terminal symbol consists of the non-terminal
symbol at the lefthand side of the symbol , and one or more constructs,
consisting of non-terminal and/or terminal productions at the righthand
side. These constructs are separated by a vertical bar (|) and denote
alternative productions for the non-terminal symbol.

Sometimes, the non-terminal symbol includes an underlined part. This
underlined part does not form part of the context-free description, but
defines a semantic sub-category Csee section 2.1.2).

Syntactic elements may be grouped together by using curly brackets {{ and
}). Repetition of curly bracketed groups is indicated by an asterisk (*)
or plus (*). An asterisk indicates that the group is optional and can be
further repeated any number of times; a plus indicates that the group must
be present and can be further repeated any number of times. For example,
<A}* stands for any sequence of >4*s, including zero, while {A}* stands for
any sequence of at least one A. If syntactic elements are grouped using
square brackets (f and 7), then the group is optional.

A distinction is made between strict syntax, for which the semantic
conditions are given directly, and derived syntax. The derived syntax is
considered to be an extension of the strict syntax and the semantics for
the derived syntax is indirectly explained in terms of the associated
strict syntax.

It is to be noted that the context-free syntax description is chosen to
suit the semantic description in this document and is not made to suit any
particular parsing algorithm (e.g. there are some context-free
ambiguities introduced in the interest of clarity).

10 FASCICLE VI.8 Rec. Z.200

2.1.2 THE SEMANTIC DESCRIPTION

For each syntactic category (non-terminal symbol), the semantic
description is given in the sub-sections semantics, static properties,
dynamic properties, static conditions and dynamic conditions.

The section semantics describes the concepts denoted by the syntactic
categories (i.e. their meaning and behaviour).

The section static properties defines statically determinable semantic
properties of the syntactic category. These properties are used in the
formulation of static and/or dynamic conditions in the appropriate
sections where the syntactic category is used.

When appropriate, a section dynamic properties defines the properties of
the syntactic category, which are known only dynamically.

The section static conditions describes the context-dependent, statically
checkable conditions which must be fulfilled when the syntactic category
is used. Some static conditions are expressed in the syntax by means of an
underlined part in the non-terminal symbol (see section 2.1.1). This use
requires the non-terminal to be of a specific semantic sub-category. E.g.
<boolean expression> is identical to <exp ressi on> in the context free
sense, but semantically it requires the expression to be of the boolean
classi The underlined part is sometimes used in the text as an adjective
to qualify the non-terminal. E.g. the sentence "the expression is
constant" is identical to saying "the exp ress i on is a cons tent
expression".

The section dynamic conditions describes the context-dependent conditions
which must be fulfilled during execution. In some cases, conditions are
static if and only if no dynamic modes are involved. In those cases, the
condition is mentioned under static conditions and referred to under
dynamic conditions.

In the semantic description the non-terminals are written in italics
without the angular brackets to indicate the syntactic objects.

2.1.3 THE EXAMPLES

For most syntax sections, there is a section examples giving one or more
examples of the defined syntactic categories. These examples are
extracted from a set of program examples contained in Appendix D.
References indicate via which syntax rule each example is produced and
from which example it is taken.

E.g. 6.20 (d+5)/5 (1.2) indicates an example of the terminal string
(d+5)/5t produced via rule (1.2) of the appropriate syntax section, taken
from program example no. 6 line 20.

FASCICLE VI.8 Rec. Z.200 11

2.1.<t THE BINDING RULES IN THE METALANGUAGE

Sometimes the semantic description mentions CHILL special names (see
Appendix C). These special names are always used with their CHILL meaning
and are therefore not influenced fay the binding rules of an actual CHILL
program.

2.2 VOCABULARY

Programs are represented using the CCITT alphabet no. 5, Recommendation
v.3 (see Appendix Al). it is possible to represent any CHILL program using
a minimum character set which is a subset of the CCITT alphabet no.5 basic
code (see Appendix A2).

The lexical elements of CHILL are:

• special symbols

• names

• literals

The special symbols are listed in Appendix B.

Names are formed according to the following syntax:

syntax:
<narae> ::- (1)

<letter> { <letter> I <digit> |_}** (1.1)

The underline symbol (_) forms part of the name, i.e. the name LIFE_TIME
is different from the name LIFETIME. In the case that an alphabet with
lower case letters is available, they may be used within names. Lower
case and upper case letters are different, e.g. Status and status are two
different names.

The language has a number of special names with predetermined meanings,
see Appendix C. Some of them are reserved i.e. they cannot be used for
other purposes unless explicitly freed by the free directive.

in the case that an alphabet with both upper an lower case letters is
used, the special names may either all be in upper case representation or
all be in lower case representation. The reserved names are only reserved
in the chosen representation (e.g. if the lower case fashion is chosen,
row is reserved, RON is not).

12 FASCICLE VI.8 Rec. Z.200

2.3 THE USE OF SPACES

Spaces may be used to delimit the lexical elements of a program. Lexical
elements are terminated by the first character that cannot be part of the
lexical element. For instance, IFBTHEN will be considered a name and not
as the beginning of an action IF B THEN, //* will be considered as the
concatenation symbol (//) followed by an asterisk (x) and not as a divide
symbol (/) followed by a comment opening bracket (/x). Contiguous spaces
have the same delimiting effect as a single space.

2.4 COHHENT5

syntax:
<comment> (1)

/x <character string> x/ (1.1)

<character string> (2)
{<character>}* (2.1)

semantics: A comment conveys information to the reader of a program. It
has no influence on the program semantics.

static properties: A comment may be inserted at all places where
spaces are allowed as delimiters.

static conditions: The character string must not contain the special
sequence: asterisk solidus (x/).

examples:
4.1 /x from collected algori thms from CACH nr.93 x/ (1.1)

2.5 FORMAT EFFECTORS

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed),
HT (Horizontal tabulation), LF (Line feed), and VT (Vertical tabulation)
of the CCITT alphabet no.5 (positions FEo to FE5) are not mentioned in the
CHILL context-free syntax description. However, an implementation may use
these format effectors in CHILL programs. When used, they have the same
delimiting effect as a space. They may not be used within lexical
elements.

FASCICLE VI.8 Rec. Z.200 13

2.6 COMPILER DIRECTIVES

syntax:
<di recti ve clause> ::= (1)

<> <directive> {, <directive>J* [<>] (1.1)

<directive> ::= (2)
<CHILL di recti ve> (2.1)

I < implementation directive> (2.2)

<CHILL di recti ve> (3)
<free di r e d i ve> (3.1)

<free di recti ve> ::= (4)
FREE(<reserved name list>) ($.1)

<name list> ::= (5)
<name> {,<name>I* (5.1)

semantics; A directive clause conveys information to the compiler.
Except for the free directive, this information is specified
in an implementation defined format.

An implementation directive must not influence the program
semantics, i.e. a program Mith implementation directives is
correct, in the CHILL sense, if and only if it is correct
uithout these directives.

A free directive applies to a compilation unit. It Hill free
the reserved names specified in the reserved name list so that
they may be redefined in the compilation unit.

static properties: A directive clause may be inserted at all places
where spaces are alloued. It has the same delimiting effect as
a space. The names used in a directive clause follou an
implementation defined name binding scheme Hhich does not
influence the CHILL name binding rules (see section 9.2.8).

static conditions: The optional directive-ending symbol (<>) may
only be omitted if it is placed just in front of a semicolon
(i.e. the di r e d i ve clause is terminated Hith the first <> or
semicolon. However, the semicolon does not belong to the
directive clause. As a consequence, a directive may neither
contain the symbol <> nor a semicolon unless placed betHeen
parentheses, see belou). If parentheses occur in an
implementation di recti ve, they must be properly balanced and
if a semicolon or the directive-ending symbol appears within
parentheses, they do not end the di redive.

examples:
15.1 <> FREE (STEP) (1.1)
15.1 FREE (STEP) (4.1)

14 FASCICLE VI.8 Rec. 2.200

3.0 HOPES AND CLASSES

3.1 GENERAL

A location has a mode attached to it, a value has a class attached to it.
The mode attached to a location defines the set of values which may be
contained in the location, the access methods of the location and the
allowed operations on the values. The class attached to a value is a means
of determining the modes of the locations that may contain the value. Some
values are strong. A strong value has a class and a mode attached. This
mode is always compatible with the class of the value and the value is one
of the values defined by the mode. Strong values are required in those
value contexts where mode information is needed.

3.1.1 MODES

CHILL has static modes (i.e. modes for which all properties are statically
determinable) and dynamic modes (i.e. modes for which soma properties are
only known at run time). Dynamic modes are always paramaterised modes with
run-time parameters.

Static modes are denoted in the program by means of terminal productions
of the syntactic category mode.

Dynamic modes have no denotations in CHILL. However, for description
purposes, virtual denotations are introduced in this document to denote
dynamic modes. These virtual denotations will be preceded by the ampersand
symbol (&), i.e. denotes a parameterised dynamic mode with run-time
parameter r.

In addition, in some places virtual denotations for static modes are
introduced. This is done for modes which are not or cannot be explicitly
denoted in the program text, but are virtualy introduced by some language
constructs. These modes are also denoted by virtual denotations preceded
by an ampersand.

3.1.2 CLASSES

Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a CHILL program has
a class of one of these kinds:

FASCICLE VI.8 Rec. Z.200 15

• For any mode M, there exists the H-value class. A H values with such a
class and only those values are strong and the mode attached to the
value is M.

• For any mode M with novelty ni1 (see section 9.1.1.1), there exists
the H-derived class.

• For any mode M, there exists the M-reference class.

• The null class.

• The all class.

The last two classes are constant classes, i.e. they do not depend on a
mode M. A class is said to be dynamic if and only if it is an M-value class
or an M-derived class, where M is a dynamic mode.

3.1.3 PROPERTIES OF, AND RELATIONS BETWEEN, MODES AND CLASSES

All fundamental properties of and relations between modes and classes are
defined in chapter 9. The following gives a summary of these properties
and relations:

1. A mode M has a noveltv.

2. A mode M can be read-onlv.

3. A mode M can have the read-onlv property.

4. A mode M can have the referencing property.

5. A mode M can have the tagged parameterised property.

6. A mode M can have the synchronisation property.

7. A mode M can be defined bv a mode N.

8. A mode M can be read-compatible with a mode N (asymmetric).

9. A mode M can be compatible with a class C (in that case C is said to be
compatible with M).

10. A class C can have a root mode.

11. A class C can be compatible with a class D (symmetric).

12. Given a list of compatible classes, there exists the resulting class.

Specific properties are defined for each mode in the appropriate section.
A property is said to be heredi tarv if, when it holds for a specific mode,
it also holds for all mode names defined bv that mode. Therefore,

16 FASCICLE VI.8 Rec. Z.200

hereditary properties Mill not be explicitly defined for mode names. Every
property, which holds for a mode, also holds for that mode preceded by the
keyword READ (except in some cases where the read-only property is
involved: these cases are explicitly indicated). Therefore; properties
will not be explicitly defined on modes preceded with READ.

3.2 MODE DEFINITIONS

3.2.1 GENERAL

syntax:
<mode definition> ::= (1)

<name list> - <defining mode> (1.

<defining mode> (2)
<mode> (2.

derived syntax: A mode definition where the name list consists of more
than one namet is derived from several mode definitions, one
for each name, separated by comma's, with the same defining
mode.

E.g. NEUHODE DOLLAR, POUND = INT; is derived from NEUMODEt
DOLLAR = INT, POUND = INT;

semantics: Mode definitions define one or more names to be a mode name,
i.e. names denoting modes. Mode definitions occur inside
newmode and synmode definition statements. The difference
between a newmode and a synmode lies in the treatment by the
mode equivalence algorithms (see section 9.1). All hereditary
properties of the defining mode are, by definition,
transferred to the defined mode name. Mode definitions may be
(mutually) recursive.

static properties: A mode name is either one of the language defined
mode names INT, BOOL, CHAR, PTR, INSTANCE, EVENT, or a name
defined in a mode definition.

A mode name which is not one of the language defined mode
names, has a unique defining mode, which is the mode denoted
by the defining mode in the mode definition in Which it is
defined.

A set of recursive definitions is a set of mode definitions or
synonym definitions (see section 5.1) such that the defining
mode in each mode def i ni t i on or constant value or mode in each
synonym definition is, or directly contains, a mode name or a
svnonvm name or a set element name defined by a definition in
the set.

FASCICLE VI.S Rec. 2.200 17

A set of recursive mode definitions is a set of recursive
definitions having, only mode definitions. (Any set of
recursive definitions must be a set of recursive mode
definitions; see section 5.1).

Any mode being, or containing a mode name, defined in a set of
recursive mode definitions is said to denote a recursive
mode. A path in a set of recursive mode definitions is a list
of mode names, each name indexed with a marker such that:

• all names in the path have a different definition;

• for each name, its successor is or directly occurs in its
defining mode (the successor of the last name is the first
name);

• the marker indicates uniquely the position of the name in
the defining mode of its predecessor (the predecessor of
the first name is the last name).

(Example: NEUHODE H = STRUCK i H, n REF H); contains two
paths: {Mil and {H„})

A path is safe if and only if at least one of its names is
contained in a reference mode or a row mode, or a procedure
mode at the marked place. The mode must be, or be contained
in, the defining mode Of the predecessor Of the mode name.

static conditions: For any set of recursive mode definitions, all its
paths must be safe. (The first path of the example above is
not safe).

examples:
1.12 operand_mode = INT (1
5.3 complex = STRUCK re, im INT) (1

5.2.2 SYNHODE DEFINITIONS

::= (1
{, <mode definiiion>}*; (1

semantics: Synmode definition statements define names to denote modes
which are synonymous with their defining mode. The precise
treatment of names defined in a synmode definition is
explained in section 9.1.

static properties: A name is said to be a svnmode name, if and only
if it is defined in a mode definition in a synmode definition
statement. A svnmode name is said to be synonymous with a
given mode, (conversely, the given mode is said to be

syntax:
<synmode definition statement>

SYNHODE <mode definition>

18 FASCICLE VI.8 Rec. Z.200

synonymous with the svnmode name) if and only if:

• either the given mode is the defining mode of the svnmode
name;

• or the defining mode of the svnmode name is itself a
svnmode name, synonymous with the given mode.

examples:
6.3 SYNHODE month = SETCjan, feb, mar, apr, may, jun,

jul, aug, sep, oct, nov, dec); (1.1)

3.2.3 NENHODE DEFINITIONS

syntax:
<neumode definition statement> ::=

NENHODE <mode definition> i, <mode def i ni ti on>}*;
(1)
(1 .1)

semantics: Newmode definition statements define names to denote modes
which are not synonymous with the defining mode. The values
defined by a newmode are the values defined by the defining
mode. The precise treatment of names defined in a newmode
definition statement is explained in section 9.1.

static properties: A name is said to be a newmode name if and only
if it is defined in a mode def ini ti on in a neumode definition
statement.

If the defining mode is a range mode, then, together with the
defined newmoda name, a new virtual name is introduced,
denoted by &name_parent, denoting the parent ' mode of the
newmoda name. The values defined by this virtual parent mode
are the values of the parent mode of the defining range mode.
The upper bound and lower bound of the virtual parent mode are
the ones of the parent mode of the defining range mode.

If the defining mode is a string mode, then the new virtual
modes: &name(i) are introduced for each i larger than the
string length of the newmnria name, where & name denotes the
introduced newmoda. This i denotes the string length of the
virtual mode. The hereditary property bit or character string
of the newmode name is transferred to the virtual modes.

examples:
11.* NENHODE line =INT(1:3); (1.1)
11.10 ' NENHODE board = ARRAY(line) ARRAY(column)'square; (1.1)

FASCICLE VI.8 Rec. Z.200 19

3.3 HOPE CLASSIFICATION

syntax:
<mode> (1)

<non~composite mode> (1.1)
i <composite mode> (1.2)

<non-composite mode> ::= (2)
<di sc rete mode> (2.1)

1 <poNerset mode> (2.2)
1 <reference mode> (2.3)
1 <procedure mode> (2.<t)
1 <instance mode> (2.5)
1 <synchronisation mode> (2.6)

semantics: Modes are denoted in a CHILL program by the terminal
productions of the syntactic category mode. In the sequel of
this chapter, the specific properties of the different modes
will be defined. The equality (=) and inequality (/-)
relations are defined on the set of values of any given mode
(see section 5.3).

static properties: A mode has a size, which is the value delivered by
SIZE(M), where H is a virtual svnmode name synonymous with
mode.

3.$ DISCRETE HOPES

3.4.1 GENERAL

syntax:
<discrete mode> ::=

<integer mode>
I <boolean mode>
I <character mode>
I <set mode>
I < range mode>

semantics: Discrete modes define sets and subsets of well-ordered
values. All discrete modes, which are not range modes, can be
parent modes of range modes (see section 3.4.6). All discrete
modes define an upper bound and a lower bound, denoting the

- highest and lowest value, respectively.

(1)
(1 . 1)
(1.2)
(1.3)
(l.<f)
(1.5)

20 FASCICLE VI.8 Rec. Z.200

3.4.2 INTEGER MODES

syntax:
<integer mode> ;;r

[READ] INT
I [READ] BIN
I [READ] <integer mode name>

(1)
(1.1)
(1.2)
(1.3)

derived syntax: BIN is derived syntax for INT.

semantics: An integer mode defines a set of signed integer values between
implementation defined bounds, over which the usual ordering
and arithmetic operations are defined (see section 5.3.2). An
implementation may define other integer modes with different
bounds (e.g. LONG_INT, SH0RT_1NT f ...) which may also be used
as parent modes for ranges (see section 11.2).

static properties: An integer mode has the following hereditary
properties:

• The upper bound and lower bound of an integer mode are the
literals denoting respectively the highest and lowest
value defined by the integer mode.

• The number of values of an integer mode is implementation
defined.

examples:
1.4 INT (1 .1)

3.4.3 BOOLEAN MODES

syntax:
<boolean roode>

[READ] BOOL
I [READ] <boolean mode name>

(1)
(1 .1)
(1 .2)

semantics: A boolean mode defines the logical truth values (TRUE and
FALSE), with the usual boolean operations (see section
5.3.2). TRUE is greater than FALSE.

static properties: A boolean mode has the following hereditary
properties:

• The upper bound of a boolean mode is TRUE, its lower bound
is FALSE .

The number of values defined by a boolean mode is 2.

FASCICLE VI.8 Rec. Z.200 21

examples:
5.4 BOOL (1.1?

3.*.* CHARACTER MODES

syntax:
<character mode> : :~

IREAD1 CHAR
I IREAD] <character mode name>

(1)
(1 .1?
(1.2?

semantics: A character mode defines the character values as described by
the CCITT alphabet no.5, International reference version
(Recommendation V3, see Appendix Al). This alphabet also
defines the ordering of the characters.

static properties: A character mode has the
properties:

folloMing hereditary

• The upper bound and lower bound of a character mode are
the character string literals of length 1 denoting
respectively the highest and lowest value defined by
CHAR.

• The number of values defined by a character mode is 128.

examples:
5.* CHAR (1.1?

3.4.5 SET MODES

syntax:
<set tnode> ::z (1?

[READ] SET(<set list> ? (1.1?
I [READ] <set mode name> (1.2?

<set Iist> :: = (2?
<numbered set list> (2.1?

I <unnumbered set list> (2.2?

<numbered set list> ::= (3?
<numbered set element> {, <numbered set element>I* (3.1?

<numbered set element> : (4 ?
<name> r <integer literal expression> (4.1?

<unnumbered set list> (5?
<set element> {,<set element>J* (5.1?

22 FASCICLE VI.8 Rec. 2.200

<set element> ::= (6)
<name> (6.1.)

I <unnamed value> (6.2)

<unnamed value> ::= (7)
* (7.1)

semantics: A set mode defines a set of named or unnamed values. The named
values are denoted by the names in the set list; the unnamed
values are the other values. The internal representation of
the named values is the integer value associated Mith the
named value (see below). This representation also defines the
ordering of the values.

static properties: A set mode has the follouing hereditary
properties:

• A set mode has a set of set element names which is the set
of element names in its set list.

• Each set element name of a set mode has an integer
(representation) value attached which is, in the case of
a numbered set list, the value delivered by the inteaer
1iteral expressi on in the numbered set element in Which
the set element name occurs, otherwise one of the values
0,1,2,.... etc., according to its position in the
unnumbered set list. For example: 5ET(*,A, B,*)f A has
representation value 1 and B representation value 3
attached.

• A set mode has an upper bound and a lower bound which are
its set element names which denote the highest and lowest
named values, respectively.

• The number of values of a set mode is, in the case of a
numbered set list, the highest of the values attached to
the set element names plus 1, otherwise the number of set
element occurrences in the unnumbered set list.

• A set mode is a set mode with holes, if and only if the
number of name occurrences in the set list is less than
the number of values of the set mode.

Static conditions: Each integer literal expressi on in the set list must
deliver a different non-negative integer value in the sense
that for any two expressions el and e2i NUH(el) and NUH(e2)
deliver different results.

A set mode must define at least one named value.

examples:
11.5 SET(occupied, free) (1.1)
6.4 month (1.2)

FASCICLE VI.S Rec. Z.200 23

3.$.6 RANGE MODES

syntax;
<range mode> :: =

[READ] <di sc rete mode nameX <literal range>)
I [READ] RANGE(<literal range> >
I [READ] BIN(<inteaer literal expression>)
I [READ] <range mode name>

<literal range> ::=
<lower bound> : <upper bound>

<lower bound> ::=
<discrete literal expression>

<upper bound> :: =
<discrete literal expression>

derived syntax: The notation; BIN(n) is derived from INT(0 : 2^-1),
e.g. B1N(2+1) stands for INT(0 : 7).

semantics: A range mode defines the set of values ranging between the
bounds specified (bounds included) by the literal range. The
range is taken from a specific parent mode, which determines
the operations on and ordering of the range values.

static properties: A range mode has the following (non-hereditary)
property: it has a unique parent mode, defined as follows:

• If the range mode is of the form:
<di sc rete mode name>(<literal range>)
then if the di sc rete mode name is not a range mode then
the parent mode is the di sc rete mode name* otherwise it is
the parent mode of the discrete mode name.

• If the range mode is of the form:
RANGE(<literal range>)
then the parent mode is the root mode of the resulting
class of the classes of the upper bound and lower bound in
the literal range.

• If the range mode is a svnmode namet then its parent mode
is that of the defining mode of the svnmode name.

• If the range mode is a newmode name, then its parent mode
is the virtually introduced parent mode (sea section
3.2.3).

A range mode has the following hereditary properties:

• A range mode has a lower bound and an upper bound which
are the literals denoting the values delivered by lower
bound and upper bound respectively in the literal range.

24 FASCICLE VI.8 Rec. Z.200

(1)
(1 .1)
(1.2)
(1.3)
(1.4)

(2)
(2.1)

(3)
(3.1)

(<t)
(<t.1)

• The number of values of a range mode is the value
delivered by NLMfU; - NUH(L) + 1, where u and L denote
respectively the upper bound and lower bound of the range
mode.

• A range mode is said to be a range mode with holes* if and
only if its parent mode is a set mode with holes and an
unnamed value is in the range specified by the range mode.

static conditions: The classes of upper bound and lower bound must be
compatible and both must be compatible with the discrete mode
name* if specified.

Lower bound must deliver a value which is less than or equal
to the value delivered by upper bound* and both values must
lie in the value range defined by discrete mode name* if
specified.

(1.1)
(1.4)
(2 .1)

examples:
9.4 INT(2:max)
11.11 line
9.4 2:max

3.5 POUERSET MODE5

syntax:
<pouerset mode>

[READ] P0NER5ET <member mode>
I [READ3 <powerset mode name>

(1)
(1 .1)
(1.2)

<member mode>
<di sc rete mode>

(2)
(2.1)

semantics: A powerset mode defines values which are sets of values of its
member mode. Powerset values range over all subsets of the
member mode. The usual set-theoretic operators are defined on
powerset values (see section 5.3).

static properties:
property:

A powerset mode has the following hereditary

It has a unique member mode which is the mode denoted by
member mode.

examples:
8.4 POUERSET CHAR
9.<t POUERSET I N K 2 :max)
9.6 number list

(1 .1)
(1.1)
(1.2)

FASCICLE VI.8 Rec. Z.200 25

3.6 REFERENCE MODES

3.6.1 GENERAL

syntax:
<reference mode>

<bound reference mode>
I <free reference mode>
I < row mode>

semantics: A reference mode defines references (addresses or
descriptors) to referable locations. By definition, bound
references refer to locations of a given static mode; free
references may refer to locations of any static mode; rows
refer to locations of a dynamic mode.

The dereferencing operation is defined on reference values
(see sections A.2.3, A.2.A and A.2.15), delivering the
location which is referenced.

Two reference values are equal if and only if they both refer
to the same location, or both do not refer to a location (i.e.
they are the value NULL),

(1)
(1 .1)
(1 .2)
(1.3)

3.6.2 BOUND REFERENCE MODES

syntax:
<bound reference mode> ::=

[READ) REF <referenced mode>
I [READ) <bound reference node name>

(1)
(1 , 1)
(1 .2)

<referenced mode> ::=
<mode>

(2)
(2 .1)

semantics: Bound references define reference values to locations of the
specified referenced mode.

static properties: A bound reference mode has the following
hereditary property:

• It has a unique referenced mode which is the mode denoted
by referenced mode.

examples:
10.33 REF cell (1.1)

26 FASCICLE VI.E Rec. 2.200

3.6.3 FREE REFERENCE MODE

syntax:

semantics:

<free reference mode> ;;= (1)
IREAD1 PTR (1.1)

I [READ] <free reference mode name> (1.2)

A free reference mode defines reference values to locations
of any static mode.

examples:
19.5 PTR (1.1)

3.6.* RON MODES

syntax:
< row mode> ::= (1)

[READ! RON <string mode> (1.1)
I [READ] RON <array mode> (1.2)
I [READ] RON <vcJriant structure mode name> (1.5)
I [READ] <row mode name> (1.4)

semantics: A row mode defines reference values to locations of dynamic
mode (which are locations of soma parameterised mode with
statically unknown parameters).

A row value may refer to:

string locations with statically unknown length,

array locations with statically unknown upper bound,

parameterised structure locations with statically unknown
parameters.

static properties: A row mode has the following hereditary property:

• It has a referenced origin mode, which is the string mode,
the array raode, or the variant st ructu re mode namef
respectively.

examples:
3.6 RON CHAR (max) (1 .1)

FASCICLE VI.8 Rec. Z.200 27

3.7 PROCEDURE HOPES

syntax:
<procedure mode> ;;r (1)

IREAD] PROC(I<parameter list>]) [<result spec>]
IEXCEPTIONS(<excepti on list>)] I RECURSIVE] <1.1)

I [READ! <o rocedu re mode name> (1.2)

<parameter list> ::= (2)
<parameter spec> {, <parameter spec>I* (2.1)

<parameter spec> ::= (3)
<mode> [<parameter attribute>3 l<register name>I (3.1)

<parameter attribute> ::= ((f)
IN | OUT | INOUT | LOC (<t.l)

<result spec> ::= (5)
[RETURNS] (<mode> [LOC] [<register name>3) (5.1)

<exception list> (6)
<exception name> {, <exception name>}* (6.1)

<exception name> ::= (7)
<name> (7.1)

derived syntax: A result spec Mithout the optional keyuord RETURNS is
derived syntax for the result spec with RETURNS.

semantics: A procedure mode defines (general) procedure values, i.e. the
objects denoted by general procedure names which are names
defined in procedure definition statements or entry
definition statements. The procedure values indicate pieces
of code in a dynamic context. Procedure modes allow for
manipulating a procedure dynamically, e.g. passing it as a
parameter to other procedures, sending it as message value to
a buffer, storing it into a location etc.

Procedure values can be called (see section 6.7).

Two procedure values are equal if and only if they denote the
same procedure in the same dynamic context, or if they both
denote no procedure (i.e. they are the value NULL).

static properties: A procedure mode has the following hereditary
properties:

• It has a list of parameter specs, each parameter spec
consisting of a mode, possibly a parameter attribute
and/or register name. The parameter specs are defined by
the parameter list.

28 FASCICLE VI.8 Rec. 2.200

• It has an optional result spec, consisting of a mode, an
optional LOC attribute and/or register name. The result
spec is defined by the result spec.

• It has a possibly empty set of exception names, which are
the names mentioned in the exception list.

• It has a recursivitv which is recursive if RECURSIVE is
specified, otherwise an implementation defined default
specifies either recursive or non-recursive.

static conditions: All names mentioned in exception list must be
different.

Only if LOC is specified in the parameter spec or result spec,
may the mode in it have the synchronisation property.

3.8 INSTANCE HOPES

syntax:
< i nstance mode> :: =

[READ] INSTANCE
I [READ] <instance mode name>

(1)
(1 .1)
(1.2)

semantics: An instance mode defines values which uniquely identify
processes. The creation of a new process (see section 5.2.17
and 8.1) yields a unique instance value as identification for
the created process.

Two instance values are equal if and only if they identify the
same process, or they both identify no process (i.e. they are
the value NULL).

examples:
15.29 INSTANCE (1 .1)

3.9 SYNCHRONISATION HOPES

3.9.1 GENERAL

syntax:
<synchronisation mode> ::= (1)

<event mode> (1.1)
I <buffer mode> (1.2)

FASCICLE VI.8 Rec. Z.200 29

semantics; Locations of synchronisation mode provide the means of
synchronisation and communication between processes (see
chapter 8). There exists no expression in CHILL denoting a
value defined by a synchronisation mode. As a consequence,
there are no operations defined on the values.

3.9.2 EVENT MODES

syntax:
<event mode> ::= (1)

[READ] EVENT [(<event length>)] (1.1)
I [READ] <event mode name> (1.2)

<event length> (2)
<inteoer literal expression> (2.1)

semantics: Event mode locations provide the means for synchronisation
between processes. The operations defined on event mode
locations are the continue action, the delay action and the
delay case action, which are described in section 6.15, 6.16
and 6.17 respectively.

static properties:
property:

An event mode has the following hereditary

• It has possibly an event length attached, which is the
value delivered by NUM(event length)•

static conditions: The event length must deliver a positive value.

examples:
14.10 EVENT (1 .1)

3.9.3 BUFFER MODES

syntax:
<buffer mode> (1)

[READ] BUFFER [(<buffer length>)]
<buffer element mode> (1.1)

I [READ]<buffer mode name> (1.2)

<buffer length> ::= (2)
<integer literal expression> (2.1)

<buffer element mode> (3)
<mode> (3.1)

30 FASCICLE VI.8 Rec. Z.200

N.6. The syntax given above is syntactically ambiguous in
connection with the syntax of the array modes. The following
default interpretation applies: if the keyword BUFFER is
immediately followed by an opening parenthesis, the text
immediately following it is considered to be the start of the
optional buffer length indication and not as belonging to the
buffer element mode.

semantics: Buffer mode locations provide the means of synchronisation
and communication between processes. The operations defined
on buffer locations are the send action, the receive case
action and the receive expression, described in section 6.18,
6.19 and 5.2.18 respectively.

static properties: A buffer mode has the following hereditary
properties attached:

• It has an optional buffer length, which is the value
delivered by NUM(buffer length),

• It has a buffer element mode, which is the mode denoted by
buffer element mode.

static conditions: The buffer length must deliver a non-negative value.

The buffer element mode must not have the synchronisation
property.

examples:
16.23 BUFFER(l) USER_HESSAGES (1.1)
16.52 USER BUFFERS (1.2)

5.10 COMPOSITE HOPES

5.10.1 GENERAL

syntax:
<composite mode> (1)

<string mode> (1.1)
I <array mode> (1.2)
I <structure mode> (1.5)

semantics: Composite locations and values have sub-locations and
sub-values which can be accessed or obtained respectively
(see sections 4.2.5-9, A.2.13-14 and 5.2.6-12).

FASCICLE VI.8 Rec. Z.200 31

3.10.2 STRING MODES

(1)
(1 .1)
(1.2)
(1.3)

<parameteri sed string mode> (2)
IREAD3 <origin string mode name>(<string length>) (2.1)

I [READ] <oarameteri sed string mode name> (2.2)

<origin string mode name> ::= (3)
<5tring mode name> (3.1)

<string type> ::= (U)
CHAR ($.1)

I BIT (<t.2)

<string length>
<inteaer literal expressi on>

semantics: A string mode defines bit or character string values of a
length indicated or implied by the string mode.

The string values of a given string mode are well-ordered. For
character string values the ordering is the lexicographical
order as defined by the CCITT alphabet no. 5. For bit string
values the ordering is the lexicographical order such that a
bit which is 1, is greater than a bit which is 0.

The concatenation operator is defined on string values. The
usual logical operators are defined on bit string values (see
section 5.3).

static properties: A string mode has the following hereditary
properties:

• It is a bit string mode or a character string mode>
depending on whether string type specifies BIT or CHAR,
or Whether origin string mode name is a bit or character
string mode.

• It has a string length* which is the value delivered by
NUH(string length).

static conditions: The string length must deliver a non-negative value.

The value delivered by the string length directly contained
in a parameteri sed string mode must be less than or equal to
the String length Of the origin string mode name.

(5)
(5.1)

syntax:
<string mode> ::=

[READ] <string typeX <string length>)
I <parameter i sed string mode>
I [READ] <strina mode name>

32 FASCICLE VI.8 Rec. Z.200

examples:
7.«5 CHAR (20) (1,1)

3.10.3 ARRAY MODES

syntax:
<array mode> :

IREAD3 [ARRAY] (<index mode> {,<index mode>}*)
<element mode> i<element layout>J*

I <parameteri sed array mode>
I [READ] <arrav mode name>

<parameteri sed array mode> :: =
[READ] <origin array mode name>(<upper index>

I [READ] <oarameterised array mode name>

<origin array mode name> :: = (3)
<arrav mode name> (3.1)

< index mode> ::= ({t)
<discrete mode> (4.1)

I <literal range> ($.2)

<upper index> ::= (5)
<1i teral exp ressi on> (5.1)

<element mode> (6)
<mode> (6.1)

derived syntax: The keyuord is optional. An array mode (which is
neither an array mode name nor a parameter i sed array mode)
without the keyword ARRAY, is derived from the array mode with
the keyword

The index mode notation <literal range> is derived from the
discrete mode <literal range>). An array mode With
more than one index mode (denoting a ’multi-dimensional’
array), is derived syntax for an array mode with an element
mode Which is an array mode. For example:
ARRAY(1:20,1:10) INT
is derived from
ARRAY(RANGE(1:20)) ARRAY(RANGE(1:10)) INT
Only if this derived syntax is used, is more than one element
layout occurrence allowed. The number of element layout
occurrences must be less than or equal to the number of index
mode occurrences. In that case, the leftmost element layout
is associated with the innermost element mode etc.

semantics: An array mode defines composite values, which are lists of
values defined by its element mode. The physical layout of an
array location or value can be controlled by element layout

(1)

(1.1)
(1.2)
(1.3)

(2)
(2 .1)
(2 .2)

FASCICLE VI.8 Rec. Z.200 33

specification (see section 3.10.6). Two array values are
equal if and only if all corresponding element values are
equal.

static properties: An array mode has the following hereditary
properties:

• It has an index mode which is the discrete mode denoted by
index mode if it is not a parameterised array mode,
otherwise the index mode is the range mode constructed
as:
&name (lower bound : upper bound)
where &name is a virtual svnmode name synonymous with the
index mode of origin array mode name, lower bound is the
lower bound of the index mode Of the origin array mode
name and upper bound is the upper index.

• It has an upper bound and a lower bound which are
respectively the upper bound and the lower bound of its
index mode.

• It has an element mode, which is either H or READ M, where
H is the element mode, or the element mode of the origin
array mode name respectively. The element mode will be
READ H if and only if H is not a read-only mode and the
array mode is a read-only mode.

• It has an element layout which, if if is a parameterised
array mode, is the element layout of its origin array mode
name, otherwise it is either the specified element
layout, or the implementation default, which is either
P/1CK or NOPACK.

• It is a mapped mode if and only if element layout is
specified, and is a step.

• It has a number of elements which is the value delivered
by:
NUH(upper bound) - NUH(lower bound) + 1

static conditions: The class of upper index must be compatible with the
index mode of the origin array mode name and the value
delivered by it must lie in the range defined by that index
mode.

The index mode must not be a set mode with holes nor a range
mode with holes.

examples:
5.30 ARRAY(1:16) STRUCT(c<t, c2, cl BOOL)
11.10 >4£P/4Y(1 i nel ARRAY(column) square
11.15 board

(1 .1)
(1 .1)
(1.3)

34 FASCICLE VI.8 Rec. Z.200

3.10.4 STRUCTURE MODES

syntax;
<structure mode> ::= (1)

<nested st ructure mode> (1.1)
I <level structure mode> (1.2)
I <parameteri sed st ructure mode> (1.3)
1 [READ3 <st ructure mode name> (1.4)

<nested structure mode> ::= (2)
[READ3 STRUCT (<fields> {, <fields>}*) (2.1)

<fields> ::: (3)
<fixed fields> (3.1)

I <alternati ve fields> (3.2)

<fixed fields> ::= (4)
<name list> <mode> [<field layout>3 , (4.1)

<alternative fields> (5)
CASE [<tags>3 OF
<variant alternative> {,<variant alternative>3*
[ELSE Kvariant fields> {, <variant fi elds>}*3 3 E5AC (5.1)

<variant alternative> (6)
[<case label sped fication>3
: [<variant fields> {, <variant fi elds>}*3 (6.1)

<tags> (7)
<taa field name> {> <taa field name>J* (7.1)

<variant fields> ::= (8)
<name list> <mode> [<field layout>3 (8.1)

<parameterised structure mode> (9)
[READ3 <origin variant structure mode name>
(<1i teral expressi on list>) (9.1)

I [READ3 <parameteri sed structure mode name> (9.2)

<origin variant st ructure mode name> ::= (10)
<variant structure mode name> (10.1)

<literal expressi on list> ::= (11)
<1iteral expression> {,<literal expression>3* (11.1)

derived syntax: A level st ructure mode is derived syntax for a nested
structure mode . This is explained in section 3.10.5.

A fixed fields occurrence or variant fields occurrence, where
name list consists of more than one namet is derived syntax
for several fixed fields occurrences or variant fields
occurrences with one name respectively, each with the
specified mode and optional field layout. In the case of field

FASCICLE VI.8 Rec. Z.200 35

layout, this field layout must not be pos. For example:
STRUCT(I,J BOOL PACK)
is derived from:
STRUCK I BOOL PACK, J BOOL PACK)

semantics: structure modes define composite values consisting of a list
of values* selectable by a component name. Each value is
defined by a mode which is attached to the component name,
structure values may reside in (composite) structure
locations* where the component name serves as an access to the
sub-location. The components of a structure value or location
are called fields and their names field names.

There are fixed structures* variant structures and
parameterised structures.

Fixed structures consist only of fixed fields* i.e. fields
which are always present and which can be accessed without any
dynamic check.

Variant structures have variant fields* i.e. fields which are
not always present. For tagged variant structures the
presence of these fields is known only at run time from the
value(s) of certain associated fixed field(s) called tag
fields. Tag-less variant structures do not have tag fields.
Because the composition of a variant structure may change
during run time* the size of a variant structure location is
based upon the largest choice (worst case) of variant
alternatives.

A parameterised structure is determined from a variant
structure mode for which the choice of variant alternatives
is statically specified by means of literal expressions. The
composition is fixed from the point of the creation of the
parameterised structure and may not change during run time.
The tag fields* if present, are read-only and automatically
initialised with the specified values. For a parameterised
structure location, a precise amount of storage can be
allocated at the point of declaration or generation. Note
that also (virtual) dynamic paramsterised structure modes
exist. Their semantics are defined in section 3.11.4.

The layout of a structure location or value can be controlled
by means of a field layout specification (see section
3.10.6).

Two structure values are equal if and only if corresponding
component values are equal. However, if one or both structure
values are tag-less variant structure values, the result of
comparison is implementation defined.

static properties:

36 FASCICLE VI.S Rec. Z.200

general:

A structure mode has the following hereditary properties:

• A structure mode is a fixed structure mode if and only if
it is denoted by a nested Cor level) st ructure mode Which
does not directly contain an alternati ve fields
occurrence.

• A structure mode is a variant structure mode if and only
if it is denoted by a nested (or level) st ructure mode and
contains at least one alternati ve fields occurrence.

• A structure mode is a parameterised structure mode if and
only if it is denoted by a parameterised structure mode.

• A structure mode has a set of field names. This set is
determined below for the different cases. A name is said
to be a field name if and only if it is defined in a name
list in fixed fields or variant fields in a structure
mode. Each field name of a given structure mode has a
unique field mode attached to it, which is either M or
READ Mf where H is the mode following the field name. The
field mode will be READ M if the mode following is not a
read-only mode and either it is the tag field name of a
parameterised structure mode (see below), or the
st ructure mode is a read-only mode.

A field name of a given structure mode has a unique field
layout attached to it which is the field layout following
the field name, if present, otherwise the default field
layout, which is either PACK or NOPACK. A field namp is
(language) referable if and only if its field layout is
NOPACK.

• A structure mode denotes a mapped mode if and only if its
field names have a field layout which is pos.

fixed structures:

A fixed structure mode has the following hereditary property:

• It has a set of field names which is the set of names
defined by any name list in fixed fields. These field
names are fixed field names.

variant structures:

A variant structure mode has the following hereditary
properties:

• It has a set of field names, which is the union of the set
of names defined by any name list in fixed fields and the
set of names defined by any name list in alternati ve

FASCICLE VI.8 Rec. Z.200 37

fields. Field names defined by a name list in fixed fields
are the fixed field names of the variant structure mode,
its other field names are the variant field names.

A field name of a variant structure mode is a tag field
name if and only if it occurs in any tags of an
alternati ve fields, alternati ve fields in Whieh no tags
are specified, are tag-less alternative fields. The
variant field names defined by any name list in variant
fields of a tag-less alternative fields are tag-less
variant field names. The other variant field names are
tagged variant field names.

• A variant structure mode is a tag-less variant structure
mode if and only if all its alternative fields
occurrences are tag-less. Otherwise it is a tagged
variant structure mode.

• A variant structure mode is a parameterisable variant
structure mods if and only if it is either a tagged
variant structure mode or a tag-less variant structure
mode where for each of the alternative fields occurrences
a case label sped fication is given for all the variant
alternati ve occurrences in it.

• A parameterisable variant structure mode has a list of
classes attached, determined as follow:

if it is a tagged variant structure mode, the list of
H /-value classes, where M / are the modes of the tag
field names in the order as they are defined in fixed
fieldsi

if it is a tag-less variant structure mode, the list
is built up from the individual resulting lists of
classes of each alternati ve fields by concatenating
them in the order as the alternati ve fields occur.
The resulting list of classes of an alternati ve
fields occurrence is the resulting list of classes of
the list of case label specification occurrences in
it (see section 9.1.3).

parameterised structures:

A parameterised structure mode has the following hereditary
properties:

• It has an origin variant structure mode, which is the mode
denoted by origin variant st ructure mode name

• It is a tagged parameterised structure mode if and only if
its origin variant structure mode is a tagged variant
structure mode, otherwise the parameterised structure
mode is tag-less.

FASCICLE VI.8 Rec. Z.200

• It has a set of field names, which is the union of the set
of fixed field names of its origin variant structure mode
and the set of those variant field names of its origin
variant structure mode, which are defined in variant
alternati ve occurrences which are selected by the list of
values defined by literal expressi on list.

The set of tag field names Of a parameterised st ructu re
mode is the set of tag field names of its origin variant
structure mode.

• A parameterised structure mode has a list of values
attached, defined by literal expressi on list.

static conditions:

general:

All field names of a structure mode must be different.

If any field has a field layout which is pos, all the fields
must have a field layout which must be pos.

variant structures:

A tag field name must be a fixed field name and must be
textually defined before all the alternati ve fields
occurrences in whose tags it is mentioned. CAs a consequence,
a tag field precedes all the variant fields that depend upon
it). The mode of a tag field name must be a discrete mode.

In a variant structure mode the alternati ve fields
occurrences must be either all tagged or all tag-less. For
tag-less alternati ve fields, case label specification may be
omitted in all variant alternati ve occurrences together, or
must be specified for all variant alternati ve occurrences.

If, for a tag-less variant structure mode, any of its
alternative fields has case label s ped ficati on given, all
its alternati ve fields must have case label spe d fi cati on.

For alternati ve fields, the case selection conditions must be
fulfilled (sea section 9.1.3), and the same completeness,
consistency and compatibility requirements must hold as for
the case action (see section 6.A). Each of the tag field names
of tags (if present) serves as a case selector with the
M-value class, where M is the mode of the tag field name. In
the case of tag-less alternative fields, the checks involving
the case selector are ignored.

For a parameterisable variant structure mode none of the
classes of its attached list of classes may be the all class.
(This condition is automatically fulfilled by a tagged
variant structure mode.)

FASCICLE VI.8 Rec. Z.200 39

parameterised structures:

The origin variant st ructure mode name must be
paramaterisable.

There must be as many literal expressions in the literal
expression list as there are classes in the list of classes of
the origin variant st ructure mode name. The Class of each
literal expression must be compatible with the corresponding
Cby position) class of the list of classes. If the latter
class is an M-value class, the value delivered by the literal
expression must be one of the values defined by M.

examples:
(2.1)

(2.1)
(1.4)
(4.1)
(7.1)
(3.1)

3.3 STRUCK re, im INT)
11.5 STRUCT(status SET(occupied, free),

CASE status OF
(occupi ed): p piece,
(free):
ESAC)

2.5 fraction
11.5 status SET(occupied, free)
11.6 status
11.7 p piece

3.10.5 LEVEL STRUCTURE NOTATION

derived syntax:
<level st ructure mode> :: =

1 [<array sped fication>)
[READ) {,<(2) level fields>)*

(1)

(1 .1)

<(n) level fields>
<(n) level fixed fields>

I <(n) level alternative fields>

(2)
(2 .1)
(2 .2)

<(n) level fixed fields> (3)
n <name list> <mode> [<field layout>3 (3.1)

I n <name Iist> [<array sped fi cati on>)
[READ) [<field layout>3 {,(n+D level fields>)+ (3.2)

<(n) level alternative fields> ::= (4)
C/4SE [<tags>l OF
<(n) level alternative>- {, <(n) level alternative>J*
[ELSE [<(n) level variant fields>
(,<(n) level variant fields>}*))
ES/4C (4.1)

<(n) level alternative> ::= (5)
[<case label spedfication>
{,<case label sped fication>)M)

40 FASCICLE VI.8 Rec. Z.200

; [<(n) level variant fields>
{,<(n) level variant fi elds>]*l (5.1)

semantics:

<(n) level variant fields> ::= (6)
n <name list> <mode> [<field layout>1 (6.1)

i n <name list> [<array sped ficati on>]
[READ! [<field layout>] i,<(n+l) level fields>J* (6.2)

<array sped fi cati on> ::= (7)
[READ] [ARRAY] (<index mode> {,<index mode>}*)
{<element layout>}* (7.1)

N.6. The above description of a level number notation for
structures involves an extension to the syntax description
method explained in chapter 2: the syntax is recursively
defined using the structuring level number (n) as parameter.

The level st ructure mode is derived syntax for a unique nested
st ructu re mode.

The nested notation is considered as strict syntax and all
semantics, properties and conditions are explained in terms
of it (see section 3.10.4).

If a structure contains fields which are themselves
structures or arrays of structures, a hierarchy of structures
is formed and a level number can be associated with each
f i eld.

Example:

SYNMODE M = STRUCT(B BOOL,
5 >*£/?/*>' (1:10; STRUCT (T INT, U BOOL));

The structure as a whole has level 1, B and S have level 2, T
and U have level 3. Instead of writing nested structure modes,
it is allowed in the level structure mode to write the level
number in the front of the name.

Example:

SYNMODE M = 1, 2 B BOOL,
2 S ARRAY (1:10),
3 T INT,
3 LI BOOL;

In mode definitions and synonym definitions with a mode there
is no name associated with the first level. The association
occurs at the declaration or at the point of formal parameter
specification. At these places, the name of the first level
will be placed after the level-1 position.

Example:

FASCICLE VI.8 Rec. Z.200

DCL 1 A,
2 B BOOL,
2 S (1:10),
3 T INT,
3 U BOOL;

. With declarations and formal parameter specifications*
attributes and initialisations* if present* must be specified
at the end of the level-1 position.

Example:

P ; PROC (I X INOUT,
2 B BOOL,
2 C INT);

If within a level structure mode an array of structures is
specified, the array specification is given behind after the
level indicator.

static conditions: Nested and level notations must not be mixed.

examples:
19.9 DCL 1 BASED (P),

2 I INFO P05(0,d :31),
2 PREV PTR POS(1,0:15),
2 NEXT PTR P0S(1,16:31) (1.1)

3.10.6 LAYOUT DESCRIPTION FOR ARRAY MODES AND STRUCTURE MODES

syntax:
<element layout> ::= (1)

PACK | NOPACK | <step> (1.1)

<field layout> ::= (2)
PACK | NOP/1CK | <pos> (2.1)

<step> (3)
STEP(<pos> [,<step size> I, <pattern size>33) (3.1)

<pos> (4)
POS(<uord> ,<start bit> ,<length>) (4.1)

I POS(<uord> [,<start bit> I: <end bit>33) (4.2)

<pattern size> ::= (5)
<inteaer literal expression> (5.1)

<word> ::= (6)
<integer literal expression> (6.1)

<step size> ::= (7)

*2 FASCICLE VI.8 Rec. 2.200

< integer literal expression> (7.1)

<start bit> ::= (3)
< integer literal expression> (3.1)

<end bit>::- (9)
< integer literal expression> (9.1)

<length> :: = (10)
< integer literal expression> (10.1)

semantics: It is possible to control the layout of an array or a
structure by giving packing or mapping information in its
mode. Packing information in either PACK or NOPACK, mapping
information is either a step in the case of array modes, or
pos, in the case of fields of structure modes. The absence of
element layout or field layout in an array or structure mode
will always be interpreted as packing information, i.e.
either as PACK or as NOPACK.

If PACK is specified for elements of an array or field of a
structure, it means that the use of memory space is optimised
for the array elements or structure fields, whereas NOPACK
-implies that the access time for the array elements or the
structure fields is optimised. NOPACK also implies (language)
referability.

The PACK, NOPACK information is only applied for one level,
i.e. it is applied to the elements of the array or fields of
the structure, not for possible components of the array
element or structure field. The layout information is always
attached to the nearest mode to which it may apply and which
does not already have layout attached. For example, if the
default packing is NOPACK:
STRUCT (F ARRAY (0:1) H PACK)
is equivalent to:
STRUCT (F ARRAY (0:1) H PACK NOPACK)

It is also possible to control the precise layout of a
composite object by specifying positioning information for
its components in the mode. This positioning information is
given in the following ways:

• For array modes, the positioning information is given for
all elements together, in the form of a step following the
array mode.

• For structure modes, the positioning information is given
for each field individually, in the form of a pos,
following the mode of the field.

The precise positioning of C, a component i.e. element or
field of an object, is given by the following three constants:
Uc* Bc and Lc where

FASCICLE VI.8 Rec. 2.200 43

Mc is the distance in words of the first word which is (maybe
partially) occupied by C, relative to the first word which
is (maybe partially) occupied by the object of which is C a
component,

Be is the distance in bits of the first bit which is occupied
by c, relative to the leftmost bit of the first word which
is (maybe partially) occupied by C,

Lc is the number of bits which are occupied by C.

The positioning information, given for the components of the
object, determines the precise positioning of these
components, if the object is entire (i.e. it is not a
component of another object). However, if the object is not
entire, then the precise positioning of the component is
dependent on the precise positioning of the object itself.

A s t e p specified for the elements of an array is a shorthand
notation for the explicit enumeration of the p o s of each
individual element. Informally, the p o s and the s t e p size
specify a "positioning pattern" for the elements which
completely fit in the first pattern size words, assuming the
array to be entire. The positioning of the first element is
determined by p o s ; the positioning of the subsequent elements
which fit completely in the first pattern size words, is such
that the distance in bits between the first occupied bits of
successive elements is step size. The positioning pattern
specified this way is repeated as often as needed for
subsequent units of pattern size words.

Pos

Given an object 0 of a mapped mode in which a p o s of the form:
POS(<uord number>, <start bit> , <lenqth>)
is specified for a component C of that object, the precise
positioning of the the component C is determined as follows:

• If the object 0 (of which C is a component) is entire,
then

Mc is NUH(word number)

Be is NUM(start bit), and

Le is NUH(length).

• If the object 0 (of which C is a component) is not entire,
then

Mc is:
NUH(word number) + (NUH(start bit) + Bo J/WIDTH,

FASCICLE VI.8 Rec. 2.200

Be is denoted by (NUHC start bit) + Bo) HOD UIDTH,
and

Lc is denoted by NUM(length)

where UIDTH is the numer o-f bits in a word.

Step

Let elementi be

• the element of the lowest index* if i=0

• the element of the index which is the successor of the
index for the element,, where n = i-1 otherwise

Let io be the number of elements preceding elemento in its
positioning pattern. Given a step attribute of the form

STEP (<pos> , < s t e p size> , <pattern size>),

the p o s of an individual element with respect to the beginning
of the positioning pattern of elemento is determined as
follows:

the pos of elementi is:
POS (NUH(pattern size) x <<i + io) /DENS)

+ RBPOS//UIDTH, RBPOS/ MOD UIDTH, length)
for 1 < i < ’number of elements*
where RBPOS/ is

NUH(w or d number) x UIDTH + NUH(start bit)
+ NUH(step size) * ((i + io) HOD DENS) ,

and DENS is
(NUH(pattern size) * UIDTH)/ NUH(step size) ,

and UIDTH is the number of bits in a word.

Defaults

The notation:
POS (<word number> , <start bit> : <end bit>)

is semantically equivalent to:
POS (< w o r d number> , <start bit> ,
NUHC end bit) - NUH(start bit) + 1)

The notation:
POS (<uord number> , <start bit>)

is semantically equivalent to:
POS (<Nord number> , <start bit> , B5IZE)

where BSIZE is the minimum number of bits which is needed to
be occupied by the component for which the p o s is specified.

The notation:
POS (< w o r d number>)

is semantically equivalent to:

FASCICLE VI.8 Rec. Z.200 45

POS (<uord number> , 0 , USIZE * UIDTH)
where U5IZE is the size of the mode of the component for which
the pos is specified.

The notation:
STEP (<pos> , < s t e p size>)

is semantically equivalent to
STEP (<pos> , < s t e p size> , PSIZE)

where PSIZE is the smallest integer such that
PSIZE * UIDTH > NUM(step size)

The notation:
STEP (<pos>)

is semantically equivalent to
STEP (<pos> , SSIZE)

where SSIZE is the <length> specified in pos or derivable from
pos by the above rules.

static properties: For any location of a mapped array mode the element
layout of the mode determines the {language) referability of
its sub-locations (including sub-arrays, array slices) as
follows:

• either all sub-locations are (language) referable, or
none of them are;

• if the element layout is NOPACK all sub-locations are
(lansuage) referable.

For any location of a mapped structure mode, the referability
of the structure field selected by a field name is determined
by the field layout of the field name as follows:

• the field name is (language) referable if the field
layout is NOPACK .

static conditions: if the element mode of a given array mode, or the field
mode of a field name of a given structure mode, is itself an
array or structure mode, then it must be a mapped mode if the
given array or structure mode is mapped and not a mapped mode
otherwise.

Each Of the integer literal expression occurrences must
deliver a non-negative value. In addition, lengtht step size
and pattern size must deliver a non-zero value, and start bit
and end bit must deliver a value less than UIDTH where UIDTH
is the number of bits in a word (implementation defined).
Moreover, start bit must deliver a value not greater than the
value delivered by end bit.

For each field name of a mapped structure mode, the length in
its field layout must not be less than the minimum number of
bits which need to be occupied by the field.

FASCICLE VI.8 Rec. Z.200

For each mapped array mode, the length in the p o s in its
element layout must not be less than the minimum number of
bits which is needed to be occupied by the elements. In
addition* for any element layout the following conditions
must be fulfilled:

• NUH(step size) >_ NUH(length)

• (NUH(pattern size) * W1DTH) HOD NUH(step size)
>, NUH(uord number) * WIDTH + NUH(start bit)

Consistency and feasibility

Consistency:

No component of an array or structure object may be specified
to occupy any bits occupied by another component of the same
object except in the case of two variant field names defined
in the same alternati ve fields occurrence; however, in the
latter case the variant fields names may not both be defined
in the same variant alternati ve nor both following ELSE.

Feasibili ty:

There are no language defined feasibility requirements,
except for the one that can be deduced from the rule that the
referability of a sub-location of any (referable or
non-referable) location is determined only by the (element or
field) layout, which is a property of the mode of the
location. This places some restrictions on the mapping of
components which themselves have referable components.

examples:
1 7 . 5
1 9 . 1 1

5 . 1 1 DYNAHIC HOPES

3 . 1 1 . 1 GENERAL

A dynamic mode is a mode some properties of which are known only at run
time. Dynamic modes are always parameterised modes with one or more
run-time parameters. Dynamic modes have no denotation in CHILL. However,
for description purposes, virtual denotations are introduced in this
document. These virtual denotations are preceded by the ampersand symbol
(&) to distinguish them from actual notations which may appear in a CHILL
program text.

PACK (1.1)
PO5(l,0:15) (<*.2)

FASCICLE VI.8 Rec. Z.200 47

3.11.2 DYNAHIC STRING MODES

Virtual denotation: &<origin string mode name> (<integer expression>)

semantics: A dynamic string mode is a parameterised string mode with
statically unknown length. The dynamic string length is the
value delivered by the integer expression.

static properties:

• The dynamic string mode is a bit (character) string mode
if and only if the origin string mode name is a bit
(character) string mode.

dynamic Properties:

• A dynamic string mode has a dynamic length* which is the
value delivered by NUH(inteaer expression).

3.11.5 DYNAMIC ARRAY MODES

Virtual denotation: &<origin array mode name> (<di sc rete expressi on>)

semantics: A dynamic array mode is a parameterised array mode with
statically unknown upper bound. The lower bound, index mode
and element mode are statically known, the dynamic upper
bound is the value delivered by the discrete expressi on.

static properties:

• A dynamic array mode has an index mode, element mode,
element layout and lower bound attached, which are the
index mode, element mode, element layout and lower bound
of the origin array mode name.

dynamic properties:

• A dynamic array mode has a dynamic upper bound, which is
the value delivered by discrete exp ress i onf and a dynamic
number of elements, which is the value delivered by
NUH(upper bound) ~ NUM(lower bound) + 1

3.11.4 DYNAMIC PARAMETERISED STRUCTURE MODES

virtual denotation: &<origin variant st ructure mode name>
(<expression list>)

48 FASCICLE VI.8 Rec. Z.200

semantics: A dynamic parameterised structure mode is a parameterised
structure mode uith statically unknown parameters. The
composition of the structure mode can only be determined
dynamically from the list of values delivered by expression
list .

static properties:

A dynamic parameterised structure mode has a unique
origin variant structure mode attached, which is the mode
denoted by the origin variant structure node name.

A dynamic parameterised structure mode is tagged if and
only if its origin variant structure mode is a tagged
variant structure mode, otherwise it is tag-less.

The set of field names (fixed field names, tag field
names, variant field names) of a dynamic parameterised
structure mode is the set of field names (fixed field
names, tag field names, variant field names) of its
origin variant structure mode.

dynamic properties:

A dynamic parameterised structure mode has a list of
values attached, which is the list of values delivered by
the expressions in the expressi on list .

FASCICLE VI.8 Rec. Z.200 49

4.0 LOCATIONS AND THEIR ACCESSES

4.1 DECLARATIONS

4.1.1 GENERAL

syntax:
<declaration statement> :

DCL <declaration> {, <declaration>}*;
(1)
(1.1)

<declaration>
<locati on declarati on>

I <loc-identi ty declaration>
I <based declaration>

(2)
(2.1)
(2 .2)
(2.3)

semantics: A declaration statement declares one or more names to be an
access to a location.

examples:
6 . 9 DCL j INT ; r julian^day_number,

d, m, y INT ;
6 . 1 0 d , m, y INT
11.34 starting_square LOC := b(m.lin_l)(m.col_l)

(1 .1)
(2 .1)
(2 .2)

4.1.2 LOCATION DECLARATIONS

syntax:
<location declaration> ::~

<name list> <mode> [STATIC] [<initialisation>1
(1)
(1 .1)

<initialisation> : : =
<reach-bound initialisation>

I <1i fetime-bound initialisation>

(2)
(2.1)
(2 .2)

semantics:

<reach~bound initialisation> (3)
<ass i gntnent symbol> <value> [<handler>] (3.1)

<1ifetime-bound initialisation> ::= (4)
INIT <assignment symbol> <constant value> (4.1)

A location declaration creates as many locations as there are
names specified in the name list .

With reach-bound initialisationt the value is evaluated each
time the reach in which the declaration is placed is entered
(see section 7.2) and the delivered value is assigned to the

50 FASCICLE VI.8 Rec. Z.200

location(s). Before the value is evaluated the location
contains an undefined value (except uhen a mode Mith the
tagged parameterised property or Mith the synchronisation
property is specified; see beloM).

Mith lifetime-bound initialisationt the value yielded by the
constant value is assigned to the location(s) only once at the
beginning of the lifetime of the location(s) (see sections
7.2 and 7.93.

Specifying no initialisation is semantically equivalent to
the specification of a lifetime-bound initialisation Mith the
undefined value (see section 5.3). Houever, if the mode has
the tagged parameterised property, the tag field
sub-locations of the location are initialised Mith the
corresponding value of the associated parameterised structure
mode.

The meaning of the undefined value as initialisation for a
synchronisation location is that the created event and/or
buffer sub-locations are automatically initialised to
"empty", i.e. no delayed processes are attached to the event
or buffer, nor are there messages in the buffer.

The semantics of STATIC and handler can be found in section
7.9 and chapter 10, respectively.

static properties; Names declared in a location declaration are
location names. The mode attached to the location name is the
mode specified in the location declaration, A location name
is (language) referable.

static conditions: The class of the value or constant value must be
compatible Mith the mode.

If the mode has the read-only property, initialisation must
be specified. If the mode has the synchronisation property,
reach-bound initialisation must not be specified.

dynamic conditions: In the case of reach-bound initialisationt the
assignment conditions of value Mith respect to the mode apply
(see section 6.2).

examples:
5.3 k2, x, u, t, s, r BOOL (1
6.9 : = jul i an__day_number (3
5.* IHIT := t'A':fZ fl <<f

FASCICLE VI.8 Rec. Z.200 51

*.1.3 LOC-IDENTITY DECLARATIONS

syntax:
<loc-identi ty declarati on> =

<name Iist> <mode> LOC <assignment symbol>
<static mode locati on> [<hartdler>7

(1)

(1 .1)

semantics: A loc-identity declaration creates as many accesses to the
specified static mode location as there are names specified
in the name list.

If the static mode location is evaluated dynamically, this
evaluation is done each time that the reach in which the
loc-identity declaration is placed, is entered. In this case,
a declared name denotes an undefined location prior to the
first evaluation during the lifetime of the access denoted by
the declared name (see sections 7.2 and 7.9).

static properties: Names declared in a loc-identity declaration are
loc-identitv names. The mode attached to a loc-identitv name
is the mode specified in the loc-identi ty declaration. A
loc-identi tv name is (language) referable if and only if the
specified static mode location is (language) referable.

static conditions: The specified mode must be read-compatible with
the mode of the static mode locati on,

examples:
11.3* starting square LOC := b(m.lin_l)(m.col_l) (1.1)

.!. BASED DECLARATIONS

syntax:
<based declaration> ::= (1)

<name list> <mode> BASED
l(<bound or free reference location name>)J (1.1)

derived syntax: A based declarati on Without a bound or free reference
location namet is derived syntax for a synmode definition
statement. E.g.
DCL I INT BASED;
is derived from:
SYNMODE I = INT;
The declared names are svnmode names, synonymous with the
specified mode.

semantics: A based declaration (With bound or free reference location
name) specifies as many accesses as there are names in the
name list. Names declared in a based declaration serve as an
alternative way of accessing a location by dereferencing a

52 FASCICLE VI.8 Rec. Z.200

reference value. This reference value is contained in the
location specified by the bound or free reference locati on
name. This dereferencing operation is made each time and only
when an access is made via a declared based name.

static properties: The names declared in a based declarati on are
based names. The mode attached to a based name is the mode
specified in the based declarati on. A based name is
(language) referable.

static conditions: If the mode Of the bound or free reference
location name is a bound reference mode, the specified mode
must be read-compatible with the referenced mode of the mode
Of the bound or free reference location name.

examples:
19.9 1 X BASED CP),

2 1 INFO POSCO,8:31),
2 PREV PTR POSC1,0:15),
2 NEXT PTR P0SC1,16:31) (1,1)

$.2 LOCATIONS

$.2.1 GENERAL

syntax:
<location> ::= Cl)

<static mode location> Cl.l)
I <dynamic mode location> Cl.2)

<static mode location> ::= C2)
<access name> C2.1)

| <dereferenced bound reference> C2.2)
I <dereferenced free reference> C2.3)
I <string element> C2.$)
I <sub string> C2.5)
I <array element> C2.6)
I <sub-array> C2.7)
I <st ructu re field> C2.8)
I <location procedure call> C2.9)
I <locati on buiIt-i n routine call> C2.10)
I <location conversion> C2.ll)

<dynamic mode location> ::= C3)
<string slice> C3.1)

I <array slice> C3.2)
I <dereferenced row> C3.3)

FASCICLE VI.8 Rec. Z.200 53

semantics; A location is an object that can contain values. A location is
either denoted by a static mode location, i.e. its mode is
statically determinable* or by a dynamic mode locationt i.e.
part of the mode information can only be obtained
dynamically. Locations have to be accessed to store or obtain
a value.

static properties: A static mode location has a static mode
attached. For descriptive purposes only, a virtual dynamic
mode Mill be attached to each dynamic mode location (see
section 3.1). In the case of dynamic mode locations the
required compatibility checks can be completely performed
only at run time. Check failure of the dynamic part Hill cause
either the RANGEFAIL or the TAGFAIL exception.

U.2.2 ACCESS NAMES

syntax:
<access name>

<locat i on na«e>
I <Ioc-i dent i tv name>
I <based name>
I <location enumerat i on name>
I <location do-with name>

semantics: An access name is an access to a location.

An access name is one of the following:

• a location name, i.e. a name explicitly declared in a
location declaration or implicitly declared in a formal
parameter without the LOC attribute;

• a loc-identitv name, i.e. a name explicitly declared in a
loc-identity declaration or implicitly declared in a
formal parameter with the LOC attribute;

• a based name, i.e. a name declared in a based declaration;

• a location enumeration name, i.e. a loop counter in
locati on enumerati on}

• a location do-with name, i.e. a field name used as direct
access in the do action with a w ith part.

If the location denoted by a location do-uith name is a
variant field of tag-less variant structure location, the
semantics are implementation defined.

(1)
(1 .1)
(1.2)
(1.3)
(1.$)
(1.5)

54 FASCICLE VI.8 Rec. 2.200

static properties: The mode attached to an access name is the mode of the
location name» loc-identitv name> based name» location
enumeration name or location do-with name respectively.

An access name is (language) referable if and only if it is a
Iocation namet a referable loc-identitv namer a based name» a
referable location enumerati on name$ or a referable locati on
do-uith name.

dynamic conditions? A loc-identitv name must not denote an undefined
location.

When accessing via based name, the same dynamic conditions
hold as When dereferencing the bound or free reference
1ocation name in the associated based declaration Csee
sections 4.2.3 and 4.2.4).

Accessing via a location do-uith name Causes a TAGFAIL
exception if the denoted location is a variant field of:

• a tagged variant structure mode location and the
associated tag field value(s) indicateCs) that the field
does not exist;

• a dynamic parameterised structure mode location and the
associated list of values indicates that the field does
not exist.

examples:
4.11 a
11.53 starting
19.14 X
15.25 EACH
5.11 cl

(1 .1?
(1 .2)
(1.5)
(1. 41
(1.5)

4 .2.5 DEREFERENCED BOUND REFERENCES

syntax:
<dereferenced bound reference> ::=

<bound reference expression> -> I<mode name>2
(1)
(1 .1)

semantics: The location obtained by dereferencing a bound reference
value is that which is referenced by the bound reference
value.

static properties: The mode attached to the dereferenced bound
reference is the mode name if one is specified* otherwise the
referenced mode of the mode of . the bound reference
expression. A dereferenced bound reference is Clanguage)
referable.

FASCICLE VI.8 Rec. Z.200 55

Static conditions; The bound reference expression must be strong.
If the optional mode name is specifiedf it must be
read-compatible with the referenced mode of the mode of the
bound reference expression.

dynamic conditions: The lifetime of the referenced location must not
have ended.

The EMPTY exception occurs if the bound reference expressi on
delivers the value NULL.

examples:
10.49 p-> (l.

4.2.4 DEREFERENCED FREE REFERENCES

syntax:
<dereferenced free reference> ::= (1)

<free reference expression> -> <mode name> (1.

semantics: The location obtained by dereferencing a free reference value
is that which is referenced by the free reference value.

static properties: The mode attached to the dereferenced free
reference is the mode name. A dereferenced free reference is
(language) referable.

static conditions: The free reference expressi on must be strong.

dynamic conditions: The free reference expressi on must not deliver a
value obtained by referencing a non-referable location (see
section 5.2.13). The lifetime of the referenced location must
not have ended.

The EMPTY exception occurs if the free reference exp ress i on
delivers the value NULL.

The MODEFAIL exception occurs if the mode name is not
read-compatible with the mode of the referenced location.

4.2.5 STRING ELEMENTS

syntax:
<string element> (1

<strina location> (<posi tion>) (1

56 FASCICLE VI.8 Rec. 2.200

derived syntax; A string element is derived syntax for a substring of
length 1 (see section 4.2.6). E.g.
<strina location> (<position>)
is derived from:
<strino locaii on> (<position> UP 1)

examples:
15.16 string->(i) (1.1)

4.2.6 SUBSTRINGS

syntax:
<substring> ::= (1)

<string location> (<left element> : <right element>) (1.1)
I <strino location> (<position> UP <string length>) (1.2)

<left element> (2)
<integer literal expression> (2.1)

<right element> :: - (3)
<integer literal expressi on> (3.1)

<position> ::= (4)
<inteoer expression> (4.1)

semantics: A substring delivers a string location which is a substring of
the specified string location.

static properties: The mode attached to a substring is a
parameterised string mode* constructed as:
&name (substring length)
where &name is a virtual svnmode name synonymous with the
(possibly dynamic) mode of the string location, and where
subst r i ng length is either string length or
NUH(right element) - NUM(left element) + 1

static conditions: The left element, right element and length must
deliver non-negative integer values such that the following
relations hold:

1. NUH(left element) < NUH(right element)

2. NUM(right element) < L-l

3. 1 <. NUH(string length) < L

where L is the string length of the string location. (If the
string location is a dynamic mode location* the relations 2.
and 3. can only be checked at run time; see below.)

FASCICLE VI.8 Rec. Z.200 57

dynamic conditions: The RANGEFAIL exception occurs if any of the
relations 2. or 3. above does not hold in the case of a
dynamic mode string locati ont or if any of the following
relations hold:

1. NUM(posi ti on) < 0

2. NUM(position) + NUM(string length) > L

where L is the string length of the mode of the string
locati on.

examples:
Id.23 string->(scanstart UP 10) (1.2)

*.2.7 ARRAY ELEMENTS

syntax:
<array element> (1)

<arrav location> (<expression list>) (1.1)

<expression list> : :z (2)
<expressi on> {, <expression>}* (2.1)

derived syntax: The notation: (<expression list>) is derived syntax
for:
(<expression>) {(<expression>)}*
where there are as many parenthesised expressions as there
are expressions in the expression list. Thus an array element
in the strict syntax has only one (index) expression.

semantics: An array element delivers a (sub)location which is an element
of the specified array location.

static properties: The mode attached to the array element is the
element mode of the mode of the array location.

An array element is (language) referable if the element
layout Of the mode Of the array location is NOPACK.

static conditions: The class of the expressi on must be compatible
with the index mode of the mode of the array location.

dynamic conditions: The RANGEFAIL exception occurs if any of the
following relations hold:

1. expressi on < L

2. exp ress i on > U

58 FASCICLE VI.8 Rec. Z.200

where L and U are the lower bound and the (possibly dynamic)
upper bound of the mode of the array location, respectively.

examples:
11.3* b(m.lin_l)(m.col 2) (1.1)

$.2.d SUB-ARRAYS

syntax
<sub~array> (1)

<ar rav location>(<lower element> : <upper element>) (1.1)
I <ar rav location>

(<integer expression> UP <array length>) (1.2)

<lower element> :
<literal expressi on>

(2)
(2 .1)

<upper element>
<1iteral exp ressi on>

(3)
(3.1)

<array length>
<integer literal expressi on>

(<t)
(<t.l)

semantics: a sub-array delivers a (sub) array location which is the part
of the specified array location indicated by the lower
element and upper element, or integer exp ressi on and array
length. The lower bound of the sub-array is equal to the lower
bound of the specified array; the upper bound is determined
from the specified expressions.

static properties: The mode attached to a sub-array is a
parameterised array mode defined as follows:
&name(upper index)
where &name is a virtual svnmoda name synonymouth with the
(possibly dynamic) mode of the arrav location and upper index
is either L + array length - 1, where L is the lower bound of
the array mode of the array location, or lit, where lit is a
literal whose class is compatible with the classes of lower
element and upper element such that:
NUH(lit) - NUH(L) + NUM(upper element) - NUH(lower element).
A sub-array is (language) referable if the element layout of
the mode of the array location is NOPACK.

Static conditions: The classes Of lower element and upper element or
inteoer expressi on and array length must be compatible with
the index mode of the mode of the array location.

The lower element, upper element, and array length
deliver values such that the following relations hold:

must

FASCICLE VI.8 Rec. Z.200 59

1. L < lower element < upper element

2. 1 < array length

3. upper element < U

4. array length < U - L + 1

where L and U are respectively the lower bound and upper bound
Of the mode of the array location. (If the array location is a
dynamic mode location, relations 3. and 4. can only be checked
at run time; see below.)

dynamic conditions: The RANGEFAIL exception occurs if any of the
relations 3. and 4. above does not hold for a dynamic mode
array location, or if any of the following relations hold:

1. L > integer exp ress i on

2. integer exoression + array length - 1 > U

where L and U are the lower bound and upper bound of the array
mode of the array location, respectively.

4.2.9 STRUCTURE FIELDS

syntax:
<structure field> (1)

<structure location> . <field name> (1.1)

semantics: A structure field delivers a (sub) location which is a field of
the specified structure location.

If the structure location has a tag-less variant structure
mode and the field name is a variant field name, the semantics
are implementation defined.

static properties: The mode of the structure field is the mode of the
field name. A structure field is (language) referable if the
field name is (language) referable.

static conditions: The field name must be a name from the set of
field names of the mode of the structure location.

dynamic conditions: The TAGFAIL exception occurs if the structure
location denotes:

• a tagged variant structure mode location and the
associated tag field value(s) indicate(s) that the field
does not exist;

60 FASCICLE VI.8 Rec. Z.200

• a dynamic parameterised structure ipode location and the
associated list of values indicates that the field does
not exist.

examples:
10,52 last->.info (1.1)

❖.2.10 LOCATION PROCEDURE CALLS

syntax:
<location procedure call> (1)

<location procedure call> (1.1)

semantics: A location is delivered as the result of a location procedure
call.

static properties: The mode attached to a location procedure call is
the mode of the result spec of the location procedure call.

dynamic conditions: The location procedure call must not deliver an
undefined location and the lifetime of the delivered location
must not have ended.

❖ .2.11 LOCATION BUILT-IN ROUTINE CALL5

syntax:
<location buiIt-in routine call> (1)

< i molementati on location built-in routine call> (1.1)

semantics: A location is delivered as the result of a implementation
location built-in routine call.

static properties: The mode attached to the location built-in
routine call is the result mode Of the i mvlementati on
location built-in routine call.

dynamic conditions: The imolementation locati on buiIt-i n routine call
must not deliver an undefined location and the lifetime of the
delivered location must not have ended.

❖.2.12 LOCATION CONVERSIONS

syntax:
<location conversion> ::= (1)

<mode nameX <static mode location>) (1.1)

FASCICLE VI.8 Rec. Z.200 61

semantics; A location conversion overrides the CHILL mode checkins and
compatibility rules. It explicitly attaches a mode to the
specified static mode location.

The precise dynamic semantics of a location conversion are
implementation defined.

static properties: The mode Of a location conversion is the mode
name.

static conditions: The static mode location must be referable.

The follouins relation must hold:
5IZE(mode name) r 51ZE(static mode location)

$.2.13 STRING SLICES

syntax:
<string slice> ::=

<strina location>(<start> : <end>)

<start> ::=
<inteaer expression>

<end> ::=
<inteaer expressi on>

(1)
(1.

(2)
(2.

(3)
(3.

semantics:

N.B. If both start and end are an integer literal expressi on,
the syntactic construct is ambisuous and will be interpreted
as a substring.

A string slice delivers a dynamic mode string location, i.e. a
string with statically unknown string length.

static properties: The dynamic mode attached to a string slice is a
dynamic parameterised string mode, formed in the same way as
for a substring (see section 4.2.6), but with a dynamic string
length parameter formed by:
NUHC end) - NUHC start) + 1

dynamic conditions: The RANGEFAIL exception occurs if any of the
following relations hold:

1. NUH(start) > NUM< end)

2. NUH(start) < 0

3. NUMf end) > L

62 FASCICLE VI.8 Rec. 2.200

where L is the (possibly dynamic) length of the string mode of
the string location.

examples;
18.26 blanks(count:9) (1,1)

<*.2.l<t ARRAY SLICES

syntax:
<array slice> (1)

<arrav locationX <first> : <last>) (1.1)

<first> ::= (2)
<expression> (2.1)

<last> ::= % (3)
<exp ress i on> (3.1)

N.B. If both first and last are a 1 i teral expressi on> the
syntactic construct is ambiguous and will be interpreted as a
sub-array.

semantics: An array slice delivers a dynamic mode array location, i.e. an
array with a statically unknown upper bound.

static properties: The dynamic mode attached to an array slice is a
dynamic paramsterised array mode formed in the same way as for
a sub-ar ray (see section 4.2.8) but With a dynamic upper index
parameter formed by exp, where exp is an expression whose
class is compatible with the classes of first and last and
such that:
NUH(exp) = NUM(L) + NUM(last) - NUM(first)
where L is the lower bound of the mode of the array location.

An array slice is (language) referable if the element layout
Of the mode of the array location is NOPACK.

static conditions: The classes of first and last must be compatible
with the index mode of the mode of the array location.

dynamic conditions: The f?/WGEF><IL exception occurs if any of the
following relations hold:

1. first > last

2. first < L

3. last > U

FASCICLE VI.8 Rec. 2.200 63

where L and U denote respectively the lower bound and the
(possibly dynamic) upper bound of the mode of the array
locati on.

examples:
17.27 res(0:count-l) (1.

4.2.15 DEREFERENCED ROUS

syntax:
<dereferenced row> (1)

<roN expressi on> -> (1.

semantics: A dereferenced row delivers the dynamic mode location that is
referenced by the row value.
0

static properties: The dynamic mode attached to the dereferenced rou
is constructed as follows:
&origin mode name(<parameter> i, <parameter>J*)
where origin 'mode name is a virtual svnmode name synonymous
with the referenced origin mode of the mode of the (strong)
row expression, and where the parameters are, depending on
the referenced origin mode:

• the dynamic length, in the case of a string mode;

• the dynamic upper bound, in the case of an array mode;

• the list of values associated with the mode of the
parameterised structure location, in the case of a
variant structure mode.

A dereferenced row is (language) referable.

static conditions: The row expressi on must be strong.

dynamic conditions: The lifetime of the referenced location must not have
ended.

The EMPTY exception occurs if the row expression delivers
NULL.

examples:
5.10 input-> (1.

64 FASCICLE VI.8 Rec. Z.200

l ^ J L ^ L U E S ^ D ^ J M E l R ^ M A a Q m

5.1 SYNONYH DEFINITIONS

syntaxi
<synonym definition statement> ::= (1)

5YN <synonym definition> {, <synonym definition>}*; (1.

<synonym definition> ::= (2)
<name list> [<mode>3 = <constant value> (2.

derived syntax: A synonym definition where name list consists of more
than one name, is derived from several synonym definition
occurrences, one for each name, with the same constant value
and mode if present. E.g. SYN I,J=5; is derived from
SYN I~3, J=3;

semantics: A synonym definition defines a name to denote the specified
constant value.

static properties: A name defined in a synonym definition is a
svnonvm name.

The class of the svnonvm name is, if a mode is specified, the
M-value class, where M is the mode, otherwise the class of the
constant value.

A svnonvm name is undefined if and only if the constant value
is an undefined value (see section 5.3.1).

A svnonvm name is literal if and only if the constant value is
3 Iiteral expression.

static conditions: If a mode is specified, it must be compatible
with the class of the constant value and the value delivered
by the constant value must be one of the values defined by the
mode.

Synonym definitions must not be recursive nor mutually
recursive via other synonym definitions or mode definitions,
i.e. no set of recursive definitions may contain synonym
definitions (see section 3.2.1).

examples:
1.1* SYN neutral_for_add = 0,

neutral_for_mult = 1; (1.
2.17 neutral_for_add fraction = 10,11 (2.

FASCICLE VI.8 Rec. Z.200 65

5.2 PRIMITIVE VALUE

5.2.1 GENERAL

syntax:
<primi ti ve value> :: =

<location contents>
I <value name>
I <literal>
I <tuple>
I <value string element>
I <value substring>
I <value string slice>
I <value array element>
I <value sub-array>
I <value array slice>
I <value structure field>
I <referenced location>
I <exp ress i on convers i on>
1 <value p rocedure call>
I <value buiIt-in routine call>
I <start exp ress i on>
I < recei ve expressi on>
I <zero-adic operator>

semantics: A primitive value is the basic consituent of an expression.
Some primitive values (location contents of a dynamic mode
location, some tuples, value array slices, value string
slices) have a dynamic class, i.e. a class based on a dynamic
mode. For these primitive values the compatibility checks can
only be completed at run time. Check failure will then result
in the TAGFAIL or RANGEFAIL exception.

static properties: The class of the primitive value is the class of
the location contents, value namet ...etc., respectively.

A primitive value is a constant primiti ve value if and only if
it is a constant value namet literal, constant tuple,
constant referenced locati ont constant express i on conversi on
or constant value buiIt-in routine call.

A primitive value is a 1iteral primitive valuet if and only if
it is a Iiteral value namer a di sc rete literal or a Ii teral
value buiIt-in routine call.

66 FASCICLE VI.8 Rec. Z.200

1)
1 .1)
1.2)
1.5)
l.<t)
1.5)
1.6)
1.7)
1.3)
1.9)
1 .1 0)
1 .1 1)
1.12)
1.15)
i.i*;
1.15)
1.16)
1.17)
1.13)

5.2.2 LOCATION CONTENTS

syntax:
<locati on contents>

<location>
(1)
(1.1)

semantics: A location contents delivers the value contained in the
specified location. The location is accessed to obtain the
stored value.

static properties: The class of the location contents is the M-value
class* where M is the (possibly dynamic) mode of the location.

static conditions: The mode of the location must not have the
synchronisation property.

dynamic conditions: The delivered value must not be undefined (see
section 5.3.1).

examples:
3.6 c2.im (1.1)

5.2.5 VALUE NAMES

syntax:
<value name> ::=

<svnonvm name>
I <value enumerati on name>
I <value do-uith name>
I <value receive name>

semantics: A value name delivers a value.

A value name is one of the following:

• a svnonvm name, i.e. a name defined in a synonym
definition statement;

• a loop counter in value enumerationi

• a value do-with name, i.e. a field name introduced as
value name in the do action with a uith part;

• a value receive name, i.e. a name introduced in a receive
case action.

i;
1 .1)
1.2)
1.3)
1.4)

static properties: The class of a value name is the class of the svnonvm
namer value enumerati on namet value do-with namet value
receive namet respectively.

FASCICLE VI.8 . Rec. Z.200 67

A value name is constant (literal) if and only if it is a
svnonvm name (1iteral svnonvm name).

static conditions: The svnonvm name must not be undefined .

dynamic conditions: Evaluating a value do-Nith name causes a TAGFAIL
exception if the denoted value is a variant field of:

• a tagged variant structure mode value and the associated
tag field(s) indicate(s) that the denoted field does not
exist;

• a dynamic parameterised structure mode value and the
associated list of values indicates that the denoted
field does not exist.

examples:
10.9 max- (1.1)
5.3 i (1.2)
15.45 THIS COUNTER (1.4)

5.2.4 LITERALS

5.2.4.1 General

syntax:
<literal>

<integer literal>
I <boolean literal>
I <set literal>
I <empti ness literal>
I <procedure literal>
I <character string literal>
| <bit string 1 iteral>

(1)
(1.1)
(1.2)
(I. 31
(1.4)
(1.5)
(1.6)
(1.7)

semantics: A literal delivers a constant value which is known at compile
time.

static properties: The class of the literal is the class of the
integer literal, boolean literalt ...etct respectively. A
literal is discrete if it is either an integer literalt a
boolean literalt a set literalt a character string literal Of
length It or a bit string literal of length 1.

68 FASCICLE VI.8 Rec. Z.200

5.2.4.2 Integer literals

syntax:
<integer 1iteral>

<decimal integer literal>
I <binary integer literal>
I <octal integer literal>
I <hexadecimal integer 1iteral>

(1)
(1 .1)
(1.2)
(1.3)
(1.4)

<decimal integer literal>
[O'] {<digit> |

<binary integer literal> ;
B * {0 | 1 |

(2)
(2 .1)

(3)
(3.1)

<octal integer literal>
0* <0 | 1 | 2 | 3 | 4 | 5 | 6 | 7, | _}*

(4)
(4.1)

<hexadecimal integer literal>
H * {<hexadecimal digit> | _} *

(5)
(5.1)

<digit>
0 | l | 2 | 3 | * | 5 | 6 | 7 | a | 9

(6)
(6 .1)

<hexadecimal digit> ::=
<digit> M | B | C I D | E |'F

(7)
(7.1)

semantics: An integer literal delivers an integer value. The usual
decimal notation is provided as well as binary* octal*
hexadecimal and explici t decimal. The underline symbol (_) is
not significant* i.e. it serves only for readability and it
does not influence the denoted value.

static properties: The class of an integer
IWT-derived class.

1iteral is the

static conditions: The string following the apostrophe (') and the
whole integer literal must not consist solely of underline
symbols.

examples:
6.11 1_721_119

D '1_721_119
B*10101i_l10100
0* 53_64
H ’AF4

(1.1)
(1 .1)
(1.2)
(1.3)
(1.4)

FASCICLE VI.8 Rec. Z.200 69

5.2.4.3 Boolean literals

syntax;
<boolean literal> ::= (1)

FALSE | TRUE (1.1)

semantics: A boolean literal delivers a boolean value.

static properties: The class of a boolean literal is the
BOOL-derived class.

examples:
5.46 FALSE (1.1)

5.2.4.4 Set literals

syntax:
<set literal> ::= (1)

<set element name> (1.1)

semantics: A set literal delivers a set value. A set literal is a name
defined in a set mode.

static properties: The class of a set literal is the M-derived
class, where M is the set mode (in the given context) which

. has the specified set element name as a set element name.

examples:
6.51 dec (1.1)
11.39 king (1.1)

S.2.4.5 Emptiness literal

syntax:
<emptiness literal> ::= (1)

NULL (1.1)

semantics: The emptiness literal delivers either the empty reference
value, i.e. a value which does not refer to a location, the
empty procedure value, i.e. a value which does not indicate a
procedure, or the empty instance value, i.e. a value which
does not identify a process.

static properties: The class of the emptiness literal is the null
class.

70 FASCICLE VI.8 Rec. Z.200

examples:
10.40 NULL (1.1)

5.2.4.6 Procedure literals

syntax:
<procedure literal>

<oeneral procedure name>
(1)
(1 .1)

semantics: A procedure literal delivers a general procedure value. A
procedure literal is a name defined in a procedure definition
or entry definition (see section 7.4).

static properties: The class of the procedure literal is the
M-derived class* where M is the mode Of the general procedure
name.

5.2.4.7 Character string literals

syntax:
<character string literal> ::=

f {<non-avostroohe character> | <apostrophe>}*'
I C r {<hexadeci mal digit> <hexadeci mal di gi t>J*f

(1)
(1 .1)
(1.2)

<character> ::
<letter>

I <digit>
I <symbol>
I <space>

(2)
(2 .1)
(2 .2)
(2.3)
(2.4)

<let ter> :: =
A \ B \ C \ D \ E \ F \ G \ H

| N | 0 | P | < ? | P | S | T | U
I I J I K | L I H
V | W | X | Y | Z

(3)
(3.1)
(3.2)

<symbol>
I / I : I ; I < I = I >

(4)
(4.1)

<space>
SP

(5)
(5.1)

<apost rophe>
f r

(6)
(6 .1)

Note: SP denotes the character "space”; see Appendix Al.

semantics: A character string literal delivers a character string value*
which may be of length 0. A character string literal of length
1 may serve as a character value. To represent the character

FASCICLE VI.8 Rec. Z.200 71

apostrophe (') Mi thin a character string literal it has to be
written twice ("). The above mentioned characters constitute
the minimum printable character set that must be provided. An
implementation may allow any printable character within a
character string literal that is in the CCITT alphabet no. 5
(see Appendix Al). Apart from the printable representation*
the hexadecimal representation may be used. Each hexadecimal
digit pair denotes that character value whose representation
corresponds to the given hexadecimal number (see Appendix
Al).

static properties: The length of a character string literal is
either the number of non-aoost roohe character and apostrophe
occurrences, or the number of hexadecimal digit pairs.

The class Of a character string literal is the
CHAR(n)-dzrived class, where n is the length of the character
string literal.

'A~B<ZAA9K''' (1.1)
" (6.1)

5.2.4.8 Bit string literals

syntax:
<bit string literal> ::=

<binary bit string 1i teral>
I <octal bit string literal>
I <hexadecimal bit string li teral>

<binary bit string 1iteral> (2)
B f { Q | 1 | _}»• (2.1)

<octal bit string literal> :; = (3)
O' f 0 | l | 2 | 3 | 4 | 5 | 6 | 7 | _}*' (3.1)

<hexadecimal bit string literal> ;; - ((f)
H r {<hexadeci mal digit> \ _ }*' (4.1)

semantics: A bit string literal delivers a bit string value which may be
of length 0. Binary, octal or hexadecimal notations may be
used. The underline symbol (_) is insignificant, i.e. it
serves only for readability and does not influence the
indicated value.

static properties: The length of a bit string literal is either the
number of 0 and 1 occurrences after B', or three times the
number of 0, 1, 2, 3, 4, 5, 6 and 7 occurrences after O', or
four times the number of hexadecimal digit occurrences aftfer
H'.

(1)
(1.1)
(1.2)
(1.3)

examples:
a.13
8.18

72 FASCICLE VI.8 Rec. Z.200

The Class Of a bit string literal is the BITYnl-derived class,
where n is the length of the bit string literal.

examples:
B r101011_110100’ (1.1)
0'53_64' (1.2)
H rAF4f (1.3)

5.2.5 TUPLES

syntax:
<tuple> ::= (1)

[<mode name>] (:
{<pouerset tuple> I <array tuple> | <st ructu re tuple>J
:) (1 .1)

<ponerset tuple> (2)
[{<expression> 1 <range>}
{, i<expressi on> \ < range>}}*3 (2.1)

<range> (3)
<expressi on> : <expressi on> (3.1)

<array tuple> ::= (4)
<unlabelled array tuple> (4.1)

I <labelled array tuple> (4.2)

<unlabelled array tuple> (5)
<value> {,<value>I* (5.1)

<labelled array tuple> (6)
<case label list> : <value>
{, <case label list> : <value>}* (6.1)

<structure tuple> ::= (7)
<unlabelled st ructu re tuple> (7.1)

I <labelled st ructure tuple> (7.2)

<unlabelled structure tuple> ::= (8)
<value> {,<value>I* (8.1)

<labelled structure tuple> (9)
<field name list> : <yalue>
{, <field name list> : <value>J* (9.1)

<field name list> (10)
.<field name> {, .<field name>J* (10.1)

derived syntax: The tuple opening and closing brackets [and J are
derived syntax for (: and :) respectively. This is not
indicated in the syntax to avoid confusion with the use of

FASCICLE VI.8 Rec. Z.200 73

square brackets as meta symbols.

semantics; A tuple delivers either a powerset value, an array value or a
structure value.

If it is a powerset value, it consists of a list of
expressions and/or ranges, denoting those member values which
are in the powerset value. A range denotes those values which
lie between or are one of the values delivered by the
expressions in the range. If the second expression delivers a
value which is less than the value delivered by the first
expression, the range is empty, i.e. it denotes no values. The
powerset tuple may denote the empty powerset value.

If it is an array value, it is a (possibly labelled) list of
values for the elements of the array; in the unlabelled array
tuple, the values are given for the elements in increasing
order of their index; in the labelled array tuple, the values
are given for the elements whose indices are specified in the
case label list labelling the value. It can be used as a
shorthand for large array tuples where many values are the
same. The label ELSE denotes all the index values not
mentioned explicitly, the label * denotes all index values
(for further details, see section 9.1.4).

If it is a structure value, it is a (possibly labelled) set of
values for the fields of the structure. In the unlabelled
structure tuple, the values are given for the fields in the
same order as they are specified in the attached structure
mode. In the labelled structure tuple, the values are given
for the fields whose names are specified in the field name
list for the value.

The order of evaluation of the expressions and values in a
tuple is undefined and they may be considered as being
evaluated in mixed order.

static properties: The class of a tuple is the M-value class where M
is the mode name, if specified, otherwise M depends upon the
context where the tuple occurs according to
the the following list;

• if the tuple is the value or constant value in an
initialisation in a location declaration, then M is the
mode in the location declarati on}

• if the tuple is the righthand side value in a single
assignment action, then M is the (possibly dynamic) mode
of the lefthand side location;

• if the tuple is the constant value in a synonym definition
With a specified mode, then M is that mode}

FASCICLE VI.8 Rec. Z.200

• if the tuple is an actual parameter in a procedure call,
then M is the mode in the corresponding parameter spec;

• if the tuple is the value in a return action or a result
action, then M is the result mode of the procedure name of
the result action or return action (see section 6.8);

• if the tuple is a value in a send action, then it is the
associated mode specified in the signal definition of the
signal name or the buffer element mode of the mode of the
buffer location}

• if the tuple is an expressi on in an array tuple then M is
the element mode of the mode of the array tuple;

• if the tuple is an expressi on in an unlabelled st ructure
tuple or a labelled st ructu re tuple where the associated
field name list consists of only one field name then M is
the mode of the field in the st ructu re tuple for which the
tuple is specified.

A tuple is constant if and only if each value or expressi on
occurring in it is constant.

static conditions: The optional mode name may be deleted only in the
contexts specified above. Depending on whether a pouerset
tuple, array tuple or structure tuple is specified» the
following compatibility requirements must be fulfilled:

a. Dowerset tuple

1. The mode of the tuple must be a powerset mode.

2. The class of each expression must be compatible
with the member mode of the mode of the tuple.

3. The value delivered by each expressi on must be one
of the values defined by that member mode.

b. array tuple

1. The mode of the tuple must be an array mode.

2. The class of each value must be compatible with the
element mode of the mode of the tuple.

In the case Of an unlabelled array tuple:

3. There must be as many occurrences of value as
the number of elements of the array mode of the
tuple.

In the case of a labelled array tuplei

FASCICLE VI.8 Rec. Z.200 75

4. The case selection conditions must hold for
the list of case label list occurrences (see
section 9.1.3). The resulting class must be
compatible with the index mode of the mode of the
tuple .

5. The value delivered by each 1iteral
expression in each case label list and the values
defined by each mode name in each case label list
must lie between the lower bound and upper bound
(bounds included) of the mode of the tuple.

6. In an unlabelled array tuple> at least one value
occurrence must be an expressi on} in a labelled array
tuple» at least one value occurrence following a case
label list Which is not (ELSE) must be an expressi on
(see section 5.3.1).

7. For a constant (array) tuple where the element
mode of the mode of the tuple is a discrete mode> each
specified value must deliver a value within the
bounds of the element mode (bounds included), unless
it is an undefined value.

C. st ructu re tuple

1. The mode of the tuple must be a structure mode.

2. This mode must not be a structure mode which has
field names which are invisible (see section 9.2.7).

In the case of an unlabelled structure tuple:

• If the mode of the tuple is neither a variant
structure mode nor a parameterised structure mode
then:

3. There must be as many occurrences of value
as there are field names in the list of field
names of the mode of the tuple.

4. The class of each value must be compatible
with the mode of the corresponding (by
position) field name of the mode of the
tuple.

• If the mode of the tuple is a tagged variant
structure mode or a tagged parameterised
structure mode then:

5. Each value specified for a tag field must
be a 1iteral express ion.

76 FASCICLE VI.8 Rec. Z.200

6. There must be as many occurrences of
value as there are field names indicated as
existing by the value(s) delivered by the
17 teral expressi on occurrences specified for
the tag fields.

7. The class of each value must be
compatible Mith the mode of the corresponding
field name.

• If the mode of the tuple is a tag-less variant
structure mode or a tag-less parameterised
structure mode then:

8. No unlabelled st ructu re tuple is alloued.

In the case Of a labelled structure tuple:

• If the mode of the tuple is neither a variant
structure mode nor a paramaterised structure mode
then:

9. Each field name of the list of field
names of the mode of the tuple must be
mentioned once and only once in a field name
list and in the same order as in the mode of
the tuple.

10. The class of each value must be
compatible Hith the mode of the field name
specified in the field name list labelling
that value.

• If the mode of the tuple is a tagged variant
structure mode or a tagged parameterised
structure mode, then:

11. Each value that is specified for a tag
field must be a 1 i teral exp ress i on>

12. Only field names corresponding to
fields indicated as existing by the value(s)
delivered by the Ii teral expression
occurrences specified for the tag fields may
be specified and all of them must be
specified in the same order as in the mode of
the tuple.

13. The class of each value must be
compatible with the mode of the field name
specified in the field name list labelling
that value.

FASCICLE VI.8 Rec. Z.200 77

• If the mode of the tuple is a tag-less variant
structure mode or a tag-less parameterised
structure mode then:

14. Field names mentioned in field name
list, which are defined in the same
alternative fields, must be all defined in
the same variant alternati ve or defined after
ELSE. All the field names of a selected
variant alternative or defined after ELSE,
must be mentioned once and only once in the
same order as in the mode of the tuple.

15. The class of each value must be
compatible with the mode of any field name
specified in the field name list in front of
that value.

16. If the mode of the tuple is a tagged parameterised
structure mode, the list of values delivered by the
Iiteral expressi on occurrences specified for the tag
fields must be the same as the list of values of the
mode of the tuple.

17. For a constant (structure) tuple, each value
specified for a field with a discrete mode must
deliver a value within the bounds of the mode of the
field (bounds included), unless it is an undefined
value.

18. At least one value occurrence must be an
exp ress i on.

dynamic conditions: The assignment conditions of any value with respect
to the member mode, element mode or associated field mode, in
the case of pouerset tuple, array tuple or st ructu re tuple,
respectively (see section 6.2.3) apply (refer conditions a2,
a3, b2, c4, c7, clO, cl3 and cl5).

If the tuple has a dynamic array mode, t h e RANGEFAIL exception
occurs if any of the conditions b3 or b5 fail.

If the tuple has a dynamic parameterised structure mode, the
TAGFAIL exception occurs if the check cl6 fails.

examples:
9.5 number_listf7 (1.1)
9.6 [2:max3 (2.1)
a. 24 [(f A f) : 3, ('B', 'K rZ f):1,(ELSE):0 3 (6.1)
17.5 [<*):' '] (6.1)
12.23 (:NULL,NULL,536:1 (7.1)
11.16 I.status:occupi ed, .p ;[uhite, rook]3 (9.1)

78 FASCICLE VI.8 Rec. Z.200

5.2.6 VALUE STRING ELEMENTS

<1)
(1.1)

derived syntax: A value string element is derived syntax for a value
substring of length 1 (see section 5.2.7). I.e.
<strina expressi on>(<position>)
is derived from:
<string expressi on> (<position> UP 1)

syntax:
<value string element> ::=

<string expression>(<position>)

5.2.7 VALUE SUBSTRINGS

syntax:
<value substring> ::= (1)

<strino expression>(<left element> : <right element>) (1.1)
I <string expression>(<position> UP <string length>) (1.2)

N.B. if the string expression is a string location* the
syntactic construct is ambiguous and Mill be interpreted as a
substring (see section 4.2.6).

semantics: A value substring delivers a string value Mhich is a sub-value
of the specified string value.

Static properties: The class of a value substring is, if the string
expressi on is not strong then the CHAR(n)-derived class or
BI7Yn7-derived class (depending on whether the string
expressi on is a bit or character string expression) otherwise
the &name(n)-valua Class, Where n is either <string length>
or
NUM(right element) - NUM(left element 7 + 1 and &name is a
virtual svnmode name, synonymous with the mode of the string
expression.

Static conditions: The left element, right element and string length
must deliver non-negative integer values such that the
following relations hold:

1. NUM(left element) < NUM(right element)

2. right element) < L-l

3. 1 < NUM(string length) < L

where L is the string length of the root mode of the class of
the st ring expressi on. (If the string exp ress i on has a
dynamic class, the checks 2. and 3. can be performed only at
run time; see below.)

FASCICLE VI.8 Rec. Z.200 79

dynamic conditions: The value delivered by a value substring must not be
undefined.

The RANGEFAIL exception occurs if any of the relations 2 or 3
above does not hold in the case of a string expression with a
dynamic class, or if any of the following relations hold:

1. NUNC positon) < 0

2. NUM(position) + NUH(string length) > L

where L is the string length of the root mode of the class of
the string expression.

5.2.8 VALUE STRING SLICES

syntax:
<value string slice> ;:r (1)

<strino expressi on>(<start> : <end>) (1.1

N.B. if the string express i on is a string location the
syntactic construct is ambiguous and will be interpreted as a
string slice (see section 4.2.13). If both start and end are
an integer literal expressi on* the syntactic construct is
ambiguous and will be intrepreted as a value substring (see
section 5.2.7).

semantics: A value string slice delivers a dynamic string value, which is
a sub-value of the specified string value.

static properties: The class of a value string slice is defined the
same way as for the value substring (see section 5.2.7), but
with a dynamic parameter n formed as:
NUM(end) - NUM(start) + 1.

dynamic conditions: The value delivered by a value string slice must
not be undefined.

The RANGEFAIL exception occurs if any of the following
relations hold:

1. NUM(start) > NUM(end)

2. NUM(start) < 0

3. NUH(end) > L

where L is the (possibly dynamic) length of the root mode of
the Class Of the string expressi on.

80 FASCICLE VI.8 Rec. Z.200

5.2.9 VALUE ARRAY ELEMENTS

syntax;
<value array element> (11

<arrav expression> (<expression list>) (1.1)

N.B. if the array expression is a array location the syntactic
construct is ambiguous and Mill be interpreted as a array
element (see section 4.2.7).

derived syntax: See section 4.2.7

semantics: A value array element delivers a value which is an element of
the specified array value.

Static properties: The Class of the value array element is the
M-value class* where M is the element mode of the mode of the
array expression.

static conditions: The array expression must be strong. The class of
the expression must be compatible with the index mode of the
mode Of the array expression.

dynamic conditions: The value delivered by a value array element must
not be undefined.

The RANGEFAIL exception occurs if any of the following
relations hold:

1. expressi on < L

2. expressi on > U

where L and U are the lower bound and (possibly dynamic) upper
bound of the mode of the array expression * respectively.

5.2.10 VALUE SUB-ARRAYS

syntax:
<value sub-array> (1)

<arrav expression>
(<louer element> : <upper element>) (1.1)

I <arrav expressi on>
(<integer expression> UP <array length>) (1.2)

N.B. if the array expressi on is an array location the
syntactic construct is ambiguous and will be interpreted as a
sub-array (see section 4.2.8).

FASCICLE VI.8 Rec. Z.200 81

semantics: A value sub-array delivers a (sub) array value which is part
of the specified array value. The lower bound of the value
sub-array is equal to the lower bound of the specified array
value; the upper bound is determined from the specified
(index) expressions.

static properties: The class of a value sub-array is the M-value
class, where H is a parameterised array mode defined as:
&name(upper index)
where &name is a virtual svnmode name synonymous with the
(possibly dynamic) mode of the arrav expressi on and upper
index is either L + array length - 1, where L is the lower
bound of the mode of the array expression, or lit, where lit
is the literal whose class is compatible with the classes of
lower element and upper element SUCh that:
NUH(lit) =• NUH(L) + NUM(upper element) - NUMdower element)

static conditions: The array expression must be strong The classes
, Of lower element and upper element or integer expressi on and

array length must be compatible with the index mode of the
mode of ,the array expressi on. The lower element» upper
element and array length must deliver values such that the
following relations hold:

1. L < lower element < upper element

2. 1 < array length

3. upper element < U

4. array length < U - L + 1

where L and If are respectively the lower bound and upper bound
Of the array mode of the array exp ress i on. (If the array
expression has a dynamic class, relations 3. and 4. can only
be checked at run time; see below.)

dynamic conditions: The value delivered by a value sub-array must not be
undefined.

The RANGEFAIL exception occurs if any of the relations 3. or
4. above does not hold in the case of a dynamic class, or if
any of the following relations hold:

1. L > integer expressi on

2» f nteoer expressi on + array length -1 > U

where L and U are the lower bound and upper bound of the mode
Of the array expressi onf respectively.

82 FASCICLE VI.8 Rec. 2.200

5.2.11 VALUE ARRAY SLICES

syntax:
<value array slice> ::=

<arrav expression> (<first> <last>)
(1)
(1.

N.B. if the array expression is an array
syntactic construct is ambiguous and Mill be
an array slice (see section 4.2.1$). If both
are a If teral expressi ont the syntactic
ambiguous and Mill be interpreted as a value
section 5.2.10).

location* the
interpreted as
first and last
construct is
sub-array (see

semantics: A value array slice delivers a dynamic array value* which is a
sub value of the specified array value.

static properties: The class of a value array slice is the M-value
class* where M is a dynamic parameterised array mode defined
in the same way as for value sub-array (see section 5.2.10)
but with a dynamic upper index parameter formed as exp, where
exp is an expression whose class is compatible with the
classes of first and last, and such that:
NUM(exp) = NUM(L) + NUH(last) - NUH(first)

static conditions: The array expressi on must be strong. The classes
of first and last must be compatible with the index mode of
the mode of the ar rav exp ressi on.

dynamic conditions: The value delivered by a value array slice must
not be undefined.

The RANGEFAIL exception occurs if any of the following
relations hold:

1. first > last

2. first < L

3. last > U

where L and U denote respectively* the lower bound and
(possibly dynamic) upper bound of the mode of the array
expressi on.

5.2.12 VALUE STRUCTURE FIELDS

syntax
<value structure field> ::= (1)

<structure expression> . <field name> (1.

FASCICLE VI.8 Rec. Z.200 83

N.B. if the structure expressi on is a structure location the
syntactic construct is ambiguous and Mill be interpreted as a
structure field Csee section $.2.9).

semantics: A value structure field delivers a value Mhich is a field of
the specified structure value. If the structure expression
has a tag-less variant structure mode and the field name is a
variant field name, the semantics are implementation defined.

static properties: The class of value structure field is the M-value
class, Nhere M is the mode of the field name.

static conditions: The st ructure expression must be strong. The
field name must be a name from the set of field names of the
mode of the st ructure exp ress i on,

dynamic conditions: The value delivered by a value structure field
must not be undefined.

The TAGFAIL exception occurs if the st ructure expressi on has

• a tagged variant structure mode and the associated tag
field value(s) indicate(s) that the denoted field does
not exist;

• a dynamic parameterised structure mode and the associated
list of values indicates that the field does not exist.

examples:
16.$9 (RECEIVE USER BUFFER).ALLOCATOR (1.1)

5.2.13 REFERENCED LOCATIONS

syntax:
<referenced location>

-> <location>
(1)
(1 .1)

semantics: A referenced location delivers a reference to the specified
location if the location is referable. If the location is not
referable, it delivers a reference value which may not be
dereferenced Csee section 4.2.4) and which may refer to an
implementation defined location.

static properties: If the location is referable, the class of the
referenced location is the M-reference class, where M is the
mode of the locati on. Otherwise the class of the referenced
location is the PTR-derived class. A referenced location is
constant if and only if the location is static.

examples:
3.23 - >c (1.1)

84 FASCICLE VI.8 Rec. Z.200

5.2.1* EXPRESSION CONVERSIONS

syntax;
<expression conversion> (1)

<mode name> (<expressi on>) (1.

semantics: An expression conversion overrides the CHILL mode checking
and compatibility rules. It explicitly attaches a mode to the
expression. The precise dynamic semantics of an expression
conversion are implementation defined and depend on internal
representations of values.

static properties: The class of the expressi on conversion is the
M-value class, Mhere M is the mode name. An expression
conversi on is constant if and only if the expressi on is
constant.

static conditions: The expression must not have a dynamic class. The
class of the expression must be compatible with at least one
mode whose size is equal to the size of the mode name. The
mode name must not have the synchronisation property.

5.2.15 VALUE PROCEDURE CALLS

syntax:
<value procedure call> (1)

<value procedure call> (1.

semantics: A value procedure call delivers the value returned from a
procedure.

static properties: The class of the value procedure call is the
M-value class, where M is the mode of the result spec of the
value procedure call.

dynamic conditions: The value procedure call must not deliver an
undefined value (see sections 5.3.1 and 6.8).

examples:
6.51 julian_day_number([10, dec,1979)) (1.
11.65 ok_bi shop(b,m) (1.

5.2.16 VALUE BUILT-IN ROUTINE C/ILLS

syntax:
<value buiIt-in routine call> ::= (1)

<imolementation value buiIt-in routine call> (1.

FASCICLE VI.8 Rec. Z.200 85

I <CHILL value built-in routine call>

<CHILL value buiIt-in routine call> ::= (2)
NUH(<di sc rete expression>) (2.1)

I PRED(<discrete expression>) (2.2)
I PRED(<bound reference expression>) (2.3)
I SUCCf <di screte express i on>) (2.U)
I SlfCCf <bound reference expression>) (2.5)
I <7 nteaer expression>) (2.6)
I ADDR(<locati on>) (2.7)
I CARD(<oouerset expressi on>) (2.d)
I HAX(<pONerset expressi on>) (2.9)
I HIN(<pouerset exp ressi on>) (2.10)
I SIZE({<mode name> | <static mode location>}) (2.11)
I UPPER({<arrav expressi on> | <strina expressi on>J) (2.12)
I GET57.4CK(<qetstack argument>) (2.13)

<getstack argument> ::=
<mode name>

I <arrav mode nameX <expression>)
I <str7no mode name>(<inteaer expressi on>)
I <variant structure mode name>(<expressi on list>)

derived syntax: ADDR(<location>) is derived syntax for -> <location>

semantics: A value built-in routine call is either an implementation
defined built-in routine call or a CHILL defined built-in
routine call, deliverina a value. A CHILL value built-in
routine call is an invocation of one of the CHILL defined
built-in routines which delivers a value.

NUH delivers an integer value with the same internal
representation as the value delivered by the discrete
argument. NUM for set values delivers the integer value as
specified by the set mode. NUH for character values delivers
the integer value as specified by CCITT alphabet no. 5 [see
Appendix Al). NUH(TRUE) delivers 1, NUH(FALSE) delivers 0.
NUH for integer values delivers that integer value.

PRED and SUCC on discrete values deliver respectively the
next lower and higher discrete value, if existing. Otherwise
an exception occurs. If the discrete value is a set value from
a set mode with holes, the holes are skipped (i.e. in the
example in static properties of section 3.4.5, SUCC(A)
delivers B» PRED(B) delivers Al.

PRED and SUCC on bound reference values are defined only on
reference values which refer to array elements. They deliver
respectively the reference value refering to the array
element with the next lower and higher index, if existing.

/4B5 is defined on integer values, delivering the absolute
value of the integer value.

(3)
(3.1)
(3.2)
(3.3)
(3.4)

86 FASCICLE VI.8 Rec. Z.200

ADDR is an alternative notation for referencing a location.

CARD, MAX and MIN are defined on powerset values. CARD
delivers the number of element values in the powerset value.
MAX and MIN deliver respectively the greatest and smallest
element value in the powerset value.

SIZE is defined on referable static mode locations and modes.
In the first case it delivers the number of addressable memory
units occupied by that location, in the second case, the
number of addressable memory units that a referable location
of that mode will occupy. In the first case, the static mode
location will not be evaluated at run time.

UPPER is defined on (possibly dynamic) array values and
string values, delivering the upper index of the array value
or highest string index in the string value (i.e. string
length minus 1).

GETSTACK creates a location of the specified mode on the stack
(see section 7.4) and delivers a reference value for the
created location. If a mode name is specified, a static mode
location of that mode is created and a bound reference value
is delivered. Otherwise a dynamic mode location is created,
whose mode is a parameterised mode with run-time parameters
as specified in* the GETSTACK argument and a row value
referring to the location is delivered.

static properties: The class of a NUM built-in routine call is the
IWT-derived class. The built-in routine call is constant
(literal) if and only if the argument is constant (literal).

The class of a PRED or SLfCC built-in routine call is the class
of the argument. The built-in routine call is constant
(literal) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is the class of the
argument. The built-in routine call is constant (li teral) if
and only if the argument is constant (literal).

The class of a CARD built-in routine call is the JNT-derived
class. The built-in routine call is constant if and only if
the argument is constant.

The class of a MAX or MIN built-in routine call is the M-value
class, where M is the member mode of the mode of the poNerset
expression. The built-in routine call is constant if and only
if the argument is constant

The class of a SIZE built-in routine call is the IWT-derived
class. The built-in routine call is constant.

FASCICLE VI.8 Rec. Z.200 87

If the argument of an UPPER built-in routine call is an array
expression, the class of the UPPER built-in routine call is
the M-value class* where M is the index mode of the array mode
of the (strong) array expressi on. If the argument of an UPPER
built-in routine call is a string expression, the class of the
built-in routine call is the JNT-derived class. An UPPER
built-in routine call is constant and li teral if and only if
the Class of the array expression or string expressi on is a
static class.

The class of a GET5T/4CK built-in routine call is the
M-reference class, where M is, depending on the gets tack
argument, either the mode name or a dynamic parameterised
mode formed by:
&<array mode nameX <expressi on>) ,or
&<st r i no mode name>(<inteoer express i on>) , or
&<variant st ructu re mode nameX <exp ress i on list>) ,
respectively.

static conditions: if the argument of a PRED or SUCC built-in
routine call is constant, it must not deliver respectively
the smallest or greatest discrete value defined by the root
mode of the class of the argument.

If the argument of a MAX or MIN built-in routine call is
constant, it must not deliver the empty powerset value.

The pouerset expressi on as an argument of a CARD, MAX or MIN
built-in routine call must be strong.

The bound reference expressi on as an argument of a PRED or
SUCC built-in routine call must be strong.

The array expressi on as an argument of an UPPER built-in
routine call must be strong.

The following compatibility requirements hold for a getstack
argument Which is not a Single mode namei

• The class of the expression must be compatible with the
index mode Of the array mode name.

• There must be as many expressions in the expression list
as there are classes in the list of classes of the variant
structure mode name and the class of each expression must
be compatible with the corresponding class in the list of
Classes of the variant st ructu re mode name.

dynamic conditions: PRED and SUCC cause the OVERFLON exception if they are
applied to the smallest or greatest discrete value defined by
the root mode of the class of the argument, PRED and SUCC
cause the RANGEFAIL exception if they are applied to a bound
reference value referencing the array element with the lowest
or highest index. PRED and SUCC cause the EMPTY exception if

88 FASCICLE VI.8 Rec. Z.200

the bound reference expressi on delivers NULL.

MAX and MIN cause the EMPTY exception if they are applied to
empty powerset values (i.e. containing no member values).

GET5T/4CK causes the SPACEFAIL exception if storage
requirements cannot be satisfied.

GET57\4CK causes the RANGEFAIL exception if in the getstack
argument:

• the expression delivers a value which is outside the set
of values defined by the index mode of the array mode
name;

• the integer expressi on delivers a negative value or a
value which is greater than the length of the string mode
name;

• any expression in the expression list for which the
corresponding class in the list of classes of the variant
structure mode name is an M-value class (i.e. is strong)»
delivers a value which is outside the set of values
defined by M.

AB5 causes the OVERFLOW exception if the resulting value is
outside the bounds defined by the root mode of the class of
the argument.

(2 .10)
(2 .2)
(2.<t)

5.2.17 START EXPRESSIONS

examples:
9.11 MIN(sieve)
11.91 PRED(col_l)
11.91 SUCC(col 1)

syntax;
<start expression> (1)

START <p rocess name> ([<actual parameter list>3) (1.1)

semantics: The evaluation of the start expression creates and activates
a new process whose definition is indicated by the process
name (see chapter 8). Parameter passing is analogous to
procedure parameter passing; however, additional actual
parameters may be given with an implementation defined
meaning. The start expression delivers a unique instance
value identifying the created process.

static properties: The class of the start expression is the
lN57/WCE-derived class.

FASCICLE VI.8 Rec. Z.200 89

static conditions: The number of actual parameter occurrences in the
actual parameter list must not be less than the number of
formal parameter occurrences in the formal parameter list Of
the process definition of the process name. If the number of
actual parameters is m and the number of formal parameters is
n (m>n), the compatibility requirements for the first n
actual parameters are the same as for procedure parameter
passing (see section 6.7).

dynamic conditions: The start expression can cause any implementation
defined exception whose name is attached to the process name
(see section 7.5).

For parameter passing, the assignment conditions of any
actual value with respect to the mode of its associated formal
parameter apply (see section 6.7).

The start expression causes the 5PACEFAIL exception if
storage requirements cannot be satisfied.

examples:
15.25 ST/*#?r COUNTERO (1.1)

5.2.13 RECEIVE EXPRESSIONS

syntax:
< recei ve expressi on> :: =

RECEIVE <buffer location>
(1)
(1 .1)

semantics: The receive expression delivers a value out of the specified
buffer or from any delayed sending process. If the receive
expression is executed while the buffer does not contain a
value or no sending process is delayed on it, the executing
process is delayed until a value is sent to the buffer (see
chapter 8 for full details).

static properties: The class of the receive expressi on is the
M-value class, where M is the buffer element mode of the mode
of the buffer locat i on.

dynamic conditions: The lifetime of the denoted buffer location must
not end while the executing process is delayed on that buffer
location.

examples:
16.$9 RECEIVE USER BUFFER (1.1)

90 FASCICLE VI.8 Rec. 2.200

5.2.19 ZERO-ADIC OPERATOR

syntax:
<zero-adic operator> ::= (1)

THIS (1.1?

semantics: The zero-adic operator delivers the unique instance value
identifying the process executing it.

static properties: The class of the zero-adic operator is the
IN5T>WCE-derived class.

5.3 VALUES AND EXPRESSIONS

5.5.1 GENERAL

syntax:
<value> ::=

<expression>
I <undefined value>

(1)
(1 .1)
(1.2)

<undefined value> :: =
*

I <undef i ned svnonvm name>

(2)
(2 .1)
(2 .2)

semantics: A value is either an undefined value or a (CHILL defined)
value delivered as the result of the evaluation of an
expression.

static properti es: The class of a value is the
expressi on or undefi ned value respectively.

class of the

The class of the undefined value is the all class if the
undefined value is a x, otherwise the class is the class of
the undefi ned synonym name.

A value is constant if and only if it is an undefi ned value or
an expression which is constant.

dynamic properties: A value is said to be undefined if it is denoted
by the undefined value or when explicitly indicated in this
document. A composite value is undefined if and only if all
its sub components (i.e. substring values, element values,
field values) are undefined.

(Note: A value can denote an undefined value only in the
following contexts:

FASCICLE VI.8 Rec. Z.200 91

it is an undefined value!

• it is a location contents, containing an undefined value;

• it is a value procedure call, delivering an undefined
value;

• it is a value substring, a value string slice, a value
array element, a value sub-array, a value array slice, or
a value structure field, delivering an undefined value.)

examples:
6 .<t0 <l$6_Q97*c)/<t + <lJf6l*y)/<t

+(155+m+c)/5+day+l_721_119 (1.1)

5.3.2 EXPRESSIONS

syntax:
<expression> ::=

<operand-1>
I <sub expression> { OR I XOR I <operand-1>

(1)
(1.1)
(1.2)

<sub expression> :
<expressi on>

(2)
(2 .1)

semantics: The order of evaluation of the constituents of an expression
and their sub-constituents etc. is undefined and they may be
considered as being evaluated in mixed order. They need only
to be evaluated to the point that the value to be delivered is
determined uniquely. If the expression is constant or
literal, the evaluation will never cause an exception.

If OR or XOR is specified the sub expression and the operand-1
deliver:

• boolean values, in which case OR and XOR denote the usual
logical operators delivering a boolean value;

• bit string values, in which case OR and XOR denote the
usual logical operations on bit strings, delivering a bit
string value;

• powerset values, in which case OR denotes the union of
both powerset values and XOR denotes the powerset value
consisting of those member values which are in only one of
the specified powerset values Ce.g. A XOR B = A-B OR B-A).

static properties: If an expression is an operand-1, the class of the
expression is the Class of the operand-1. If OR or XOR is
specified, the class of the expression is the resulting class
of the class Of sub expression and the operand-1.

92 FASCICLE VI.8 Rec. Z.200

An expression is constant (literal) if and only if it is
either an operand-1 which is constant (literal), or built up
from an expressi on and an operand-1 which are both constant
(literal).

static conditions: If Off or XOff is specified, the class of the sub
expression must be compatible with the class of the
operand-1. Both classes must have a boolean, powerset or bit
string root mode.

dynamic conditions; In the case of Off or XOff a ff>WGEF/4IL exception occurs
if one or both operands have a dynamic class and the dynamic
part of the above mentioned compatibility check fails.

(1.1)
(1.2)

examples:
IQ.21 i<min
10.27 i<min Off i>max

5.3.3 OPERAND-1

syntax:
<operand~l> ;;=

<operand~2>
I <sub operand-l> AND <operand-2>

(1)
(1.1)
(1.2)

<sub operand-1>
<operand-1>

(2)
(2 .1)

semantics: if /ND is specified, sub operand-1 and operand-2 delivers

• boolean values, in which case AND denotes the usual
logical "and" operation, delivering a boolean value;

• bit string values, in which case AND denotes the usual
logical "and" operation on bit strings, delivering a bit
string value;

• powerset values, in which case AND denotes the
intersection operation of powerset values delivering a
powerset value as a result.

static properties: If an operand-1 is an operand-2, the class of the
operand-1 is the class Of the operand-2.

If AND is specified, the class of the operand-1 is the
resulting class of the classes of the operand-2 and sub
operand-1.

An operand-1 is constant (literal) if and only if it is either
an operand-2 which is constant (literal), or built up from an
operand-1 and an operand-2 which are both constant (literal).

FASCICLE VI.8 Ree. Z.200 93

static conditions: If AND is specified, the class of the sub ope rand-1
must be compatible with the class of the operand-2. These
classes must both have a boolean, powerset or bit string root
mode.

dynamic conditions; in the case of AND a ff/WG£F/4lL exception occurs if one
or both operands have a dynamic class and the dynamic part of
the above mentioned compatibility check fails.

a.i;
(1.2)

examples:
5.11 (al OR bl)
5.11 NOT k2 AND (al OR bl)

5.3.4 OPERAND-2

syntax:
<operand-2> ::=

<operand-3>
1 <sub operand-2> <operator-3> <operand-3>

(1)
(1 .1)
(1 .2)

<sub operand-2> ;
<operand~2>

(2)
(2.1)

<operator-3> ::=
<relational operator>

I <netnbershi p operator>
I <pouerset i nclus i on operator>

(5)
(3.1)
(3.2)
(3.3)

<relational operator>
= I I > I >-' I < I < =

(4)
(4.1)

<membershi p operator>
IN

(5)
(5.1)

<pouerset inclusion operator>
<= \ >= \ < \ >

(6)
(6 .1)

semantics: The equality (O and inequality (/=) operators are defined
between all values of a given mode. The other relational
operators (less than: <, less than or equal to: <-> greater
than: > , greater than or equal to: > = f are defined between
values of a given discrete or string mode. All the relational
operators deliver a boolean value as result.

The membership operator is defined between a member value and
a powerset value. The operator delivers TRUE if the member
value is in the specified powerset value, otherwise FALSE.

The powerset inclusion operators are defined between powerset
values, testing whether or not a set value is contained in: < =
, is properly contained in: <, contains: >=, or properly

94 FASCICLE VI.8 Rec. Z.200

contains: > the other set value. The powerset inclusion
operator delivers a boolean value as result.

static properties: If an operand-2 is an operand-3» the class of the
operand-2 is the Class of the operand-3. If an operator-3 is
specified* the class of the operand-3 is the BOOL-derived
class.

An operand-2 is constant (literal) if and only if it is either
an operand-3 which is constant (literal) or built up from an
operand-2 and an operand-3 which are both constant (literal).

static conditions: if an operator-3 is specified* the following
compatibility requirements between the class of sub operand-2
and the class of the operand-3 must be fulfilled:

• if the operator-3 is = or /-, both classes must be
compatible;

• if the operator-3 is a relati onal operator Other than = or
/=, both classes must be compatible and must have a
discrete or string root mode;

• if the operator-3 is a membershi p operator> the Class of
operand-3 must have a powerset root mode and the class of
the sub operand-2 must be compatible with the member mode
of that root mode;

• if the operator-3 is a pouerset inclusion operator> both
classes must be compatible and must have a powerset root
mode.

dynamic conditions: In the case of a relational operator> a RANGEFAIL or
TAGFAIL exception occurs if one or both operands have a
dynamic class and the dynamic part of the above mentioned
compatibility check fails. The TAGFAIL exception occurs if
and only if a dynamic class is based upon a dynamic
parameterised structure mode.

examples:
10.46 NULL
10.46 last=NULL

5.3.5 OPERAND-3

syntax
<operand~3>

<operand-4>
I <sub operand-3> <operator-4> <operand~4>

<sub operand-3>

(1 .1)
(1.2)

(1)
(1 .1)
(1.2)

(2)

FASCICLE VI.8 Rec. Z.200 95

<operand-3> (2.1)

<operator-4> (3)
<ari tbmetic additive operator> (3.1)

I <string concatenati on operator> (3.2)
I <pouerset di fference operator> (3.3)

<arithmetic addi ti ve operator> ::= (4)
+ I - (4.1)

<string concatenation operator> ::= (5)
// rs.i;

<powerset difference operator> (6)
(6.1)

semantics; If the operator-4 is an arithmetic additive operator* both
operands deliver integer values and the resulting integer
value is the sum (+) or difference (-) of the two values.

If the operator-4 is a string concatenation operator, both
operands deliver either bit string values or character string
values; the resulting value consists of the concatenation of
these values.

If the operator-4 is the powerset difference operator, both
operands deliver powerset values and the resulting value is
the powerset value consisting of those member values which
are in the value delivered by sub operand-3 and not in the
value delivered by operand-4.

static properties: If an operand-3 is an operand-4, the class of the
operand-3 is the class of operand-4. If an operator-4 is
specified, the class of the operand-3 is determined by the
operator-4 as follows:

• if operator-4 is a string concatenati on operator, the
class of the operand-3 is, depending on the classes of the
ope rand-4 and sub operand-5:

if none of them is strong, the class is the
BI7Yn;-derived class or CHAR(n)-derived class,
depending on whether both operands are bit or
character strings, where n is the sum of the lengths
of the root modes of both classes,

otherwise the class is the &name(n)-value class,
where &name is a virtual svnmode name synonymous with
the mode of one of the strong operands and n denotes
the sum of the length of the root modes of both
classes

(this class is dynamic if one or both operands have a
dynamic class).

96 FASCICLE VI.8 Rec. Z.200

• if operator-4 is an arithmeti c additive operator or
powerset difference operator, the Class Of the operand-3
is the resulting class of the classes of the operand-4 and
the sub operand-3.

An operand-3 is constant (literal) if and only if it is either
an operand-4 which is constant (literal)* or built up from an
operand-3 and an operand-4 which are both constant (literal).

static conditions: if an operator-4 is specified, the following
compatibility requirements must be fulfilled:

• if operator-4 is an arithmetic additive operator, the
classes of both operands must be compatible and they must
both have an integer root mode;

• if operator-4 is a string concatenati on operator, the
root modes of the classes of both operands must both be
bit string modes or both be character string modes and, if
both classes are value classes, their root modes must
have the same novelty;

• if operator-4 is a powerset difference operator, the
classes of both operands must be compatible and both must
have a powerset root mode.

dynamic conditions: In the case of an operand-3 which is not constant , an
OVERFLOW exception occurs if an addition (+) or a subtraction
(-) gives rise to a value which is not within the bounds
specified by the root mode of the class of the operand-3.

examples:
1.5
1.5

J
j+j

(1.2)
(1.2)

5.3.6 OPERAND-4

syntax
<operand~4> ::=

<operand-5>
\ <sub operand-4>
<arithmetic multiplicati ve operator> <operand-5>

(1)
(1.1)

(1 .2)

<sub operand-4>
<operand-4>

(2)
(2 .1)

<ari ihmeti c multiplicative operator>
x I / I HOD | REH

(3)
(5.1)

FASCICLE VI.8 Rec. Z.200 97

semantics: If an arithmetic multiplicative operator is specified sub
operand-* and operand-5 deliver integer values and the
resulting integer value is either the product (*), the
quotient (/), modulo (MOD) or division remainder (REM) of
both values.

The modulo operation is defined such that I MOD j delivers the
unique integer value K, 0 < K < J such that there is an
integer value N such that I - N * J + K. J must be greater
than o.

The remainder operation is defined such that
X REM V - x - (X/Y) * Y yields TRUE for all integer values X
and y.

static properties: if the operand-* is an operand-5, the class of
the operand-4 is the class of the ope rand-5, otherwise the
class of the operand-4 is the resulting class of the classes
of the sub ope rand-4 and the ope rand-5.

An operand-4 is constant (literal) if and only if it is either
an operand-5 which is constant (li teral), or built up from an
operand-4 and an operand-5 which are both constant (li teral).

static conditions: If an arithmetic multiplicative operator is
specified, the cla sses of the operand-5 and sub operand-4
must be compatible and both must have an integer root mode.

dynamic conditions: In the case of an operand-4, which is not
constant, an OVERFLOW exception occurs if a multiplication
(*) or a division (/) or a modulo (MOD) or a remsiner (REM)
operation gives rise to a value which is not in the set of
values defined by the root mode of the class of the operand-4
or is performed on operand values for which the operator is
mathematically not defined, i.e. division or remainder with
an operand-5 delivering 0 or a modulo operation with an
operand-5 delivering a non-positive integer value.

examples:
6.15 1_461 (1.1)
6.15 (4 * d + 3) / 1.461 (1.2)

5.3.7 OPERAND-5

syntax
<operand~5> (1)

[<monadic operator>] <operand-6> (1.1)

<monadic operator> ::= (2)
- I NOT (2.1)

I <string repetition operato r> (2.2)

98 FASCICLE VI.8 Rec. 2.200

<string repetition operator>
(<integer literal expression>)

(3)
(3.1)

semantics: If the monadic operator is a change-sign operator (-), the
operand-6 delivers an integer value and the resulting integer
value is the previous integer value with its sign changed.

If the monadic operator is NOT* the operand-6 delivers either
a boolean value, or a bit string value or a powerset value. In
the first two cases the logical negation of the boolean or bit
string value is delivered, in the latter case, the set
complement value, i.e. the set of those member values which
are not in the operand powerset value.

If the monadic operator is a string repetition operator, the
operand-6 is a character string literal or a bit string
literal. If the integer literal expression delivers 0, the
result is the empty string value, otherwise the string value
formed by concatenating the string with itself as many times
as specified by the value delivered by the literal expression
minus 1.

static properties: If the operand-5 is an operand-6, the class of
the operand-5 is the class of the operand-6 .

If a monadic operator is specified, the Class of the operand-5
is:

• if the monadic operator is - or NOT then the resulting
class of the operand-6 *

• if the monadic operator is the string repeti ti on
operator, then it is the CHAR(n) or BI7Yn;-der i ved class
(depending on whether the literal was a character string
literal or bit string literal) Where n - r * L, where r is
the value delivered by the integer literal expression
and L is the length of the string literal.

An operand-5 is constant (li teral) if and only if the
operand-6 is constant (li teral).

static conditions: If the monadic operator is -» the class of the
operand-6 must have an integer root mode.

If the monadic operator is WOT", the class of the operand-6
must have a boolean, bit string or powerset root mode.

If the monadic operator is the string repeti ti on operator,
the operand-6 must be a character string literal or a bit
string literal. The inteoer 1iteral expression must deliver a
non-negative integer-valua.

FASCICLE VI.8 Rec. Z.200 99

dynamic conditions: If the operand-5 is not constant* an OVERFLON
exception occurs if a change sign (-) operation gives rise to
a value uhich is not in the set of values defined by the root
mode of the class of the operand-5,

examples:
5.11 NOT k2 (1,1)
7.50 (6)' ' (1.1)
7.50 (6) (2.2)

5.5.8 OPERAND-6

syntax:
<operand-6> ::=

<primi ti ve value>
I <parenthesised expression>

(1)
(1.1)
(1.2)

semantics:

<parenthesised expression> ::= (2)
(<expressi on>) (2.1)

An operand-6 is either a primitive value (see section 5.2) or
a parenthesised expression.

static properties: The class of the operand-6 is the class of the
priwiti ve value or parenthesised exp ressi on respectively. The
class of the parenthesi sed expression is the class of the
exp ressi on.

An operand-6 is constant (li teral) if and only if the
primiti ve value or expressiont respectively is constant
(literal).

examples:
1.5
5.11 (al OR bl)

(1.1)
(1.2)

100 FASCICLE VI.8 Rec. 2.200

6.0 ACTIONS

6.1 GENERAL

syntax:
<action statement> ::= (1)

[<name> :J <action> [<handler>] I<label name>1; (1.1)

(2)
(2 .1)
(2 .2)
(2.3)
(2.4)
(2.5)
(2 .6)
(2 .1)
(2 .8)
(2.9)
(2 .10)
(2 .11)
(2 .12)
(2.13)
(2.14)
(2.15)

<bracketed action> (3)
<if action> (3.1)

I <case action> (3.2)
I <do action> (3.3)
I <module> (3.4)
I <begin-end block> (3.5)
I <delay case action> (3.6)
[<receive case action> (3.71

semantics; Action statements constitute the algorithmic part of a CHILL
program. Any action statement may be labelled and those
actions that might cause an exception may have a handler
appended.

static properties: A name followed by a colon and placed in front of
an actiont and only such a name, is defined to be a label
name.

static conditions: The label name before the semicolon may only be
given if the action is a bracketed action or if a handler is
specified and only if a name followed by a colon is given
before the action. The label name must be equal to the latter
name.

<action> ::=
<bracketed action>

I <assignment action>
I <call action>
I <exit action>
I <return action>
I <result action>
I <goto action>
I <assert action>
I <empty action>
I <start actioh>
I <stop action>
I <delay action>
I <cont i nue action>
I <send action>
I <cause action>

FASCICLE VI.8 Rec. Z.200 101

6.2 ASSIGNMENT ACTION

syntax;
<assi gnment action> :: =

<single assignment action>
{ <mult i pie ass i gnment action>

<single assignment action>
<locat ion> {<assignment symbol> | <assi gni ng operator>}
<value>

<multipie assignment action>
<locati on> {,<locati on>}+ <assi gnment symbol>
<value>

<assi gni ng operator> :: -
<closed dyadic operator> <assignment symbol>

<closed dyadic operator>
OR | XOR | AND

I <pouerset di fference operator>
I <arithmetic additive operator>
I <ari thmeti c multiplicative operator>

<assignment symbol> ::=

derived syntax: The = symbol is derived syntax for the symbol.

semantics: The assignment action stores a value into one or more
locations.

If an assignment symbol is used* the value yielded by the
right hand side is stored into the location(s) specified at
the left hand side.

If an assigning operator is used* the value contained in the
location is combined with the right hand side value (in that
order) according to the semantics of the specified closed
dyadic operator, and the result is stored back into the same
location.

The evaluation of the left hand side location(s),of the right
hand side value, and the assignment themselves are performed
in an unspecified and possibly mixed order. Any assignment
may be performed as soon as the value and a location have been
evaluated.

If the location (or any of the locations) is the tag field of
a variant structure, the variant fields that depend on it will
receive an undefined value.

102 FASCICLE VI.8 Rec. Z.200

(1)
(1.1)
(1.2)

(2)

(2.1)

(3)

(3.1)

(<f)
(<t.l)

(5)
(5.1)
(5.2)
(5.3)
(5.$)

(6)
(6.1)

static conditions; The modes of all location occurrences must be
equivalent and they must have neither the read-only property,
nor the synchronisation property. Each mode must be
compatible with the class of the value. The checks are dynamic
in the case where dynamic mode locations and/or a value with a
dynamic class are involved.

If the value is a regional expressi on (see section 8.2.2),
every location must be regional.

If in a single assignment action an assigning operator is
specified, the specified value must be an expression.

dynamic conditions: The TAGFAIL exception occurs if, in the case of a
dynamic paramaterised structure mode location and/or value,
the dynamic part of the above mentioned compatibility check
fails.

The RANGEFAIL exception occurs if any location has range mode
and the value delivered by the evaluation of value lies
outside the bounds specified by that range mode.

The R/WGEF/IL exception occurs if, in the case of a dynamic
parameterised string mode or array mode location and/or
value, the dynamic part of the above mentioned compatibility
check fails.

The above mentioned conditions are called the assignment
conditions of a value with respect to a mode (i.e. the mode of
the location).

In the case of an assignment operator the same exceptions are
caused as if the expression:
<locati on> <closed dyadic operato r> (<expression>)
were evaluated and the delivered value stored into the
specified location (note that the location is evaluated once
only).

examples:
❖.11 a:=b+c
10.21 siackindex-:=1
19.16 X.PREX, X.NEXT := NULL
10.21

(1.1)
(2.1)
(3.1)
($.1)

6.3 IF ACTION

syntax:
<i f action> : (1)

IF <boolean expression> <then clause>
[<else clause>] FI (1.1)

FASCICLE VI.8 Rec. Z.200 103

<then clause> :: =
THEN <action statement list>

(2)
(2.1)

<else clause> :: =
ELSE <action statement list>

I EL5IF <boolean expression>
<then clause> [<else clause>}

derived syntax; The notation:
EL5IF <boolean expressi on> <then clause> [<else clause>)
is derived syntax for:
ELSE IF <boolean expression> <then clause> [<else clause>] FI;

semantics: The if action is a conditional two-way branch. If the boolean
expression yields TRUE, the action statement list following
•THEN is entered, otherwise, the action statement list
following ELSE* if present.

examples:
7.2$ IF n > = 10 THEN rn(r): = 'X';

n - : =10;
r+:=l;

FI
10.$6 IF last = NULL

THEN first,last:=p;
ELSE last->.succ:=p;
p->.pred:=last;
last:=p;

. FI

6 .$ C/jSE ACTION

syntax:
<case action> ::=

CASE <case selector list> OF l<range list>;J
{<case alternative>}*
[ELSE <action statement list>3
ESAC

<case selector list> ::= (2)
<di sc rete expressi on> {, <discrete expressi on>}* (2.1)

<range list> ::= (3)
<di sc rete mode> {, <discrete mode>}* (3.1)

<case alternati ve> ::= ($)
<case label spedfication> : <action statement list> ($.1)

semantics: The case action is a multiple branch. It consists of the
specification of one or more discrete expressions (the case
selector list) and a number of labelled action statement

(1)

(1.1)

(1.1)

(1.1)

(3)
(3.1)

(3.2)

104 FASCICLE VI.8 Rec. Z.200

lists (case alternatives). Each action statement list is
labelled with a case label specification which consists of a
list of case label list specifications (one for each case
selector). Each case label defines a set of values. The use of
a list of discrete expresssions in the case selector list
allows selection of an alternative based on multiple
condi tions.

The case action enters that action statement list for which
values given in the case label specification match the values
in the case selector list.

The expressions in the case selector list are evaluated in an
undefined and possibly mixed order. They need to be evaluated
only up to the point where a case alternative is uniquely
determined.

Static conditions: For the list Of case label spedfication
occurrences, the case selection conditions apply (see section
9.1.3).

The number of disc rete expression occurrences in the case
selector list must be equal to the number of classes in the
resulting list of classes of the list of case label list
occurrences and, if present, to the number of discrete mode
occurrences in the range list.

The Class Of any disc rete expressi on in the case selecto r list
must be compatible with the corresponding (by position) class
of the resulting list of classes of the case label list
occurrences and, if present, compatible with the
corresponding (by position) discrete mode in the range list.
The latter mode must also be compatible with the
corresponding class of the resulting list of classes.

Any value delivered by a discrete literal expression or
defined by a literal range or discrete mode in a case label
(see section 9.1.3) must lie in the range of the corresponding
discrete mode Of the range list, if present, and also in the
range defined by the mode of the corresponding discrete
exp ress i on in the case selector list, if it is a strong
discrete expression. In the latter case, the values defined
by the corresponding discrete mode of the range list, if
present, must also lie in that range.

The optional keyword ELSE, followed by an action statement
list, may only be omitted if the list of case label list
occurrences is co?^Plete (see section 9.1.3).

dynamic conditions: The RANGEFAIL exception occurs if a range list is
specified and the value delivered by a di screte exp ress i on in
the case selector list does not lie within the bounds
specified by the corresponding discrete mode in the range
list.

FASCICLE VI.8 Rec. Z.200 105

examples:
4.10 CASE order OF

(1): a:= b+c;
RETURN;

(2): d :=0;
(ELSE): d:=1;

ESAC (1.1)
11.44 starting.p.kind, starting.p.color (2.1)
11.62 (rook), Ot):

IF NOT ok_rook(b,m)
THEN
CAUSE illegal;

FI; (4.1)

6.5 DO ACTION

6.5.1 GENERAL

syntax:
<do action> :: =

DO [<cont rol part>;J <action statement list> OD
(1)
(1.1)

<control part>
<for control> [<uhile control>7

I <uhile control>
I <wi th part>

(2)
(2.1)
(2 .2)
(2.3)

semantics: The do action has three different forms: the do-for and the
do-while versions, both for looping, and the do-with version
as a convenient short hand notation for accessing structure
fields in an efficient way. If no control part is specified,
the action statement list is entered once, each time the do
action is entered.

When the do-for and the do-while versions are combined, the
while control is evaluated after the for control, and only if
the do action is not terminated by the for control.

dynamic conditions: The SPACEFAIL exception occurs if the storage
requirements cannot be satisfied.

examples:
4.16 DO FOR i :=1 TO c;

op(a,b,d,order-1);
d: =a;

OD
15.48 DO WITH EACH;

IF THIS_COUNTER = COUNTER
THEN

(1.1)

106 FASCICLE VI.8 Rec. Z.200

STATUS:=IDLE;
EXIT FINDjCOUNTER;

FI;
OD (1.1)

6.5.2 FOR CONTROL

syntax:
<for control> ::= (1)

FOR {<iteration> {,<iteration>I* I EVERJ (1.1)

<iteration> ::= (2)
<value enumerati on> (2.1)

I <location enumeration> (2.2)

<value enumeration> ::= (3)
<step enumeration> (5.1)

I <range enume rat i on> (5.2)
I <pouerset enumerati on> (3.3)

<step enumerati on> ::= (4)
<loop counter> <assignment symbol>
<start value> [<step value>3 [DONN] <end value> (4.1)

<loop counter> (5)
<name> (5.1)

<start value> ::= (6)
<expressi on> (6.1)

<step value> ::= (7)
BY <integer expressi on> (7.1)

<end value> (8)
TO <expression> (8.1)

<range enumerati on> ::= (9)
<loop counter> [D0NN3 IN <discrete mode> (9.1.?

<pouerset enumerati on> ::= (10)
<loop counter> [DONN] IN <pouerset expressi on> (10.1)

<location enumerati on> (11)
<loop counter> tD0NN3 IN <arrav location> (11.1)

semantics: The action statement list is repeatedly entered according to
the specified for control.

The for control may mention several loop counters. The loop
counters are evaluated each time in an unspecified order,
before entering the action statement list, and they need be

FASCICLE VI.8 Rec. Z.200 107

evaluated only up to the point that it can be decided to
terminate the do action. The do action is terminated if at
least one of the loop counters indicates termination.

A distinction is made between normal and abnormal
termination. Normal termination occurs if the evaluation of
at least one of the loop counters indicates termination.
Abnormal termination occurs if a while condition evaluation
delivers FALSEt if an exit action or a goto action with a
(target) label defined outside the action statement list is
executed, or if an exception is caused for which the
appropriate handler lies outside, and is not appended to, the
do action.

1. do for ever:

The action list is indefinitely repeated; only abnormal
termination is possible.

2. value enumeration:

The action statement list is repeatedly entered for the
set of specified values of the loop counters. The sat of
values is either specified by a discrete mode (range
enumeration), or by a powersat value (powerset
enumeration), • or by a start value, step value and end
value (step enumeration).

The loop counter is always implicitly defined inside the
action statement list. However, if an access name which
is equal to the name of the loop counter is visible
outside the do action, the value of the loop counter will
be stored into the denoted location just prior to
abnormal termination. In the case of normal termination
the value stored into the location denoted by the
external access name is undefined.

range enumeration:

In the case of range enumeration without (with) DOWN
specification, the initial value of the loop counter is
the smallest (greatest) value in the set of values
defined by the discrete mode. For subsequent executions
of the action statement list, the "next value" will be
evaluated as:
5 UCC(”previous value”) IPRED(”previous value”)).
The do action is terminated (normal termination) if the
action statement list has been executed for the greatest
(smallest) value defined by the discrete mode.

powerset enumeration:

108 FASCICLE VI.8 Rec. Z.200

In the case of powerset enumeration without (with) DOWN
specification, the initial value of the loop counter is
the smallest (highest) member value in the denoted
powerset value. If the powerset value is empty, the
action statement list will not be executed. For
subsequent executions of the action statement list, next
value will be the next greater (smaller) member value in
the powerset value. The do action is terminated (normal
termination) when the action statement list has been
executed for the greatest (smallest) value. When the do
action is executed, the powerset expression is evaluated
once only.

step enumeration:

In the case of step enumeration without (with) DOWN
specification, the set of values of the loop counter is
determined by a start value, end value, and possibly step
value. When the do action is executed, these expressions
are evaluated once only in an unspecified, possibly mixed
order. The step value is always positive. The test for
termination is made before each execution of the action
statement list. Initially, a test is made to determine
whether the start value of the loop counter is greater
(smaller) than the end value. For subsequent executions,
"next value" will be evaluated as:
"previous value" + step value
("previous value" - step value)
in the case of step value specification, otherwise as:
Sl/CCf "previous value”) IPREDC”previous value”)!.
The do action is terminated (normal termination) if the
evaluation yields a value which is greater (smaller) than
the end value, or would cause an OVERFLOW exception.

location enumeration:

In the case of a location enumeration without (with) DOWN
specification, the action statement list is repeatedly
entered for a set of specified locations which are the
elements of the array location denoted by the array
location. The semantics are as if initially the
loc-identity declaration:
DCL <loop counter> <mode> LOC := <first locati on>;
were encountered, where <wode> is the element mode of the
mode of the ar rav location and <first location> the
element of the smallest (greatest) index; for subsequent
executions, as if before each execution of the action
statement list the loc-identity declaration:
DCL <loop counter> <mode> LOC := <next location>;
where encountered, where <next location> is the array
element with index:
"next index" = SUCC(”prev i ous index”)
iPRED(”previous index”)!.
The do action is terminated (normal termination) if the

FASCICLE VI.8 Rec. Z.200 109

loop counter just before the next evaluation indicates
the array element with the greatest (smallest) index.
When the do action is executed, the array location is
evaluated once only.

static properties:

value enumeration:

The loop counter is a value enumeration name. If a name is
visible in the reach in which the do action is placed
Which is equal to the loop counter* the loop counter is
explicit# otherwise it is implicit.

step enumeration:

The class of an explicit loop counter is the M-value
class# where M is the mode of the external access name
(see below: static conditions).

The class of an implicit loop counter is the resulting
class of the classes of the start value* step value if
present, and end value.

range enumeration:

The class of the loop counter is the M-value class, where
M is the discrete mode,

powerset enumeration:

The class of the loop counter is the M-value class, where
M is the member mode of the mode of the (strong) poverset
exp ress i on.

location enumeration:

The loop counter is a location enumeration name. Its mode
is the element mode of the mode of the array location.

A location enumeration name is (language) referable if
the element layout of the mode of the array location is
NOPACK.

static conditions:

step enumeration:

The classes of start value* end value and step value, if
present, must be pairwise compatible. In the case of a
loop counter which is explicit, the externally visible
name must be an access name. The mode of the external
access name must be compatible with each of these classes
and must not be a read-only mode.

110 FASCICLE VI.8 Rec. Z.200

powarset enumeration* range enumeration:

In the case of an explicit loop counter, the externally
visible name must be an access name. The mode of the
external access name must be compatible Mith the class of
the loop counter.

The poverset expression must be Strong.

dynamic conditions; A RANGEFAIL exception occurs if the value delivered
by step value is not greater than 0 or if, in the case of an
explicit loop counter, the value to be stored back into the
external location prior to abnormal termination, does not lie
Mi thin the bounds specified by the mode of the external
location. This exception occurs outside the block of the do
action.

(1.1)
(1.1)
(3.1)
(3.1)
(3.2)

examples:
*.16 FOR i :=1 TO c
15.27 FOR EVER
*.16 i :=1 TO c
9.11 j :=HIN(si eve) BY HIN(si eve) TO max
14.22 I IN INT(1:100)

6.5.3 WHILE CONTROL

syntax:
<while control>

WHILE <boolean expressi on>
(1)
(1.1)

semantics: The boolean expression is evaluated just before entering the
action statement list (after the evaluation of the for
control if present). If it yields TRUE, the action statement
list is entered, otherMise the do action is terminated
(abnormal termination).

examples:
7.23 WHILE n >= 1 (1.1)

6.5.4 WITH PART

syntax:
<ui th part> :: = (1)

WITH <with control> {,<uith control>}* (1.1)

<uith control> (2)
<st ructure locati on> (2.1)

I <st ructure exp ress i on> (2.2)

FASCICLE VI.8 ReC. Z.200 111

N.B. if the structure exp ress i on is a locati on* the syntactic
construct is ambiguous and will be interpreted as a structure
locati on.

semantics: The (visible) field names of the structure locations or
structure value specified in each with control are made
available as direct accesses to the fields.

If a structure location is specified* access names which are
equal to the f i eld names of the mode of the st ructu re locat i on
are implicitly created* denoting the sub-locations of the
structure location.

If a structure expressi on is specified* value names which are
equal to the field names of the mode of the (strong) structure
expression are implicitly created* denoting the sub-values of
the structure value.

When the do action is entered* the specified structure
locations and/or structure values are evaluated once only on
entering the do action, in an unspecified, possibly mixed
order.

Structure expression: Any name made available in the do
action is a value do-with name. Its class is the M-value
class, where M is the mode of that field name of the structure
mode of the st ructu re expression* which is made available as
value do-with name.

Structure location: Any name made available in the do action
is a location do-with name. Its mode is the mode of that field
name of the mode of the st ructu re locat i on* which is made
available as location do-with name. A location do-with name
is (lansuage) referable if the field layout of the associated
field name is NOPACK.

static properties

static conditions The s t ructu re expressi on must be strong

examples:
15.$5 NITH EACH (1.1)

6.6 EXIT ACTION

syntax:
<exit action> ::=

EXIT <label name>
(1)
(1 .1)

112 FASCICLE VI.8 Rec. Z.200

semantics: An exit action is used to leave a bracketed action. Action is
resumed immediately after the closest surrounding bracketed
action labelled Mith the label name.

static conditions: The exit action must lie Mi thin the bracketed
action statement labelled Mith the label name. If the exit
action is placed Mithin a procedure or process definition,
the exited bracketed action statement must also lie Mithin
the same procedure or process definition (i.e. the exit
action cannot be used to leave procedures or processes).

No handler may be appended to an exit action.

examples:
15.52 EXIT FIND COUNTER (1.1)

6.7 CALL ACTION

syntax:
<call action> (1)

[CALL] { <procedure call> I <built~in routine call>} (1.1)

<procedure call> ::= (2)
{< procedure name> | <procedure expressi on>I
([<actual parameter list>3) (2.1)

<actual parameter list> (3)
<actual parameter> {f<actual parameter>}* (3.1)

<actual parameter> ::= (4)
<value> (4.1)

I <static mode location> (4.2)

derived syntax: The keyuord CALL is optional. A call action Mith CALL is
derived from a call action Mithout CALL.

semantics: A call action causes a call of the general procedure indicated
by the value delivered by the procedure expression or the
procedure indicated by the procedure name. The actual values
and locations specified in the actual parameter list are
passed to the procedure.

static properties: a procedure call has the follouing properties
attached: a list of parameter specs, possibly a result spec, a
possibly empty set of exception names, a generality, a
recursivitv, and possibly it may be regional (the latter is
only possible Mith a procedure name, see section 8.2.2).
These properties are inherited from the procedure name or any
mode compatible Mith the Class Of the p rocedure expressi on
(in the latter case, the generality is aluays general).

FASCICLE VI.8 Rec. Z.200 113

A procedure cell Mith a result spec is a locati on procedure
call if and only if LOC is specified in the result spec#
otherwise it is a value procedure call.

static conditions: The number of actual parameter occurrences in the
procedure call must be the same as the number of its parameter
specs. The compatibility requirements for the actual
parameter and corresponding (by position) parameter spec of
the p rocedu re call are:

• If the the parameter spec has the IN attribute (default),
the actual parameter must be a value whose class is
compatible with the mode in the corresponding parameter
spec. The latter mode must not have the synchronisation
property. If the procedure call is not regional, the
(actual) value must not be regional (see section 8.2.2).

• If the parameter spec has the INOUT or OLfT attribute, the
actual parameter must be a static mode location* whose
mode must be compatible with the M-value class, where M is
the mode in the corresponding parameter spec. The mode of
the (actual) static mode location must not have the
read-only property nor the synchronisation property. If
the p rocedu re call is not regi onal, the (actual) location
must not be regional (see section 8.2.2).

• If the parameter spec has the INOUT attribute, the mode in
the parameter spec must be compatible with the M-value
class where M is the mode of the static mode location.

• If the parameter spec has the LOC attribute, the actual
parameter must be a static mode locati on which is both
referable and such that the mode in the parameter spec is
read-compatible with the mode of this (actual) static
mode locati on, or a value Which is not a location but
whose class is compatible with the mode in the parameter
spec.

dynamic conditions: A procedure call can cause any of the exceptions of
the attached set of exception names. It causes the EMPTY
exception if the procedure expressi on delivers NULL, it
causes the SPACEFAIL exception if storage requirements cannot
be satisfied and it causes the RECURSEFAIL exception if the
procedure calls itself recursively (i.e. a previous
invocation is still active) and its recursivity is
non-recursive.

Parameter passing can cause the following exceptions:

• If the parameter spec has the IN, INOUT or LOC attribute,
the assignment conditions of the (actual) value (possibly
contained in an actual location), with respect to the
mode of the parameter spec apply at the point of the call
(see section 6.2) and the possible exceptions are caused

FASCICLE VI.8 Rec. Z.200

before the procedure is called.

• If the parameter spec has the INOUT' or OUT attribute, the
assignment conditions of the local value of the formal
parameter, with respect to the mode of the (actual)
location apply at the point of return (see section 6.2)
and possible exceptions are caused after the procedure
has returned.

• If the parameter spec has the LOC attribute and the actual
parameter is a value which is not a locat i on, the
assignment conditions of the (actual) value with respect
to the mode of the parameter spec apply at the point of
the call and the possible exceptions are caused before
the procedure is called (see section 6.2).

examples:

The procedure expressi on must not deliver a procedure defined
within a process definition whose activation is not the same
as the activation of the process executing the procedure call
(see section 8.1) and the lifetime of the denoted procedure
must not have ended.

4.17 op(a,b,dt order-1) (1.1)

6.8 RESULT AND RETURN ACTION

syntax:
< return action>. (1)

RETURN I<result>J (1.1)

<result action> ::= (2)
RESULT <result> (2.1)

<result> ::= (3)
<value> (3.1)

I <static mode locati on> (3.2)

derived syntax: The return action with result is derived from RESULT
<result> ; RETURN. If a handler is appended to such a return
action, it is considered to be appended to the result action
from which it was derived.

semantics: The result action serves to establish the result to be
delivered by a procedure call. This result may be a location
or a value. The return action causes the return from the
invocation of the procedure within whose definition it is
Placed. If the procedure returns a result, this result is
determined by the last executed result action. If no result
action has been executed the procedure call delivers an
undefined location or undefined value, respectively.

FASCICLE VI.8 Rec. Z.200 115

static properties: The result action and return action have a
procedure name attached, which is the name of the closest
surrounding procedure definition.

Static conditions: The return action and the result action must be
textually surrounded by a procedure definition. A result
action may only be specified if its procedure name has a
result spec.

A handler must not be appended to a return action (without
result).

If LOC is specified in the result spec of the procedure name
of the result actioni the result must be a static mode
location, such that the mode in the result spec is
read-compatible with the mode of the static mode location. If
the procedure name of a result action is not regional, the
static mode location in the result must not be regional (see
section 8.2.2).

If LOC is not specified in the result spec of the procedure
name of the result actiont the result must be a value, whose
class is compatible with the mode in the result spec. If the
procedure name of a result action is not regional, the value
in the result must not be regional (see section 8.2.2).

dynamic conditions: If LOC is not specified in the result spec of the
procedure name, the assignment conditions of the value in the
result actiont with respect to the mode in the result spec of
its procedure name apply.

examples?
*.20 RETURN (1.1)
1.5 RESULT i+j (2.1)
5.20 c (5.1)

6.9 GOTO ACTION

syntax:
<goto action> ::= (1)

GOTO <label name> (1.1)

semantics: The soto action causes a transfer of control. Action is
resumed with the action statement labelled with the label
name.

static conditions: If the goto action is placed within a procedure
or process definition, the label indicated by the label name
must also be defined within the definition (i.e. it is not
possible to jump outside a procedure or process invocation).

116 FASCICLE VI.8 Rec. Z.200

A handler must not be appended to a goto action.

6.10 >455ERT ACTION

syntax:
<assert action> ::= (1)

ASSERT <boolean expression> (1.1)

semantics: The assert action provides a means of test ins a condition.

dynamic conditions: The ^SSE#?TF/«IL exception occurs if the boolean
exp ress i on delivers FALSE.

examples:
4.6 ASSERT b>Q AND c>0 AND order>0 (1.1)

6.11 EMPTY ACTION

syntax:
<empty action> (1)

<empty> (1.1)

<empty> :: - (2)

semantics: The empty action does not cause any action.

static conditions: A handler must not be appended to an empty
action.

6.12 CAUSE ACTION

syntax:
<cause action> ::= (1)

CAUSE <exception name> (1.1)

semantics: The cause action causes an exception.

static conditions: A handler must not be appended to a cause action.

dynamic conditions: The cause action causes the exception whose name
is indicated by excepti on name.

examples:
4.8 CAUSE urong_input (1.1)

FASCICLE VI.8 Rec. Z.200 117

6.13 START ACTION

syntax:
<start action> (1)

<start expression> [SET <instance location>] (1.1)

derived syntax: The start action with the SET option is derived syntax
for the single assignment action:
< instance location> := <start expression>

semantics: The start action evaluates the start expression (see section
5.2.17), without using the resulting instance value.

examples:
14.37 START CALL DISTRIBUTOR() (1.1)

6.14 STOP ACTION

syntax:
<stop action> (11

STOP (1.1)

semantics: The stop action terminates the process executing the stop
action (see section 8.1).

static conditions: A handler must not be appended to a stop action.

6.15 CONTINUE ACTION

syntax:
<cont i nue action> =

CONTINUE <event location>
(1)
(1 .1)

semantics: The continue action allows the process of the highest
priority, which is delayed on the specified event location,
to be activated. If there is no unique process of the highest
priority, one particular process of the highest possible
priority will be selected according to an implementation
defined scheduling algorithm. If there are no processes
delayed on the specified event location, the continue action
has no further effect (see chapter 8 for further details).

examples:
13.23 CONTINUE RESOURCE FREED (1.1)

118 FASCICLE VI.8 Rec. Z.200

6.16 DELAY ACTION

syntax:
<delay action> ::=

DELAY <event location> I<priority>1
(1)
(1.1)

<priority> ;;= (2)
PRIORITY <integer literal expressi on> (2.1)

semantics: The delay action causes the process executing it to become
delayed. It can become activated by a continue action on the
event location specified. The priority indicates the priority
of the delayed process within the set of processes which are
delayed on the indicated event location. The default and
lowest priority is 0 Csee chapter 8 for further details).

static conditions: The integer 1iteral expression must not deliver a
negative value.

dynamic conditions: The DELAYFAIL exception occurs if the mode of the
event location has a length attached and the number of
processes delayed on the specified event location is equal to
the length just after the evaluation of the event location.
This exception occurs before the delaying of the process.

The lifetime of the delivered event location must not end
while the process executing the delay action is delayed on it.

examples:
13.17 DEL/4V RESOURCE FREED (1.1)

6.17 DELAY CA5E ACTION

syntax:
<delay case action> (1)

DELAY CASE [SET <instance location>;J [<priority>;1
{<delay alternative>l*
ESAC (1.1)

<delay alternati ve>
(<event list>) <action statement list>

(2)
(2 .1)

<eyent li st> :: =
<event location> {,<event location>}*

(5)
(5.1)

semantics: The delay case action causes the process executing it to
become delayed. It can become activated by a continue action
on one of the specified event locations. In that case an
action statement list that is labelled by the event location
on which the continue action, that re-activated the process,

FASCICLE VI.8 Rec. 2.200 119

was performed, will be executed (see chapter 8 for further
details). Before the process becomes delayed, each event
location and the instance location if specified, will be
evaluated. They will all be evaluated in an unspecified and
possibly mixed order. If two or more evaluations deliver the
same event location, the choice of an action statement list is
non-deterministic.

If an instance location is specified, the instance value
identifying the process that executed the activating continue
action, will be stored into the instance location.

static conditions: The mode of the instance location must not have
the read-only property. The integer literal expression in
priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the mode of at
least one event location has a length attached such that the
number of delayed processes on the specified event location
is equal to the length after the evaluation of the event
location. This exception occurs before the delaying of the
process.

The lifetime of none of the delivered event locations must end
while the process executing the delay case action is delayed
on it.

examples;
14.20 DELAY CASE

(OPERATOR_IS_READY): /* some actions */
(SUITCH_IS_CLOSED): DO FOR I IN INT(1:100);

CONTINUE 0PERAT0R_1S_READY;
/x empty the queue X/
OD;

ESAC (1.1)

6.Id SEND ACTION

6.18.1 GENERAL

syntax:
<send action>

<send signal action>
I <send buffer action>

(1)
(1 .1)
(1.2)

semantics: The send action initiates the transfer of synchronisation
information, from a sending process. The detailed semantics
depend on whether the synchronisation object is a signal or a
buffer.

120 FASCICLE VI.8 Rec. Z.200

6.18.2 SEND SIGNAL ACTION

syntax:
<send signal action> (11

SEND <sianal name> [(<value> {, <value>}*)]
[TO <instance expression>] [<priority>1 (1.1)

semantics: The specified signal is sent together with the list of values
and priority (if present). The default and lowest priority is
0. If the signal name has a process name attached, it means
that only processes of that name may receive the signal. If
the TO option is specified, it identifies the only process
that may receive the list of values sent in the send signal
action. This process identification must not be in
contradiction with a possible process name attached to the
signal name. Both the possible process name of the signal and
the possible instance value are dynamically attached to the
list of values sent (see chapter 8 for further details).

static conditions: The number of value occurrences must be equal to
the number of modes of the signal name. The class of each
value must be compatible with the corresponding mode of the
signal name. No value occurrence may be regional (see section
8.2.2). The integer literal expression in priority must not
deliver a negative value.

dynamic conditions: The assignment conditions of each value, with
respect to its corresponding mode of the signal name, apply.

The EMPTY exception occurs if the instance expressi on
delivers NULL.

The EXTINCT exception occurs if and only if the lifetime of
the process indicated by the value delivered by the instance
expressi on has terminated at the point of the execution of the
send signal action.

The MODEFAIL exception occurs if the signal name has a process
name attached which is not the name of the process indicated
by the value delivered by the instance expressi on.

examples:
15.65 SEND READY TO RECEIVED_USER (1.1)
15.76 5END READOUT(COUNT) TO USER

6.13.3 SEND BUFFER ACTION

syntax:
<send buffer action> ::= (1)

SEND <buffer location>(<value>) [<pri ori ty>3 (1.1)

FASCICLE VI.8 Rec. Z.200 121

semantics; The specified value together with the priority is stored into
the buffer location if its capacity allows for it. The latter
is not the case if the mode of the buffer locati on has a
length attached and the number of values stored in the buffer
is equal to the length just prior to the execution of the send
buffer action. As a result* the sending process will become
delayed until there is capacity in the buffer location or
until the value sent is consumed. The default and lowest
priority is 0 (see chapter 8 for further details).

static conditions: The class of the value must be compatible with
the buffer element mode of the mode of the buffer location.
The value must not be regional (see section 8.2.2). The
integer literal expressi on in priority must not deliver a
negative value.

dynamic conditions: For the send buffer action the assignment
conditions of the value with respect to the buffer element
mode of the mode of the buffer location apply. The possible
exceptions occur before the delaying of the process.

The lifetime of the delivered buffer location must not end
while the process executing the send buffer action is delayed
on it.

examples:
16.115 5END USER->([READY, ->COUNTER_BUFFERJ) (1.1)

6.19 RECEIVE CASE ACTION

6.19.1 GENERAL

syntax:
<receive case action> (1)

<receive signal case action> (1.1)
I < recei ve buffer case action> (1.2)

semantics: The receive case action receives synchronisation information
that is transmitted by the send action. The detailed
semantics depend on the synchronisation object used* which is
either a signal or a buffer. Entering a receive case action
does not necessarily result in a delaying of the executing
process (see chapter 8 for further details).

122 FASCICLE VI.8 Rec. Z.200

6.19.2 RECEIVE SIGNAL CASE ACTION

syntax
<receive signal case action>

RECEIVE CASE [SET <instance location>;3
{<signal receive alternati ve>I*
[ELSE <action statement list>3 ES^C

(1)

(1.1)

<signal receive alternati ve> :: =
(<5ional name> [IN <name list>3)
: <action statement list>

(2)

(2 .1)

semantics: The receive signal case action receives a signal, possibly
with a list of values, the signa1 name of which is specified
in a signal receive alternative.

When the receive signal case action is entered, and if a
signal of one of the specified names which may be received by
a process executing it is present for reception, the signal is
received. If no such signal is present and if ELSE is not
specified, the process executing the receive signal case
action becomes delayed? if ELSE is specified, the action
statement list following it will be entered.

A signal may be received by a process only if the following
conditions are fulfilled:

• If a process name is attached to the signal, the name of
the receiving process is that process name.

• if an instance value is attached to the signal it
identifies the receiving process.

If a signal may be received, the action statement list
labelled with the signal name of the received signal, will be
entered. If more than one signal may be received, a signal of
the highest priority will be selected according to an
implementation defined scheduling algorithm. If the signa1
name has a list of modes attached, i.e. a list of values is
sent with the signal, a list of names must be specified after
IN. They are introduced value names denoting the received
values. If in the reach in which the receive signal case
action is placed, an access name is visible which is equal to
an introduced name, the received value will be stored into the
denoted location immediately after signal reception and
before the execution of the action statement list.

If the SET option is specified, the instance value denoting
the process that has sent the received signal, will be stored
into the specified instance location immediately after signal
reception.

FASCICLE VI.8 Rec. Z.200 123

static properties: Any name defined in the name list of the signal receive
alternati ve is a value receive name. Its class is the M-value
class* where M is the corresponding mode of the signal name
in front of it. If a name is visible in the reach where the
signal receive case action is placed* which is equal to one of
the names introduced after IN, the value receive name is
explicit* otherwise it is implicit.

static conditions: The mode of the instance location must not have the
read-only property.

All signal name occurrences must be different.

The optional IN and the name list in the signal receive
alternati ve must be specified if and only if the signal name
has a non-empty set of modes. The number of names in the name
list must be equal to the number of modes of the signal name.

If the value receive name is explicit, the externally visible
name must be an access name and its mode must be compatible
with the class of the value receive name. The mode of the
access name must not have the read-only property.

dynamic conditions: If the value receive name is explicit the assignment
conditions of the received value with respect to the mode of
the external access name apply. The possible exceptions occur
after receiving the signal and before entering the action
statement list.

The 5PACEFAIL exception occurs if, when entering an action
statement list, storage requirements cannot be satisfied.

examples:
15.73 RECEIVE CASE

(STEP): COUNT +:= 1;
(TERMINATE):

SEND READOUT(COUNT) TO USER;
EXIT WORK_LOOP;

ESAC (1 .1)

6.19.3 RECEIVE BUFFER CASE ACTION

syntax
< recei ve buffer case action> = (1)

RECEIVE CASE [SET <instance location>;3
{<buffer receive alternative>}*
[ELSE <action statement list>3
ESAC (1 .1)

<buffer receive alternative> ::=
(<buffer location> IN <name>)

(2)

124 FASCICLE VI.8 Rec. Z.200

<action statement list> (2.

semantics: The receive buffer case action receives a value from a buffer
location or from a sending process delayed on a buffer
location, which location is indicated in a buffer receive
alternative.

When the receive buffer case action is entered and if a value
is present in, or a sending process is delayed on, one of the
specified buffer locations, the value will be received and an
action statement list labelled with a buffer location
delivering the buffer location from which the value has been
received, will be executed.

When the receive buffer case action is entered, the buffer
locations are evaluated in an unspecified and possobly mixed
order and they need only be evaluated up to a point sufficient
to select an alternative. If none of the specified buffer
locations contains a value and no sending process is delayed
on a specified buffer location then if ELSE is not specified
the executing process becomes delayed, if ELSE is specified
the action statement list following it will be executed. If
more than one value can be received, a value with the highest
priority will be selected according to an implementation
defined scheduling algorithm. If two or more buffer location
occurrences deliver the same buffer location from which the
value is received, the selection of the action statement list
is non-daterministic.

The value is received immediately before entering the action
statement list following the colon. The name after IN is an
introduced value receive name denoting the received value. If
in the reach where the buffer receive case action is placed,
an access name is visible which is equal to a created value
receive name, the received value is stored into the denoted
location immediately before entering the action statement
list.

If the SET option is specified, the specified instance
location has stored in it, immediately on reception, the
instance value denoting the process that has sent the
received value.

static properties: The name after IN in the buffer receive
alternati ve is a value receive name. Its class is the M-value
class, where M is the buffer element mode of the mode of the
buffer location labelling the buffer receive alternati ve.

If a name is visible in the reach where the receive buffer
case action is placed, which is equal to the name introduced
after IN, the value receive name is called explicit,
otherwise it is implicit.

FASCICLE VI.8 Rec. Z.200 125

static conditions; The mode of the instance location must not have
the read-only property. If the value receive name is
explicit* the externally visible name must be an access name
and its mode must be compatible uith the class of the value
receive name with the same name. This mode must not have the
read-only property.

dynamic conditions: If the value receive name is explicit the
assignment conditions of the received value with respect to
the mode of the external access name apply. The possible
exceptions occur after receiving the value and before
entering the action statement list.

The SPACEFAIL exception occurs if, when entering an action
statement list, storage requirements cannot be satisfied.

The lifetime of none of the delivered buffer locations must
end while the process executing the receive buffer case
action is delayed on it.

126 FASCICLE VI.8 Rec. Z.200

7.0 PROGRAM STRUCTURE

7.1 GENERAL

The bracketed do actiont begin-end block, module, region, delay case
action, receive case action, p rocedu re defini ti on and process definition
determine the program structure, i.e. they determine the scope of names
and the lifetime of locations created in them.

• The Hord block Mill be used to denote:

the action statement list in the do action including the loop
counter and while cont rol}

the begi n-end block}

the procedure defini ti on excluding the result spec}

the process def i ni ti on}

the action statement list in a buffer receive alternati ve or in a
signal receive alternative including the name or name list after
IN}

the action statement list after ELSE in a receive case action or
handler}

the on-alternati ve in a handler,

• The uord modulion Hill be used to denote either a module or a region.

• The Mord group Hill denote either a block or a moduli on.

• The Hord reach or reach of a group Hill denote that part of the group
Hhich is not surrounded by an inner group of the group (i.e. the part
consisting of the outermost nesting level of the group).

A group defines a scope for names created in its reach. Names can be
created in the folloHing Hays:

• A name appearing in the name list of a declarati on, mode definition or
synonym definition or appearing in a signal definition is created in
the reach Hhere the declarati on, mode definition, synonym def i ni ti on
or signal definition, respectively, is placed.

• A name appearing in the name list in a formal parameter list is
created in the reach of the associated p rocedu re definition or process
def i ni ti on.

FASCICLE VI.8 Rec. Z.200 127

• A name in front of a colon followed by an action, region, procedure
definition, entry definition or process defini ti on is created in the
reach where the action> region» procedure definition> procedure
definition containing the entry definition> process defini ti on,
respectively, is placed.

• Each value enumeration name, location enumeration name, value do-with
name and location do-with name is created in the reach of the block of
the associated do action.

• Each value-receive name is created in the reach of the block of the
associated signal receive alternati ve or buffer receive alternati ve.

• A field name or set element name is created in the reach where the
defining occurrence of its associated st ructure mode or set mode is
placed.

• An exception name is created by means of a cause action or
on-alternative (note: no specific point of creation is given for an
exception name; sea chapter 10).

• A language pre-defined name is considered to be created in the reach
of a standard prelude module Csee section 7.8).

Programmer introduced (created) names, except exception names, have a
unique place where they are created (declared or defined). This place is
called the defining occurrence of the name. The places where the name is
used, are called applied occurrences of the name. The name binding rules
associate a unique defining occurrence with each applied occurrence of the
name (see section 9.2.8). No distinction between defining and applied
occurrences is made for exception names (see chapter 10).

A name has a certain scope, i.e. that part of the program where its
definition or declaration can be seen and, as a consequence, where it may
be freely used. The name is said to be visible in that part. Locations
have a certain lifetime, i.e. that part of the program where they exist.
Blocks determine both visibility of names and the lifetime of the
locations created in them. Modulions determine only visibility; the
lifetime of locations created in the reach of a moduli on will be the same
as if they were created in the reach of the first surrounding block.
Modulions allow for restricting the visibility of names. For instance, a
name created in the reach of a module will not automatically be visible in
inner or outer modules, although the lifetime might allow for it.

7.2 REACHES AND NESTING

syntax:
<begin-end body> (1)

<data statement list> <action statement list> (1.1

<proc body> (2)

128 FASCICLE VI.8 Rec. Z.200

<data statement list>
{<action statement> \ <entry statement>}* (2.1)

<process body> ::= (3)
<data statement list> <action statement list> (3.1)

<module body> ::= (4)
{<data statement> I <visibility statement> \
<region> J* <action statement list> ($.1)

<region body> ::= (5)
{<data statement> [<visibility statement>}* (5.1)

<action statement list> : (6)
{<action statement>}* (6.1)

<data statement list> (7)
{<data statement>}* (7.1)

<data statement> ::= (3)
<declaration statement> (3.1)

I <definition statement> (5.2)

<defini ti on statement> ::= (9)
<synmode definition statement> (9.1)

I <neumode definition statement> (9.2)
I <synonym definition statement> (9.3)
I <p rocedu re defini ti on statement> (9.$)
I <process definition statement> (9.5)
I <signal def i ni ti on statement> (9.6)
| <empty>; (9.7)

semantics: When a reach of a block is entered, all the lifetime-bound
initialisations of the locations created when entering the
block, are performed. Subsequently the reach-bound
initialisations in the block reach and the possibly dynamic
evaluations in the loc-identity declarations are performed in
the order they are textually specified.

When a reach of a modulion is entered, the reach-bound
initialisations and the possibly dynamic evaluations in the
loc-identity declarations in the modulion reach are performed
in the order they are textually specified.

static properties: Any reach has a unique directly enclosing group
defined as follows:

• If the reach is the reach of a do action, begin-end block,
procedure definition, process definition, module or
region, then its directly enclosing group is the group in
Whose reach the do action, begi n-end block, procedure
defini tion, process definition, module or region,
respectively, is placed.

FASCICLE VI.8 Rec. 2.200 129

• If the reach is the action statement listt possibly
including introduced names, of a buffer receive
alternative or signal receive alternative, or the action
statement list following ELSE in a receive buffer case
action or receive signal case action, then its directly
enclosing group is the group in whose reach the receive
buffer case action or receive signal case action is
Placed.

• If the reach is the action statement list in an
on-alternative or the action statement list following
ELSE, in a handler which is not appended to a group, then
the directly enclosing group is the group in whose reach
the statement, to which the handler is appended, is
Placed.

• If the reach is an on-alternative or action statement
list after ELSE, Of a handler which is appended to a
group, then its directly enclosing group is the group to
which the handler is appended.

A reach has a unique directly enclosing reach, which is the
reach of the directly enclosing group. A statement has a
unique directly enclosing group, which is the group in which
reach the statement is placed. A reach is said to directly
enclose a group (reach) if and only if the reach is the
directly enclosing reach of the group (reach).

A statement (reach) is said to be surrounded by a group, if
and only if either the group is the directly enclosing group
of the statement (reach) or the directly enclosing reach is
surrounded by the group.

A reach is said to be entered when:

• Module reach: the module is executed as an action (e.g.
the module is not said to be entered when a goto action
transfers control to a label name defined inside the
module).

• Begin-end reach: the begin-end block is executed as an
action.

• Region reach: the region is encountered (e.g. the region
is not said to be entered when one of its critical
procedures is called).

• Procedure reach: the procedure is entered via its main
entry (i.e. not via an additionally defined entry point).

• Process reach: the process is activated via a start
statement.

130 FASCICLE VI.8 Rec. Z.200

• Do reach: the do action is executed as an action after the
evaluation of the expressions or locations in the control
part.

• Buffer-receive alternative reach, signal receive
alternative reach: the alternative is executed on
reception of a buffer value or signal.

• On-alternative reach: the on-alternative is executed on
the cause of an exception.

An action statement list is said to be entered when and only
when its first action, if present, receives control from
outside the action statement list.

7.3 BEGIN-END BLOCKS

syntax:
<begi n~end block>

BEGIN <begin-end body> END
(1)
(1 .1)

semantics: A begin-end block is an action (compound action), possibly
containing local declarations and definitions. It determines
both visibility of locally created names and the lifetime of
locally created locations (see sections 7.9 and 9.2.5).

dynamic conditions: A 5PACEFA1L exception occurs if the begin-end
block requires local storage for which storage requirements
cannot be satisfied.

examples:
see 15.63 - 15.80

7.U PROCEDURE DEFINITIONS

syntax:
<procedure defini tion statement> ::= (1)

<name> : <procedure def ini t ion>
[<handler>3 [procedure name>3; (1.1)

<procedure definition> (2)
PROC ([<formal parameter list>3) [<result spec>3
[EXCEPTI0N5(<excepti on list>)3 <procedure att ri butes>;
<proc body> END (2.1)

<formal parameter list> (5)
<formal parameter> <,<formal parameter>)* (5.1)

FASCICLE VI.8 Rec. 2.200 131

<formal parameter>
<name list> <parameter spec>

(<t)
(4.1)

<procedure attributes> ::=
[<generality>3 [RECURSIVE2

(5)
(5.1)

<generality> (6)
GENERAL

I SIMPLE
I INLINE

(6.1)
(6.2)
(6.3)

<entry statement>
<name> : <entry definition>;

(7)
(7.1)

<entry definition> (8)
(8 .1)ENTRY

derived syntax: A formal parameter, where name list consists of wore
than one name, is derived from several formal parameter
occurrences, separated by commas, one for each name and each
with the same parameter spec. For example: I, J INT LOC is
derived from I INT LOC, J INT LOC.

semantics: A procedure definition defines a (possibly) parameterised
sequence of actions that may be called from different places
in the program. Control is returned to the calling point
either by executing a return action, or when reaching the end
of the proc-body or an on-alternative of a handler appended to
the procedure definition (falling through). Different degrees
of complexity of procedures may be specified as follows:

Simple procedures (SIMPLE) are procedures that cannot be
manipulated dynamically. They are not treated as values,
i.e. they cannot be stored in a procedure location, nor
can they be passed as parameters to or returned as result
from a procedure call.

General procedures (.GENERALI do not have the restrictions
of simple procedures and may be treated as procedure
values.

Inline procedures (INLINE) have the same restrictions as
simple procedures and they cannot be recursive. They have
the same semantics as normal procedures, but the compiler
will insert the generated object code at the point of
invocation rather than generating code for actually
calling the procedure.

Only simple and general procedures may be specified to be
(mutually) recursive. When no procedure attributes are
specified, an implementation default will apply.

132 FASCICLE VI.8 Rec. Z.200

A procedure may return a value or it may return a location
(indicated by the LOC attribute in the result spec).

The name in front of the procedure definition defines the name
of the procedure. If the procedure name is general* it is a
procedure literal for the defined procedure value. Its class
is determined by the modes and attributes in the formal
parameter list and result spec.

A procedure may have multiple entry points by means of entry
statements. These statements are considered as additional
procedure definitions. The name in the entry statement
defines the name of the entry point in the procedure in which
reach it is placed. The entry point is determined by the
textual position of the entry statement.

parameter passing:

There are basically two parameter passing mechanisms: the
pass bv value and the pass bv location (LOC attribute). The
attributes OUT and INOUT indicate variations of the pass by
value mechanism.

Pass bv value

In pass by value parameter passing* a value is passed as a
parameter.to the procedure and stored in a local location of
the specified parameter mode. The effect is as if at the
beginning of the procedure call the location declaration:
DCL <formal parameter name><mode> := <actual parameter>;
were encountered. However* the initialisation cannot cause an
exception inside the procedure body. Optionally, the keyword
IN may be specified to indicate pass by value explicitly.

If the attribute INOUT is specified* the actual parameter
value is obtained from a location* and just before returning,
the current value of the formal parameter is restored in the
actual location.

The effect of OUT is the same as for INOUT, with the exception
that the initial value of the actual location is not copied
into the formal parameter location upon procedure entry,
therefore the formal parameter has an undefined initial
value. The store-back operation need not be performed if the
procedure causes an exception at the calling point.

Pass bv location

In the pass by location parameter passing, a location is
passed as a parameter to the procedure body. Neither
non-referable locations, nor dynamic mode locations can be
passed in this way. The effect is as if at the entry point of
the procedure the loc-identity declaration statement:
DCL <formal parameter name><mode> LOC := <actual parameter>;

FASCICLE VI.8 Rec. Z.200 133

Mere encountered. However, such a declaration cannot cause
an exception inside the procedure body.

If a value is specified Which is not a static mode locati on, a
location containing the specified value will be implicitly
created and passed at the point of the call. The lifetime of
the created location is the procedure call.

result transmission:

Both a value and a location may be returned from the
procedure. In the first case, a value is specified in any
result action, in the latter case, a static mode location (see
section 6.8). The returned value or location is determined by
the most recently executed result action before returning. If
a procedure with a result spec returns without having
executed a result action, the procedure returns an undefined
value or an undefined location. In this case the procedure
call may not be used as a location procedure call (see section
4.2.10) nor as a value procedure call (see section 5.2.15),
but only as a call action (section 6.7).

register specification;

Register specification can be given in the formal parameter
of the procedure, and in the result spec. In the pass by value
case, it means, that the actual value is contained in the
specified registerj in the pass by location case, it means
that the (hidden) pointer to the actual location is contained
in the specified register. If it is specified in the result
spec it means that the returned value or the (hidden) pointer
to the returned location is contained in the specified
register.

static properties: A name is a procedure name if and only if it is defined
in a procedure definition statement or in an entry statement
(i.e. placed in front of a colon and a procedure definition or
entry definition).

A procedure name has a procedure defini tion attached which is
defined as:

• If the procedure name is defined in a procedure
definition statement then the procedure defini ti on in
that statement.

• If the procedure name is defined in an entry statement,
then the procedure definition in whose reach the entry
statement is placed.

A procedure name has the following properties attached,
defined by its procedure defini ti on:

134 FASCICLE VI.8 Rec. Z.200

• It has a list of Parameter specs* which are defined by the
parameter spec occurrences in the formal parameter list»
each parameter consisting of a mode, possibly a parameter
attribute and/or register name.

• It has possibly a result spec> consisting of a mode,
possibly a LOC attribute and/or register name.

• It has a possibly empty set of exception names, which are
the names mentioned in exception list.

• It has a generali tv, which is, if generali ty is specified
then either general or simple or inline, depending on
whether GENERAL, SIMPLE or INLINE is specified, otherwise
an implementation default specifies general or simple. If
the procedure name is defined inside a region, its
generality is simple.

• It has a recursivitv which is recursive if RECURSIVE is
specified, otherwise an implementation default specifies
either recursive or non-recursive. However, if the
generality is inline, or if the procedure name is
critical Csee section 8.2) the recursivity is
non-recursive.

A procedure name which is general, is a procedure literal. A
general procedure name has a procedure mode attached, which
is formed as:
PROC([<parameter list>]) [<result spec>1
[EXCEPTIONS(<excepti on list>)3 IRECURSIVE1
where <result spec>> if present, and <exception list> are the
same as in its procedure definition and <parameter list> is
the sequence of <parameter spec> occurrences in the formal
parameter listf separated by comma’s.

A name defined in a name list in the formal parameter is a
location name if and only if the parameter spec in the formal
parameter does not contain the LOC attribute. If it does
contain the LOC attribute, it is a loc-idantitv name. Any such
a location name or loc-identitv name is (language) referable.

static conditions: If a procedure name is regional Csee section 8.2.2),
its procedure definition must not specify GENERAL.

If a procedure name is critical Csee section 8.2), its
definition may neither specify GENERALt nor RECURSIVE.

No procedure definition may specify both INLINE and
RECURSIVE.

If specified, the optional p rocedure name before the
semicolon must be equal to the name in front of the procedure
definition.

FASCICLE VI.8 Rec. 2.200 135

Only if LOC is specified in the parameter spec or result spec,
may the mode in it have the synchronisation property.

examples:
1.3 add:

PROC(i, j INT) (INT) EXCEPTIONS(QVERFLOU);
RESULT i+j;

END add; (1

7.5 PROCESS DEFINITIONS

syntax:
<process definition statement> ::-

<name> : <process definition>
[<handler>l [<vrocess name>3;

(1)

(1

<process definition>
PROCESS ([<formal parameter list>]);
<process body> END

(2)

(2

semantics: A process definition defines a possibly parameterised
sequence of actions that may be started for concurrent
execution from different places in the program Csee chapter
8).

static properties: A name is a process name if and only if it is
defined in a process defini ti on statement (i.e. placed in
front Of a colon and a process definition).

A process name may have an implementation defined
exception names attached.

set of

static conditions: If specified, the optional process name before
the semicolon must equal to the name in front of the process
def i ni ti on,

A process definition statement must not be surrounded by a
region, nor by a block other than the imaginary outermost
process definition (see section 7.8).

The parameter attributes in the formal parameter list must
not be INOUT nor OUT.

Only if LOC is specified in the parameter spec in a formal
parameter in the formal parameter listt may the mode in it
have the synchronisation property.

examples:
1$. 12 PROCESSO;

DO FOR EVER:
WAIT(1Q /* seconds */);

136 FASCICLE VI.8 Rec. Z.200

CONTINUE OPERATOR_IS_READY;
OD;

END (2.1)

7.6 MODULES

syntax:
<module>

MODULE <module body> END
(1)
(1.1)

semantics: A module is an action possibly containing local declarations
and definitions. A module is a means of restricting the
visibility of names; it does not influence the lifetime of the
locally created locations.

The detailed visibility rules for modules are given in
section 9.2.

static properties: a name is a module name if and only if it is
defined by placing it in front of a colon before MODULE.

examples:
7.42 MODULE

SEIZE convert;
DCL n INT INIT 1979;
DCL rn CHAR(20) INIT :=(20)' ';
GR-4NT n, rn;
convert();
ASSERT rn = fMDCCCCLXXVIIIIr//(6)r ’;

END (1.1)

7.7 REGIONS

(1)
END

(1 .1)

semantics: A region is a means of providing mutually exclusive access to
its locally declared data object for the concurrent
executions of processes (see chapter 8). It determines
visibility of locally created names in the same way as a
module.

static properties: A name is a region name if and only if it is
defined by placing it in front of a colon before REGION.

syntax:
<region>

[<name> :3 REGION <region body>
[<handler>] t<reai on name>3;

FASCICLE VI.8 Rec. Z.200 137
\

static conditions: The optional region name before the semicolon
must be equal to the name of the region.

A region must not be surrounded by a block other than the
imaginary outermost process definition.

examples:
see 15.1 - 15.25

7.8 PROGRAM

syntax:
<program> (1)

{<module action statement> | <region>J* (1.1)

semantics: Programs consist of a list of modules or regions, surrounded
by an imaginary outermost process definition. This process
definition is considered to contain in its reach a standard
CHILL prelude module. This module contains the definitions of
the CHILL pre-defined names and the implementation
pre-defined built-in routines, modes and register names.

static properties: The language and implementation defined names
(see Appendix C2) are considered to be created in a module in
the reach of the imaginary outermost process definition and
granted PERVASIVE by that module (see section 9.2.6.2).

7.9 STORAGE ALLOCATION AND LIFETIME

The time during which a location or procedure exists within its program is
its lifetime.

A location is created by a declaration or by the execution of a GETSTACK
built-in routine call.

The lifetime of a location declared in the reach of a block is the time
during which control lies in that block, unless it is declared with the
attribute STATIC. The lifetime of a location declared in the reach of a
modulicn is the same as if it were declared in the reach of the closest
surrounding block of the modulion. The lifetime of a location declared
with the attribute STATIC is the same as if it were declared in the reach
of the imaginary outermost process definition. This implies that for a
location declaration with the attribute STATIC, storage allocation is
made only once, namely when starting the imaginary outermost process. If
such a declaration appears inside a procedure definition or process
definition, only one location will exist for all invocations or
activations.

138 FASCICLE VI.8 Rec. Z.200

The lifetime of a location created by executing the GETSTACK built-in
routine call is the time between that execution and the leaving of the
closest surrounding block. If the GETSTACK built-in routine call is
executed while evaluating an actual parameter of a procedure call or start
expression, the lifetime of the created location will be the procedure
call or the lifetime of the created process.

The lifetime of an access created in a loc-identity declaration is the
closest surrounding block of the loc-identity declaration.

The lifetime of a procedure is the closest surrounding block of the
procedure definition.

static properties: A location is said to be static if and only if it is a
static mode location of one of the following kinds:

• A location name which is declared with the attribute
STATIC, or whose definition is not surrounded by a block
other than the imaginary process definition.

• A loc - identi tv name such that the static mode locat i on
occurring in its definition is static.

• A string element or substring Where the string location
iS StatiC and either the left element and right element,
or position are constant.

• An array element or sub-array Where the array locati on is
Static and either the expressi on, or the lower element
and the upper element, or the integer expression
occurring in it are constant.

• A st ructu re field where the structure locati on is static.
If the structure locati on is not a varameter ised
st ructure locati on then the fi eld name must not be a
variant field name.

• A location conversion Where the location occurring in it
is static.

FASCICLE VI.8 Rec. Z.200 139

8.0 CONCURRENT EXECUTION

8.1 PROCESSES AND THEIR DEFINITIONS

A process is the sequential execution of a series of statements, the
sequential execution of which may be concurrent with other processes. The
behaviour of a process is described by a process definition (see section
7.5), which describes the objects local to a process and the series of
action statements to be executed sequentially.

A process is created by the evaluation of a start expression (see section
5.2.17). It becomes active (i.e. under execution) and is considered to be
executed concurrently with other processes. The created process is an
activation of the definition indicated by the process name of the process
definition. An unspecified number of processes with the same definition
may be created and may be executed concurrently. Each process is uniquely
identified by an instance value, yielded as the result of the start
expression, or the evaluation of the THIS operator. The creation of a
process causes the creation of its locally declared locations, except
those declared with the attribute STATIC (see section 7.9), and of locally
defined values and procedures. The locally declared locations, values and
procedures are said to have the same activation as the created process to
which they belong. The imaginary outermost process (see section 7.8),
which is the whole CHILL program under execution, is considered to be
created by a start expression executed by the system under whose control
the program is executing. At the creation of a process, its formal
parameters, if present, denote the values and locations as delivered by
the corresponding actual parameters in the start expression.

A process is terminated by the execution of a stop action or by reaching
the end of the process body or the end of an on-alternative of a handler
specified at the end of the process definition (falling through). If the
imaginary outermost process executes a stop action or falls through, the
termination will be completed when and only when all its subsidiary
processes (i.e. processes created by start expressions in it) are
terminated.

A process is, at the CHILL programming level, always in one of two states:
it is either active (i.e. under execution) or delayed (i.e. waiting for a
condition to be fulfilled). The transition from active to delayed is
called the delaying of the process, the transition from delayed to active
is called the re-activation of the process.

8.2 MUTUAL EXCLUSION AND REGIONS

140 FASCICLE VI.8 ReC. Z.200

8.2.1 GENERAL

Regions (see section 7.7) are a means of providing processes with mutually
exclusive access to locations declared in them, static context conditions
(see section 8.2.2) are made such that accesses by a process (which is not
the imaginary outermost process) to locations declared in a region can
only be made by calling procedures which are defined inside the region and
granted by the region.

A procedure name is said to denote a critical procedure (and it is a
critical Procedure name) if and only if it is defined inside a region and
granted by the region, or if a procedure name with the same procedure
definition (see section 7.4) is critical (the latter becomes relevant only
when entry definitions are involved).

A region is said to be free if and only if control lies in none of its
critical procedures nor in the region itself performing reach-bound
initialisations.

The region will be locked (to prevent concurrent execution) if:

• The region is entered (note that because regions are not surrounded by
a block, no concurrent attempts can be made to enter the region).

• A critical procedure of the region is called.

• A process, delayed in the region, is re-activated.

The region will be released, becoming free again if:

• The region is left.

• The critical procedure returns.

• The critical procedure executes an action which causes the executing
process to become delayed (see section 8.3). In the case of
dynamically nested critical procedure calls, only the latest locked
region will be released.

If, while the region is locked, a process attempts to call one of its
critical procedures or attempts to enter the region, the attempting
process is suspended until the region is released. (Note that the
attempting process remains active in the CHILL sense).

When a region is released and more than one process has been suspended
while attempting to enter the region or to call one of its critical
procedures or to be re-activated in one of its critical procedures, only
one process will be selected to enter the region according to an
implementation defined scheduling algorithm.

FASCICLE VI.8 Rec. Z.200 141

8.2,2 REGIONALITY

To allow for checking statically that a location declared in a region can
only be accessed by calling critical procedures or by entering the region
for performing reach-bound initialisations, the following static context
conditions are enforced:

• the regionality requirements mentioned in the appropriate sections
(assignment action, procedure call, send action, result action);

• regional procedures are not general (see section 7.4);

• critical procedures are neither general nor recursive (see section
7.3).

A location, value or procedure name can be regional. This property is
defined as follows:

1. Location

A location is regional if and only if any of the following conditions
is fulfilled:

• It is an access name that is either:

a location name declared textually inside a region and which
is not defined in a formal parameter of a critical procedure,

a loc-identitv namet Where the static mode location in its
declaration is regional or which is defined in a formal
parameter of a regional procedure,

a based name Where the bound or free reference locati on name
in its declaration is regional,

a location enumerati on namet Where the array location in the
associated do action is regional,

a location do-with namer Where the st ructure locati on in the
associated do action is regional.

• It is a dereferenced bound referencet Where the bound reference
expressi on in it is regional.

• It is a dereferenced free referencet Where the free reference
expressi on in it is regional.

• It is a dereferenced row, where the row expression in it is
regional.

• It is an array elementt sub-array or array slicet where the array
location in it is regional.

142 FASCICLE VI.8 Rec. Z.200

• It is a string element, substring or string slice» where the
string location in it is regional*

• It is a structure field, Where the structure location in it is
regional.

• It is a location procedure callt Where in the 1ocation procedure
call a procedure name is specified Which is regional.

• It is a location built-in routine call* that the implementation
specifies it is regional.

• It is a location conversion, Where the static mode location in it
is regional.

Value

A value or exp ress i on is regional if and only if it is either a
primitive value Which is regional or a parenthesi sed expressi on
containing an expressi on which is regional.

A pri mi ti ve value is regional if and only if any of the following
conditions is fulfilled:

• It is a location contents which is regiona1 and whose mode has the
referencing property.

• It is a value name which is either a:

svnonvm name, where the constant value in its definition is
regional*

value do-uith name, Where the st ructure expressi on in the
associated do action is regional and whose mode has the
referencing property.

• It is a tuple containing an array tuple or st ructu re tuple in
which at least one of the specified value occurrences is regional.

• It is a value array elementt a value sub-array, or a value array
slice, where the array expression in it is regional and the
element mode of the mode of the array expression has the
referencing property.

• It is a value st ructure field, Where the structure exp ress i on in
it is regional and the mode of the field has the referencing
property.

• It is a referenced locati on, Where the locati on in it is regi onal.

• It is an expression conversi on, Where the expressi on in it is
regional.

FASCICLE VI.8 Rec. Z.200 143

• It is a value procedure callt where in the value procedure call a
procedure name is specified which is regional and whose result
node has the referencing property.

• It is a value built-in routine calif which is either an
implementation value built-in routine call Which returns a value
whose class is compatible with a mode which has the referencing
property, and for which the implementation specifies that it is
regional, or ADDR(<location>)t where location is regional.

3. Procedure name

A procedure name is regional if and only if it is defined inside a
region and it is not critical (i.e. not granted by the region).

8.3 DELAYING OF A PROCESS

When a process is active, it can become delayed by executing or evaluating
one of the following actions or expressions:

Delay action Csee section 6.16). When a process executes a delay action,
it becomes delayed. It becomes a member with a priority of a set of
delayed processes attached to the specified event location.

Delay case action (see section 6.17). When a process executes a delay case
action, it becomes delayed. It becomes a member, with the specified
priority, of each set of delayed processes that is attached to an event
location specified in a delay alternative of the delay case action.

Receive expression (see section 5.2.18). When a process evaluates a
receive expression, it becomes delayed if and only if there are no values
in, nor sending processes delayed on the specified buffer location. It
becomes a member of a set of delayed receiving processes attached to the
specified (empty) buffer location.

Receive buffer case action (see section 6.19.3). When a process executes a
receive buffer case action it becomes delayed if and only if in none of
the specified buffer locations a value is present, no sending process is
delayed on any of the specified buffer locations, and if ELSE is not
specified. It becomes a member of each set of delayed receiving processes
that is attached to a buffer location specified in a buffer-receive
alternative of the receive buffer case action.

Receive signal case action (see section 6.19.2). When a process executes a
receive signal case action, it becomes delayed if and only if no signal
which may be received by the process executing the receive signal case
action is pending and only if ELSE is not specified. The process becomes a
member of each set of delayed processes attached to a signal name
specified in the signal-receive alternative.

144 FASCICLE VI.8 Rec. 2.200

Send buffer action (see section 6.18.3). When a process executes a send
buffer action, it becomes delayed if and only if the mode of the buffer
location has a length attached and the number of values in the buffer is
equal to the length just prior to the sending operation. The process
becomes a member, with the specified priority, of the set of delayed
sending processes attached to the buffer location.

When a process executes an action which causes it to become delayed while
its control lies within a critical procedure, the associated region will
be released. The dynamic context of the procedure will be retained until
the process is re-activated where is was delayed in the region. The region
will then be locked again.

8. <* RE-ACTIVATION OF A PROCESS

When a process is delayed, it can become re-activated if and only if
another process executes one of the following actions:

Continue action (see section 6.15). When a process executes a continue
action, it re-activates another process if and only if the set of delayed
processes of the specified event location is not empty. A process of the
highest priority is selected to become active according to an
implementation defined scheduling algorithm. This re-activated process is
thus removed from all sets of delayed processes.

Send buffer action (see section 6.18.3). If a process executes a send
buffer action, it re-activates another process if and only if the set of
delayed receiving processes of the specified buffer location is not empty.
A process is selected to become active according to an implementation
defined scheduling algorithm. This re-activated process is thus removed
from all sets of delayed processes. If the set of delayed receiving
processes of a specified buffer location is empty, the sent value will be
stored into the buffer with its specified priority if the buffer capacity
allows for it (see section 8.3).

Send signal action (see section 6.18.2). When a process executes a send
signal action, it re-activates another process if and only if the set of
delayed processes of the specified signal name contains a process that may
receive the signal. A process is selected to become active according to an
implementation defined scheduling algorithm. This re-activated process is
thus removed from all sets of delayed processes. If no delayed process is
present to receive the signal, the signal becomes pending, with its
specified priority, possible list of values, process name and/or instance
value.

Receive buffer case action (see section 6.19.3). When a process executes a
receive buffer case action, it re-activates another process if and only if
the set of delayed sending processes of any of the specified buffer
locations is not empty. In that case it receives a value of the highest
priority among the values in the buffer location or the delayed sending
processes. Receiving a value from a buffer, the process removes the value

FASCICLE VI.8 Rec. Z.200 145

from the buffer and a delayed sending process with the value of the
highest priority is selected to become active according to an
implementation defined scheduling algorithm. This re-activated process is
thus removed from all sets of delayed sending processes and its value is
stored in the buffer, with the specified priority. Receiving a value
directly from a delayed sending process, the delayed process carrying the
value with the highest priority is selected to become active according to
an implementation defined algorithm. This re-activated process is thus
removed from all sets of delayed sending processes and its value is
received.

When a process executes an action which causes another process to become
active, while the re-activating process is active within a critical
procedure, the re-activating process will remain active, i.e. it will not
release the region at that point.

8.5 SIGNAL DEFINITION STATEMENTS

svntaxt
<signal defini tion statement> (1)

SIGW^L <siqnal definition> {,<signal definition>}*; (1.1)

<signal definition> (2)
<name> (= (<mode> {,<mode>}*)I ITO <p rocess name>] (2 . 1 1

semantics: A signal definition defines a composing and decomposing
function for-values to be transmitted between processes. If a
signal is sent, the specified list of values is transmitted.
If no process is waiting for the signal in a receive case
action, the values are kept until a process receives the
values.

static properties: A name is a signa 1 name if and only if it is
defined in a signal def ini tion. A signal name has the
following properties:

• It has an optional list of modes attached, which are the
modes mentioned in the signal definition.

• It has an optional process name attached which is the
process name specified after TO.

static conditions: No mode in a signal definition may have the
synchronisation property.

examples:
15.16 SIGNAL INITIATE - (INSTANCE),

TERMINATE; (1.1)

146 FASCICLE VI.8 Rec. Z.200

9.0 GENERAL SEMANTIC PROPERTIES

9.1 MODE CHECKING

9.1.1 PROPERTIES OF MODES AND CLASSES

9.1.1.1 Novelty

Infernal

The novelty of a mode indicates whether or not it is defined via a newmode
definition statement. The novelty of a mode is either ni1* i.e. it is a
(base) mode not defined via a newmode, or it is the newmode name via which
it is defined.

Definition

The novelty of a mode is defined as follows:

• If the mode is denoted by a neumode namet its novelty is that newmode
name*

• else if the mode is denoted by a svnmode namet its novelty is the
novelty Of the defining mode in its definition*

• else if the mode is denoted by a parameter i sed array mode*
parameteri sed string mode* or parameteri sed st ructu re mode* its
novelty is the novelty Of the origin array mode namet origin string
mode name or origin variant structure mode name* respectively, in it*

• else if the mode is denoted by a range mode, its novelty is the
novelty of its parent mode,

• else if the mode is denoted by a virtually introduced parent mode, its
novelty is the newmode name which caused its introduction (see section
3.2.3),

• else if the mode is denoted by READ <mode>t its novelty is the novelty
Of the <mode>t

• otherwise the novelty is nil.

FASCICLE VI.8 Rec. Z.200 1*7

9.1.1.2 Read-only modes

Informal

A mode is said to be read-onlv if a location of that mode, as a whole, is
read-only, i.e. neither it nor any part of it may be overwritten.

Definition

A mode has the following hereditary property: it is a read-onlv mode if
and only if any of the following conditions is fulfilled:

• It is denoted by a mode which is of the form READ <mode>.

• It is denoted by a parameterised array mode, a parameterised string
mode or a pa rameteri sed st ructure modet Where the origin array mode
namet origin string mode name or origin variant st ructu re mode namet
respectively, in it denotes a read-onlv mode.

9.1.1.3 Read-onlv property

Informal

A mode has the read-onlv property if a location of that mode is read-only
or contains a component or a sub-component etc. which is read-only.

Def i n i t i on

A mode has the read-onlv property if and only if one of the following
conditions is fulfilled:

• The mode is a mode name, defined by a mode which has the read-onlv
property.

• The mode is an array mode with an element mode which has the read-onlv
property or a structure mode where at least one of its field modes has
the read-onlv property.

• The mode is a read-onlv mode.

9.1.1.4 Referencing property

Informal

A mode has the referencing property if a location of that mode has a
reference mode or contains a component or a sub-component etc. which has a
reference mode.

148 FASCICLE VI.8 Rec. Z.200

Def i n i t i on

A mode has the referencing property if and only if one of the following
conditions is fulfilled:

• The mode is a mode name defined by a mode which has the referencing
property,

• The mode is an array mode with an element mode which has the
referencing property or a structure mode where at least one of its
field modes has the referencing property.

• The mode is a reference mode.

9.1.1.5 Tagged parameterised property

Informal

A mode has the tagged parameterised property if a location of that mode
has a tagged parameterised structure mode or contains a component or a
sub-component etc. which has a tagged parameterised structure mode.

Definition

A mode has the tagged parameterised property if and only if one of the
following conditions is fulfilled:

• The mode is a mode name defined by a mode which has the tagged
paramaterised property.

• The mode is an array mode with an element mode which has the tagged
paramaterised property or a structure mode where at least one of its
field modes has the tagged parameterised property.

• The mode is a tagged paramaterised structure mode.

9.1.1.6 Synchronisation property

Informal

A mode has the synchronisation property if a location of that mode has a
synchronisation mode or contains a component or a sub-component etc. which
has a synchronisation mode.

Definition

FASCICLE VI.8 Rec. Z.200 149

A mode has the synchronisation property if and only if one of the
following conditions is fulfilled:

• The mode is a mode name defined by a mode which has the
synchronisation property.

® The mode is an array mode with an element mode which has the
synchronisation property or a structure mode where at least one of its
field modes has the synchronisation property.

• The mode is an event mode or a buffer mode.

9.1.1.7 Root mode

Any M-value class or M-derived class, where M is not a composite mode, has
a root mode defined as:

• if M is not a range mode then the root mode is M,

• if M is a range mode then the root mode is the parent mode of M.

9.1.1.8 Resulting class

Given two compatible classes (see section 9.1.2.6), which are either the
all class, an M-value class or an M-derived class, where M is either a
discrete mode, a powerset mode or a string mode, the resulting class is
defined as:

• the resulting class of the M-derived class and the N-derived class is
the M-derived class;

• the resulting class of the M-value class and the N-derived class, is
if M is not a range mode then the M-value class, otherwise the P-value
class, where P is the parent mode of M;

• the resulting class of the M-value class and the N-value class is , if
M is not a range mode then the M-value class, otherwise the P-value
class, where.P is the parent mode of M;

• the resulting class of the all class and any other class is the latter
class.

Given a list Cj of pairwise compatible classes (i=l,...,n), the resulting
class of the list of classes is recursively defined as, if n>l then as the
resulting class of the resulting class of the list Cj (i=l,...,n-l) and
the class Cn, otherwise as the resulting class of Ci and Ci.

150 FASCICLE VI.8 Rec. Z.200

(Note that CHILL is defined in such a way that the order of taking the
classes Ci is irrelevant* i.e. all such resulting classes are compatible.)

9.1.2 RELATIONS ON MODES AND CLASSES

In the following sections* the compatibility relations are defined
between modes* between classes* and between modes and classes. These
relations are used throughout the document to define static conditions.

The compatibility relations themselves are defined in terms of some other
relations which are mainly used in chapter 9 for the above mentioned
purpose.

9.1.2.1 The relation "defined bv"

Informal

A mode name is said to be defined bv its defining mode and, transitively,
if the latter is also a mode name, the former is also defined bv the
defining mode of its defining mode etc.

Defini tion

A mode name N is said to be defined bv a mode M if and only if:

• M is the defining mode of N

• the defining mode of N is a mode name defined bv M.

9.1.2.2 Equivalence relations on modes

GENERAL

Informal

The following equivalence relations play a role in the formulation of the
compatibility relations:

• Two modes are said to be similar if they are of the same kind, i.e.
they have the same hereditary properties.

• Two modes are said to be v-enuivalent (value-equivalent) if they are
similar and also have the same novelty.

FASCICLE VI.8 Rec. Z.200 151

• Two modes are said to be equivalent if they are v-equivalent and also
possible differences in value representation in storage or minimum
storage size are taken into account.

• Two modes are said to be 1-eguivalent (location-equivalent) if they
are equivalent and also have the same read-only specification.

Defini tion

In the following sections, the equivalence relations on modes are given in
the form of a (partial) set of relations. The full equivalence algorithms
are obtained by taking the symmetric, reflexive and transitive closure of
this set of relations. The modes mentioned in the relations may be
virtually introduced or dynamic. In the latter case, the complete
equivalence check can only be performed at run time. Check failure of the
dynamic part will result in the RANGEFAIL or TAGFAIL exception (see
appropriate sections).

Checking two recursive modes for any equivalence requires the checking of
associated modes in the corresponding paths of the set of recursive modes
by which they are defined. The modes are equivalent if no contradiction is
found. (As a consequence, a path of the checking algorithm stops
successfully if two modes which have been compared before, are compared).

The relation "similar"

wo modes are similar if and only if one of the following conditions is
ulfilled:

they are integer modes;

they are boolean modes;

they are character modes;

they are set modes such that they define the same number of values,
the same set element names and for the same names, the NUH built-in
routine call delivers the same value;

they are range modes with similar parent modes;

the one is a range mode whose parent mode is simi lar to the other
mode;

the one is a boolean mode and the other a bit string mode of length 1;

the one is a character mode and the other a character string mode of
length 1;

they are powerset modes such that their member modes are equivalent;

152 FASCICLE VI.8 Rec. Z.200

they are bound reference modes such that their referenced modes are
equivalent;

they are free reference modes;

they are row modes such that their referenced origin modes are
equivalent;

they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by
position) parameter specs have 1-eguivalent modes» same parameter
attributes and, if present, the same register specification;

2. they both have or both do not have a result spec. If present, both
result specs must have 1-eguivalent modes, the same attributes
and the same register specification, if present;

3. they have the same set of exception names;

4. they have the same recursivity;

they are instance modes;

they are event modes such that they both have no length or the same
length;

they are buffer modes such that:

1. they both have no length or the same length;

2. they have 1-eguivalent buffer element modes;

they are string modes such that:

1. they both are bit string modes or character string modes;

2. they have the same length. This check is dynamic in the case that
one or both modes is (are) dynamic. Check failure will result in
the RANGEFAIL exception;

they are array modes such that:

1. their index modes are v-eguivalent;

2. their element modes are equivalent;

3. their element layouts are equivalent (see section 9.1.2.2);

4. they have the same number of elements. This check is dynamic if
one or both modes is (are) dynamic. Check failure will result in
the RANGEFAIL exception;

FASCICLE VI.8 Rec. Z.200 153

• they are structure modes which are not parameterised structure modes
such that:

1. they have the same number of fields and corresponding (by
position) fields are equivalent (see section 9.1.2.2);

2. if they are both paramaterisable variant structure modes, their
lists of classes must be compatible;

• they are paramaterised structure modes such that:

1. their origin variant structure modes are similar;

2. their corresponding (by position) values must be the same. This
check is dynamic if one or both modes is (are) dynamic. Check
failure will result in the TAGFAIL exception.

The relation "v-eguivalent**

Two modes are v-egui valent if and only if they are simi lar and have the
same novelty.

The relation "eguivalent”

Two modes are equivalent if and only if they are v-eguivalent and:

• if the one mode is a boolean mode, the other mode must also be a
boolean mode;

• if the one mode is a character mode, the other mode must also be a
character mode;

• if the one mode is a range mode, the other mode must also be a range
mode and both upper bounds must be equal and both lower bounds must be
equal.

The relation "l-eguivalent"

Two modes are 1-equivalent if and only if they are equivalent and if the
one mode has the read-only property, the other mode must also have the
read-only property, and:

• if both are bound reference modes, their referenced modes must be
1-equivalent;

• if both are row modes, their referenced origin modes must be
1-equivalent;

• if both are array modes, their element modes must be 1-eguivalent;

15$ FASCICLE VI.8 Rec. Z.200

• if both are structure inodes corresponding (by position) fields must be
1-equivalent.

The relations "equivalent” and "1-eguivalent" for fields

Two fields (both fields in the context of two given structure modes) are
1. equivalent* 2. 1-eguivalent if and only if both fields are fixed fields
which are 1. equivalent* 2. 1-eguivalent or both are alternative fields
which are 1. equivalent* 2. 1-eguivalent.

The relations ”eguivalent” and ”l-eguivalent” are recursively defined for
(corresponding) fixed fields, variant fields, alternative fields and
variant alternatives respectively in the following way:

1. Fixed fields and variant fields

a. Both fields must have equivalent layout.

b. Both field modes must be 1. equivalent, 2. 1-eguivalent.

2. Alternative fields

a. Both alternative fields have tags or both have no tags. In the
former case, the tags must have the same number of tag field names
and corresponding (by position) tag field names must denote
corresponding fixed fields.

b. Both must have the same number of variant alternatives and
corresponding (by position) variant alternatives must be 1.
equivalent* 2. 1-eguivalent.

c. Both must have no ELSE specified or both must have ELSE specified.
In the latter case, the same number of variant fields must follow
and corresponding (by position) variant fields must be 1.
equivalent, 2. 1-eguivalent.

3. Variant alternatives

a. Both variant alternatives must have the same number of case label
lists and corresponding (by position) case label lists must
either be both irrelevant, or both (ELSE)f or both define the same
set of values.

b. Both variant alternatives must have the same number of variant
fields and corresponding (by position) variant fields must be 1.
equivalent* 2. 1-eguivalent.

The relation ”eguivalent” for layout

In the sequel, it will be assumed that each pos is of the form:
PQS(<uord number>,<start bit>,<length>)

FASCICLE VI.8 Rec. Z.200 155

and that each step is of the form:
STEPC<pos>,<step si ze>,<pattern size>)

Section 3.10.6 gives the appropriate rules to bring pos or step in the
required form.

1. Field layout

Two field layouts are equivalent if they are both NOPACK, or both
PACK, or both pos. In the latter case the one pos must be equivalent
to the other one (see below).

2. Element layout

Two element layouts are equivalent if they are both NOPACK, both PACK,
or both step. In the latter case the pos in the one step must be
equivalent to the pos in the other one (see below) and NUNC step size
) must deliver the same values for the two element layouts and NUNC
pattern size) must deliver the same values for the two element
layouts.

3. Pos

A pos is equivalent to another pos if and only if both NUNC word
number) occurrences deliver the same value, both NUNC start bit)
occurrences deliver the same value and both NUNC length) occurrences
deliver the same value.

9.1.2.3 The relation "read-compatible"

Informal

A mode M is said to be read-compatible with a mode N if and only if M and N
are equivalent and M and its possible (sub-)components have more
restrictive read-only specifications. This relation is therefore
non-symmetric.

Example:
READ REF READ CHAR is read-compatible With REF CHAR

Definition

A mode M is said to be read-compatible with a mode N (a non-symmetric
relation) if and only if M and N are equivalent and, if N is a read-only
mode, then M must also be a read-only mode and further:

• if M and N are bound reference modes, the referenced mode of M must be
read-compatible with the referenced mode of N;

156 FASCICLE VI.8 Rec. Z.200

• if M and N are row modes, the referenced origin mode of M must be
read-compatible with the referenced origin mode of N;

• if M and N are array modes, the element mode of M must be
read-compatible with the element mode of N;

• if M and N are structure modes, any field mode of M must be
read-compatible with the corresponding field mode of H.

9.1.2.4 The relation "restrictable to”

Informal

The relation "restrictable to” is relevant for equivalent modes with the
referencing property. A mode M is said to be restrictable to a mode N if
it or its possible sub-components refer to locations with equally or less
restrictive read-only specification than those referenced by N. This
relation is therefore non-symmatric. The relation is used in assignments
(see section 9.1.2.5).

Example:
REF INT is restrictable to REF READ INT
5TRUCT(P REF BOOL) is restrictable to SmfCTYQ REF READ BOOL)

Definition

A mode M is restrictable to a mode N (a non-symmetric relation) if and
only if one of the following holds:

• M does not have the referencing property and M is equivalent to N.

• M and N are bound reference modes and the referenced mode of N is
read-compatible with the referenced mode of M.

• M and N are free reference modes and M and N are equivalent.

• M and N are row modes and the referenced origin mode of N is
read-compatible with the referenced origin mode of M.

• M and N are array modes and the element mode of M is restrictable to
the element mode of N.

• M and N are structure modes and each field mode of M is restrictable
to the corresponding field mode of N.

FASCICLE VI.8 Rec. 2.200 157

9.1.2,5 Compatibility between a mode and a class

• any mode M is compatible with the all class;

• a mode M is compatible with the null class if and only if M is a
reference mode or a procedure mode or an instance mode;

• a mode M is compatible with the N-reference class if and only if it is
a reference mode and one of the following conditions is fulfilled:

1. N is a static mode and M is a bound reference mode whose
referenced mode is read-compatible with N;

2. N is a static mode and M is a free reference mode;

3. M is a row mode with referenced origin mode V and:

if V is a string mode, N must be a string mode such that V(p)
is read-compatible with N, where p is the (possibly dynamic)
length of N;

if V is an array mode, N must be an array mode such that V(p)
is read-compatible with N, where p is the (possibly dynamic)
upper bound of N;

if V is a variant structure mode, N must be a parameterised
structure mode such that V(p i ,...pM) is read-compatible with
N, where Pi,...pn denote the list of values of N;

• a mode M is compatible with the N-derived class if and only if M and N
are similar;

• a mode M is compatible with the N-value class if and only if one of the
following holds:

1. if M does not have the referencing property, M and N must be
v-eguivalent;

2, if M does have the referencing property, N must be restrictable to
M.

9.1.2,6 Compatibility between classes

• Any class is compatible with itself.

• The all class is compatible with any other class.

• The null class is compatible with any M-reference class.

158 FASCICLE VI.8 Rec. Z.200

• The null class is compatible with the M-derived class or M-value class
if and only if M is a reference mode* procedure mode or instance mode.

• The M-reference class is compatible with the N-reference class if and
only if M and N are equivalent. If M and/or N is (are) a dynamic mode,
the dynamic part of the equivalence check is ignored, i.e. no
exceptions can occur.

• The M-reference class is compatible Mith the N-derived class or
N-value class if and only if N is a reference mode and one of the
folloMing conditions is fulfilled:

1. M is a static mode and N is a bound reference mode whose
referenced mode is equivalent to M.

2. M is a static mode location and N is a free reference mode.

3. N is a row mode with referenced origin mode V and:

if V is a string mode, M must be a string mode such that V(p)
is equivalent to M, where p is the (possibly dynamic) length
of M;

if V is an array mode, M must be an array mode such that V(p)
is equivalent to M, where p is the (possibly dynamic)
upperbound of M;

if V is a variant structure mode, M must be a paramaterised
structure mode such that V(pi,...pn) is equivalent to M,
where Pi, pn denote the list of values of N.

• The M-derived class is compatible with the N-derived class or N-value
class if and only if M and N are simi lar.

• The M-value class is compatible with the N-value class if and only if
M and N are v-eguivalent.

Two lists of classes are compatible if and only if both lists have the
same number of classes and corresponding (by position) classes are
compatible.

9.1.3 CASE 5ELECTION

syntax
<case label spedfication>

<case label list> {,<case label list>}*
(1)
(1 .1)

<case label list> ::=
(<case label> {,<case label>}*)

I (ELSE) | <irrelevant>

(2)
(2 .1)
(2 .2)

FASCICLE VI.8 Rec. Z.200 159

<case label> ::=
<discrete literal expression>

I <literal range>
I <di sc rete mode name>

(3)
(3.1)
(3.2)
(3.3)

<ir relevant>
(*)

($)
(<t.l)

semantics: case selection is a means of selecting an alternative from a
list of alternatives. The selection is based upon a specified
list of selector values.

Case selection may be applied to:

• alternative fields (see section 3.10.4), in which case a
list of variant fields is selected,

• labelled array tuples (see section 5.2.5), in which case
an array element value is selected,

• case action (see section 6.4), in which case an action
statement list is selected.

In the first and last situation, each alternative is labelled
with a case label specification; in the labelled array tuple,
each value is labelled with a case label list. For ease of
description, the case label list in the labelled array tuple
will be considered in this section as a case label
specification with only one case label list occurrence.

Case selection selects that alternative which is labelled by
the case label specification which matches the list of
selector values. (The number of selector values will always
be the same as the number of case label list occurrences in
the case label specification.) A list of values is said to
match a case label specification if and only if each value
matches the corresponding (by position) case label list in
the case label specification.

A value is said to match a case label list if and only if:

• the case label list consists of case labels and the value
is one of the values explicitly indicated by one of the
case labels,

• the case label list consists of (ELSE) and the value is
one of the values implicitly indicated by (ELSE)

• the case label list consists of irrelevant.

The values explicitlv indicated by a case label are the values
delivered by any dfscrete expressiont or defined by the
literal range or di sc rete mode name. The values i mpli ci tlv
indicated by (ELSE) are all the possible selector values

160 FASCICLE VI.8 Rec. Z.200

which are not explicitly indicated by any associated case
label list (i.e. belonging to the same selector value) in any
case label specification.

static properties:

• An alternative fields With case label spedfication, a
labelled array tuplet or a case action has a list of case
label specifications attached, formed by taking the case
label sped fication in front of each variant alternati vet
value or case alternati vet respectively.

• A case label has a class attached, which is, if it is a
discrete literal expressiont the class of the di sc rete
1iteral expressioni if it is a literal ranget the
resulting class of the classes of each discrete literal
expression in the literal rangei if it is a discrete mode
namet the resulting class of the M-value class where M is
the di sc rete mode name.

• A case label list has a class attached, which is, if it is
(ELSE) or <irrelevant>, then the all class, otherwise
the resulting class of the classes of each case label.

• A case label specification has a list of classes
attached, which are the classes of the case label lists.

• A list of case label specifications, has a resulting list
of classes attached (provided that the case label
specifications have the same number of classes; this will
always be the case). This resulting list of classes is
formed by forming, for each position in the list, the
resulting class of all the classes that have that
position.

A list of case label specifications is complete if and only if
for all lists of possible selector values, a case label
specification is present, which matches the list of selector
values. The set of all possible selector values is determined
by the context as follows:

• For a tagged variant structure mode it is the set of
values defined by the mode of the corresponding tag
field.

• For a tag-less variant structure mode it is the set of
values defined by the root mode of the corresponding
resulting class (this class is never the all class, see
section 3.10.4).

• For an array tuple, it is the set of values defined by the
index mode of the mode of the array tuple.

FASCICLE VI.8 Rec. Z.200 161

• For a case action with a range list, it is the set of
values defined by the corresponding discrete mode in the
range list.

• For a case action without a range list, it is the set of
values defined by M where the class of the corresponding
selector is the M-value class or the M-derived class.

static conditions: For each case label spedfication the number Of case
label list occurrences must be equal.

For any two case label sped f ication occurrences, their lists
of classes must be compatible.

The list of case label specification occurrences must be
consistent, i.e. each list of possible selector values
matches at most one case label specification.

examples:
11.7 (occupi ed)
11.62 (rook),(*)
d.2* (ELSE)

9.1.* DEFINITION AND SUMMARY OF SEMANTIC CATEGORIES

This section gives a summary of all semantic categories which are
indicated in the syntax description by means of an underlined part. If
these categories are not defined in the appropriate sections, the
definition is given here, otherwise the appropriate section will be
referenced.

9.1.4.1 Names

Mode names

array mode namei
boolean mode name:
bound reference mode namei

buffer mode namei
character mode namei

discrete mode namei
event mode namei
free reference mode namei

instance mode namei

a name defined by an array mode,
a name defined by a boolean mode,
a name defined by a bound
reference mode.
a name defined by a buffer mode
a name defined by a character
mode.
a name defined by a discrete mode,
a name defined by an event mode,
a name defined by a free reference
mode.
a name defined by an instance
mode.

(3.1)
(1 .1)
(2 .2)

162 FASCICLE VI.8 Rec. Z.200

integer mode name:
mode name:
neumode name:
pa rameter i sed array mode name:

parameterised string mode name:

parameterised st ructure mode name:

poeverset mode name:
procedure mode name:

range mode name:
rou mode name:
set mode name:
strfno mode name:
structure mode name:

svnmode name:
variant st ructure mode name:

Access names

based name:
location name:
locati on do-uith name:
location enume rat i on name:
loc-identitv name:

Value names

svnonvm name:
value do-uith name:
value enume rat i on name:
value receive name:

Miscellaneous names

bound or free reference location
name:

buiIt-in routine name:

field name:
general procedure name:

label name:
module name:

a name defined by an integer mode,
see section 3.2.1
see section 3.2.3
a name defined by a parameterised
array mode.
a name defined by a parameterised
string mode.
a name defined by a parameterised
structure mode.
a name defined by a powerset mode,
a name defined by a procedure
mode.
a name defined by a range mode,
a name defined by a row mode,
a name defined by a set mode,
a name defined by a string mode,
a name defined by a structure
mode.
see section 3.2.2
a name defined by a variant
structure mode.

see section 4.1.4
see sections 4.1.2, 7.4
see section 6.5.4
see section 6.5.2
see sections 4.1.3, 7.4

see section 5.1
see section 6.5.2
see section 6.5.4
see sections 6.19.2, 6.19.3

a location name with a bound
reference mode or a free reference
mode.
any implementation defined name
denoting an implementation
defined built-in routine,
see section 3.10.4
a procedure name whose generality
is general.
see section 6.1
see section 7.6

FASCICLE VI.8 Rec. Z.200 163

non-reserved namei

procedure namei
p rocess namei
region namei
reaister namei

reserved name listi

set element namei
sianal namei
tag field namei
undef i ned svnonvm name:

a name which is none of the
reserved names mentioned in
Appendix Cl.
see section 7.4
see section 7.5
see section 7.7
an implementation defined name
denoting a machine register,
a name list consisting solely of
reserved names, (see Appendix Cl)
see section 5.4.5
see section 8.5.2
see section 3.10.4
see section 5.1

9.1.4.2 Locations

arrav locationi a locat on W th an array mode.
buffer locati oni a locati on w th a buffer mode.
event locati oni a locati on w th an event mode.
instance locationi a locat on w th an instance mode
strina location: a locat on w th a string mode.
st ructure locati oni a locat on w th a structure mode

9.1.4.3 Expressions

ar rav expression!

boolean expressioni

bound reference expressi oni

di sc rete expressi oni

di sc rete literal exp ress i on>

free reference expressioni

instance expressioni

an expressi on
compatible with
an expressi on
compatible with
an expressi on
compatible with
mode.
an exp ress i on
compatible with
a di sc rete exp
li teral.
an expression
compatible with
mode.
an exp ress i on
compatible with

whose class is
an array mode,
whose class is
a boolean mode,
whose class is
a bound reference

whose class is
a discrete mode.
ression Which is

whose class is
a free reference

whose class is
an instance mode.

164 FASCICLE VI.8 Rec. Z.200

integer expression:

integer literal expression:

oouerset expression:

procedure expression:

rou expressi on:

string expression:

st ructure expressi on:

an expressi
compatible h
an integer
literal,
an expressi
compatible m
an expressi
compatible w
an expressi
compatible u
an expressi
compatible w
an expressi
compatible m

on Mhose class is
ith an integer mode.
expression Which is

on Mhose class is
ith a powerset mode.
on Mhose class is
ith a procedure mode.
on Mhose class is
ith a roM mode.
on Mhose class is
ith a string mode.
on Mhose class is
ith a structure mode.

static conditions: Neither a boolean expression nor a discrete express?on
(when indicated in the syntax) may have a dynamic class. I.e.
the check whether the expression is compatible with a boolean
mode or a discrete mode* can be made statically.

9.1.4.3 Miscellaneous semantic categories

implementation value buiIt-in see section 11.1.3
routine call:

location procedure call:

module action statement:

non-aoostroohe character:

value procedure call:

see section 6.7

an action statement in which the
directly contained action is a
module.

a character Which is not an
apostrophe.

see section 6.7.

FASCICLE VI.8 Rec. Z.200 165

9.2 VISIBILITY AND NAME BINDING

9.2.1 GENERAL

The specific CHILL constructs mentioned in section 7.1 create new names
within a program. The program structuring statements and visibility
statements determine the visibility of names throughout the program. This
section deals with the visibility of names with the exclusion of exception
names, i.e. each name is considered not to be in the context of an
exception nane . See chapter 10 for exception names.

To enable a precise description of the visibility structure of a program,
the following refinements of terminology are introduced just for this
section 9.2:

• A name string (of a name) is a string of characters (used as
denotation for the name) seen as a lexical element isolated from any
context. A name is a name string associated with a definition
(defining occurrence, see section 9.2.2) of that name string.

Example:

B : BEGIN
MODULE DCL I INT; END;
MODULE DCL I PTR; END;
END B;

In the begin-end body of the block labelled B two names are introduced,
both with the name string I.

Within a reach, each name has one of the following four degrees of
visibility:

Table 1.Degrees of visibility

Visi bili tv Properties (informal)

di rectly
strongly visible

Name is visible by creation, granting or
seizing

indirectly
strongly visible

Name is inherited via block nesting
or by its pervasive attribute

weakly visible Name is implied by a strongly visible
name

invisible Name may not be applied

166 FASCICLE VI.8 Rec. 2.200

A name is said to be strongly visible if it is either directly strongly
visible or indirectly strongly visible. A name is said to be visible if it
is either weakly or strongly visible,otherwise the name is said to be
invisible. The program structuring statements and visibility statements
determine uniquely to which visibility class each name belongs. The
precise properties of the visibility classes are explained in the
following sections.

Name binding is the mechanism of associating a unique name to any name
string* i.e. associating a unique meaning to the name string.

9.2.2 VISIBILITY AND NAME CREATION

Names are created by the constructs mentioned in section 7.1. Except for
field names and set element names, the names have a unique defining
occurrence, which is the construct that introduces the name. In order to
have a uniform treatment for any name for establishing the visibility and
name binding, the following mechanism for giving a unique defining
occurrence to any created name is considered to be applied:

• Within the reach of a group, each mode occurrence is considered to be
an applied occurrence of a virtual svnmoda name defined within that
reach. For procedure definitions, the virtual synmode definition of
the result mode is placed in the reach of the group surrounding the
procedure. The virtual synmode definitions of the formal parameter
modes are placed in the reach of the procedure.

Visibility and name binding rules are applied taking these virtual
definitions into account.

Example:

DCL I SET(A,B),
K INT,
J ARRAY (SET(A,B)) INT;

is considered to be replaced by:

SYNMODE &1 = SET(A,B), &2 = INT;
&5 = (&1)&2 ;

DCL I &1, K &2, J &5;

&l, &2 and &3 are virtual synmode names. The visibility rules are applied
to these virtual replacements. The virtual replacements have the
consequence that name creating modes (SET, STRUCT) appear only once in a
reach, at the right-hand side of a virtual synmode definitions. This
synmode definition is considered to be an unique defining occurrence of
the set element names or field names.

FASCICLE VI.8 Rec. Z.200 167

The visibility and name binding properties of field names are different
(simpler) than those of other names. Therefore, in the remainder of
section 9.2, the word "name" does not include field names, unless
otherwise stated.

9.2.3 IMPLIED NAMES

Each strongly visible name in a reach has a (possibly empty) set of
implied names defined as follows;

• Each mode has a (possibly empty) set of implied names, listed in Table
2.

The implied names of a (strongly visible) name are:

• If the name is an access name, the implied names are the names implied
by the mode of the access name.

• If the name is a mode name, the implied names are the names implied by
the defining mode.

• If the name is a procedure name, the implied names are the names
implied by the mode of the result spec.

• If the name is a signal name, the implied names are all names implied
by its attached modes.

• Otherwise there are no implied names.

168 FASCICLE VI.8 Rec. 2.200

Table 2. Implied names of modes

Modes Set of implied names

INT, BIN, CHAR
INSTANCE, PTR
BOOL, EVENT
CHAR(n), BIN(n)
BIT(n), RANGE(___)

Empty

mode name The set of implied names
of its defining mode

H(m:n) The set of implied names of H

REF H, RON H
READ H, POHERSET M
PROCC--) (H)
BUFFER H

The set of implied names of H

ARRAY (H) N The union of the sets of the names
implied by H and N

STRUCTCNj H2,---,N„ H„) The union of the sets of names
implied by Hj through
For variant structures it is the
union of the implied names of all
the fields of the variant
structure

Paramaterised VH(— ; The set of implied names of VM

S ETC....... ; The set of set element names

(note that implied names,
implied names themselves.]

always being set element names, never have

9.2.* VISIBILITY IN REACHES

A name, which is strongly visible in a reach, is either directly strongly
visible or indirectly strongly visible in it.

A name is directly strongly visible in a reach only in the following
cases:

• The name has its defining occurrence in the reach.

• The name is seized into the reach (see section 9.2.6.3).

FASCICLE VI.8 Rec. Z.200 169

• The name is granted into the reach Csee section 9.2.6.2).

A name is indirectly strongly visible in a reach only in the following
cases:

• The reach is a block reach and the name is inherited (see section

• The name is strongly visible in the surrounding reach and has the
pervasive property in that surrounding reach (see section 9.2.6.2)
and the reach has no directly strongly visible name in it with the
same name string. In this case* the name has also the pervasive
property in the reach.

A name is weakly visible in a reach only in the following case:

• The name is implied by a strongly visible name in that reach.

The visibility rules are defined such that in any reach* all the strongly
visible names have different name strings. However* two or more weakly
visible names may have the same name string. Such a name may then not be
applied in some cases (see section 9.2.8).

9.2.5 VISIBILITY AND BLOCKS

The following visibility rule applies to blocks:

• A name, strongly visible in the reach of a group, is indirectiv
strongly visible in the reach of each directly enclosed block which
has no directly strongly visible name with the same name string (name
inheritance by blocks).

9.2.6 VISIBILITY AND HODULIONS

9.2.6.1 General

semantics: Visibility statements, which are only allowed in modulion
reaches, control the visibility of the names explicitly
mentioned in them (and implicitly their implied names).

9.2.5).

syntax:
<visibility statement>

<grant statement>
I <seize statement>

(1)
(1 .1)
(1.2)

170 FASCICLE VI.8 Rec. 2.200

9.2.6.2 Grant statements

syntax:
<grant statement>

GR/4NT <grant nindou> (PERVASIVE);
(1)
(1.1?

<grant uindou> ::=
<granted element> {, <granted element>}*

I ALL

(2)
(2 .1)
(2 .2)

<granted element> ::=
<non reserved name>

I <neumode name> <forbid clause>

(5)
(5.1)
(5.2)

<forbid clause> ::=
FORBID {<forbid name list> I ALL)

(<t)
($.1)

<forbid name list> ::=
(<fi eld name> {,<field name>)*)

(5)
(5.1)

semantics: Grant statements are means of extending the visibility of
names in a modulion reach into the directly surrounding
reach. FORBID can only be specified for nsumode names which
are structure modes. It means that all locations and values of
that mode have fields which may be selected only inside the
granting module, not outside.

The following visibility rules apply:

• A name, visible in the reach of a modulion, is directlv
strongly visible in the reach of the directly surrounding
group if it is mentioned in a grant statement in the
modulion reach. The name is said to be granted into the
surrounding reach.

• The notation FORBID ALL is a syntactic shorthand
forbidding all the field names of the neNmode name (see
section 9.2.7).

• The notation GRANT ALL [PERVASIVE] is a syntactic
shorthand for granting all the names (with the pervasive
property, if specified), which are strongly visible in
the reach of the granting modulion and whose defining
occurrence lies inside the granting mcduliOn.

static properties: A name granted with the attribute PERVASIVE, has the
pervasive property in the surrounding reach.

static conditions: The defining occurrence of any non-reserved name must
lie inside the granting modulion.

FASCICLE VI.8 Rec. Z.200 171

The neumode name With FORBID specification must have its
defining occurrence in the reach of the granting modulion and
must be a structure mode and each field name in the forbid
name list must be a field name Of the neumode name.

If a grant statement is placed in the reach of a region it
must not grant a name which is a regional value name or a
regional access name.

examples:
1.11 GRANT add,mult; (1,1)

9.2.6.3 Seize statements

syntax:
<seize statement>

SEIZE <seize windou>;

<seize uindou> ::= (2)
<seized element> {,<seized element>}* (2,1)

I ALL (2,2)

<seized element> (3)
<modulion name> ALL (3,1)

I <non-reserved name> (3.2)

<moduli on name> ::= (4)
<module name> ($.1)

I < reai on name> (<f,2)

semantics: seize statements are a means of extending the visibility of
names in group reaches into the reaches of directly enclosed
modulions.

The following visibility rules apply:

• A name, visible in the reach of a group, is directlv
strongly visible in the reach of a directly enclosed
modulion if it is mentioned in a seize statement in the
modulion reach. The name is said to be seized in the
modulion reach.

• If a name which has the pervasive property in the
surrounding reach is seized, it will be directly strongly
visible in the reach of the seizing module and it keeps
the pervasive property.

• The notation SEIZE ALL is a syntactic shorthand for
seizing all the names which are strongly visible in the
reach of the surrounding group and whose defining
occurrence lies outside the seizing modulion.

(1)
(1 .1)

172 FASCICLE VI.8 Rec. Z.200

• The notation SEIZE <modulion name> ALL is a syntactic
shorthand for seizins all the names which are strongly
visible in the reach of the surrounding group and are
granted by the module or region denoted by the modulion
name.

static conditions: The defining occurrence of any non-reserved name or
modulion name must lie outside the seizing modulion.

A name mentioned in a seized element must not be a value
do-uith name nor a location do-with name.

examples:
15.1$ SEIZE /*external signals */

ACQUIRE, RELEASE, CONGESTED, STEP, READOUT; (1.

9.2.7 VISIBILITY OF FIELD NAMES

Field names may occur outside their defining occurrence only in the
following context:

• Field selection of a structure location or a structure value.

• Labelled structure tuples.

• Forbid clauses in the grant statement.

In the first two contexts those field names which are attached to the mode
of the structure location, (strong) structure value or tuple are visible,
except if the novelty of this mode is a neumoda name which has been
granted by a modulion with a forbid clause. In the latter case, outside
the granting modulion, only those field names which are not mentioned in
the forbid clause are visible.

In the last context all and only the field names of the granted newmode
name are visible.

9.2.5 NAME BINDING

Name binding is the mechanism of associating a unique name with any
occurrence of a name string.

The binding rules depend on whether the name string occurs in the context
of:

1. a directive name,

FASCICLE VI.8 Rec. Z.200 173

2. an exception name,

3. a reserved namet

4. a fi eld name,

5. a non-reserved namet a module namet or region name in a seized
elementt

6. any other name.

Binding rules

1. A directive name string follows an implementation defined binding
scheme which must not influence the CHILL binding rules (see section
2.6).

2. An exception name string is treated according to the handler
identification rules given in section 10.3.

3. A reserved name string which is not freed by a free directive in a
compilation unit in which it occurs, has its reserved meaning. If it
is freed, it follows the rules under 6. Even if freed in a compilation
unit, it may not be granted outside that unit.

4. A field name string is bound as follows, depending upon the contexts
mentioned in section 9.2.7:

• to the visible field name of the structure mode of the structure
location or (strong) structure expression;

• to the visible field name of the structure mode of the (strong)
tuple;

• to the visible field name of the newmode name.

If the name string cannot be bound to such a field name, the program
is in error.

5. A name string occurring in the context of a seized element is bound
according to the rules mentioned under 6., but in the reach directly
surrounding the reach in which the seize statement is placed.

6. For any other occurrence of a name string in the reach of a group:

a. if there is more than one strongly visible name in the reach
with that name string, then the program is in error;

b. else if there is one strongly visible name in the reach with
that name string, then the name string is bound to that name;

c. else if there is exactly one weakly visible name with that name
string in the reach, the name string is bound to that name;

174 FASCICLE VI.8 Rec. 2.200

d. else if there is more than one weakly visible name in the reach
with that name string and if all those (set element) names have
compatible classes* then the name string is bound to (an
arbitrary) one of those names;

e. otherwise the program is in error.

In addition to the rules mentioned above* a name string appearing in a
grant statement or a seize statement must be bound to a name whose
defining occurrence lies inside or outside* respectively* the granting or
seizing modulion (if there is a choice according to rule d.).

FASCICLE VI.8 Rec. Z.200 175

10.0 EXCEPTION HANDLING

10.1 GENERAL

An exception is either a language defined exception* in which case it may
have a language defined name* a user defined exception* or an
implementation defined exception. A language defined exception Mill be
caused by the dynamic violation of a dynamic condition. Any named
exception can be caused by the execution of a cause action.

When an exception is caused* it may be handled* i.e. an action statement
list of an appropriate handler Mill be executed.

Exception handling is defined such that at any statement it is statically
knoun which exceptions might occur (i.e. it is statically known which
exceptions cannot occur) and for which exceptions an appropriate handler
can be found or which exceptions may be passed to the calling point of a
procedure. If an exception occurs and no handler for it can be found, the
program is in error.

10.2 HANDLERS

syntax:
<handler>

ON {<on-alternati ve>}*
[ELSE <action statement list>] END

<on-alternati ve> :: =
(<excepti on list>) : <action statement list>

semantics: An action statement list in an on-alternative is entered if an
exception occurs in the statement to which the handler is
appended and whose name is mentioned in the exception list in
the on-alternative. If ELSE is specified* the action
statement list following it will be entered if an exception
occurs in the statement to which the handler is appended and
whose name is not specified in any exception list directly
contained in the handler.

If the handler is appended to an action* when the end of an
action statement list in an on-alternative is reached control
will be given to the action statement following the action
statement in which the handler is placed.

If the handler is appended to a procedure definition, control
will be returned to the calling point when the end of an
action statement list is reached. If the handler is appended
to a process definition* the executing process will terminate

(1)

(1 .1)

(2)
(2.1)

176 FASCICLE VI.8 Rec. 2.200

when the end of an action statement list in the on-alternative
is reached.

static conditions: All the names in all the exception list
occurrences must be different.

dynamic conditions: The SPACEFA1L exception occurs if an action
statement list is entered and storage requirements cannot be
satisfied.

examples:
10.$3 ON

(no_space): C.4USE over f Ion;
END (1.

10.3 HANDLER IDENTIFICATION

When an exception E occurs at an action A, or a data statement or region D,
the exception may be handled by an appropriate handler, i.e. an action
statement list in the handler will be executed or the exception may be
passed to the calling point of a procedure, or, if neither is possible,
the program is in error.

For any action A, or data statement or region D, it can be statically
determined whether for a given exception E at A or D an appropriate
handler can be found or whether the exception may be passed to the calling
point.

An appropriate handler for A or D with respect to E is determined as
follows:

1. if a handler is appended to A or D which mentions E in an exception
list or which specifies ELSE, then that handler is the appropriate one
with respect to E;

2. otherwise, if A or D is directly enclosed by a bracketed action, the
appropriate handler (if present) is the appropriate handler for the
bracketed action with respect to E;

3. otherwise if A or D is placed in the reach of a procedure definition
then:

• if a handler is specified after the procedure definition which
handler specifies E in an exception list or specifies ELSE, then
that handler is the appropriate handler,

• if E is mentioned in the exception list of the procedure
definition then E is caused at the calling point,

• otherwise there is no handler;

FASCICLE VI.8 Rec. 2.200 177

4. otherwise if A or D is placed in the reach of a process definition
(possibly the imaginary one) then:

• if a handler is specified after the process definition which
handler specifies E in an exception list or specifies ELSE then
that handler is the appropriate handler,

• otherwise there is no handler;

5. otherwise if A is an action of an action statement list in a handler
then the appropriate handler is the appropriate handler for the action
A* or definition Df with respect to E to which the handler is appended
but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate
handler implies exiting from blocks, local storage will be released when
exiting from the block.

178 FASCICLE VI.8 Rec. 2.200

11.0 IMPLEMENTATION OPTIONS

11.1 IMPLEMENTATION DEFINED BUILT-IN ROUTINES

syntax:
<buiIt-i n routine call> (1)

<buiIt-in routine name>
([<buiIt-in routine parameter list>J) (1.1)

<buiIt-in routine parameter list> ::= (2)
<buiIt-in routine parameter>
{, <buiIt-in routine p a r a m e t e r > (2.1)

<buiIt-i n routine parameter> ::= (3)
<value> (3.1)

I <location> (3.2)
I <non-reserved name> (3.3)

semantics: An implementation may provide for a set of implementation
defined built-in routines in addition to the set of language
defined built-in routines.

A value, a location or any program defined name which is not a
reserved name may be passed as parameter. The built-in
routine call may return a value or a location. The parameter
passing mechanism is implementation defined.

A built-in routine may be generic, i.e. its class (if it is a
value built-in routine call) or its mode (if it is a location
built-in routine call) may depend not only on the built-in
routine name but also on the static properties of the actual
parameters passed and the static context of the call.

static properties: A built-in routine name is an implementation
defined name which is considered to be defined in the standard
prelude module (sea section 7.8). It may have a set of
implementation defined except ion names attached. A built-in
routine call is a value (location) built-in routine call if
and only if the implementation specifies that for a given
choice of static properties of the parameters and the given
static context of the call, the built-in routine call
delivers a value (location).

11.2 IMPLEMENTATION DEFINED INTEGER MODES

An implementation may define other integer modes than the ones defined by
INT, e.g. short integers, long integers, unsigned integers. These integer
modes must be denoted by implementation defined integer node names. These

FASCICLE VI.8 Rec. Z.200 179

names are considered as newmode names* similar to INT. Their value ranges
are implementation defined. These integer-modes may be defined as root
modes of appropriate classes.

11.3 IMPLEMENTATION DEFINED REGISTER NAMES

An implementation may define a set of pre-defined register names (see
sections 3.7 and 7.8).

ll.fr IMPLEMENTATION DEFINED PROCESS NAMES AND EXCEPTION NAMES

An implementation may define a set of implementation defined process
names,i.e. process names whose definition is not specified in CHILL. The
definition is considered to be placed in the reach of the standard prelude
module. Processes of this name may be started and instance values denoting
such processes may be manipulated.

An implementation may define a set of exception names for any process name
or a group of process names. These exceptions may be caused when starting
the process (see section 6.1fr).

11.5 IMPLEMENTATION DEFINED HANDLERS

An implementation may specify that an implementation defined handler is
appended to the imaginary outermost process definition (see section 7.8).
The exception names and actions in the implementation defined handler may
specify any legal CHILL exception name or action. Note that an
on-alternative in such handler can be entered only by an exception caused
by the outermost process and not by any inner process.

11.6 SYNTAX OPTIONS

At some places, CHILL allows for more than one syntatic description for
the same semantics. The choice for one of the following options should be
fixed within the whole program.

Assignment symbol

The assignment symbol is either ;r or =

ARRAY

180 FASCICLE VI.8 Rec. 2.200

The reserved name ARRAY should be either mandatory or not allowed.

RETURNS

In procedure definitions with a result spec, the reserved name RETURNS,
should be either mandatory or not allowed.

Structure modes

Structure modes must be either in the nested structure notation or in the
level numbered notation.

Literal and tuple brackets

In the case that square brackets are available in the representation
alphabet, the brackets [and] may be used instead of (: and
respectively.

FASCICLE VI.8 Rec. Z.200 181

APPENDIX A: CHARACTER 5ET5 FOR CHILL PROGRAM5

A.I.. CCITT ALPHABET NO. 5 INTERNATIONAL REFERENCE VERSION

Recommendation V3 (The internal representation is the binary number
formed by bits b7 to bl, where bl is the least significant bit).

a 0 _ 3“ r~ O 1 1“
a 0 0 1 1 _2_ 0 1 1
Bl 0 1 0 1 0 1 0 1

[51151 [51 [51 ■
0 1 2 3 4 5 6 7

0 0 0 NUL JO
(OLE)

SP 0 a p P

0 0 0 1 1 T Ci(SOH)
DC- 1• 1 A T a q

0 0 1 0 2 T C?< STX) DC? II 2 R b r

0 0 1 1 3 TC)
(ETX)

DC) n 3 T " T c s

0 1 0 0 4 TC4
(EOT)

DC4 0 4 D T d t

0 1 0 1 5 T Cs
(ENQ)

TCs(NAK) % 5 E U e u

0 1 1 0 6 TC6
(A c K)

JO
(SYN) & 6 F V f V

0 1 1 1 7 BEL TC-o
(E TB)

1 7 ~ G ~ V g w

1 0 0 0 8 (FE° CAN (8 H IT h X

1 0 0 1 9 FE,
(H T)

EM) 9 T Y i y

1 0 1 0 1 0 FE)(IF) SUB ★ ■• TT •
J z

1 0 1 1 11 F Ej
(VT)

ESC + •
/ TT k T

1 1 0 0 1 2 FE4
(FF)

IS- / TTTT i

1 1 0 1 1 3 FEs
(CR)

IS) - = ITT m T
1 1 1 0 1 4 SO IS)

(RS)
« ITA n —

1 1 1 1 11 SI IS-
(US)
T 9• T - 0 DEL

182 FASCICLE VI.8 Rec. 2.200

A.2 MINIMAL CHARACTER SET FOR REPRESENTING CHILL PROGRAMS

Tha following subset of the CCITT alphabet no. 5 Basic code is used in
this document to represent CHILL programs.

0 0 0 0 1 1 1 T “
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

SS0SBE1 0 1 2 3 4 5 6 7

0 0 0 0 0 SP 7 P

0 0 0 1 1 1 A Q

0 0 1 0 2 2 B R

0 0 1 1 3 3 C S

0 1 0 0 4 4 D T

0 1 0 1 5 5 E U

0 1 1 0 6 6 F V

0 1 1 1 7
1 7 G w

1 0 0 0 8 (8 H X

1 0 0 1 9) 9 I Y

1 0 1 0 1 0 ★ • J T

1 0 1 1 11 + •/ K

1 1 0 0 1 2 T T "

1 1 0 1 1 3 - — M

1 1 1 0 1 4 ■ ">~ I T

1 1 1 1 1 5 / 9• 0 -

FASCICLE VI.8 Rec. Z.200 183

APPENDIX B: SPECIAL SYMBOLS

Name Use

semicolon terminator for statements etc.
; comma separator in various constructs
(left parenthesis opening parenthesis of various constructs
) right parenthesis closing parenthesis of various constructs
l left square bracket opening bracket of a tuple
3 right square bracket closing bracket of a tuple

left tuple bracket opening bracket of a tuple
:) right tuple bracket closing bracket of a tuple
: colon label indicator* range indicator
. dot field selection symbol
; r assignment symbol assignment* initialisation
< less than relational operator
< = less than or equal relational operator
- equal relational operator* assignment*

ini tialisation
/= not equal relational operator
>- greater than or equal relational operator
> greater than relational operator
+ plus addition operator
- minus subtraction operator
* asterisk multiplication operator* undefined value*

unnamed value, irrelevant symbol
/ solidus division operator
// double solidus concatenation operator
-> arrow referencing and dereferencing
<> di amond start or end of a directive clause
/* comment opening

bracket
start of a comment

*/ comment closing
bracket

end of a comment

f apostrophe start or end symbol in various literals
r t double apostrophe apostrophe within character or

character string literals
- underline spacer in names and literals

18$ FASCICLE VI.8 Rec. Z.200

APPENDIX C: CHILL SPECIAL NAMES

C.l RESERVED NAMES

ALL FI
ARRAY FOR
ASSERT FORBID

BASED
BEGIN
BUFFER
BY

CALL
CASE
CAUSE
CONTINUE

GENERAL
GOTO
GRANT

IF
IN
INIT
INLINE
INOUT

DCL
DELAY
DO
DONN

LOC

MODULE

ELSE
ELSIF
END
ENTRY
ESAC
EVENT
EVER
EXCEPTIONS
EXIT

NENMODE
NOPACK

OD
OF
ON
OUT

PACK
PERVASIVE
POS
PONERSET
PRIORITY
PROC
PROCESS

RANGE
READ
RECEIVE
RECURSIVE
REF
REGION
RESULT
RETURN
RETURNS
RON

SEIZE
SEND
SET
SIGNAL
SIMPLE
START
STATIC
STEP
STOP
STRUCT
SYN
SYNMODE

THEN
TO

UP

NHILE
NITH

FASCICLE VI.8 Rec. Z.200 185

C .2 PREDEFINED NAMES

ABS FALSE NOT
ADDR NULL
AND NUH

GETSTACK

BIN OR
BIT INSTANCE
BOOL INT

PRED
PTR

CARD HAX
CHAR HIN

HOD REH

C.3 CHILL EXCEPTION NAMES

ASSERTFAIL
DELAYFAIL
EHPTY
EXTINCT
HODEFAIL
OVERFLOW
RANGEFAIL
RECURSEFAIL
SPACEFAIL
TAGFAIL

C.fr CHILL DIRECTIVES

FREE

SIZE
SUCC

THIS
TRUE

UPPER

XOR

186 FASCICLE VI.8 Rec. Z.200

APPENDIX D: PROGRAM EXAMPLES

1. operations on integers

1 integer_operations:
2 HOOULE
3 add:

PROC (i,j INT)(INT) EXCEPTIONS (OVERFLON);
5 RESULT i+j;
6 END add;
7 mult:
8 PROC (i, j INT)(INT) EXCEPTIONS (OVERFLON);
9 RESULT" i *j;
10 END mult;
11 GRANT add, mult;
12 SYNMODE operand_mode=INT;
13 GRANT operand_mode;
1$ SYN neutral_for_add=0,
15 neutral_for_mult=l;
16 GKMNT neutral_for_add,
17 neut ral_for_mu!t;
18 END integer_operations; .

2. Same operations on fractions

1 fraction_operations:
2 MODULE
5 NENMODE fraction=STRUCT (num,denum INT);
4 add:
5 PROC (fl,f2 fraction)(fraction) EXCEPTIONS (OVERFLON)
6 RETURN [fl.num*f2.denum+f2.num*fl.denum,
7 fl.denum*f2.denum3;
8 END add;
9 mult:
10 PROC (fl,f2 fraction)(fracti on) EXCEPTIONS (OVERFLOW!
11 RETURN [fl.num*f2.num,f2.denum*fl.denum3;
12 END mult;

1$ GR/1NT add, mult;
15 SYNMODE operand_mode=fraction;
16 GRANT operand_mode;
17 SYN neutral_for_add fraction=10,17,
18 neutral_for_mult f racti on=[1,11;
19 GRANT neutral_for_add,
20 neutral_for_mult;
21
22 END f raction__operat ions;

FASCICLE VI.8 Rec. Z.200

3. Sama operations on complex numbers

1 complex_operations
2 MODULE
3 NENMODE complex=STRUCT (re,im INT);
4 add:
5 PROC (cl,c2 complex)(complex) EXCEPTIONS (OVERFLON);
6 RETURN [cl.re+c2 . re,cl.im+c2.f m);
7 END add;
d mult:
9 PROC (cl,c2 complexXcomplex) EXCEPTIONS'(OVERFLON);

10 RETURN [c l . re*c2.r e - c l . im*c2 . i m ,
11 cl.re*c2.im+cl,im*c2. rel;
12 END molt;
13
14 GRANT add, mult
15 SYNMODE operand_mode^complex;
16 GRANT operand_mode;
17 SYN neutral_for_add=complex [0,01,
15 neutral_for_mult=complex 11,01;
19 GP/WT neut ral__fo r_add,
20 neut ral_fo r_mult;
21
22 END complex_operations:

4. General order arithmetic

1 general_order_arithmetic: /Xfrom collected algori thms from CACM no.93*/
2 MODULE
3 o p :
4 PROC (a INOUT, h,c,order INT) EXCEPTIONS (nrong_input) RECURSIVE;
5 DCL d INT;
6 ASSERT b>0 AND c>0 AND order>0
7 ON (ASSERTFAIL):
8 CAUSE wrong_i nput;
9 END;
10 CASE order OF
11 (1): a :=b+c;
12 RETURN;
13 (2): d :=0;
14 (ELSE): d ; = 1 ;
15 ESAC;
16 DO FOR i :=1 TO c;
17 op (a,b,d,order-1);
15 d :=a;
19 . OD;
20 RETURN;
21 END op;
22
23 GRANT op;
24
25 END general_order_ari thmetic;

18S FASCICLE VI.8 Rec. Z.200

5. Adding bit bv bit and checking the result

1 add_bit_by_bit :
2 MODULE
5 adder:
4 PROC (a STRUCT(a2, al BOOL} IN, b STRUCT(b2,bl BOOL> IN)
5 RETURNS? STRUCT?c4,c2,cl BOOL));
6
7 DCL c STRUCT ?c4,c2,cl BOOL);
5 DCL k.2, x, w, t, s, r BOOL;
9 DO WITH a,b,c;
10 k2 :=al AND bl;
11 cl :=NOT k2 AND (al OR bl);
12 x :=e2 AND b2 AND k2;
13 w :=a2 OR b2 OR k2;
1$ t :=b2 AND k2;
15 s :=a2 AND k2;
16 r :=a2 AND b2;
17 c4 : = r OR s OR t;
Id c2 :=x OR <h AND NOT c4);
19 OD;
20 RETURN c;
21 END adder;
22 GRANT adder;
23 END add_bit_by_bit;
2*
25 exhaustive_checker:
26 MODULE
27 SEIZE adder;
25 DCL a STRUCT (a2,al BOOL),
29 b STRUCT (b2,bl BOOL),
30 SYNMODE res= ARRAY (1:16) STRUCT (c<t,c2,cl BOOL);
31 DCL r INT, results res;
32 DO NITH a, b;
33 r :=0;
3$ DO FOR a2 IN BOOL;
35 DO FOR al IN BOOL;
36 DO FOR b2 IN BOOL;
37 DO FOR bl IN BOOL;
33 r+ :=1;
39 results (r) :=adder (a,b);
*0 OD;
$1 OD;
\2 OD;
45 OD;
44 /ISSEffT result = res [[FALSE, FALSE, FALSE 1, [FALSE, FALSE, TRUE J,
45 [FALSE,FALSE, TRUE3,[FALSE, TRUE, TRUE],
46 [FALSE,FALSE, TRUE],[FALSE, TRUE,FALSE],
47 [FALSE, TRUE, TRUE],[TRUE,FALSE,FALSE],
43 [FALSE, TRUE, FALSE], [FALSE, TRUE,FALSE],
49 [TRUE,FALSE,FALSE],[TRUE,FALSE, TRUE.],
50 [FALSE, TRUE, TRUE], [TRUE, FALSE,FALSE],
51 [TRUE,FALSE,TRUE],[TRUE, TRUE,FALSE]];
52 END exhausti ve_checker;

FASCICLE VI.8 Rec. Z.200 189

6. Plavinq with dates

1
2
3
4
5
6
7
3
9
10
11
12
13
1*
15
16
17
13
19
20
21
22
23
2$
25
26
27
23
29
30
31
32
33
34
35
36
37
33
39
$0
41
42
43
44
45
46
47
43
49
50
51
52

playing_uti th_dates:
MODULE /* from collected algori thms from CACM no. 199 */

SYNMODE month=SET(jan, feb,mar, apr,may,jun,
jul,aug,sep,oct,nov, dec);

NEMMODE date=STRUCT (day INT (1:31), mo month, year INT);

gregorian-date:
PROC (julian_day_number INT)(date);

DCL j INT : - juli an__day_number,
d,m,y INT;

j-:=1_721_119;
y ; = (4 * j - 17 / 146_097;
j ;:M j • 1 - 146__097 * y;
d ;=j / 4;
j ;r(4 x d + 3) / 1_461;
d :-"4 x d + 3 * 1_461 X j;
d ; = (d + 4 7 / 4;
m ; = f5 x d - 3) / 153;
d ;r 5 * d - 3 - 153 % m;
d :=(d + 5) / 5;
y := 10 0 X y -f j;
IF m<100 THEN m+:=3i

ELSE m-: =9;
y+;rl;

FI;
RETURN [d, month (m + 1), yl;

END gregorian_date;

jul ian_day__number
PROC (d date)(INT);

DCL c,y,m INT;
DO MITH d;

m :=NUM (mo)+l;
IF m>2 THEN m-:=3;

ELSE m+:=9;
year- :=1;

FI;
c :-year/100;
y :=year,-100*c;
RETURN a46_097XC;/4+fl_46lxy;/4

+(153+m+c)/5+day+l_721_119;
OD;

END julian_day_number;
GRANT gregorianjdate, julian_dayjnumber;

END playing_uith_dates

test:
MODULE
SEIZE gregorian_date, julian^day_number;
ASSERT julian_day__number (110, dec, 19797)-julian_day_number(

grego r i an_date(j uli an_day__number([10,dec,19793)));
END test;

190 FASCICLE VI.8 Rec. Z.200

7. Roman numerals

1 Roman:
2 MODULE
3 SEIZE n, rn;
4 convert:
5 PROC () EXCEPTIONS (string_too_small);
6 DCL r INT :=0;
7 DO UHILE n>=l_Q00;
3 rn(r):='M';
9 r+:=1;
10 n-;-1_O00;
11 OD;
12 IF n>500 THEN rn(r):='D';
13 n-:=500;
14 r+:=l;
15 FI;
16 IF n>=100 THEN rn(r):='C';
17 n-:=100;
13 r+:=l;
19 FI;
20 IF n>=50 THEN rn(r):=tL t;
21 n-:=50;
22 r+:=l;
23 FI;
2* IF n>=10 THEN rn(r):='Xf;
25 n-:=10;
26 r+:=l;
27 FI;
28 DO NHILE n>=l;
29 rn(r):=’I ’;
30 r+;=1;
31 n-:=l;
32 OD;
33 RETURN;
3$ END ON (RANGEFAIL): DO FOR i :=0 TO UPPER (rn);
35 rn(i)
36 OD;
37 CAUSE string_too_small;
39 END convert;
40 END Roman;
41 test:
42 MODULE
43 SEIZE convert;
44 DCL n INT INIT :=1979;
45 DCL rn CHAR (20) INIT : = (20)' f;
46 GRANT n, rn;
47
48 convert ();
49
50 ASSERT rn=fMDCCCCLXXVIIIIf//(6)9 ’;
51
52 END test;

FASCICLE VI.8 Rec. 2.200 191

3. counting letters in a character string of arbitrary length

1 letter_count:
2 MODULE
3 SEIZE max;
<t DCL letter POHERSET CHAR INIT :=['Af : *Z*1;
5 count:
6 PROC (input RON CHAR (max) IN, output ARRAY (' A f:' Z r) INT OUT);
7 DO FOR i : = 0 TO UPPER (input ->);
8 IF input -> (i) IN letter
9 THEN
10 output (input -> (i))+:=l;
11 FI;
12 OD;
13 END count;
l<t GRANT count;
15 END letter-count;
16 test:
17 MODULE
18 DCL c CHAR (10) INIT : = ' A-B<ZAA9K ’ ";
19 DCL output ARRAY ('A f : fZ') INT;
20 SYN max = 10_000;
21 GRANT max;
22 SEIZE count;
23 count (-> c,output);
2<t ASSERT output = [('A') : 3, ('B ', ’K ’, 'Z ’) : 1, (ELSE) : 07;
25
26 END test;

9. Prima numbers

1 prime:
2 MODULE
3 SEIZE max;
<t NEUMODE number_list =POUERSET INT(2:max);
5 SYN empty = number_li st 17;
6 DCL sieve number_li st INIT := [2:maxJ;
7 primes number_list INIT :=empty;
8 GRANT primes;
9 DO HHILE sieve/=empty;
10 primes OR :=[MIN (sieve)7;
11 DO FOR j :=MIN (sieve) BY MIN (sieve) TO max;
12 sieve~:=lj7;
13 OD;
1$ OD;
15 END prime;

192 FASCICLE VI.8 Rec. 2.200

10. Implementing stacks in two different wavs, transparent to the user

1 stacks_l:
2 MODULE
3 SEIZE element

SYN max=10_000,min=l;
5 DCL stack ARRAY (min : max) element,
6 stackindex INT INIT :=min;
7 push:
3 PROC (e element) EXCEPTIONS (overflow);
9 IP stackindex=max
10 THEN CAUSE overflow;
11 FI;
12 stackindex+:=1;
13 stack (stacki ndex) :=e;
l<t RETURN;
15 END push;
16 pop:
17 PROC () EXCEPTIONS (underflow);
13 IF stackindex=min
19 THEN CAUSE underflow;
20 FI;
21 stackindex-:=1;
22 RETURN;
23 END pop;
2<t
25 elem:
26 PROC (i INT)(element LOC) EXCEPTIONS (bounds);
27 IF i<min OR i>max
23 THEN CAUSE bounds;
29 FI;
30 RETURN stack (i);
31 END elem;
52
53 GRANT push,pop,elem;
3$ END stacks-1;

FASCICLE VI.8 Rec. Z.200 193

35 stacks_2:
36 MODULE
37 SEIZE element;
53 NENHODE cel 1=STRUCT (pred,succ REF cell,
39 info element);
40 DCL p,last, first REF cell INIT :=NULL;
41 push:
42 PROC (e element) EXCEPTIONS (overflow);
$5 p :=allocate (cell) ON
44 (nospace) : CAUSE overflow;
45 END;
46 IF last=NULL
47 THEN first,last :=p;
43 ELSE last ->. succ :=p;
49 p ->. pred :=last;
50 last :=p;
51 FI;
52 last ->. info :=e;
55 RETURN;
54 END push;
55 pop:
56 PROC () EXCEPTIONS (underflow);
57 IF last=NULL;
53 THEN CAUSE underflow;
59 FI;
60 last :=last ->. pred; IF last = NULL THEN first := NULL FI;
61 last ->. succ :=NULL;
62 RETURN;
65 END pop;
64 elem:
65 PROC (i INT) (element LOC) EXCEPTIONS (bounds);
66 IF first=NULL
67 THEN CAUSE bounds;
63 FI;
69 p :=first;
70 DO FOR j=2 TO i;
71 IF p ->. succ-NULL
72 THEN CAUSE bounds;
75 FI;
74 p ;=p ->. succ;
75 OD;
76 RETURN p ->. info;
77 END elem;
78
79 GRANT push,pop,elem;
80
81 END stacks_2;

194 FASCICLE VI.8 Rec. Z.200

11. Fragment for Plaving chess

1 NENHODE piece-STRUCT(color SET(white,black),
2 kind SET(pawn, rook, kni ght, bi shop,queen,ki ng));
3 NENHODE column-SET (a,b,c,d,e,f,g,h);
4 NENHODE line=INT (1 : 3);
5 NENHODE square=STRUCT (status SET (occupied,free),
6 CASE status OF
7 (occupied) : p piece,
3 (free) :
9 ESAC);
10 NENHODE board=ARRAY (line) ARRAY (column) square;
11 NENHODE move=STRUCT (lin_l,lin_2 line,
12 col_l,col_2 column);
13
14 initialise:
15 PROC (bd board INOUT);
16 bd : = [(1) : I(a, h):l.status : occupied, .p : [white, rook)],
17 (b,g):[.status: occupied, .p : Cuhite,knight]],
18 (c, f):l.status: occupied, .p : [white,bishop]],
19 (d):l.status: occupied, .p : Iwhite,queen]],
20 (e):l.status: occupied, .p : [white,king]]],
21 (2):[(ELSE) : [.status: occupi ed, .p : [whi te,pawn]]],
22 (3:6) .-[(ELSE) : [.status: free]],
23 (7):[(ELSE) : [.status: occupied, .p : [black,pawn]]],
24 (3):[(a,h) : [.status: occupied, .p r [black, rook]],
25 (b,g):[.status: occupied, .p : [black,knight]],
26 (e,f) : [.status: occupied, .p : [black,bishop]],
27 (d) : [.status: occupi ed, .p : [black, ki ng]],
28 (e) : [.status: occupied, .p : [black,queen]]]];
29 RETURN;
30
31 END initialise;

FASCICLE VI.8 Rec. Z.200 195

32 regi ster_move:
35 PROC (b board LOC,m move) EXCEPTIONS (illegal);
34 DCL starting square LOC :=b (m.lin_l)(m.col_2)/
35 arri ving square LOC :=b (m.lin_l)(m.col_2);
36
37 DO NITH m;
58 IF starting.status = f ree
39 OR (lin_2<l OR lin_2>8 OR col_2<a OR col_2>h)
40 OR (arri ving.status/-free AND arriving.p.kind=king)
41 THEN
42 CAUSE illegal;
43 FI;
44 CASE starting.p.kind, starting.p.color OF
45
46 (pawn),(white):
47 IF col_l = col_2 AND (arriving.status/-free
48 OR NOT (lin_2=lin_l+l OR lin_2=lin_l+2 AND lin_2=2))
49 OR (col_2=PRED(col_1) OR col_2=SUCC(col_l))
50 AND arriving.status = free OR arri ving.p.color=white
51 THEN
52 CAUSE illegal; /Xcapturi ng en passant not implemented*/
55 FI;
54 (pawn),(black):
55 IF col_l=col_2 AND (arriving.status/=free
56 OR NOT (lin_2=lin_l-l OR lin_2=lin_l-2 AND lin_l=7))
57 OR (col_2=PRED(col_l) OR col_2=SUCC(col_l))
53 AND ar r i v i ng.status = f ree OR arriving.p.color = black
59 THEN
60 CAUSE illegal; /* same remark x/
61 FI;
62 (rook),(x):
65 IF NOT ok_rook (b,m)
64 THEN
65 CAUSE illegal;
66 FI;
67 (bishop), (X) :
68 IF NOT ok_bi shop (b,m)
69 THEN
70 CAUSE illegal;
71 FI;
72 (queen)/(X) :
75 IF NOT ok_rook (b,m)
74 THEN
75 IF NOT ok_bi shop (b,m)
76 THEN
77 C/WSE illegal
78 FI;
79 FI;
80 (knight/x);
51 IF ABS(ABS(NUH(col_2)-NUH(col_l))
82 -ABS(lin_2-lin_l)) /= 1
83 OR ABS(NUH(col_2)-NUH((col_l))
84 't-ABS(lin_2-lin_l) =/ 5
85 OR arriving.status/-free AND

196 FASCICLE VI.8 Rec. Z.200

86
87
88
89
90
91
92
93
94
95
96
97
96
99
100
101
102
105
104
105
106
107
108
10 9
110
111
112
113
114
115
116
117
118
119
120
121
122
125
124
125
126
127
128
129
150
131
152
133
154
155
156
137
138

arriving.p.color-starting.p.color
THEN CAUSE illegal;
FI;
(king),(*);
IF AB5(NUH(col_2)-NUH(col_l)) > 1

OR ABS(lin_2-lin_l) > 1
OR 1in_2=lin_l AND col_2=col_l
OR arriving.status/=free AND

arriving.p.color=starting.p.color
THEN CAUSE illegal;
FI; /Xchecking king moving to check not i mplemented*/

ESAC;
OD;
arriving ;=starting;
RETURN;

END registerjmove;
ok_rook:
PROC (b board, m moveXBOOL);

DO HITH m;
IF NOT (col_2=col_l OR lin_l=lin_2)

OR ar ri v i ng.status/-f ree AND
arriving.p.color-starting.p.color

THEN RETURN FALSE;
FI;
IF col_l=col_2

THEN IF lin_Klin_2
THEN DO FOR 1 := lin_l+l TO lin_2~l;

IF board (1)(col_l).status/=free
THEN RETURN FALSE;

FI;
OD;

ELSE DO FOR 1 := lin_l-1 DONN TO lin_2+l;
IF board (1)(col_l).status/= free

THEN RETURN FALSE;
FI;

OD;
FI;

ELSE IF col_l<col_2
THEN DO FOR c := SUCC(col_l) TO PRED(col_2);

IF board (1in_l)(c).status/= free
THEN RETURN FALSE;

FI;
OD;

ELSE DO FOR c := 5UCC(col_2) DOUN TO PRED(col_l);
IF board (lin_l)(c).status/=free

THEN RETURN FALSE;
FI;

OD;
FI;

FI;
RETURN TRUE;

OD;
END ok_rook;

FASCICLE VI.8 Rec. Z.200 197

139 ok_bi shop:
140 PROC (b board,m move)(BOOL);
141 DO UITH m;
142 CASE lin_2>lin_l,col_2>col_l OF
143 (TRUE), (TRUE): c := coI_l
144 DO FOR 1 := lin_l+l TO lin_2~l;
145 c SUCC^c;;
146 IF board (l)(c).status/'free
147 THEN RETURN FALSE;
148 FI;
149 00;
150 IF SUCC(c)/=col_2
151 THEN RETURN FALSE;
152 FI;
153 (TRUE), (FALSE) : c ;= col_ 1
154 DO FOR 1 := lin_l + l TO lin_2-l;
155 c := PRED(c);
156 IF board (l)(c).status/zfree
157 THE RETURN FALSE;
155 FI;
159 OD;
160 IF PRED(c)/=col_2
161 THEN RETURN FALSE;
162 FI;
163 (FALSE), (TRUE) : c := col_l
164 DO FOR 1 lin_l~l DONN TO lin_2+l;
165 c := SUCC(c)
166 IF board (l)(c).status/-free
167 THEN RETURN FALSE;
163 FI;
169 00;
170 IF SUCC(c)/=col_2
171 THEN RETURN FALSE;
172 FI:
173 (FALSE),(FALSE): c := col_l;
174 DO FOR 1 := lin_l~l DOUN TO lin_2+l
175 c := PRED(c);
176 IF board (1)(c).status/=free
177 THEN RETURN FALSE;
173 FI;
179 00;
150 IF PRED (c)/=col_2
181 THEN RETURN FALSE;
132 FI;
183 ESAC;
184 RETURN arriving.status=free OR
184 arri ving.p.color/=starting.p.color;
186 OD;
187 END ok_bi shop;

FASCICLE VI.8 Rec. Z.200

12. Building and manipulating a circularly linked list

1 CIRCULARJLIST:
2 MODULE

3 HANDLE_LIST:
MODULE

5 GRANT INSERT, REMOVE, NODEi
6 NEUMODE NODE=STRUCT(PRED, SUC REF NODE, VALUE INT);
7 DCL POOL ARRAY(1:1000)NODE;
d DCL HEAD NODE:=(: NULL,NULL,0 :);
9 INSERT:

PROCCNEN NODE);
10 /* INSERT ACTIONS */
11 END INSERT;

12 REMOVE:
PROCO;

13 /* REMOVE ACTIONS */
1* END REMOVE;

15 1NITIALIZE_LIST:
16 BEGIN
17 DCL LAST REF NODE:= ->HEAD;
13 DO FOR NEN IN POOL;
19 NEH .PRED := L/457;
20 LAST->.SUC:= ->NEU;
21 LAST:= ->NEN;
22 NEN.VALUE:=0;
23 OD;
2<t HEAD. PRED : =LAST;
25 LAST->.SUC;r ->HEAD;
26 END INIT1ALIZEJLIST

27 END HANDLE_LIST;

23 DCL NODE_A NODE: = (: NULL, NULL,536 :);
29 REHOVEO;
30 REMOVEO;
31 IN5ERK NODE_A);
32 END CIRCULARJLIST;

FASCICLE VI.8 Rec. Z.200 199

13. A region for managing competing accesses to a resource

1 ALLOCATE_RESOURCES:
2 REGION
3 GRANT ALLOCATE, DEALLOCATE/
* NENHODE RE50URCE_5ET = 1NT(0:9);
5 DCL ALLOCATED ARRAY(RESOURCE^SET)BOOL

(: (RESOURCE_SET): FALSE :);
6 DCL RESOURCE_FREED EVENT;

7 ALLOCATE:
8 PROC()(INT);
9 DO FOR EVER;
10 DO FOR I IN RESOURCE_SET;
11 IF NOT ALLOCATED(I)
12 THEN
13 ALLOCATED(I) := TRUE;
l<t RETURN I;
15 FI;
IS CD;
17 DELAY RESOURCE^FREED;
18 OD;
19 END ALLOCATE;

20 DEALLOCATE:
21 PROC(I INT);
22 ALLOCATE(I) := FALSE;
23 CONTINUE RESOURCE_FREED;
2* END DEALLOCATE;

25 END ALLOCATE_RESOURCES;

200 FASCICLE VI.8 Rec. Z.200

14. Queuing calls to a switchboard

1 SUITCHBOARD:
2 MODULE
3 /* This example illustrates a swftchboard which queues incoming calls
4 and feeds them to the operator at an even rate. Every time the
5 operator is ready one and only one call is let through. This is
6 handled by a call distributor which lets calla through at fixed
7 i ntervals. If the operator is not ready or there are other calls
d waiting, a new call must queue up to wait for its turn. */

9 DCL OPERATOR_I5_READV,
10 SUITCH_IS_CLOSED EVENT;

11 CALLJDISTRIBUTOR:
12 PROCESSO;
13 DO FOR EVER;
1$ PiAITdO /*seconds*/);
15 CONTINUE 0PERAT0R_I5_READY;
16 OD;
17 END CALL_DI5TRIBUT0R;

18 CALL:
19 PROCESSO;
20 DELAY CASE
21 (OPERATOR_IS_READY): /* some actions */
22 (SUITCH_IS_CLOSED): DO FOR I IN I N K 1:100);
23 CONTINUE 0PERAT0R_1S_READY;
24 /*empty the queue*/
25 OD;
26 ESAC;
27 END CALL;

28 OPERATOR:
29 PROCESSO;
30 DO FOR_EVER;
31 IF TIME = 1700
52 THEN
53 CONTINUE SHITCH_IS_CLOSED;
34 FI;
35 OD;
36 END OPERATOR;

57 START CALL_DISTRIBUTORO:
38 START OPERATORO;
39 DO FOR I INT(1:100);
40 START CALLO;
41 OD;
42 END SHITCHBOARD;

FASCICLE VI.8 Rec. Z.200 201

15. Allocating and deallocating a set of resources

1 <> FREE (STEP);
2 COUNTER MANAGER:
5 MODULE
4 /* To illustrate the use of signals and the receive case, (buffers
5 might have been instead) we will look at an example where an
6 ALLOCATOR manages a set of resources, in this case a set of
7 COUNTERS. The module is part of a larger system where there are
8 USERs, that can request the services of the COUNTER_MANAGER. The
9 module is made to cons i stof two process def i ni t i ons, one for the
10 ALLOCATION and one for the COUNTERS. INITIATE and TERMINATE
11 are i nternal signals sent from the ALLOCATOR
12 to the COUNTERS. All the other signals are external, being sent
13 from or to the USERs.

1$ SEIZE /* external signals */
15 ACQUIRE, RELEASE, CONGESTED,STEP,READOUT;
16 SIGNAL INITIATE = (INSTANCE),
17 TERMINATE;

18 ALLOCATOR:
19 PROCESS();
20 NENHODE NO_OF_COUNTERS = INT(1:100);
21 DCL COUNTERS ARRAY (NO_OF_COUNTERS)
22 STRUCT (COUNTER INSTANCE,
25 STATUS SET (BUSY,IDLE));
24 DO FOR EACH IN COUNTERS;
25 EACH:= (: START COUNTER(), IDLE :);
26 OD;

27 DO FOR EVER;
28 BEGIN
29 DCL USER INSTANCE;
50 ANAIT_SIGNALS:
51 RECEIVE CASE SET USER;
32 (ACQUIRE):
53 DO FOR EACH IN COUNTERS;
3$ DO WITH EACH;
35 IF STATUS = IDLE
56 THEN
57 STATUS:=BUSY;
58 SEND INITIATE (USER) TO COUNTER;
39 EXIT AUAIT_SIGNALS;
40 FI;
41 OD;
42 OD;
43 SEND CONGESTED TO USER;
44 (RELEASE IN THIS_COUNTER);
45 SEND TERMINATE TO THISJCOUNTER;

202 FASCICLE VI.8 Rec. Z.200

46
47
48
49
50
51
52
55
54
55
56
57
53
59

60
61
62
65
64
65
66
67
63
69
70
71
72
75
74
75
76
77
78
79
80
31
82

33
84

FINDjCOUNTER:
DO FOR EACH IN COUNTERS;

DO WITH EACH;
IF THI5_COUNTER = COUNTER
THEN

STATUS:= IDLE;
EXIT FINDjCOUNTER;

FI;
OD;

OD FIND_COUNTER;
ESAC ANAIT_SIGNALS;

END;
OD;
END ALLOCATOR;

COUNTER:
PROCESSO;

DO FOR EVER;
BEGIN

DCL USER INSTANCE;
COUNT:= 0;

RECEIVE CASE
(INITIATE IN RECEIVED_USER) :

SEND READY TO RECEIVED__USER;
USER:= RECEIVED_USER;

ESAC;
UORK_LOOP:
DO FOR EVER;

RECEIVE CASE
(STEP): COUNT +:=1;
(TERMINATE):

SEND READOUT(COUNT) TO USER;
EXIT WORK_LOOP;

ESAC;
OD UORK_LOOP;

END;
OD;

END COUNTER;

START ALLOCATOR();
END COUNTER_MANAGER;

FASCICLE VI.8 Rec. Z.200 203

16. Allocating and deallocating a set of resources using buffers

1 <> FREE(STEP);
2 U5ER_N0RLD:
5 MODULE
4 /# This example is the same as no.15 except that buffers are
5 used for communication in stead of signals.
6 The main di fference is that processes are nou identi fied
7 by means of references to local message buffers rather than
8 by instance values. There is one message buffer declared
9 local to each process. There is one set of message types
10 for each process def i ni ti on. Nhen started each process must
11 identify its buffer address to the starting process.
12 The USER_NORLD module sketches some of the envi ronment in
15 which the COUNTER_MANAGER is used. */
1$
15 GRANT USER__BUFFERS,
16 ALLOCATOR_MESSAGES, ALLOCATOR_BUFFERS,
17 COUNTER_HESSAGES, COUNTER_BUFFERS;
18 NENHODE
19 USER_HESSAGE5 -
20 5TRUCT(TYPE 5ET(C0NGE5TED, READY,
21 READOUT, /4LLOC/4TOf?_ID;,
22 CASE TYPE OF
25 (CONGESTED)
24 (READY) : COUNTER REF COUNTER_BUFFERS,
25 (READOUT) : COUNT INT,
26 (ALLOCATOR_ID): ALLOCATOR REF ALLOCATOR_BUFFERS
27 ESAC),
28 USER_BUFFERS = BUFFER(l) USER_MESSAGES,
29 ALLOCATOR_MESSAGES =
50 STRUCT(TYPE SET(ACQUIRE, RELEASE, COUNTERED),
51 CASE TYPE OF
52 (ACQUIRE) : USER REF USER_BUFFERS,
55 (RELEASE,
3$ COUNTERED): COUNTER REF COUNTER_BUFFERS
55 ESAC),
56 ALLOCATOR_BUFFERS = BUFFER(l) ALLOCATOR_MESSAGES,
57 COUNTER_MESSAGES =
58 STRUCT(TYPE SET(INITIATE, STEP, TERMINATE),
59 CASE TYPE OF
40 (INITIATE) : USER REF USER_BUFFERS,
<fl (STEP,
$2 TERMINATE):
$5 ESAC,
<t<t COUNTER_BUFFERS = BUFFER(l) COUNTER_MESSAGES;
$5 DCL USERJBUFFER USERJBUFFERS,
46 ALLOCATOR_BUF REF ALLOCATOR_BUFFERS,
47 COUNTER_BUF REF COUNTER_BUFFERS;
45 START ALLOCATOR(->USER_BUFFER);
49 ALLOCATOR_BUF := (RECEIVE USER_BUFFER).ALLOCATOR;
50 END_USER_NORLD;

204 FASCICLE VI.8 Rec. Z.200

51
52
55
5$
55
56
57
53
59
60
61
62
63
6$
65
66
67
63
69
70
71
72
73
7$
75
76
77
73
79
30
31
32
33
3*
35
36
37
33
59
90
91
92
93
94
95
96
97
93
99
100
101
102

COUNTE#?_M/4fMGEff;
MODULE
SEIZE U5ER_BUFFERS,

ALLOCATOR_HESSAGES, ALLOCATOR_BUFFERS,
COUNTER JMESSAGES, COUNTER_BUFFERS;

ALLOCATOR:
PROCESS(STARTER REF USER_BUFFERS);

DCL ALLOCATOR_BUFFER ALLOCATOR_BUFFERS;
NENMODE N0_0F_COUNTERS = INT(1:1Q);
DCL COUNTERS ARRAY(NO_OF_COUNTERS)

STRUCT(COUNTER REF COUNTER_BUFFERS,
STATUS SETCBUSY, IDLE)),

MESSAGE ALLOCATOR_HE5SAGES;
SEND ST ARTER->([ALLOCATOR_ID, ->ALLOCATOR_BUFFER3);
DO FOR EACH IN COUNTERS;

S 7\4/?r COUNTERY - >ALLOCATOR_BUFFER);
EACH := [(RECEIVE ALLOCATOR_BUFFER).COUNTER, IDLE];

OD;
DO FOR EVER;

BEGIN
DCL USER REF USE£_BUFFE*?5;
MESSAGE ;= RECEIVE ALLOCATOR_BUFFER;
HANDLE_HESSAGES:
CASE HESSAGE.TYPE OF
(ACQUIRE):

USER := HESSAGE.U5ER;
DO FOR EACH IN COUNTERS;

DO NITH EACH;
IF STATUS= IDLE
THEN STATUS := BUSY;

SEND COUNTER-X[INITIATE, USER]);
EXIT HANDLE_HESSAGES;

FI;
OD;

OD;
5END USER-X [CONGESTED]);

(RELEASE):
SEND MESSAGE.COUNTERY[TERMINATE]);
FIND_COUNTER:
DO FOR EACH IN COUNTERS;

DO NITH EACH;
IF MESSAGE.COUNTER - COUNTER
THEN STATUS := IDLE;

EXIT FIND_COUNTER;
FI;

OD;
OD FIND_COUNTER;

ESAC HANDLE_MESSAGES;
END;

OD;
END ALLOCATOR;

FASCICLE VI.8 Rec. Z.200 205

103 COUNTER:
104 PROCESS(STARTER REF ALLOCATOR_BUFFERS);
105 DCL COUNTER_BUFFER ALLOCATOR_BUFFERS;
106 SEND 5TARTER-X [COUNTERED, ->COUNTER_BUFFER!);
10 7 DO FOR EVER;
108 BEGIN
109 DCL USER REF USER_BUFFERS,
110 COUNT INT : = 0,
111* MESSAGE COUNTER_HESSAGES;
112 MESSAGE ;= RECEIVE COUNTER_BUFFER;
113 CASE MESSAGE.TYPE OF
114 (INITIATE): USER := MESSAGE.USER;
115 SEND USER-X [READY, ->COUNTER_BUFFERJ);
116 ELSE /* some error action */
117 ESAC;
118 NORKJLOOP:
119 DO FOR EVER;
120 MESSAGE := RECEIVE COUNTER_BUFFER;
121 CASE MESSAGE.TYPE OF
122 (STEP) : COUNT +;= 1;
123 (TERMINATE):SEND USER-X [READOUT, COUNT!);
124 EXIT NORK_LOOP;
125 ELSE /* some error action x/
126 ESAC;
127 OD UORK_LOOP;
128 END;
129 OD;
130 END COUNTER;
131 END COUNTER_HANAGER;

206 FASCICLE VI.8 Rec. Z.200

17. String scanner1

1 st ri ng_scannerl: /* This program implements strings by means
2 of packed arrays of characters.#/
3 MODULE

SYN
5 blanks ARRAY(0:9)CHAR PACK = [(*):' '7, linelength = 132;
6 SYNHODE
7 stringptr - RON ARRAY(1ineindex)CHAR PACK,
d lineindex = INT(0:1inelength-1);
9
10 scanner:
11 PROC(string stringptr, scanstart li nei ndex INOUT,
12 scanstop lineindex, stopset PONERSET CHAR)
13 RETURNS(ARRAY(Q:9)CHAR PACK);
1$ DCL count INT: = Of
15 res ARRAY(0:9)CHAR PACK:=blanks;
16 DO
17 FOR c IN string-Xscanstart :scanstop)
13 NHILE NOT (c IN stopset);
19 count+:=1;
20 OD;
21 IF count>0
22 THEN
23 IF count>10
2<t THEN
25 count:=10;
26 FI;
27 res(0:count-1):=string->(scanstart:scanstart+count-l) ;
23 FI;
29 RESULT res;
50 IF scanstart-f-count < scanstop
51 THEN
52 scanstart:=scanstart+count+l;
55 FI;
5$ END scanner;
55
56 GRANT
37 scanner;
53
39 END string_scanner;

FASCICLE VI.8 Rec. 2.200 207

18. string scanner2

1 string_scanner2: /* This example is the same as no. 13 but it uses
2 character string in stead of packed arrays.*/
5 MODULE
4 SYN
5 blanks = (10)* linelengtb = 132i
6 SYNMODE
7 stringptr - RON CHAR(1 inelength),
3 lineindex - INT(0:linelength~l);
9
10 scanner:
11 PROCCstring st ri ngpt r, scanstart lineindex INOUT,
12 scanstop 1ineindex, stopset PONERSET CHAR)
13 RETURNS (CHAR(IO));
1 DCL count INT:=0;
15 DO FOR i := scanstart TO scanstop
16 NHILE NOT (string-Xi) IN stopset);
17 count*:=1;
13 OD;
19 IF count>0
20 THEN
21 IF count>=10
22 THEN
23 RESULT string-Xscanstart UP 10);
2<t ELSE
25 RESULT string-Xscanstart:scanstart+count-l)
26 //blanks(count:9);
27 FI;
23 ELSE
29 RESULT blanks;
50 FI;
51 IF scanstart+count < scanstop
52 THEN
53 scanstart:=scanstart+count+l;
5<t FI;
55 END scanner;
56
37 GRANT
53 scanner;
59
40 END string_scanner;

208 FASCICLE VI.8 Rec. Z.200

19. Removing an item from a double linked list

1 QUEUE JREMOV AL:
2 MODULE
5 SEIZE INFO;
4 GRANT REMOVE;
5 REMOVE: PROC(P PTR) RETURNSCINFO) EXCEPTIONSCEMPTY);
6 /* This procedure removes the item referred to by
7 P from a queue and returns the i nfo rmati on contents
d of that queue element.*/
9 DCL I X BASED CP),
10 2 1 INFO POSCO,8:31),
11 2 PREV PTR POS(1,0:15),
12 2 NEXT PTR P0SC1,16:31);
13 DCL PREV, NEXT PTR;
14 PREV := X.PREV;
15 NEXT := X.NEXT;
16 X.PREV, X.NEXT := NULL;
17 RESULT X.INFO;
18 P := PREV;
19 X.NEXT := NEXT;
20 P := NEXT;
21 X.PREV := PREV;
22 END REMOVE;
23
24 END QUEUE_REMOVAL;

FASCICLE VI.E Rec. Z.200 209

APPENDIX E: SYNTAX DIAGRAMS

The diagrams in this appendix describe the syntax of CHILL.

The diagrams have been designed for human readability, not as a basis for
parsing.

Simplifications have been made in order to enhance readability and
therefore they cannot be considered as definitive, only as an aid to
understanding CHILL. The definition of the context-free syntax is
specified in Backus-Naur Form elsewhere in this document.

210 FASCICLE VI.S Rec. Z.200

program

U (REGI0N>-l

I body |— END h a n d le ^ —> f name

body

I O 1
-►(SEIZE name i -----------------------— r S — * 0 -

U modulion n am eU f ALL) —I

-KNEW MODE), .

-►(SYNMODE^- U f c l name mode*}—L »(7)-

-►(SYN iS n e |- mode } j O [constant value

i O - --------------- 1
— ^|-»CGRAN'Q|*|»lnon reserved name")--------------------- ^

L fnewmodg name f^FORBID^p C Q — fieldname t- W T v J

------------ ►(A ll) ------------ J

< A L L >

< pervasive> 1 » { 7 > -

< Z l>

name|<:>(proCH(
— o — ,---------------- ------------------ — - —
formal param eter|l» (T)l» (R E T U R N S)^»{T pi mode LOC ^ { r e g is te r n am e]-l(T)-»

EXCEPTIONS>» (T y name U (7 ^-►(RECURSI^^ T V r b o d r K END ^ h a n d l e r |^ » | name

| name |»(T}»(PROCESS)»(T^|- H formalparameter body h»C END handler^ — ~H name P o - P

K D HREGIOn H body’ K end> [handler name W D -

------------------G h----------

-►(SIG N A L ^ name |—

------------------- O ----------
process name * o

DCL name M -H mode [STATIC] value |— handler}- ^ —̂r

static mode locationI H -H handleT|-

-»CBASED)^ » (7 ^ » |bound or free reference to g jgo jw m e[»(>p —

o

o

-*►) action s t a t e m e n t - ^ —►

FASCICLE VI.S Rec. Z.200 211

action statem ent

» j name {» (T } ^ » j a c tio n }- ►{ handler j H | name

action

r— Q*~i | —
 lo c a t io n p -^H dyadic operator value

procedure name |--------- KDi 1̂ *1 actual parameter

-►{procedure exp ress ion }* ►{non reserved nam e|->

L *| built-in routine name) J

— »{A SSER T}» { boolean exp ression {-

actual parameter SET } — ►finstgnce location}-

♦ j in teger literal exp ression }1
— ►(CONTINUE>» jev en t location]----------------------------------

» { S E N D }-r » { buffer location {- » (T } » fv a iu e 'l» { T } -

-►{ siqnaTi

►{ PRIORITY } ►{ integer literal expression

I name value TO in stance exp ression

— K IF } ^ » {boolean exp ression }*^ T H E N } fa c t io n sta tem en t i^ r - * {E L S IF }-

•»C ELSE action sta tem en t f| } -

— ►{ C ASE}-^»{ d is c r e ^ x p r e s s io n |- » { OF ^ ► y i |g r ^ P m o d e ^ » ^ ^ ^ »j c a s e l ^ ^ t i s t action sta tem en t

— » (M 0 D U L E > i body |- » (END >

BEGIN}—►(body ^ (7 n p >

— ►{CAUSE}—»j exception name }—

e n t r y }

a
-► { ELSE } j ~ H action sta tem en t - ^ » {ESA C

y-case action

receive-case action

— ►{ do action |-

212 FASCICLE VI.8 Rec. Z.200

do action

-Hjname expression

------------- O ----------------------------------
] - L (BY) -* |in teoer expression j^ » (P 0 W N)-^(TO expression}- ^

-H name discrete mode |----------- ^

-*j p ow erset expression

| array location

—^ W H IL E)-»{ boolean expressioTT}-^ action statem ent k < o D - >r=I!E=—I
WITH / H structure location}—

»{structure expression*}-

receive-case action ___ { 7 } ^ . , __

- » {RFr:FlVF)-»('CASE SET } ♦{ instance location K D ^ O r C signal nam e~[r»{lN>)^»j name t- y O V C ^) p f

.} buffer location name"l—J

action statem ent I

action statem ent D .

delay-case action

SET) —H instancg location }—» { 7) ~ :̂ ^ (P R I0R IT Y }~H inteqer literal expression

event location P * G M D £ i action statem ent P ^ L < E S A C >

case label list

►O r 1
O

discrete literal expression

| discrete literal expression K H discrete literal expression |

d iscrete mode name

- K else

param spec
formal parameter

—* | m ode T ~r»C L0C V r ^ - - » n g fljS lg I natn«

< J N >
♦ C OUT >

INOUT

n a m e j - l + j param spec)— ►

actual parameter

— rH value |---------------------x -

l» j sta ticjn od e location

FASCICLE VI.8 Rec. Z.200 213

mode

(* B I N > -l« < T)- |inreoer liitjral e*p ressiofT)-»(T)~-T--

-►(b o o l) --- ---------------------

c h a r '

(REF) —» freferenced m odej-

+Q tT)-----------

^CID^CDit
O * —

X { name h G W
— o

integer literal expression

• O

(TA NG E)--------------------- j * (^ » ^ i | c r g ^ J i ^ iai expression }- » (7) » { discrete literal expression j» (7) -

-►(discrete mode name H

70W ERSET > | discrete m od e} ---

>-(ROW) ~r»[string mode |—

♦ jjirray mode |—

•►[variant structure mode name

PROC. iparam spec ?^ > fn iod e~]» (7 y » (10 C registernam ej^ (j) »

.EXCEPTIONS > K I T

-►(in st a n c e) --

-►(EV EN T)-£(T)»(event length expression }►())-—------ ------------
ĤBUFFER>̂ T>rbuffer length expression K D 3 *! buffer element mode
+C bit)— ------------------string length expression f »(T)-
•■►(c'har) ------------------------

option name)-WT)--̂ | »(g1̂ ERAL) ^ »(rECURSI\̂)̂ »
 Q « — _ J |-» (SIMPLE)

INLINE

►| string mode name |—

Odiscrete mode |
| literal expression f » (7) - » piteral expression [-

[array mode name]- » (T) » |u gp er index expression |- » (T)

► (])» ielem ent modeH»jelem ent layout a .

-»] variant structure mode name ^ » (7) t —{literal expression |~L»(T)-

- » { level structure i

-p{ m odel

214 FASCICLE VI.8 Rec. 2.200

level s tructure mode

array specification (2) level fields > u

(n) level fields

|n) level fixed fields

(n) level alternative fields 7

(n) level fixed fields

— i wme — H m ode |-^-H field layout -

array specifiation ^ -L a^ R E A D ^ -l-^ field layou t~}^ - » (T ^ » |(n + 1) level f ie ld s } —

(n) level alternative fields

CASEJjW tag n a m e [W O F

O
s e label list : >rH (n) level fixed fields

T —
| V * (ELSE^|~H<n) level fixed fields)

array specification

O
. READ V « - W a r r a y djscrgtg m ode |--

{literal exp ression [» { ?) - » { literal exp ression \-

<j>M elem en t layout

elem ent layout

<PACK>
-K n o p a c k)

S T E P > (T) H position L (^ » |s te p size literal expres s i on} - pat tern size literal exp ression

field layout

PACK

position

word literal exp ression f l » (7) * fstart bit literal ex p re ss io n }r » ^) » f i e g g i y i l | g [exp ression

: > 1 end bit literal exp ression

FASCICLE VI.8 Rec. Z.200 215

location

access name

reference expression mode name

string location x d h : string index expression ZZ K D ---------------------------
left elem ent literal expression ~ |» (?) » fn g h t elem en t literal expression ►

*-»{ position expression I H G E X I length literal expression ' XCHI start expression DOC end expression HD-------
o

array location index expression

lower elem ent literal expression K H upper elem ent literal expression b < M

-► integer expression + Q up) — array length literal expression ")—<

first expression last expression

structure location field n a m e~ |-- -

I-----------------° * ----------------1
location procedure name ------- K L > - actual parameter ■

[*■ location procedure expression ^ *-► nonreserved name |—>

location built-in routine name H

a*©-

row expression • a
L»| mode name H G H I static mode location X D -

value expression

— expression |

I— .© -----1
operand 1

operand 1

expression

operand 2

G ”D G ° D ____
*— -------- * » | operand 1

Tf
operand 2

operand 1 T ^ a n d V T operand 2

operand 3

operand 2

operand 3 operand 4

=)U=J {>) (>=) l<) L<=) ON)
»{ operand 3

— [-»| operand 4

L»{ operand 3

operand 5

- p O —
-» (NOT >

^— * — i - J operand 4

operand 5

operand 4

(/) C MOD) (REM
operand 5

-©•C string reoetition expression XCH

operand 6

►{ operand 6 j - » — p»j primitive value ~|-— primitive value |----------

exp ress io iT |-» (T)—I

216 FASCICLE VI.8 Rec. 2.200

primitive value

FASCICLE VI.8 Rec. 2.200 217

primitive value (continued)

— -» j string expression k » (T } » |string index expression | 4 T) -

left e lem en t literal expression right elem en t literal expression KM
* < 3 X position expression — ► C hD - C length literal exp ression ~ |—» (T) — ►!

start expression □ — O - - » | end expression j----------------------- — I

O
array expression w d - m expression

■J+-1
ssion

♦ d ^ j l o ^ ^ g j g g g ^ t literal e x p r e s s i o n u | ? p e r elem en t literal expression

integer expression }» ^ UP) ~ » far'rav length literal expression j— ------------

s>CTH first expression"]— — ►) last expression h » (T) -----------------------------------

-» j structure expression KM field name

♦ © * [location |---

-» j m ode name KIM expression KD-
value procedure name I O

value procedure expression

hfCDjW

value built-in routine name

actual parameter W K D -
[norueserved name |-

— » (T) * {~d?screte expression K D -------
(V r -» l discrete expression |— — KD-

S U C C V ‘-►j bound reference expression [-

— ABS integer expression K D —
— »(A 0 D R)—» C 0 H location j- » (T) ------------------------

f C A R [yW » (T H p ow erset expression KD
(MAX >

Kwiiry
Q SIZE y - » (T) ~ r * f nfw)̂ e name"]—

-»| static m ode location {- I

array expression DKD-
H

O

- » (G ET STAC k)-»(T)-Tr»{~m gdg nam e |---------

-»j array m ode name }-

x-KD-
exp ression h » (T) ------------►

■ ^ str in q m od en am e \------------------ » (T V » |in te q e rex p re ss io n

variant structure mode name X D M exp ression K C D

O

1 O
M D j M actual param eter] | * (D

RECEIVE y H buffer location [-

►C THIS) ------------------------------------

218 FASCICLE VI.8 Rec. 2.200

d ig it

nam e

dyadic operator

FASCICLE VI.8 Rec. 2.200 219

APPENDIX F: INDEX OF PRODUCTION RULES

non-terminal defined
section page

used on
paseCs)

<access name> 4.2.2 54 53
<action> 6.1 101 101
<action statement> 6.1 101 129,138
<action statement list> 7.2 129 104,106,119,123

124,125,128,129
176

<actual parameter> 6.7 113 113
<actual parameter list> 6.7 113 89,113
<alternative fields> 3.10.4 35 35
<apostrophe> 5.2.4.7 71 71
<arithmetic addi ti ve operator> 5.3.5 96 96,102
<ariihmetic multiplicati ve operator> 5.3.6 97 97,102
<array element> 4.2.7 58 53
<array length> 4.2.7 59 59,81
<array mode> 3.10.3 33 27,31
<array slice> 4.2.14 63 53
<array specification> 3.10.5 41 40
<afray tuple> 5.2.5 73 73
<assert action> 6.10 117 101
<assi gni ng operator> 6.2 102 102
<assignment action> 6.2 102 101
<assignment symbol> 6.2 102 50,52,102,107

<based declaration> 4.1.4 52 50
<begin-end block> 7.3 131 101
<begi n-end body> 7.2 128 131
<binary bit string literal> 5.2.4.8 72 72
<binary integer literal> 5.2.4.2 69 69
<bit string literal> 5.2.4.8 72 68
<boolean literal> 5.2.4.3 70 68
<boolean mode> 3.4.3 21 20
<bound reference mode> 3.6.2 26 26
<bracketed action> 6.1 101 101
<buffer element mode> 3.9.3 30 30
<buffer length> 3.9.3 30 30
<buffer mode> 3.9.3 30 29
<buffer receive alternati ve> 6.19.3 124 124
<buiIt-in routine call> 11.1 179 61,85,113
<buiIt-i n routine parameter> 11.1 179 179
<buiIt-in routine parameter list> 11.1 179 179

220 FASCICLE VI.8 Rec. Z.200

non-terminal

<call action>
<case action>
<case alternati ve>
<case label>
<case label list>
<case label spedfication>
<case selector list>
<cause action>
<character>
<character mode>
<character string>
<character string 1 i teral>
<CHILL directive>
<CHILL value buiIt-in routine call>
<closed dyadic operator>
<comment>
<composite mode>
<continue action>
<control part>

<data statement>
<data statement list>
<deci mal integer li teral>
<declaration>
<declarati on statement>
<defining mode>
<definition statement>
<delay action>
<delay alternati ve>
<delay case action>
<dereferenced bound reference>
<dereferenced free reference>
<dereferenced ron>
<di gi t>
<directive>
<directive clause>
<di sc rete mode>
<do action>
<dynami c mode location>

defined
section page

used on
page(s)

6.7 113 101
6.4 104 101
6.4 104 104
9.1.3 160 159
9.1.3 159 73,159
9.1.3 159 35,40,104
6.4 104 104
6.12 117 101
5.2.4.7 71 13,71
3.4.4 22 20
2.4 13 13
5.2.4.7 71 68
2.6 14 14
5.2.16 86 86
6.2 102 102
2.4 13
3.10.1 31 20
6.15 118 101
6.5.1 106 106

7.2 129 129
7.2 129 123,129
5.2.4.2 69 69
4.1.1 50 50
4.1.1 50 129
3.2.1 17 17
7.2 129 129
6.16 119 101
6.17 119 119
6.17 119 101
4.2.3 55 53
4.2.4 56 53
4.2.15 64 53
5.2.4.2 60 12,69,71
2.6 14 14
2.6 14
3.4.1 20 20,25,33,104,107
6.5.1 106 101
4.2.1 53 53

FASCICLE VI.8 Rec. Z.200 221

non-terminal defined
section page

used on
page(s)

<element layout> 3.10.6 42 33,41
<element mode> 3.10.3 33 33
<else clause> 6.3 104 103,104
<emptiness literal> 5.2.4.5 70 68
<empty> 6.11 117 117,129
<empty action> 6.11 117 101
<end> 4.2.13 62 62,80
<end bi t> 3.10.6 43 42
<end value> 6.5.2 107 107
<entry definition> 7.4 132 132
<entry statement> 7.4 132 129
<event length> 3.9.2 30 30
<event list> 6.17 119 119
<event mode> 3.9.2 30 29
<excepti on list> 3.7 28 28,131,176
<exception name> 3.7 28 28,117
<exit action> 6.6 112 101
<expression> 5.3.2 92 22,24,30,32,33

35,42,43,55,56
57,58,59,62,63
64,73,79,80,81
83,85,86,89,90
91,92,99,100,103
104,107,111,113
117,119,121,160

<expression conversion> 5.2.14 85 66
<expression list> 4.2.7 58 58,81,86

<field layout> 3.10.6 42 35,40,41
<field name list> 5.2.5 73 73
<fields> 3.10.4 35 35
<first> 4.2.14 63 63,83
<fixed fields> 3.10.4 35 35
<forbid clause> 9.2.6.2 171 171
<forbid name list> 9.2.6.2 171 171
<for cont rol> 6.5.2 107 106
<formal parameter> 7.4 132 131
<formal parameter list> 7.4 131 131,136
<free directive> 2.6 14 14
<free reference mode> 3.6.3 27 26

222 FASCICLE VI.8 Rec. 2.200

non-terminal defined
section page

used on
page(s)

<generali ty> 7.4 132 132
<getstack argument> 5.2.16 86 86
<goto action> 6.9 116 101
<granted element> 9.2.6.2 171 171
<grant statement> 9.2.6.2 171 170
<grant Nindout> 9.2.6.2 171 171

<handler> 10.2 176 50,52,101,131
136,137

<hexadecimal bit string literal> 5.2.4.8 72 72
<hexadecimal digit> 5.2.4.2 69 69,71,72
<hexadecimal integer literal> 5.2.4.2 69 69

<if action> 6.3 103 101
< implementation directive> -- — 14
<index mode> 3.10.3 33 33,41
<initialisation> 4.1.2 50 50
<instance mode> 3.8 29 20
<integer literal> 5.2.4.2 69 68
<integer mode> 3.4.2 21 20
<ir relevant> 9.1.3 160 159
<iterati on> 6.5.2 107 107

<labelled array tuple> 5.2.5 73 73
<labelled structure tuple> 5.2.5 73 73
<last> 4.2.14 63 63,83
<left element> 4.2.6 57 57,79
<length> 3.10.6 43 42
<letter> 5.2.4.7 71 12,71
<level st ructure mode> 3.10.5 40 35
<lifetime-bound initialisation> 4.1.2 50 50
<1iteral> 5.2.4.1 68 66
<literal expressi on list> 3.10.4 35 35
<literal range> 3.4.6 24 24,33,160
<locati on> 4.2.1 53 56,57,58,59,60

62,63,67,84,86
90,102,107,111
118,119,121,123
124,179

<location built-in routine call> 4.2.11 61 53
<location contents> 5.2.2 67 66
<location conversion> 4.2.12 61 53
<location declaration> 4.1.2 50 50
<locat i on enumerat i on> 6.5.2 107 107
<location procedure call> 4.2.10 61 53
<loc~identi ty declaration> 4.1.3 52 50
<loop counter> 6.5.2 107 107
<louer bound> 3.4.6 24 24
<louer element> 4.2.8 59 59,81

\
FASCICLE VI.8 Rec. Z.200 223

non-terminal defined
section page

used on
page(s)

<member mode>
<membership operator>
<mode>

<mode definition>
<module>
<module body>
<modulion name>
<monadic operator>
<multiple assi gnment action>

<name>

<name list>

<nested st ructure mode>
<neumode definition statement>
<(n) level alternative>
<(n) level alternative fields>

fields>
fixed fields>

<(n) level variant fields>
<non~composi te mode>
<numbered set element>
<numbered set list>

<(n) level
<(n) level

3.5
5.3.4
3.3

3.2.1
7.6
7.2
9.2.6.3
5.3.7
6.2
2.2

2.6

3.10.4
3.2.3
3.10.5
3.10.5
3.10.5
3.10.5
3.10.5
3.3
3.4.5
3.4.5

25
94
20

17
137
129
172
98
102

12

14

35
19
40
40
40
40
41
20
22
22

25
94
17,28,30,33,35
40,41,50,52,65
146
18,19
101
137
172
98
102

14,21,22
25,26,27
30,32,33
54,55,56
67,70,71
85,86,89
101,107,
113,116,
124,131,
146,160,
179
14,17,35
50,52,65
132
35
129
40
40
40.41
40
40.41
20
22
22

,23,24
,28,29
,35,52
,60,61
,73,83
,91,
111,112
121,123
136,137
171,172

,40,41
,123

224 FASCICLE VI.8 Rec. Z.200

non-terminal defined
section page

used on
page(s)

<octal bit string literal> 5.2.4.8 72 72
<octal integer literal> 5.2.4.2 69 69
<on-alternative> 10.2 176 176
<operand-l> 5.3.3 93 92,93
<operand~2> 5.3.4 94 93,94
<operand-3> 5.3.5 95 94,96
<operand-4> 5.3.6 97 95,97
<operand~5> 5.3.7 98 97
<operand-6> 5.3.8 100 98
<operator~3> 5.3.4 94 94
<operator-{t> 5.3.5 96 95
<origin array mode name> 3.10.3 33 33
<origin string mode name> 3.10.2 32 32
<origin variant structure mode name> 3.10.4 35 35

<parameter attribute> 3.7 28 28
<parameterised array mode> 3.10.3 33 33
<parameterised string mode> 3.10.2 32 32
<parameterised structure mode> 3.10.4 35 35
<parameter list> 3.7 28 23
<parameter spec> 3.7 28 23,132
<parenthesised expressi on> 5.3.8 100 100
<pattern size> 3.10.6 42 42
<pos> 3.10.6 42 42
<position> 4.2.6 57 56,57,79
<pouerset difference operator> 5.3.5 96 96,102
<pouerset enumerati on> 6.5.2 107 107
<pouerset inclusion operator> 5.3.4 94 94
<pouerset mode> 3.5 25 20
<pouerset tuple> 5.2.5 73 73
<primi ti ve value> 5.2.1 66 100
<priority> 6.16 119 119,121
<proc body> 7.2 128 131
<procedure attributes> 7.4 132 131
<p rocedu re call> 6.7 113 61,85,113
<procedure definition> 7.4 131 131
<procedure definition statement> 7.4 131 129
<procedure 1i teral> 5.2.4.6 71 68
<procedure mode> 3.7 28 20
<process body> 7.2 129 136
<process definition> 7.5 136 136
<process definition statement> 7.5 136 129
<program> 7.8 133

FASCICLE VI.8 Rec. Z.200 225

non-terminal defined
section page

used on
page(s)

< range> 5.2.5 73 73
<range enumeration> 6.5.2 107 107
<range list> 6.4 104 104
<range mode> 3.4.6 24 20
<reach-bound initialisation> 4.1.2 50 50
<receive buffer case action> 6.19.3 124 122
<receive case action> 6.19.1 122 101
<receive expressi on> 5.2.18 90 66
<receive signal case action> 6.19.2 123 122
<reference mode> 3.6.1 26 20
<referenced location> 5.2.13 84 66
<referenced mode> 3.6.2 26 26
<region> 7.7 137 129,138
<region body> 7.2 129 137
<relational operator> 5.3.4 94 94
<result> 6.8 115 115
<result action> 6.8 115 101
<result spec> 3.7 28 28,131
<return action> 6.8 115 101
<right element> 4.2.6 57 57,79
<row mode> 3.6.4 27 26

<seized element> 9.2.6.3 172 172
<seize statement> 9.2.6.3 172 170
<seize window> 9.2.6.3 172 172
<send action> 6.18.1 120 101
<send buffer action> 6.18.3 121 120
<send signal action> 6.18.2 121 120
<set element> 3.4.5 23 22
<set list> 3.4.5 22 22
<set literal> 5.2.4.4 70 68
<set mode> 3.4.5 22 20
<signal definition> 8.5 146 146
<signal defini tion statement> 8.5 146 129
<signal receive alternative> 6.19.2 123 123
<single assignment action> 6.2 102 102
<space> 5.2.4.7 71 71
<start> 4.2.13 62 62,80
<start action> 6.13 118 101
<start bit> 3.10.6 43 42
<start expressi on> 5.2.17 89 66,118

226 FASCICLE VI.8 Rec. Z.200

non-terminal defined
section page

used on
page(s)

<start value> 6.5.2 107 107
<static mode location> 4.2.1 53 52,53,61,86,113

115
<step> 3.10.6 42 42
<step enumeration> 6.5.2 107 107
<step size> 3.10.6 42 42
<step value> 6.5.2 107 107
<stop action> 6.14 118 101
<string concatenati on operator> 5.3.5 96 96
<string element> 4.2.5 56 53
<string length> 3.10.2 32 32,57,79
<string mode> 3.10.2 32 27,31
<string repetition operator> 5.3.7 99 98
<string slice> 4.2.13 62 53
<string type> 3.10.2 32 32
<structure field> 4.2.9 60 53
<structure mode> 3.10.4 35 31
<st ructure tuple> 5.2.5 73 73
<sub-ar ray> 4.2.8 59 53
<sub expression> 5.3.2 92 92
<sub-operand-l> 5.3.3 93 93
<sub-ope rand-2> 5.3.4 94 94
<sub-ope rand-5> 5.3.5 95 95
<sub-ope rand-$> 5.3.6 97 97
<substring> 4.2.6 57 53
<symbol> 5.2.4.7 71 71
<synchronisation mode> 3.9.1 29 20
<synmode definition statement> 3.2.2 18 129
<synonym definition> 5.1 65 65
<synonym definition statement> 5.1 65 129

<tags> 3.10.4 35 35,40
<then clause> 6.3 104 103,104
<tuple> 5.2.5 73 66

FASCICLE VI.8 Rec. Z.200 227

non-terminal defined
section page

used on
page(s)

<undefined value> 5.3.1 91 91
<unlabelled array tuple> 5.2.5 73 73
<unlabelled structure tuple> 5.2.5 73 73
<unnamed value> 3.4.5 23 23
<unnumbered set list> 3.4.5 22 22
<upper bound> 3.4.6 24 24
<upper element> 4.2.8 59 59,81
<upper index> 3.10.3 33 33

<value> 5.3.1 91 50,65,73,102
113,115,121,179

<value array element> 5.2.9 81 66
<value array slice> 5.2.11 83 66
<value buiIt-in routine call> 5.2.16 85 66
<value enumeration> 6.5.2 107 107
<value name> 5.2.3 67 66
<value procedure call> 5.2.15 85 66
<yalue string element> 5.2.6 79 66
<value string slice> 5.2.8 80 66
<value structure field> 5.2.12 83 66
<value sub-ar ray> 5.2.10 81 66
<value substring> 5.2.7 79 66
<variant alternati ve> 3.10.4 35 35
<variant fields> 3.10.4 35 35
<visibility statement> 9.2.6.1 170 129

<uhile control> 6.5.3 111 106
<uith control> 6.5.4 111 111
<uith part> 6.5.4 111 106
<word> 3.10.6 42 42

<zero-adic operato r> 5.2.19 91 66

228 FASCICLE VI.8 Rec. 2.200

APPENDIX G: INDEX

ABS 86
access 54
access name 54
action 101
action statement 101
action statement list 131
active 140
actual parameter 113,133
actual parameter list 113
addition 96
ADDR 86
ALL 171,172
all class 16,91
alternative fields 38
AND 93,102
and 93
apostrophe 72
applied occurence 128
arithmetic additive operator 96
arithmetic multiplicative operator 98
ARRAY 33,41
array element 58
array expression 164
array location 164
array mode 33
array mode name 162
array slice 63
array tuple 74
ASSERT 117
assert action 117
ASSERTFAIL 117
assigning operator 102
assignment action 102
assignment conditions 103
assignment symbol 102

Backus-Naur Form 10
BASED 52
based declaration 52
based name 53
BEGIN 131
begin-end block 131
BIN 21,24
binary bit string literal 72
binary integer literal 69
BIT 32
bit string 32
bit string literal 72
bit string mode 32

FASCICLE VI.8 Rec. Z.200 229

block 127
BOOL 21
boolean expression 164
boolean literal 70
boolean mode 21
boolean mode name 162
bound or free reference location name 163
bound reference expression 164
bound reference mode 26
bound reference mode name 162
bracketed action 101,127
BUFFER 30
buffer element mode 31
buffer length 31
buffer location 164
buffer mode 31
buffer mode name 162
buffer receive alternative 125
built-in routine call 179
built-in routine name 163
built-in routine parameter 179
built-in routine parameter list 179
built-in routines 179
BY 107

CALL 113
call action 113
C/JffD 86
CASE 35,40,104,119,123,124
case action 104
case alternative 105
case label 105,160
case label list 160
case selection 160
case selector 105
case selector list 104
CAUSE 117
cause action 117
change-sign operator 99
CHAR 22,32
character 72
character mode 22
character mode name 162
character sat 12
character string 32
character string literal 71
character string mode 32
CHILL directive 14
CHILL value built-in routine call 86
class 15
comment 13
compatible 158,159
complement 99

230 FASCICLE VI.8 Rec. Z.200

complete 161
composite mode 31
concatenation operator 96
consistent 162
constant value 5,91
CONTINUE 118
continue action 118
critical procedure 141

DCL 50
decimal integer literal 69
declaration 50
declaration statement 50
defined by 151
defining mode 17
defining occurence 128
DELAY 119
delay action 119
delay alternative 119
delay case action 119
DELAYFAIL 119,120
delaying 140,144
dereferenced bound reference 55
dereferenced free reference 56
dereferenced row 64
dereferencing 26
derived class 16
derived syntax 10
digit 69
directive 14
directive clause 14
directly strongly visible 166
discrete expression 164
discrete literal expression 164
discrete mode 20
discrete mode name 162
division 98
DO 106
do action 106
DONN 107
dynamic array mode 48
dynamic class 66
dynamic conditions 11
dynamic mode 15,47
dynamic mode location 54
dynamic paramaterised structure mode 49
dynamic properties 11
dynamic string mode 48

element layout 34,43
element mode 34
ELSE 35,40,104,123,124,159,176

FASCICLE VI.8 Rec. 2.200 231

EL5IF 104
emptiness literal 70
EMPTY 56,64,88,89,114,121
empty action 117
END 131,136,137,176
enter 130,131
ENTRY 132
entry statement 133
equality 94
equivalent 154
ESAC 35,40,104,119,123,124
EVENT 30
event length 30
event location 164
event mode 30
event mode name 162
EVER 107
examples 11
exception 176
exception handling 176
exception list 176
exception name 29,135,176
EXCEPTIONS 28,131
exclusive or 92
EXIT 112
exit action 113
expression 92
expression conversion 85
EXTINCT 121

FALSE 70
FI 103
field 36
field layout 37,43
field name 36,37
fixed field 36
fixed structure mode 36,37
FOR 107
FORBID 171
forbid clause 171
for control 107
formal parameter 133
format effector 13
FREE 14
free directive 14
free reference expression 164
free reference mode 27
free reference mode name 162

GENERAL 132
general 132
generality 135

232 FASCICLE VI.8 Rec. Z.200

general procedure 28
general procedure name 163
GETSTACK 86
GOTO 116
goto action 116
GRANT 171
granted 171
grant statement 171
grant uindou 171
greater than 94
greater than or equal 94
group 127

handler 176
handler identification 177
hereditary property 16
hexadecimal bit string literal 72
hexadecimal integer literal 69
holes 23,25

IF 103
if action 104
implementation directive 14
implementation options 179
implementation value built-in routine call 86,179
implied name 16S
IN 28,94,107,123,124
index mode 34
indirectly strongly visible 166
inequality 94
INIT 50
initialisation 50,129
INLINE 132
inline 132
INOUT 28
INSTANCE 29
instance expression 164
instance location 164
instance mode 29
instance mode name 162
INT 21
integer expression 165
integer literal 69
integer literal expression 165
integer mode 21
integer mode name 163

labelled array tuple 74
labelled structure tuple 74
label name 101
layout description 43

FASCICLE VI.8 Rec. Z.200 233

1-equivalent 154
less than 94
less than or equal 94
level structure mode 41
level number 41
lexical element 12
lifetime 133
lifetima-bound initialisation 51
literal 68
literal expression 5,93
literal range 24
LOC 28,52
locat on 15,54
locat on built-in routine call
locati on contents 67
locati on conversion 62
locati on declaration 50
locati on do-with name 112
locati on enumeration 109
locati on enumeration name 110
locati on equivalence 152
locati on name 51,135
locati on procedure call 61 ,114
loc-identity declaration 52
loc-identity name 52,135
loop counter 107
lower bound 20,34
lower case 12

mapped mode 34,37
MAX 86
member mode 25
membership operator 94
metalanguage 10
MIN 86
MOD 97
mode 15
mode checking 147
mode definition 17
MODEFAIL 56,121
mode name 17 •
MODULE 137
module 137
module action statement 165
module name 137
modulion 127
modulo operator 98
multiple assignment action 102
multiplication 98
mutual exclusion 137,141

234 FASCICLE VI.8 Rec. Z.200

name 12
name binding 167,173
name creation 127
name string 166
negation 99
nested structure mode 35
NENHODE 19
newmode definition statement 19
newmode name 19
non-apostrophe character 165
non-composite mode 20
non-reserved name 164
NOPACK 42
NOT 98
novelty 147
NULL 70
null class 16,70
NUM 86
numbered set element 23
numbered set list 23

octal bit string literal 72
octal integer literal 69
OD 106
OF 35,40,104
ON 176
on-alternative 176
OR 92,102
or 92
origin variant structure mode 38,49
OUT 28
OVERFLON 88,97,98,100

PACK 42
parameter attribute 28
parameterisable 38
parameterisad array mode 33
paramaterised array mode name 163
parameterised string mode 32
parameterised string mode name 163
parametrised structure mode 36,37
parameterised structure mode name 163
parameter list 28
parameter spec 28,135
parameter passing 133
parent mode 24
pass by location 133
pass by value 133
path 18
PERVASIVE 171
pervasive 171
POS 42

FASCICLE VI.8 Rec. Z.200 235

POUERSET 25
powerset difference operator 96
powerset enumeration 10S
powerset expression 165
powerset inclusion operator 94
powerset mode 25
powerset mode name 163
powerset tuple 74
PRED 86
predefined name 186
primitive value 66
PRIORITY 119
priority 119,121,122
PROC 28,131
procedure attributes 132
procedure call 113
procedure definition 132
procedure definition statement 131
procedure expression 165
procedure literal 71
procedure mode 28
procedure mode name 163
procedure name 134
PROCESS 136
process 140
process creation 140
process definition 136
process definition statement 136
process name 136
program 138
program structure 127
PTR 27

24
range enumeration 108
RANGEFAIL 58,60,62,63,78,80,81,82,83,88,89,93,94,95,103,105,111
range mode 24
range mode name 163
reach 127
reach-bound initialisation 50
re-activation 140,145
READ 21,22,24,25,26,27,28,29,30,32,33,35,40,41
read-compatible 156
read-only mode 148
read-only property 148
RECEIVE 90,123,124
receive buffer case action 125
receive case action 122
receive expression 90
receive signal case action 123
RECURSEFAIL 114
RECURSIVE 28,132
recursive definition 17

236 FASCICLE VI.8 Rec. Z.200

recursive mode 18
recursive procedure 132
recursivity 29,135
REF 26
referability 4
referable 26
reference class 16
referenced location 84
referenced mode 26
referenced origin mode 27
reference mode 26
reference value 26
referencing property 148
REGION 137
region 137,141
regional 142
regionality 142
region name 137
register name 164
register specification 134
relational operator 94
relations on modes 151
REM 97
remainder operator 98
reserved name 12,185
reserved name list 164
restrictable to 157
RESULT 115
result 115
result action 115
resulting class 150
result spec 29,135
result transmission 134
RETURN 115
return action 115
RETURNS 28
root mode 150
RON 27
row expression 165
row mode 27
row mode name 163

scope 6
SEIZE 172
seized 172
seize statement 172
seize window 172
semantic categories 162
semantic description 11
semantics 11
5END 121
send action 120
send buffer action 122

send signal action 121
SET 22,118,119,123
set element name 23
set list 23
set literal 70
set mode 23
set mode name 163
SIGNAL 146
signal definition 146
signal definition statement 146
signal name 146
signal receive alternative 123
s i milar 151,152
SIMPLE 132
simple 132
single assignment action 102
SIZE 86
size 20
space 13
SPACEFAIL 89,90,106,114,124,126,131,177
special name 12,185
special symbol 12,184
START 89
start action 118
start expression 89
STATIC 50
static 139
static conditions 11
static mode 15
static mode location 54
static properties 11
STEP 42
step enumeration 109
step value 109
STOP 118
stop action 118
storage allocation 138
strict syntax 10
string concatenation operator 96
string element 57
string expression 165
string length 32,48
string location 164
string mode 32
string mode name 163
string repetition operator 99
string slice 62
string type 32
strongly visible 167
strong value 15
STRUCT 35
structure field 60
structure expression 165
structure location 164

238 FASCICLE VI.8 Rec. 2.200

structure mode 36
structure mode name 163
structure tuple 74
sub-array 59
substring 57
subtraction 96
SUCC 86
SYN 65
synchronisation mode 30
synchronisation property 149
SYNMODE 18
synmode definition statement 18
synmode name 18
synonym definition 65
synonym name 65
synonymouth with 18
syntax description 10
syntax options 180

TAGFAIL 55,60,63,78,84,95,103
tag field 36
tag field name 38
tagged paramaterised property 149
tagged paramaterised structure mode 38,49
tagged variant structure mode 38
tag-less parameterised structure mode 38,49
tag-less variant structure mode 38
termination 140
THEN 104
THIS 91
TO 107,121,146
TPUE 70
tuple 74

undefined location 52,115
undefined synonym name 65
undefined value 51,91,102,115
underline symbol 12,69,72
unlabelled array tuple 74
unlabelled structure tuple 74
unnamed value 23
unnumbered sat list 23
UP 57,59,79,81
UPPER 86
upper bound 20,34

value 15,91
value array element 81
value array slice 83
value built-in routine call 86,179
value class 16

FASCICLE VI.8 Rec. Z.200 239

value do-with name 112
value enumeration 108
value enumeration name 110
value equivalence 151*154
value name 67
value procedure call 85*114
value receive name 124*125
value string element 79
value string slice 80
value structure field 84
value sub-array 82
value substring 79
variant alternative 36
variant field 36
variant structure mode 36,37
variant structure mode name 163
v-equivalent 154
visibility 166
visibility statement 170
visible 167

weakly visible 166
WHILE 111
while control 111
WITH 111
with control 112

XOR 92,102

zero-adic operator 91

240 FASCICLE VI.8 Rec. Z.200

Printed in Switzerland — ISBN 92-61-01121-7

	CORRIGENDUM
	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE SEVENTH PLENARY ASSEMBLY (1980)
	CCITT HIGH LEVEL LANGUAGE (CHILL) - CONTENTS
	1.0 Introduction
	2.0 Preliminaries
	3.0 Modes and classes
	4.0 Locations and their accesses
	5.0 Values and their operations
	6.0 Actions
	7.0 Program structure
	8.0 Concurrent execution
	9.0 General semantic properties
	10.0 Exeption handling
	11.0 Implementation options
	Appendix A: Character sets for CHIKK programs
	Appendix B: Special symbols
	Appendix C: CHILL special names
	Appendix D: Program examples
	Appendix E: Syntax diagrams
	Appendix F: Index of production rules
	Appendix G: Index

