This electronic version (PDF) was scanned by the International Telecommunication Union (ITU) Library &
Archives Service from an original paper document in the ITU Library & Archives collections.

La présente version électronique (PDF) a été numérisée par le Service de la bibliothéque et des archives de
['Union internationale des télécommunications (UIT) a partir d'un document papier original des collections
de ce service.

Esta version electronica (PDF) ha sido escaneada por el Servicio de Biblioteca y Archivos de la Unidn
Internacional de Telecomunicaciones (UIT) a partir de un documento impreso original de las colecciones del
Servicio de Biblioteca y Archivos de la UIT.

o34 Aail) 4y 5 KIY) (PDF) gl n sead rasally i sucall o)yl a8 il giaall 5 8 alad¥] dsall VLU (ITU)
D& (e 4855 A8) 5 dlial (ania (3511 38 giall b and KA il giadll

SR TR (PDFRRAS) BRI (ITU) B TR ANRS 58 =R A7 Tz Ak i 4RSS Fl R it

Hacrosmumit snextponnsiii Bapuant (PDF) GBI OATOTOBIICH B OMOIHOTEUHO-aPXUBHOM CITy:KO€E
MeXayHapoJHOTO COI03a AIIEKTPOCBSI3H MyTEM CKaHHUPOBAHUSI HCXOIHOTO IOKYMEHTa B OyMaskHOU dopme 13
OubmoTedHo-apXuBHOH ciry’k061 MCD.

© International Telecommunication Union

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

YELLOW BOOK

VOLUME VI - FASCICLE VI8

CCITT HIGH LEVEL LANGUAGE (CHILL)

RECOMMENDATION Z.200

VII™ PLENARY ASSEMBLY
GENEVA, 10-21 NOVEMBER 1980

Geneva 1981

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE, COMMITTEE

YELLOW BOOK

CORRIGENDUM TO FASCICLE VI.8

CCITT HIGH LEVEL LANGUAGE (CHILL)

First list of clerical errors in Recommendation Z.200

VIITH PLENARY ASSEMBLY
GENEVA, 10-21 NOVEMBER 1980

-
SNOTHG

L pew

Geneva 1982

)

CORRIGENDUM TO FASCICLE V1.8
OF THE YELLOW BOOK

First list of clerical errors in Recommendation Z.200

CCITT High Level Language (CHILL)

1. Introduction

This paper is the first list of corrections of "clerical errors™ in the
CHILL definition, recommendation Z2.200.

A "clerical error™ is defined to be an error which, uhen corrected, does
not change the interpretation that knouledgeable people would have given
to the definition.

The number (1) in front of each correction refers to the fact that this is
the first list of clerical errors. Possible future corrections wWwill be
included in this list and Will be numbered (2), (3), etc.

A

2. List of corrections to clerical errors
(1) page 16, lines 10, 11
- replace :...if it is an M-value class or an M-derived class...

by: ...1f it is an M-value class or an M-derived class or an
M-reference class...

(1) page 25, section 3.4.6

- add third static condition (Which applies to the derived syntax for
range modes) :

The integer literal expression in case of BIN
should deliver a non-negative value.

(1) page 27, section 3.6.4
- add a static condition :

The referenced origin mode, if it is a structure
mode, must be parameterizable

{1) page &2,
- in line 6,
replace : With declarations and formal parameter.........
by: Hith declarations, parameter and result
- replace syntax line (3)
by 2 <step> ::= 3)
- replace syntax line (%)
by : <pos> ::= (%)
(1) page 51, section %.1.2
- replace first static condition
by : The class of the value or constant
value must be compatible With the mode

and the delivered value should be one of the values
defined by the mode.

(1) page 55, section 4.2.2
- replace first dynamic condition

by : When accessing via a loc-identity name, it must
not denote an undefined location.

- replace in second dynamic condition : When accessing via based
name...

by ¢ When accessing via a based name...
- in third dynamic condition, second line, underline: variant
(1) page 74, semantics, 3rd paragraph, last line
- replace:see section 9.1.4%).
by s58e section 9.1.3).
(1) page 76, section 5.2.5, item 6, line 4%
- replace : not (ELSE) must be...
by : ...not (ELSE) nor <irrelevant> must be....
(1) page 82, section 5.2.10, static conditions, line 1:
- replace :must be strongq The...
by:}must be strong. The
(1) page 87, section 5.2.16, semantics of GET5TACK, line 2
- replace :section 7.4..
by:80ction 7.9...
- second static property, line 1
replace : routine call is the class...

by: routine call is the resulting class...

(1) page 88
- add a nex static condition before : The array expression as an....:

The static mode location argument of SIZE
must be referable.

- the sixth static condition (about getstack argument), second part,
should start as follous :

e The variant structure mode must be parameterizable and there must
be as many expressions....

(1) page 105, line &
- replace :... Each case label defines...
by: ... Each case label list defines...
(1) page 107, syntax lines (6.1) and (8.1)
- replace : <expression>
by: <discrete expression>
(1) page 108, line 12
- replace : do action.
by: do action, or if the handler of fhe do action is entered
and fall through, or if the do action is left by a return
or a stop action.
(1) page 113, section 6.7, semantics, line 1

- replace : A call action causes...

by: A call action causes either the call of a procedure or of
a built-in routine. A procedure call causes...

(1) page 114, static conditions, fourth compatibility requirement (LOC attr.)
- add : If the procedure call is not regional,

the (actual) location must not be regional
(see section 8.2.2).

(1)

(1)

(1)

(1)

1)

(1)

(1)

page 123, section 6.19.2, semantics, line 10 from bottom
- replace :.....introduced value names....
by:introduced value receive names...
page 127, section 7.1, lines 1 and 2
- replace :....,region, delay case action, receive case action,..
by: .sesfegion, receive case action,..
page 136, section 7.4
- add the following static condition :
All names mentioned in exception list must be different.
page 137, section 7.7, semantics, line 2
- replace :....data object for....
by:data objects for..
page 141, section 8.2.1, line 8
-~ replace :....if and only if it...
by: «...if either it...
page 143, section 8.2.2, paragraph 2 (value), line 6
- replace : It is a location contents Which is regional...

by: It is a location contents of which the
location contained in it is regional...

page 145, section 8.4
- add new paragraph before "Receive buffer case action™:
Receive expression (see section 5.2.18)
WHhen a process evaluates a receive expression, it re-activates
another process if and only if the set of delayed sending processes
of the specified buffer location is not empty. In that case, it

receives a value of the highest priority among the values in the
buffer location or the delayed sending processes. Receiving a

(1)

1)

(1)

(1)

(1)

(1)

value from a buffer, the process removes the value from the buffer
and a delayed sending process With the value of the highest
priority is selected to become active according to an
implementation defined scheduling algorithm. This re-activated
process is thus removed from the set of delayed sending processes
and its value is stored in the buffer, uith the specified priority.
Receiving a value directly from a delayed sending process, the
delayed process carrying the value With the highest priority is
selected to become active according to an implementation defined
scheduling algorithm. This re-activated process is thus removed
from the set of delayed sending processes and its value is
received.

page 150, section 9.1.1.7, line 1

- replace :....is not a composite mode, has...

by:18 a discrete mode or a string mode, has...

page 157, section 9.1.2.4, definition, line 1

- replace :.....i5 restrictable to a...

by: .e...15 restrictable to a...

page 158, section 9.1.2.5, rule 3, item 3, paragraph 3

- replace : if V is a variant structure mode....

by: if V is a variant structure mode....

page 159, section 9.1.2.6, rule 6, item 3, paragraph 3, last line

- replace :....denote the list of values of N.

by:denote the list of values of M.

page 180, section 11.6, line 1

- replace :....one syntatic description...

by:one syntactic description...

page 193, line numbered 34

- replace : END stacks-1;

by: END stacks_1;

(1) page

(1) page

(1) page

(1) page

(1) page

PROD)»(D); {5 spoc oD (RETIRNE) % (D)o 50 }— o (IO) faiter meme} (D)

> RECURSIVE

198

insert between lines numbered 140 and 141 :

l140a DCL ¢ column;

199

replace lines numbered 28-32

by s 27a MANIPULATE :
27b MODULE
27¢c SEIZE NODE, REMOVE, INSERT;
28 DCL NODE_A NODE :=(:NULL, NULL, 536
29 REMOVE ();
30 REMOVE (¢);
31 INSERT (NODE_A);

3la END MANIPULATE;
32 END CIRCULAR_LIST;

201, line numbered 6

replace :....lets calla through..

by:lets calls tﬁrough...

202

replace line numbered 15

by : 15 ACQUIRE, RELEASE, CONGESTED, STEP, READOUT,
214

replace syntax diagram of PROC by:

:);

READY;

!

- replace syntax diagram of ARRAY by:

(e
/"
(()»{discrete mode

literal expression }»()

(1) page 216

- complete in the syntax diagram of location the box around row
expression and the arrou leaving from it :

v

-*Iégupnuin %f :EB:

(1) page 219,

- replace syntax diagram of handler by:

())»(:)+ action statement}-oif»(ELSE action statement |-.Y»(_END)

(1) page 239
- replace : synonymouth with

by: synonymous With

Printed in Switzerland — ISBN 92-61-01121-7

INTERNATIONAL TELECOMMUNICATION UNION

CCITT

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

YELLOW BOOK

VOLUME VI - FASCICLE V1.8

CCITT HIGH LEVEL LANGUAGE (CHILL)

RECOMMENDATION Z.200

VII™" PLENARY ASSEMBLY
GENEVA, 10-21 NOVEMBER 1980
Geneva 1981

ISBN 92-61-01121-7

© IL.T.U.

Volume I

Volume II

FASCICLE 1I.1

FASCICLE 1I1.2

FASCICLE 11.3

FASCICLE 11.4

Volume III

FASCICLE III.1

FASCICLE III.2

FASCICLE II1.3

FASCICLE I11.4

Volume IV

FASCICLE 1V.1

FASCICLE IV.2

FASCICLE 1V.3

FASCICLE 1V.4

CONTENTS OF THE CCITT BOOK.

APPLICABLE AFTER THE SEVENTH PLENARY ASSEMBLY (1980)

YELLOW BOOK

Minutes and reports of the Plenary Assembly.
Opinions and Resolutions.
Recommendations on:

— the organization and working procedures of the CCITT (Series A);
— means of expression (Series B);
— general telecommunication statistics (Series C).

List of Study Groups and Questions under study.

General tariff principles — Charging and accounting in international telecommunications
services. Serie D Recommendations (Study Group III).

International telephone service — Operation. Recommendation E.100 - E.323 (Study Group II).

International telephone service — Network management — Traffic engineering. Recommenda-
tions E.401 - E.543 (Study Group II).

Telegraph and “‘telematic services”!) operations and tariffs. Series F Recommendations
(Study Group I).

General characteristics of international telephone connections and circuits. Recommendations
G.101 - G.171 (Study Group XV, XVI, CMBD).

International analogue carrier systems. Transmission media — characteristics. Recommenda-
tions G.211 - G.651 (Study Group XV, CMBD).

Digital networks — transmission systems and multiplexing equipments. Recommendations
G.701 - G.941 (Study Group XVIII).

Line transmission of non telephone signals. Transmission of sound programme and television
signals. Series H, J Recommendations (Study Group XV).

Maintenance; general principles, international carrier systems, international telephone circuits.
Recommendations M.10 - M.761 (Study Group IV).

Maintenance; international voice frequency telegraphy and facsimile, international leased
circuits. Recommendations M.800 - M.1235 (Study Group IV).

Maintenance; international sound programme and television transmission circuits. Series N
Recommendations (Study Group IV).

Specifications of measuring equipment. Series O Recommendations (Study Group IV).

1) «Telematic services” is used provisionally.

Volume V

Volume VI

FASCICLE VI.1
FASCICLE VI.2

FASCICLE VI3

FASCICLE VI.4
FASCICLE VI.5

FASCICLE VI.6

FASCICLE VI.7

FASCICLE VI.8

Yolume VII
FASCICLE VII.1

FASCICLE VII.2

VYolume VIII

FASCICLE VIII.1
FASCICLE VIIIL.2

FASCICLE VIIIL.3

Volume IX

Volume X

FASCICLE X.1

FASCICLE X.2

|

Telephone transmission quality. Series P Recommendations (Study Group XII).

General Recommendations on telephone switching and signalling. Interface with the maritime
service. Recommendations Q.1 - Q.118 bis (Study Group XI).

Specifications of signalling systems Nos. 4 and 5. Recommendations Q.120 - Q.180 (Study
Group XI).

Specifications of signalling system No. 6. Recommendations Q.251 - Q.300 (Study Group XI).

Specifications of signalling systems R1 and R2. Recommendations Q.310 - Q.480 (Study
Group XI).

Digital transit exchanges for national and international applications. Interworking of signalling
systems. Recommendations Q.501 - Q.685 (Study Group XI).

Specifications of signalling system No. 7. Recommendations Q.701 - Q.741 (Study Group XI).

Functional Specification and Description Language (SDL). Man-machine language (MML).
Recommendations Z.101 - Z.104 and Z.311 - Z.341 (Study Group XI).

CCITT high level language (CHILL). Recommendation Z.200 (Study Group XI).

Telegraph transmission and switching. Series R, U Recommendations (Study Group IX).

Telegraph and “telematic services”!) terminal equipment. Series S, T Recommendations
(Study Group VIII).

Data communication over the telephone network. Series V Recommendations (Study
Group XVII).

Data communication networks; services and facilities, terminal equipment and interfaces.
Recommendations X.1 - X.29 (Study Group VII).

Data communication networks; transmission, signalling and switching, network aspects,

maintenance, administrative arrangements. Recommendations X.40 - X.180 (Study
Group VII).

Protection against interference. Series K Recommendations (Study Group V). Protection of
cable sheaths and poles. Series L Recommendations (Study Group VI).

Terms and definitions.

Index of the Yellow Book.

1) «“Telematic services” is used provisionally.

Recommendation Z.200

CCITT HIGH LEVEL LANGUAGE (CHILL)
(GENEVA, 1980)
CONTENTS

1.0 Introduction
1.1 General e e e e e e e e e e e et ee e et
1.2 L3NGURGR SUPVEY + o o « « o o o o o« = « 6.0 o s a0 o o s o o o
1.3 MOdes QNA CLE5685 ¢« ¢ ¢ o ¢ o o o o o o o o s o o o s o o o o o
1.4 Locations and their QCCESSBS « v « ¢ ¢ o o o o s o o o = o o o
1.5 Values and their operations
1.6 4Actions © o o 8 o o s s s s 8 e s s s s e e e e s s e o s e e
1.7 Program StrUCTURrE® . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o s o s o o o =
1.8 cConcurrent exacution e e o s o s o e s s e o s e e s s e e o =
1.9 General semantic properties © o e o s o s e s s s s s e e e .
1.10 Exception handling e b e e s e s e s s s e e s e e e e .
1.11 Implementation options

reliminarie@s « ¢ ¢ v e 4t e v e e e e e e e e e e e e e e e s
he metalanguage
.11 The context-free syntax description . . ¢« . « ¢« ¢« ¢« ¢ ¢« &
.1.2 The semantic dascription . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o &
.1.3 The examples
.1.4 The binding rules in the metalanguage e s s e e e s e s s
vocahulary
The use of spaces e o o s o s o s s s 8 e s s e s e e s e e s s
comments
Format effectors
Compiler directives

NN

[0 IS I
.
O‘U‘I-DNNNNNNHQ

Modes and ¢classes . ¢ ¢« ¢« v v ¢ o o v s e e e s e s e e e e e
=] 2 1< o~ T
1.1 Modes e v e o o s 8 s s s s e s s s e s e s e s s e e e s
21,2 ClaSSB8 v v 4 o o o 4t o s e s s s s s s s s s e e e e e e s
1.3 Properties of, and relations betieen, modes and classes
Mode definitions
2.1 General
.2.2 synmode dafinitions
.2.3 Neumode definitions
3. Mode classification
3 Discrete modes

W G
. .

.
.

. k|

1 General s s o o o o b o s s s s s s s e s e s e e e s s e
2 INteger MmodeS ¢ ¢« ¢ ¢t e b 6 e s s e s s e e e e e e e e e
.3 BoOlean modeS . ¢ v 4+ s o 6 o o s o o s s e o o s e o o
%4 Character modes
§ St mMOd2S ¢ v ¢t t e t s e s o b s e e s e s e e e e e s
6 RINTIMOABES ¢ 4 o ¢ o o o o o s o o o o o o o o o o o o o o
Pouerset modes e o s s o o s s a 8 8 s o 6 8 s s e s s e v s »
Reference modes e o s s o s s e e e s s e s s e e e s e e s e .
.6.1 Genaral
.6.2 Bound reference modes
.6.3 Free reference mode e e s e s e s e e e s
.6.% ROWMOADS &« & v o o o o @ o o o o o o o o o s o o s o s o =
3. Procedure MOdeS . ¢ ¢ ¢ o o o o o o o & o o o o o o o s o o s o
3 Instance modes e e o o o s o o 8 s s s o e s e s e o s o o o o

FASCICLE VI.8 Table of contents

00OV DUWUNN -~

W W
L] L]
NNNMHNNNNWNHMNWO

W

S
.

o+

kb&bb@&‘@&@@bbbam-ﬁbbbﬁﬁ

.

n vt v

UIUIUIlﬂNI-Q

.

.

.

[~ I

o

.

. .

L
NNNNNNNNNNNNNNN

.

.

. .

.

.

HHI—'I—'I—'I—' ooo

s-o-r--l-
(el el ol

1.
1
1
.1.

synchronisation modes e e e

y
.1
.2

3

General c e e s e e e o e
Event modeas c s e s o o o
Buffer modaes “ e s e o s

composite modes “ e o o o o

OOOOOO

o
.1
.2
.3
.G
.5
.6
Dyn
.1
.2
.3
.6

General
string modes
Array modes « e e o o e
structure modas . o .
Level structura notatlon

® & ® e e ® ° o

Layout description for array

nanic nodas
General

Dynamic string modas
Dynamic array modes

modes

and

e ® & ° e o o ° o e ° o o o

e & & s ® ¢ & ® * e s e & ° -

e« o @ o o s e o o

Dynamic paramaterised structure modes

Locations &and their accesses

Daclarations
1 General

e o ® o o o s o

« ® s s s s s

.2 Location declarations .
.3 Loc-identity declarations

.

.

.

.

Lo
.1
2
3
.G
5
.6
7
8
9
.1
1
1
.1
1
1

.

cat:ons

Based declarations . v
General
Access hamgs

s e ® ® o & ° e

.

.

® e e e e e o e

Dereferaenced bound references

Derefercnced free references

string elements N

- Substrings e e o o o o

Array elements « e s e e
Sub-arrays
structure fields oo o e
Location procedure calls
Location built-in routine
Location conversions .
String slices
Array slices
Dereferenced rous . e o

e @ o o »

* o o ° e

Values and their operations
synenym definitions .« s e e

Primitive value
.1 General

e ® o e s o &

e o ® o s ° o o

Location contents .« o .
Value names
Literals

General
Integer literals . .
Boolean literals . .
set literals
Emptiness literal .
Procedure literals .

e o ° ‘e o o o

e * ® o o e e o

e ® & s & & e

¢« o s »

LR R R AR AR I)
NOUT A WD -

FASCICLE VI.8 -

calls

. e @

e o o o

.

Character string literals

.

.

Table of contents

structure modes

3

.

.

.

29
29
30
30
31
31
32
33
35
40
42
47
47
48
48
438

50
50
50
50
52
52
53
53

- 5%

55
56
56
57
58
59
60
61
61
61
62
63
64

65
65
66
€6
67
67
68
68
69
70
70
70
71
71

. e« o &
MNP ND W
.

. . . ¢ o
* .

.

.
.

.
OO U WN U e == OO UTN

V)]
.
uumuuUuiununuuwuUnuniuuunuuuuunuuuuum
L]

.
WWWANWWWW

.4.8 Bit string literals

Tuplas e e e o o s
Value string elements
value substrings .
Value string slices
Vvalue array elemsnts
Value sub-arrays .
Value array slices
value structure fields
Referenceaed locations

EXpression conversions

Value procedure calls
Value built-in routine
start expressions .
Receive expressions
Zero-adic operator

ues and expressions .

General c e e e e e
EXpPressions
operand-1 « e e s e
Operand-2« .« .
gperand-3
Operand-4 e e e s s
operand-5 e e e e e .
Orerand-6 e s e e s

.

Actions e e e e e e

General .« e e o« o e
Assignment action . . .
If action . e .« o e
Case action . . . e .
Do action . e . o .
.1l General .o . .« s .
.2 For control .« o
.3 Hhile control . ..

iyt n

.4 Hith part « e s e o s
Exit action e e e e s o e
Call action e e e e s s s
Result and return action

.9 Goto action e e s e o s »

6.10 Assert action e e s o o
6.11 Empty action e b e e e
6.12 Cause action c e v e e
6.13 start action e e e e s s
6.14 Stop action e e e e e s
6.15 continua action .« e e .
6.16 Dealay acticn « e e e s e
6.17 Delay case action . . e
6.18 Send actien e e o s s
6.18.1 Genaral e e o s o
6.18.2 send signal action
6.18.3 send buffer action
6.19 Receive case action . .

6.19.1 General

e o @ © o o

FASCICLE VI.8

Table of

contents

72
73
79
79
80
81
81
83
83
84
85
85
85
89
90
Q1
91
91
92
93
94
95
97
S8
100

101
1ol
102
103
104
106
106
107
111
111
112
113
115
116
117
117
117
118
118
118
119
119
120
120
121
121
122
122

i1

Ve dJOOUTLHPWN-=O

NNNCGNNNNNNNN

0 03 G0 00 00 O
« e e v
U oW omoNn RO

O Q0
O = Q

OOV OO OVOOOOVOOrYVOOVUOOO0OO0O0H

0
< .

OO0 OoOvoON

v

6.19.2 Receive sighal case action e e e o s a e e
6.19.3 Receive buffer case action e s e v e e e s

O

O O

.2.

Program structure e e e e e e e e e e

GENAPrAL "L i i it e s e e e e s e e e e e e e e
Reaches and nesting ¢ ¢ ¢ ¢ ¢ o o o o o =
Begin-end blocks e e o s s s s s b e s s s e s s
Procedure definitions e e s e s s e e s s e s
Process definitions e e o s e s 2 e e e s e e
Modules e e s e s s s e s e s s s e e e s e e e
Regicns e o o o s s e s s a. s e s e e s e s e e s
Program et e e e e e . e e e e e s e e e s
storage allocation and leetzme e e e s s e e e
Concurrent execution .. e e e e e e e e
Processas and their deflnutzons e e e s e e s s

Mutual exclusion and regions « v s e e s e s e

1 Gen

eral e e o o o s s e e s e e s s s s s e =

.2.2 REZIONAXITY ¢ v v b 6 6 o e e e s e e e e e

.

Delayin

g of a process e o o o s s v s s s e e o

Re-activation of a process e e et s e s e e s e s
signal definition statenants . . . ¢ ¢ ¢ . o . .

General

semantic properties e

Mode checking e o o o o o e s s s o s e e e s s s

Pro

.
.

1
1.
1

.
.

1.
1.1,
.1,
1

.
.

[S T T e

X3 e
O O PpPWMNFDOOOOOUTDWN -

.

.

.

1

.

.
-
.
-

.
.
.

.

[AS AV I S AN I A I M)
OO -

WN =D

1
1
1
.1
.1
.1
.3
.G
1.4,
1.6,
1
1.
1
1
%

4
G
&,
4.4
sibil
Gen
Vis
3 Imp

Vis
.5 Vis
.6 Vis

2
1
1
2

FASCICLE VI.8

paerties of modes and classes « s e e e s
NOVRITY . i 4 o 6 v o o o o o o o o o o
Read-only modes
Read-only property . . ¢ v ¢ ¢ ¢ ¢ ¢ o &«
Referencing proparty e e s e e s e s e

e ® e o o o e & e * o+ o

. Tagaad paraneterised property

synchronisation property c e o o o s @
ROSt MOA® & v ¢ ¢ ¢ 6 o o o o o o o o o o
Resulting class
ations on rodes and classes “ e e e e e
The relation "dafined by" e e s e e s e
Equivalence relations on nodes e e o o
The relation "read-corpatible™ “ e e e
The relation "restrictable to" e e e .
compatibility batueen a mode and a class
Compatibility betkeen classes.
e salection e e e e s e e e e e e s e

e » o o 8 & e & e ° e =

inition and summary of semantic categories

NAMB8 v ¢ ¢ ¢ « o o o o o « o o o o o o' »
Locations

EXpressions
Miscellanaous semantic categories . .
ity and name binding
2ral s e o s s e s s s s s s e a e s s s e
ibility and name creation e e e e e e e
lied names
ibility in reaches e e e s s e e e s e
ibility and blocks e e e e e e e e e e
ibility and modulions « ¢« « . .

® ® e e ® 8 o e & & s & s s .
e @ o o & o s & & & s e & @

e o 8 ° s e o ° o .

e e o ®© 8 & e 6 o e e ° o s e

Table of contents

......

123
124

127
127
128
131
131
136
137
137
138
138

140
140
140
141
142
144
145
146

147
147
147
147
148
148
148
149
149
150
150
151
151
151
156
157
158
158
159
162
162
164
164
165
166
166
167
168
169
170
170

9.2.6.1 General
9.2.6.2 6Grant statements
9.2.6.3 Seize statemants
9.2.7 Visibility of field names
9.2.8 HName binding
10.0 Exception handling
10.1 General c e e e e e e
10.2 Handlers e e e e e e e
10.3 Handler identification
11.0 Implementation options
11.1 1Implementation
11.2 Implemzntation
11.3 Implementation
11.4 Implemantation
11.5 Implemantation
11.6 syntax options
Appendix A:
A.l

e & o & o o o

e o ® o o o

dafined built-in rout:nes

-

-

dafined integar modes .
defined register names

definad process namas and
defined handlers

-

.

* e e o+ o o

e e e o e o o ® o e+ e o & ° & o o

" Character sets for CHILL programs
CCITT alphabet no. 5 International raference version

-

exception namas

e o o o e e @

A.2 HMinimal character set for representing CHILL programs

Appendix B:

Appendix C:

c.l

C.2 Predafined nanas

C.3 CHILL exception namsas
C.%4 CHILL directives .
Appendix D: Program examples
Appendix E: Syntax diagrams
Appendix F:

Appendix G: Index

Reserved names

Special symbols

« o o

L3

CHILL special names

Index of production rules

FASCICLE VI.8

Table of contents

.

170
171
172
173
173

176
176
176
177

179
179
179
180
180
180
180

182
182
183
18¢%
185
185
186
186
186
187
210
220

229

1.0 _INTRODUCTION

This recommendation defines the CCITT high level programming language
CHILL. CHILL stands for CCITT High Level Language.

An alternative definition of CHILL, in a strict mathematical form, will be
contained in CCITT Manual. Another CCITT Manual known as 'Introduction to
CHILL' serves as an introduction to the language.

1.1 GENERAL

CHILL was designed primarily for programming SPC telephone exchanges.
Houever, i1t is considared to be general enougsh for other applications
(e.g. massage switching, packet switching, modelling, etc.).

CHILL uas designed With the following requirements in mind (refer to
Quastion 8/XI of thae study period 1977-19801]:

] enhance reliability by allowing for extensive compile-time checking;
e permit the generation of highly efficient object code;

(] ba flexible and poxerful in order to cover the required range of
applications and to exploit various kinds of harduare;

. encourage modular and structured program davelopment;
. be easy to learn and use.

CHILL does imply the existence of an environment for program development.
This environmant may implement, amongst other items, separate
compilation, inputsoutput and debugging tools. These items are not
defined by this recommendation.

CHILL programs can be written in a machine independant manner for the
class of machines known to be used, or proposed for use, in SPC telephone
exchangas.

CHILL does not attempt to provide specific constructs for every
application mantionad above, but rather it has a gensral base uWith a
number of possibilities suitable for the particular application.

CHILL as a language is machine independent. A particular implementation
may, houever, contain implemantation defined language objects. Programs
containing such obhjects Will in general, not be portable.

CHILL is designed under the assumption that it Will be compiled from

source text to object code. It is not specifically dasigned to make
one-pass compilation feasible nor to minimise compiler size.

FASCICLE VI.8 Rec. Z.200 1

To allow security Without an unacceptable loss of efficiency, much
checking can be done statically. A feu language rules can be tested only
at run time. A violation of such a rule results in a run-time exception.
Houever, the generation of run-time checks for these exceptions is
optional, unless a programmar defined exception handler is specified.

1.2 L ANGUAGE SURVEY

A CHILL program consists essentially of three parts:
° a description of data obijects;

. a description of actions which are to be performed upon the data
objects;

° a description of the program structure.
Data objects are daescribed by data statemants (declaration and definition

statements), actions are described by action statements and the program
structure is determined by program structuring statements.

The manipulatable data objects of CHILL are values and locations where
values can be stored. The actions define the operations to be performed
upon the data objects and the order in which values are stored into and
retrieved from locations. The program structure determines the lifetime
and visibility of data objects.

CHILL provides for extensive static checking upon the usage of data
objects in a given context.

In the following sections, a summary of the various CHILL concepts is

given. Each sectien is an introduction to a chapter, With the same title,
describing the concept in detail.

1.3 MODES AND CLASS5ES

The manipulatable data objects of CHILL are values and locations where
values can be stored.

A location has a mode attached to it. The mode of a location defines the
set of values which may reside in that location and other properties
associated With the locaticon and the values it may contain (note that not
all prorarties of a location are determinable by its mode alone).
Properties of locations are: size, internal structure, read-onlyness,
referability etc. Properties of values are: internal representation,
ordering, applicable operations etec.

2 FASCICLE VI.8 Rec. Z.200

A value has a class attached to it. The class of a value determines the
modes - of the locations that may contain the value.

CHILL provides the following categories of modes:

discrete modes integer, character, boolean, set (symbolic) modes
and ranges thereof;

pouersaet modas sets of elements of some discrete mode;
reference modes bound references, free references and rows used as

references to locations;

composite modes string, array and structure modes;

procedure modes . procedures considered as manipulatable data
objects;

instance modes identifications for processes;

synchronisation modes event and buffer modes for process synchronisation
and communication.

CHILL provides denotations for a set of standard modes. Program defined
modes can be introduced by m2ans of nmode definitions. Some language
constructs have a so-called dynamic mode attached. A dynamic mode is a
moda of which soma properties can only be determined dynamically. Dynanic
modas are always parameterised modes wWith run-time parameters. A nmode
which is not dynamic, is called a static mode. An explicitly denoted mode
in @ CHILL program is always static.

Neithar dynamic modes nor classes have a denotation in CHILL. They are
only introduced in the metalanguage to describa static and dynamic context
conditions. :

1.4 LOCATIONS AND THEIR ACCESSES

Locations are (abstract) places where values can be stored or from which
values can be obtained. In order to store or obtain a value, the location
has to be accessed.

Declaration statemants define names to be used for accessing a location.
There are:

1. location declarations;:

2. loc-identity declarations;

3. based declarations.

FASCICLE VI.8 Rec. Z.200 3

The first one creates locations and establishes access names to the newly
created locations. The latter tuo establish new access names for locations
created elsenhere.

Apart from location declarations, new locations can be created by means of
Q GETSTACK built-in routine which will yreld a reference value (see below)
to the neuly created location.

A location may be preferable. This means that a corresponding reference
value exists for the location. This reference value is obtained as the
result of tha referencing operation, applied to the referable location. By
dereferencing a reference value, the referred location is obtained. CHILL
requires certain locations to be aluays referable, but for other locations
it is left to the implementation to decide whether or not they are
referable. Referability must be a statically determinable property of
locations. .

A location may be read-only, Which means that it can only be accessed to
obtain a value and not to store a new value into it (except wuhen
initialising).

A location may be composite, which means that it has sub-locations uWhich
can be accessed separately. A sub-location is not necessarily referable. A
location containing at least one read-only sub-location, is said to have
the read-onlyv propertv. The accessing rethods dalivering sub-locations
(or sub-values) are substringing, indexing and slicing for strings and for -
arrays, and selection for structures.

A lccation has a mode attached. If this mode is dynamic, the location is
called a dynamic mode location. (Note that the word dynamic is only used
in relation to the mode; the location is not dynamic in the sense that it
varies at run tima; only that its properties cannot be completely
determined statically.)

The following properties of a location, although statically determinable,
are not part of the mode:

referability: whether or not a reference value exists for the locations;

storaqe class: whether or not it is statically allocated;

regionality: whether or not the location is declared within a region.

1.5 VALUES AND THEIR OPERATIONS

Values are basic objects on which specific operations are defined. A value
is either a (CHILL) definad value or an undefined value (in the CHILL
sense). The usage of an undefined value in specified contexts results in
an undefined situation (in the CHILL sense) and the program is considered
to be incorrect.

& FASCICLE VI.8 Rec. Z.200

CHILL allous locations to be used in contexts where values are required.
In this case, the location is accessed to obtain the value contained.

A value has a class attached. strong values are values that besides their
class also have a mode attached. In that case the value is always one of
the values defined by the mode. The class 1is used for compatibility
checking and tha moda for dascribing properties of the valus. Soma
contexts require those properties to be known and a strong value will then
be required.

A value may be literal, in which case it denotes an implementation
independent discrate value, knowkn at compile time. A value may be constant
in Kkhich case it aluways delivers the same value, i.e. it need only be
evaluated once. Roth a literal and a constant value are assumed to be
evaluated before run tima and cannot generata a run-tima exception. A
value may be regional, in which case it can refer somzhow to regional
locations. A value may be composite, i.e. containing sub-values.

synonym dafinition statemants establish new names to denote constant
values.

1.6 ACTIONS

Actions constitute the algorithmic part of a CHILL program.

The assianment action stores a (computed) value into one or more
locations. The procedure call invokes a procedure, a8 built-in routine call
invokes a built-in routinag (a built-in routine is a procedure whosa
definition is not Written in CHILL and kith a more genaral paramater and
result mzchanism). To return frem andsor establish the result of a
procedure call, the result and return actions are used.

To control the sequential action flouw, CHILL provides the following flow
of control actions:

if action for a two-Kay branchs;

case action for a multiple branch. The salection of the branch may be
based upon several values, similar to a dacision table;

do action for iteration or bracketing;

exit action for leaving a bracketed action in a structured manner;
cause action to cause a specific exception;

goto action for unconditional transfer to a labelled program point.

Action and data statements can be grouped together to form a module or
begin-end block, khich form a (compound) action.

FASCICLE VI.3 Rec. Z.200 5

To control the concurrent action flouw, CHILL provides the start, stop,
delay, continue, send, delay -case and receive case actions or the
evaluation of a receive expression.

l.7 PROGRAM STRUCTURE

The program structuring statements are the begin-end block, module,
procedure, process and region. The program structuring statements provide
the m2ans of controlling the lifetime of locations_and the visibility of
nares.

The lifetime of a location is the time during which a location exists
within the program. Locations can be explicitly declared (in a location
declaration) or generated (GETSTACK built-in routine call), or they can be
implicitly declared or generated as the result of the use of language
constructs.

A name is said to be visible at a certain point in the program if it may be
used at that point. The scope of a name enconmpasses all the points khere
it is visible, i.e. where the denoted object is identified by that nama.

Begin-end blocks determine both visibility of names and lifetime of
locations.

Modules are provided to restrict the visibility of names to protect
against unauthorised usage. By means of visibility statements, it is
possible to exercise control over the visibility of names in various
program parts.

A procedure is a (possibly parameterised) sub-program uhich may be invoked
(called) at different places within a program. It may return a value
(value procedure) or a location (location procedurel), or deliver no
result. In the latter case the procedure can only be callad in a procedure
call zction.

Processes and reaions providae the means by which a structure of concurrent
executions can be achiaved.

A complete CHILL program is a list of modules or regions, Which is
considered to be surrounded by an (imaginary) process definition. This
ocutermost process is started by the system under whose control the program
is executed. ‘

1.8 CONCURRENT EXECUTION

CHILL allows for the concurrent execution of program units. A process is
the unit of concurrent execution. The start action causes the creation of
a nen process of the indicated process definition. The process is then

6 FASCICLE VI.8 Rec. Z.200

considered to be executed concurrently with the starting process. CHILL
allous for one or more processes With the same or different dafinition to
be active at one tima. The stop action, executed by a process, causes its
termination.

A process is always in one of tuo states; it can be active or delaved. The
transition from active to dalayed is called the delaying of the process,
the transition from delayed to active is called the re-activation of the
process. The execution of dalaying actions on events, or receiving actions
on buffers or signals, or sending actions on buffers, can cause the
executing process to become delayed. The execution of a continue action on
events, or sending actions on buffers or signals, or receiving actions on
buffers, can cause a dalayed process to become active again.

Buffers and events are locations With restricted usage. The operations
send, receive and receive cas? are defined on buffers; the operations
dnolay, delay case and continue are defined on events. Buffers are a maans
of synchronising and transmitting information bstween processes. Events
are only used for synchronisation. Signals are defined in signal
definition statements. They denote functions for composing and
decomposing lists of values transmitted batueen processes. Send sctions
and peceive case actions provide for communication of a list of values and
for synchronisation.

A reqgion is a special kind of module. Its use is to provide for mutually
exclusive access to data structures, wWhich are shared by several
processes.

1.9 GENERAL SEMANTIC PROPERTIES

The semantic (non context-free) conditions of CHILL are the mode and class
compatibility conditions (mode checking) and the visibility conditions
(scope checking). The mode checking rules determine hod names may be used,
the scope checking rules datermine khere namess may be used.

The mode checking rules are forrmulated in terms of compatibility
requirenents betueen modes, betuwean classes and between modes and
classes. The compatibility requiremants betucen modas and classes and
betuean classes themselves are defined in terms of equivalence relaticns
betueon modas. If dynamic modas are involved, moda checking is partly
dynamic.

The scope rules define the visibility of names which is determined by the
program structure and explicit visibility statements. The explicit
visibility statemants determine the scope of the mentionad namas and also
of possibly impliad names of the mentionad names.

Names introduced in a program have a place whare they are defined or
declared. This place is called the dafining occurrenca of the nama. The
places where the nama is used, are called arplied occurrences of the name.
The nanme binding rules associate a unique defining occurrence With each

FASCICLE VI.8 Rec. Z.200 7

applied occurrence of the name.

1.10 EXCEPTION HANDL ING

The dynamic semantic conditions of CHILL are those (non context-free)
conditions which, in general, cannot be statically determnined. (It is left
to the implementation to decide whather or not to generate code to test
the dynamic conditions at run time.) The violation of a dynamic semantic
rule causes a run-tima exception.

Exceptions can also be caused by the execution of a cause action or,
conditionally, by the execution of an assert action. Khen, at a given
program point, an exception occurs, control is transferred to the
associated handler for that exception, if specifiable (i.e. it has a nane)
and specified. Whether or not a handler is specified for an exception at a
givan point, can be statically determined. If no explicit handler is
specified, control may be transferred to an implementation defined
exception handler.

Most exceptions have a name. This name is either a CHILL dafined exception
nama, an implemantation defined exception nama, or a program defined
exception nama2., Note that when a handler is specified for a CHILL dafinad
exception nane, the associated dynamic condition must be checked.

1.11 IHMPLEMENTATION OPTIONS

CHILL allows for implementation defined inteder nmodes, imnlementation
defined built-in routines, irplemontation defined process definitions and
implemantation definod excaption handlers.

An' implementation defined integer mode must be denoted by an
irplemantation defined moda name. This name is considared to ba defined in
a neumode definition statement Which i1s not specified in CHILL. Extending
the existing CHILL-definad arithmatic operations to the implementation
defined integsr modes is allowed Within the framework of tha CHILL
syntactic and scmantic rules. Examples of implementation definad integer
modes are long inteqgers, and short integers.

A built-in routine is a procedure whose definition is not specified in
CHILL with a more general parameter passing and result transmission scheme
than CHILL procedures.

A built-in process name is a process name whose definition is not

specified in CHILL. A CHILL process may cooperate uith implementation
defined processes or start such processes.

8 FASCICLE VI.8 Rec. Z.200

An implementation defined exception handler is a handler appended to the
imaginary outermost process definition. If this handler receives control
after the occurrence of an exception, the implementation may decide which
actions are to be taken.

FASCICLE VI.8 Rec. Z.200 9

2.0 PRELIMINARIES

2.1 THE METAL ANGUAGE

The CHILL description consists of tuo parts:
. the description of the context-free syntax;

° the description of the semantic conditions.

2.1.1 THE CONTEXT-FREE SYNTAX DESCRIPTION

Tha context~-free syntax is described using an extension of the Backus-Naur
Form. Syntactic categories are indicated by one or more English uwords,
uritten in italic characters, enclosed betwezen angular brackets (< and >).
This indicator is called a non-terminal symbol. For each non-terminal
symbol, a production rule is given in an appropriate syntax section. A
production rule for a non-terminal symbol consists of the non-terminal
symbol at the lefthand side of the symbol ::=, and one or more constructs,
consisting of non-terminal andsor terminal productions at the righthand
sida. These constructs are separated by a vertical bar (]) and denote
alternative productions for the non-terminal symbol.

somatimes, the non-terminal symbkol includes an underlined part. This
undarlined part does not form part of the context-free description, but
defines a semantic sub-category (sea section 2.1.2).

syntactic elements may be grouped together by using curly brackets ({ and
}). Repetition of curly bracketed groups is indicated by an asterisk ()
or plus (*). An asterisk indicates that the group is optional and can be
further repeated any number of times; a plus indicates that the aroup must
be present and can ba further repeated any number of times. For example,
{A}>* stands for any sequence of A's, including zero, while {4} * stands for
any sequence of at least one 4. If syntactic elemants are grouped using
square brackets (/ and 7}, then the group is optional.

A distinction is made betueen strict svntax, for which the semantic
.conditions are given directly, and darived syntax. The derived syntax is
considared to ba an extension of the strict syntax and the semantics for
the derived syntax is indirectly explainad in terms of the associated
strict syntax.

It is to be noted that the context-free syntax description is chosen to
suit the semantic description in this document and is not made to suit any
particular parsing algorithm (e.g. there are sgme context-frea
ambiguities introduced in the interest of clarity).

10 FASCICLE VI.8 Rec. Z.200

2.1.2 THE SEMANTIC DESCRIPTION

For each syntactic category (non-terminal symbol), the semantic
description is given in the sub-sections semantics, static properties,
dynamic properties, static conditions and dynamic conditions.

The section semantics describes the concepts denoted by the syntactic
categories (i.e. their meaning and beshaviour).

The section static prorerties defines statically determinable semantic
properties of the syntactic category. Thase properties are used in the
formulation of static andsor dynamic conditions in the appropriate
sections where the syntactic category is usead.

When appropriate, a section dynamic properties defines the properties of
tha syntactic category, which are knoun only dynamically.

The section static conditions dascribkes the context-dependent, statically
checkable conditions wkhich must be fulfilled when tha syntactic category
is usad. soma static conditions are expressed in the syntax by means of an
undarlined part in the non-terminal symbol (see section 2.1.1). This use
requires the non-terminal to be of a specific semantic sub-category. E.9.
<boolean expression> 18 identical to <(expression> in the context free
sense, but semantically it regquires the expression to be of the boolean
class:. The underlined part is somatimas used in the text as an adjective
to qualify the non-terminal. E.g. the sentence "the expression is
censtant” is identical to saying "the expression is a constant
expression™. :

The section dvnamic conditions describes the context-dependent conditions
which must be fulfilled during execution. In soma cases, conditions are
static if and only if no dynamic modes are involvad. In those cases, the
condition is mantioned under static conditions and referred to under
dynamic cenditions.

In the semantic description the non-terminals are written in italics
Wwithout the angular brackets to indicate the syntactic objects.

2.1.3 THE EXAMPLES

For most syntax sections, there is a section examples giving ona or more
examples of the defined syntactic categories. These examples are
extracted from a set of program examples contained in Appendix D.
References indicate via which syntax rule each example : is produced and
from which exampla it is taken.

E.g. 6.20 (d+5)/5 (1.2) indicates an example of the terminal string

(d+5)/5, produced via rule (1.2) of the appropriate syntax section, taken
from program example no. 6 line 2¢0.

FASCICLE VI.8 Rec. Z.200 11

2.1.%4 THE BINDING RULES IN THE METALANGUAGE

sometimes the semantic description mentions CHILL spaecial names (see
Appendix C). These special namas are aluays used with their CHILL meaning
and are therefore not influenced by the binding rules of an actual CHILL
program.

2.2 VOCABUL ARY

Programs are represented using the CCITT alphabet no. 5, Recommendation
V.3 (see Appendix Al). It is possible to represent any CHILL program using
a minimum character set which is a subset of the CCITT alphabet no.5 basic
code (see Appendix A2).

The lexical elements of CHILL are:

e special symbols

® names

) literals

The special symbols are listed in Appendix B.

Names are formed according to the following syntax:

svntax:
<name> ::% : (1)
<letter> { <letter> | <digit> |_}» (1.1)

The underline.symbol (_) forms part of the name, i.e. the name LIFE_TIME
is different from the name LIFETIME. In the case that an alphabet uith
louer case letters is available, they may be used within namas. Lower
case and upper case letters are different, e.g. Status and status are tko
different names.

The language has a number of special names With predetermined meanings,
see Appandix C. Some of them are reserved i.e. they cannot be used for
other purposes unless explicitly freed by the free directive.

In the case that an alphabet uWith both upper an louer case letters is
usad, the special names may either all be in upper case representation or
all be in lower case representation. The reserved names are only reserved
in the chosen representation (e.g. if the lower case fashion is chosen,
row is reserved, ROH is not).

12 FASCICLE VI.8 Rec. Z.200

2.3 THE USE OF SPACES

Spaces may be used to delimit the lexical elements of a program. Lexical
elements are terminated by the first character that cannot be part of the
lexical element. For instance, IFBTHEN Will be considered a name and not
as the beginning of an action IF B THEN, //% Will be considered as the
concatenation symbol (//) followad by an asterisk (%) and not as a divide
symbol (/) follouad by a commant opening bracket (/%). Contiguous spaces
have the same delimiting effect as a single space.

2.% COMMENTS

syntax:
<comment> ::= 1)
/7% <character string> %/) (1.1)
<character string> ::= . 2>
{<character>} ‘ (2.1

semantics: A comment conveys information to the reader of a program. It
has no influence on the program semantics.

static properties: A comment may be inserted at all places where
spaces are allowed as delimiters.

static conditions: The character string must not contain the special
sequence: asterisk solidus (x/).

examples: .
4.1 /% from collected algorithms from CACH nr.93 %/ (l.1)

2.5 FORMAT EFFECTORS

The format effectors BS (Backspace), CR (Carriage return), FF (Form feead),
HT (Horizontal tabulation), LF (Line feed), and VT (vertical tabulation)
of the CCITT alphabet no.5 (positions FEo to FEs5) are not mentioned in the
CHILL context-free syntax description. However, an implemantation may use
these format effectors in CHILL programs. Khen used, they have the same
deliniting effect as a space. They may not be used wWithin lexical
elements.

-

FASCICLE VI.8 Rec. Z.200 13

2.6 COHMPILER DIRECTIVES

syntax:
<directive clause> ::=
‘ <> <directive> {,<directive>}»* [<>]
<directive> ::=
<CHILL directive>
| <implementation directive>
<CHILL directive> ::=
<free directive>
<free directive> ::=
FREE(<reserved name list>)
<name list> ::=
<name> {, <name>}*.

.semantics: A difective clause conveys information to the compiler.
Except for the free directive, this information is specified
in an implementation defined format.

An implementation directive must not influence the program
semantics, i.e. a program With implementation directives is
correct, in the CHILL sense, if and only if it is correct
Without these directives.

A free directive applies to a compilation unit. It will free
the reserved names specified in the reserved name list so that
they may be redefined in the compilation unit.

static properties: A directive clause may be inserted at all places
where spaces are alloued. It has the sama delimiting effect as
a space. The names used in a directive clause ¥follow an
implementation definad name pinding scheme which does not
influence the CHILL name binding rules (see section 9.2.8).

static conditions: The optional directive-ending symbol (<>) may

examples:

only be omitted if it is placed just in front of a semicolon
(i.e. tha directive clause is terminated with the first <> or
semicolon. Houever, the semicolon does not belong to tha
directive clause. AS 3 consegquence, 3 directive may neither
contain the symbol <> nor a semicolon unless placed batuezn
parentheses, see belouw). If parentheses occur in an
implementation directive, they must be properly balanced and
if a semicolon or the directive-ending symbol appears Within
parentheses, they do not end the directive.

1)
(1.1

(2)
2.1)
(2.2)

3)
(3.1

(%)
(%4.1)

(5)
(5.1)

15.1 <> FREE (STEP) (1.1)
15.1 FREE (STEP) (4.1)

14 FASCICLE VI.8 Rec. Z.200

3.0 MODES AND ClL ASSES

3.1 _GENERAL

A location has a mode attached to it, a value has a class attached to it.
The mode attached to a location defines the set of values which may he
containad in the location, the access methods of the location and the
allouad operations on the values. The class attached to a valua is a m2ans
of determining the modes of the locations that may contain the value. Soma
values are strong. A strong value has a class and a mode attached. This
mode is aluays compatible with the class of the value and the valua is one
of thé values dafined by tha mode. Strong values are required in those
value contexts khere mode information is needed.

3.1.1 MODES

CHILL has static modes (i.e. modes for which all properties are statically
determinable) and dynamic modes (i.e. modes for which some properties are
only knoun at run tima). Dynamic modas are aluays paramaterised modes With
run-tima parameters.

static modes are denoted in the program by means of terminal productions
of the syhtactic category mode.

Dynamic modes have no denotations in CHILL. Howaver, for description
purposes, virtual denotations are introduced in this documant to denote
dynamic modes. These virtual denotations uill be preceded by the ampersand
symhol (&), i.@. &VH(i) denotes a paraneterised dynamic mode with run-time
parameter i. :

In addition, in some places virtual denctations for static modes are
introduced. This is done for modes which are not or cannot be explicitly
denoted in the program text, but are virtualy introduced by some language

‘constructs. These modes are also denoted by virtual denotations preceded
by an ampersand.

3.1.2 CLASSES
Classes have no denotation in CHILL.

The following kinds of classes exist and any value in a8 CHILL program has
~ a class of one of these kinds:

FASCICLE VI.8 Rec. Z.200 15

] For any mode M, there exists the M-value class. All values with such a
class and only those values are strong and the mode attached to the
value is M.

] For any mode M With novelty nil (see section 9.1.1.1), there exists
the M-derived class.

] For any mode_M, there exists the M-reference class.

® The null class.

e The all class.

The last two classes are constant classes, i.e. they do not depend on a

mode M. A class is said to be dynamic if and only if it is an M-value class
or an M-darived class, Khera M is a dynamic mode.

3.1.3 PROPERTIES OF, AND RELATIONS BETHWEEN, MODES AND CLASSES

All fundamental properties of and relations betueen modes and classes are
defined in chapter 9. The following gives a summary of these properties
and relations:

1. A mode M has a novelty.

2. A mode M can be read—oﬁly. !

3. A mode M can have the read-only property.

4. A mode M can have the referencing property.

5. A moda M can have the tasséd paramzterised property.

6. A mode M can have the synchronisation property.
7. A mode M can be defined by a mode N.
8. A mode M can be read-compatible with a mode N (asymmetric).

9. A mode M can be compatible with a class € (in that case €C is said to be
compatible with MN).

10. A class C can have a root mode.

11. A class C can be compatible with a class D (symmetric).

12. Given a list of compatible classes, there exists the resultins.class.
specific properties are defined for each mode in the appropriate se#tion.

A property is said to be hereditary if, when it holds for a specific mode,
it also holds for all mode names defined by that mode. Therefore,

16 FASCICLE V1.8 Rec. Z.200

heredi tary properties will not be explicitly defined for mode namas. Every
property, which holds for a mode, also holds for that mode preceded by the
keyword READ (except in som2 cases where the read-only property is
involved: these cases are explicitly indicated). Therefore,; properties
Will not be explicitly defined on modes preceded with READ.

3.2 MODE DEFINITIONS

3.2.1 GENERAL

syntax:
<mode definition> ::= ' (1)
<name list> = <defining mode> (1.1
<defining mode> ::= (2)
<mode> (2.1

derived syntax: A mode definition Where the name list consists of more
than one name, 15 derived from several mode definitions, che
for each name, separated by comma's, With the same defining
mode.

E.g9. NEWHODE DOLLAR, POUND = INT; is derived from NEWMODE
DOLLAR = INT, POUND = INT;

semantics: Mode definitions define one or more names to be a mode nama,
i.e. names denoting modes. Mode definitions occur inside
neumode and synmode dafinition statements. The difference
batieen a neumode and a synmode lies in the treatment by the
mode equivalence algorithms (see section 9.1). All hereditary
properties of the defining mode are, by dafinition,
transfarred to the defined mode nama. Mode definitions may bhe
(mutually) recursive.

static properties: A mode name. is either one of the language defined
mode namaes INT, BOOL, CHAR, PTR, INSTANCE, EVENT, or a nama
defined in a mode definition.

A mode name which is not one of the languase defined mode
namas, has a unique defining mede, which'is the mode denoted
by the defining mode in the mode definition in Which it is
defined.

A sat of recursive definitions is a set of mode definitions or
synonym definitions (see section 5.1) such that the defining
mode ih each mode definition OF constant value Or mode in each
synonym definition is, or directly contains, a mode name or a
synonym hame or a set element name defined by a definition in
the set. :

FASCICLE VI.8 Rec. Z2.200 17

A set of recursive mode definitions is a set of recursive
definitions having only mode definitions. (Any set of
recursive definitions must be a set of recursive mode
definitions; see section 5.1).

Any mode baing, or containing a mode nhame, defined in a set of
recursive mode definitions is said to denote a recursive
mode. A path in a set of recursive mode definitions is a list
of mode namas, each nanme indexed With a marker such that:

) all names in the path have a different definition;

L] for each name, its successor is or directly occurs in its
defining mode (the successor of the last name is the first
nama);

° the marker indicates uniquely the position of the‘name in
the defining mode of its predecessor (the predecessor of
the first name is the last name).

(Example: NEWMODE M = STRUCT(i M, n REF M); contains tuo
paths: {M,;} and {M,})

A path is safe if and only if at least one of its names is
contained in a reference mode Or a row mode, Or @ procedure
mode at the marked place. The mode must be, or be contained
in, the defining mode of the predecessor of the mode name.

static conditions: For any set of recursive mode definitions, all its

examples:

paths must bhe safa. (The first path of the example above is
not safe).

.12 operand_mode = INT
complex = STRUCT(re, im INT)

[
[P =)

3.2.2 SYNMODE DEFINITIONS

syntax:
<synmode definition statemgnt> 2e=
SYNMODE <mode definition> {, <mode definition>}¥»;
semantics: Synmode definition statements define names to denote modes
which are synonymous uWith their defining mode. The precise
treatment of names defined in a synmode definition is
explained in section 9.1. :
static properties: A name is said to be a synmode name, if and only

if it is defined in a mode definition in a synmode definition
statement. A synmode name is said to be synonymous Rith a
given mode, (conversely, the given mode is said to be

18 FASCICLE VI.38 Rec. Z.200

(1.1
(1.1)

(1)
(1.1)

examples:

synonymous With the synmoda name) if and only if:

° either the given mode i1s the defining mode of the synmode
name;

e or the defining mode of the synmode name is itself a

synmode name, synonymous With the given mode.

6.3 SYNMODE month = SET(jan, feb, mar, apr, may, jun,
jul, auvg, sep, oct, nov, dec);

3.2.3 NEHWMODE DEFINITIONS

syntax:
<neumode definition statement> ::=
NEHWHODE <mode definition> {, <mode definition>};
semantics: Newmode definition statements define names to denote modes
which are not synonymous With the defining mede. The values
defined by & newnode are the values daefined by the defining
mode. Tha precise treatment of nanmes defined in a neumode
definition statemant i1s explained in section 9.1.
static properties: A name 1S said to be a noumode name if and only

examples:

if it is defined in a mode definition in a newmode definition
statement.

If the defining mode is a range mode, than, together with the
defined neumods nam2, a new virtual name 1is introduced,
danotad by &name_parent, denoting the parent " modz of the
neurode nam2. The values defined by this virtual parent mode
are the values of the parent mode of the defining range mode.
Tha upper bound and loxar bound of tha virtual parent mode are
the ones of the parent mode of the dafining range mode.

If the defining mode is a string mode, then the new virtual
modes: &name(i) are introduced for each i largar than the
string length of the ngumods name, where &name denotes the
introduced neumoda. This i denotes the string lenath of the
virtual moda. The hereditary property bit or character string
of the neurodsa name is transferred to the virtual modes.

11.4 NEHMODE line = INT(1:8);
I11.10 °~ NEHWMODE board = ARRAY(line) ARRAY(column) - square;

FASCICLE VI.8 Rec. Z.200 19

(1.1)

1
(1.1

(1.1)
(1.1

3.3 MODE CLASSIFICATION

syntax:
<mode> ::=
<non-composite mode>
| <composite mode>
<non-composite mode> ::%
<discrete mode>
| <powerset mode>
| <reference mode>
| <procedure mode>
| <instance mode>
| <synchronisation mode>
semantics: Modes are denoted in a CHILL program by the terminal
productions of the syntactic category mode. In the sequel of
this chapter, the specific properties of the different modes
Will be defined. The equality (=) and inequality (/=)
relations are defined on the set of values of any given mode
(see section 5.3).
static properties: A mode has a size, Which is the value delivered by

SIZE(M), uhere M is a virtual synmode name synonymous WKith
mode. .

3.4 DISCRETE MODES

3.4.1 GENERAL

syntax:

semantics:

<discrete mode> ::=
<integer mode>
| <boolean mode>
| <character mode>
| <set mode>
| <range mode>

Discrete modes define sets and subsets of wWell-ordered
values. All discrete modes, which are not rangs modes, can be
parent modes of range modes (see section 3.4.6). All discrete
modes define an urper bound and a lower bound, denoting the
highest and louast value, respectively.

20 FASCICLE VI.8 Rec. Z.200

1)
(1.1)
(1.2)

2)

2.1)
(2.2)
(2.3)
€2.4%)
(2.5)
(2.6)

1)

(1.1)
(l1.2)
(1.3)
(1.%)
(1.5)

3.4.2 INTEGER MODES

syntax:
<integer mode> ::= (1)
[READ] INT (1.1>
| I[READ] BIN (1.2

| [READ] <integer mode name> (1.3)
derived syntax: BIN is derived syntax for INT.

semantics: Anh integer node defines a set of signaed integer values between
implementation defined bounds, over which the usual ordaring
and arithmetic operations are defined (see section 5.3.2). An
implementation may define other integer modes With different
bounds (e.g. LONG_INT, SHORT_INT, ...) Which may also be usaed
as parent modes for ranges (see section 11.2).

static properties: An integer mode has the following hereditary
properties:

s The upper bound and lower bound of an integer mode are the
literals denoting respectively the highest and louwest
value defined by the integer mode.

. The number of values of an integer mode is implementation
definead. -

examples:
1.4 INT : (1.1

3.4.3 BOOLEAN HODES

syntax: _
<boolean mode> ::= 1)
[READ] BOOL ' (1.1)
| [READ] <boolean mode name> (1.2)

semantics: A boolean mode dafinas the logical truth values (TRUE and
FALSE), With the usual boolean operations (see section
5.3.2). TRUE is greater than FALSE.

static properties: A boolean mode has the following hereadi tary
proparties:

. The upper bound of a boolean mode is TRUE, its louer bound
is FALSE . :

(] The number of values defined‘by a boolean mode is 2.

FASCICLE VI.S8 Rec. Z.200 2l

examples:
5.4 " BOOL . (l1.1)

3.4.4 CHARACTER MODES

syntax:
<character mode> ::= . (1)
{READ] CHAR (1.1)
| IREAD] <character mode name> (1.2)

semantics: A character mode defines the character values as described by
the CCITT alphabet no.5, International reference version
(Recommendation V3, see Appendix Al). This alphabet also
defines the ordering of the characters.

static properties: A character mode has the following hereditary
properties:

. The upper bound and louwer bound of a character mode are
the character string literals of length 1 denoting
respectively the highest and lowest value defined by
CHAR.

° The number of values defined by a character mode is 128.

examples: :
8.4 CHAR (1.1

3.4.5 SET MODES

syntax:
<set mode> ::*= 1
[READ] SET(<set list>) , (1.1
| [READ] <set mode name> (1.2)
<set list> ::= (2)
<numbered set list> (2.1)
| <unnumbered set list> (2.2)
<numbered set list> ::= (3
<numbered set element> {,<numbered set element>} (3.1)
<numbered set element> ::= (%)
<name> = <integer literal expression> (%.1)
<unnumbered set list> ::= (5)
<set element> {,<set element>} (5.1)

22 FASCICLE VI.8 Rec. Z.200

<set element> ::=
<name>
| <unnamed value>
<unnamed value> ::=
*
semantics: A set mode defines a set of named or unnamad values. The named
values are denoted by the names in the set list; the unnamed
values are the other values. The internal representation of
the named values is the integer value associated wWith the
named value (see balow). This representation also defines the
ordering of the values.
static properties: A set mnode has the following hereditary

properties:

A set mode has a sat of set element names which is the set
of element names in i1ts set list.

Each set element name of a set mode has an integer
(representation) value attached which is, in tha case of
a numbered set list, the value dalivered by the integer
literal expression in the numbered set element in which
the sat element name occurs, otharwise one of the valuas
0,1,2,.... etc., according to its position in the
unnumbered set list. For example: SET(%,A4,%,B,%), A has
representation value 1 and B representation value 3
attachad.

A set mode has an upper bound and a louer bound which are
its set elemant names which denote the highest and louest
named values, respectively.

The number of values of a set mode is, in the case of a
numbered set list, the highest of the values attached to
the set element names plus 1, othernise the number of set
element occurrences in the vunnumbered set list.

A set mode is a set mode With holes, if and only if the
number of name occurrences in the set list is less than
the number of values of the set mode.

static conditions: Each integer literal expression ih the set list must

examples:

daliver a different non-negative integer value in the sense
that for any two expressions el and e2: NUM(el) and NUM(e2)
deliver different results.

A set mode must defiﬁe at least one named value.

.5 SET(occupied, free)

month

FASCICLE VI.8 Rec. 2.200 23

6)
(6.1)
(6.2)

«7)
(7.1)

(1.1)
(1.2)

3.4.6 RANGE MODES

syntax:

derived syntax:

<range mode> ::= ’ :

[READ] <discrete mode name>(<literal range>)
| IREAD] RANGE(<literal range>)
| [READ] BIN(<inteqger literal expression>)
| [READ] <range mode name>

<literal range> ::=

<lower bound> : <upper bound>

<lower bound> ::*=

<discrete literal expression>

<upper bound> ::=

<discrete literal expression>

The notation: BIN(n) is derived +from INT(0 : 27-1),

e.9. BIN(2+1) stands for INT(0 : 7).

semantics: A range mode defines the set of values ranging betueen the
bounds specified (bounds included) by the literal range. The
range is taken from a specific parent mode, which determines
the operations on and ordering of the ranges values.

static properties: A range mode has the following (non-hereditary)

property: it has a unique parent mode, daefined as follous:

If the range mode is of the form:

<discrete mode name>(<literal range>)

then if the discrete mode name is not a range mode then
the parent mode is the discrete mode name, otheruise it is
the parent mode of the discrete mode name.

If the range mode is of the form:

RANGE(<literal range>)

then the parent mode is the root mode of the resulting
class of the classes of the upper bound and lower bound in
the literal range.

I¥f the range mode is a synmode name, then its parent mode
is that of the defining mode of the synmode name.

If the range mode is a newmode name, then its parent mode
is the virtually introduced parent mode (sea section
3.2.3).

A range mode has the following hereditary properties:

A range mode has a louer bound and an upper bound which
are the literals denoting the values delivered by lower
bound and upper bound respectively in the literal range.

2% FASCICLE VI.8 "Rec. Z.200

1)

(1.1
(1.2’
(1.3
(1.4%)

(2)
2.1)

3)
(3.1)

(%)
(4.1)

L The number of values of a range mode 1is the value
delivered by NUM(U) - NUM(L) + 1, uWhere U and L denote
respectively the upper bound and louer bound of the range
mode.

° A range mode is said to be a range mode With holes, if and
only if its parent mode is a set mode with holes and an
unnamed value is in the range specified by the range mode.

static conditions: The classes Of upper bound and lower bound must be

examples:

compatible and both must be compatible With the discrete mode
name, if specified.

Lower bound must deliver a value which is less than or equal
to the value delivered by upper bound, and both values must
lie in the value rangse defined by discrete mode name, ¥
specified.

9.4 INT(2:max)
11.11 line
9.4 2:max

3.5 POKWERSET MODES

syntax:
<powerset mode> ::=
{READ] POWERSET <member mode>
| IREAD] <powerset mode name>
<member mode> ::=
<discrete mode>
semantics: A pouerset mode defines values which are sets of values of its
member mode. Powerset values range over all subsets of the
member mode. The usual set-theoretic operators are defined on
pouerset values (see section 5.3).
static properties: A pouerset mode has the following hereditary

examples:

" property:

] It has a unique member mode which is the mode denoted by
member mode.

POHERSET CHAR ,
POKERSET INT(2:max)
number_list

0 0 o
[-A B ST o

FASCICLE VI.38 Rec. Z.200 25

(1.1)
(1.4%)
2.1

1)
(1.1)
(1.2)

(2)
2.1

(1.1)
(1.1)
(1.2)

3.6 REFERENCE MODES

3.6.1 GENERAL

syntax:
<reference mode> ::= (1)
<bound reference mode> (1.1)
| <free reference mode> (1.2)
| <row mode> (1.3)

semantics: A reference mode defines references (addresses or
descriptors) to referable locations. By definition, bound
references refer to locations of a given static mode; free
references may refer to locations of any static mode; rouws
refer to locations of a dynamic moda.

The dereferencing operation is dafined on reference values
(see sections 4§.2.3, 6.2.%4 and 6.2.15), delivering the
location which is referenced.

Tuwo reference values are equal if and only if they both refer

to the samz location, or both do not refer to a location (i.e.
they are the value NULL).

3.6.2 BOUND REFERENCE MODES

syntax:
<bound reference mode> ::= 1)
[READ] REF <referenced mode> (1.1)
| [READ] <bound reference mode name> (1.2)
<referenced mode> ::= 2)
<mode> 2.1)

semantics: Bound references define reference values to locations of the
specified referenced mode.

static properties: A bound reference mode has the follouwing
hereditary property:

] It has a unique referenced mode wkhich is the mode denoted
by referenced mode.

examples:
10.38 REF cell) i (l1.1)

26 FASCICLE VI.8 Rec. Z.200

3.6.3 FREE REFERENCE MODE

syntax:

semantics:

examples:

<free reference mode> ::

[READI PTR

| {READ] <free reference mode name>

A free reference mode defines reference values to locations
of any static mode.

19.5

3.6.4 ROH MODES

syntax:

semantics:

static properties: A row mode has the following hereditary property:

<row mode> ::=

PTR

[READ] ROH <string mode>
| [READ] ROW <array mode>
| [READ] ROH <yariant structure mode name>

| IREAD] <row _mode name>

A row mode defines reference valuas to locations of dynamic
moda (which are locations of soma paramaterised mode With
statically unknoun parameters).

A row value may refer to:

examples:

8.6

string locations with statically unknown length,

array locations uith statically unknoun upper bound,

parameterised structure locations with statically unknown

parameters.

It has a referenced origqin mode, which is the string mode,

the array mode, or
respectively.

ROH CHAR (max)

the variant

structure mode

FASCICLE VI.8

Rec. Z.200

names

27

1)
(1.1)
(1.27

(1.1)

(1

(1.1)
(1.2>
(1.3)
(1.%)

(1.1

3.7 PROCEDURE MODES

syntax:

<procedure mode> ::=
{READ] PROC([<parameter list>]) [<result spec>l]
{EXCEPTIONS(<exception list>)] [RECURSIVE]
| [READ] <procedure mode name>

<parameter list> ::=
<parameter spec> {,<parameter spec>}

<parameter spec> ::=
<mode> [<parameter attribute>] [<register name>l}

<parameter attribute> ::=

IN | ouT | INOUT | LOC
<result spec> ::=

{RETURNS] (<mode> [LOC] [<register name>])
<exception list> ;:=

<exception name> {,<exception name>}*

<exception name> ::=
<name>

derived syntax: A result spec Without the optional keyword RETURNS is

semantics:

derived syntax for the result spec With RETURNS.

A procedure mode defines (general) procedure values, i.e. the
objects denoted by general procedure names which are names
defined 1in procedure definition statemants or entry
definition statemants. The procedure values indicate pieces
of code in a dynamic context. Procedure modes allow for
manipulating a procedure dynamically, e.g. passing it as a
paramater to other procedures, sending it as message value to
a buffer, storing it into a location etc.

Procedure values can be called (see section 6.7).

Two procedure valuas are equal if and only if they denote the
same procedure in the same dynamic context, or if they both
denote no procedure (i.e. they are the value NULL).

static properties: A procedure mode has the following hereditary

properties:

] It has a list of paramater specs, each parameter sreec
consisting of a mode, possibly a parameter attribute
andsor register name. The parameter specs are defined by
the parameter list.

28 FASCICLE VI.8 Rec. Z.200

1)

1.1)
(1.2)

2)
2.1)

«3)
(3.1)

(%)
(%.1)

(5)
(5.1)
(6)

(6.1)

«7)
(7.1)

] It has an optional result spec, consisting of a mode, an
optional L0C attribute and/or register name. The result
spec is defined by the result spec.

° It has a possibly empty set of exception names, which are
the names mentioned in the exception list.

° It has a recursivity which is recursive if RECURSIVE is
specified, othernise an implementation defined default
specifies either recursive or non-recurssive.

static conditions: All names mentioned in exception list must be
different.

Only if LOC is specified in the parameter spec or result spec,
may the mode in it have the synchronisation property.

3.8 INSTANCE MODES

syntax:
<instance mode> ::<
[READI INSTANCE

| [READ] <instance mode name>

semantics: An instance mode defines values which uniquely identify
- processes. The creation of a new process (see section 5.2.17
and 8.1) yields a unique instance value as identification for

the created process.

Tuo instance values are equal if and only if they identify the
sam2 process, or they hoth identify no process (i.e. they are
the value NULL).

examples:
15.29 INSTANCE

3.9 SYNCHRONISATION MODES

3.9.1 GENERAL

syntax:
<synchronisation mode> ::=
<event mode>
| <buffer mode>

FASCICLE VI.8 Rec. Z.200 29

(1)
(1.1
(1.2)

(1.1)

1)
(1.1)
(1.2

semantics:

Locations of synchronisation mode provide the means of
synchronisation and. communication betieen processes (see
chapter 8). There exists nho expression in CHILL denoting a
value defined by a synchronisation mode. As a consedquence,
there are no operations defined on the values.

3.9.2 EVENT MODES

syntax:
<event mode> ::=
[READ] EVENT [(<event length>)]
| [READ] <event mode name>
<event length> ::=
<inteqger literal expression>
semantics: Event mode locations provide the means for synchronisation
betueen processes. The operations defined on event mode
locations are the continue action, tha delay action and the
delay case action, Khich are described in section 6.15, 6.16
and 6.17 respectively.
static properties: An event mode has the following hereditary

property:

L It has possibly an event length attached, which is the

value delivered by NUM(event length).

static conditions: The event length must deliver a positive value.

gxamples:

14.10 EVENT

3.9.3 BUFFER MODES

syntax:

<buffer mode> ::=
[READ] BUFFER [(<buffer length>)]
<buffer element mode>
| [READI<buffer mode name>

<buffer length> ::=
Xinteger literal expression>

<buffer element mode> ::=
<mode>

30 FASCICLE VI.8 Rec. Z.200

(1)
(1.1>
(1.2)

2)
(2.1)

(1.1)

1)

(1.1
(1.2)

2)
2.1)

3
(3.1)

N.B. The syntax given above is syntactically ambiguous- in
connection With the syntax of the array modes. The follouing
default interpretation applies: if the keyuword BUFFER is
immediately followed by an opening parenthesis, the text
imnediately following it is considered to be the start of the
optional buffer length indication and not as belonging to the
buffer element mode.

semantics: Buffer mode locations provide the means of synchronisation
and communication between processes. The operations defined
on buffer locations are the send action, the receive case
action and the receive expression, described in section 6.18,
6.19 and 5.2.18 respectively. '

static properties: A buffer mode has the follouwing hereditary
properties attached:

. It has an cptional buffer length, which is the value
delivered by NUM(buffer length).

L It has a buffer elemgnt mode, Hhich 1s the mode denoted by
buffer element mode.

static conditions: The buffer length must deliver a non-negative valusa.

The buffer element mode must not have the synchronisation

property.

examples:
16.28 BUFFER(1) USER_MESSAGES (1.1)
16.32 USER_BUFFERS (1.2)

3.10 COMPOSITE MODES

3.10.1 GENERAL

syntax: ‘
<composite mode> ::= (1)
<string mode> : (1.1)
| <array mode> (1.2
| <structure mode> v (1.3

semantics: Composite locations and values have sub-locations and
sub-values which can be accessed or obtainsed respectively
(see sections 4.2.5-9, 4.2.13-14 and 5.2.6-12).

FASCICLE VI.8 Rec. Z.200 31

3.10.2 STRING MODES

syntax:

semantics:

<string mode> ::=
[READ] <string type>(<string length>)
| <parameterised string mode>
| [READ] <string mode name>

<parameterised string mode> ::=

{READ] <origin string mode name>(<string length>)

| [READ] <parameterised string mode name>

<origin string mode name> ::=
<string mode name>

<string type> ::=
CHAR
| BIT
<string length> ::=
Kinteger literal expression>

A string mode defines bit or character string values of a
lenath indicated or implied by the string mode.

" The string values of a given string moda are uell-ordered. For
character string values the ordering is the lexicographical
~order as defined by the CCITT alphabet no. 5. For bit string
values the ordering is the lexicographical order such that a
bit which is 1, is greater than a bit which is 0.

The concatenation operator is defined on string values. The
usual logical operators are defined on bit string valuas (see

saection 5.3).

1)

(1.1)
(1.2)
(1.3)

2)
(2.1)
2.2)

3)
(3.1)

(%)
(4.1)
(4.2)

(5)
(5.1)

static properties: A string mode has the following hereditary

static conditions: The string length must deliver a non-negative value.

properties:

] It is a bit string mode or a character
depending on khether string type specifies BIT or CHAR,
or whether origin string mode name is a bit or character

string mode.

° It has a string length, uwhich is the value delivered by

NUM(string length).

Tha value delivered by the string length directly contained
in a parameterised string mode must be less than or equal to
the string length of the origin string mode name.

32 FASCICLE VI.8 Rec. Z.200

string mode,

examples:

7.45 CHAR (20)

3.10.3 ARRAY MODES

syntax:

<array mode> ::-
{READ] [ARRAY] (<index mode> {,<index mode>}»)
<element mode> {<element layout>}*
| <parameterised array mode>
| [READ] <array_mode name>

<parameterised array mode> ::=
[READ] <origin array mode name>(<upper index>)
| [READ] <parameterised array mode name>

<origin array mode name> ::
<array mode name>

<index mode> ::=
<discrete mode>
| <literal range>

<upper index> ::°
<literal expression>

<element mode> ::
<mode>

derived syntax: The keyuword ARRAY is optional. An array mode (Which is

semantics:

neither an arrav mode name nor a parameterised array mode)
Without the keynord ARRAY, is derived from the array mode With
the keyuord ARRAY.

The index mode notation <literal range> is derived from the

discrete mode RANGE(<literal range>). An array mode #ith
more than one index mode (denoting a "multi-dimensional’
arrayl), is derived syntax for an array mode With an element
mode Khich 18 anh array mode. For example:

ARRAY(1:20,1:10) INT

15 derived from

ARRAY(RANGE(1:20)) ARRAY(RANGE(1:10)) INT

only if this derived syntax is usad, is more than one element
layout occurrence alloued. The number of element layout
occurrences must be less than or edqual to the number of index
mode occurrences. In that case, the leftmost element layout
is associated With the innermost element mode atc.

An array mode defines composite values, Khich are lists of

values defined by its element mode. The physical layout of an
array location or value can be controlled by element layout

" FASCICLE VI.8 Rec. Z.200 33

(1.1)

1)

(1.1)
(1.2)
(1.3

2)
(2.1)
(2.2)

(3
(3.1)

(%)
(%.1)
(¢.2)

(5)
(5.1)

(6)
(6.1)

specification (see section 3.10.6). Two array values are
equal if and only if all corresponding element values are
equal.

static properties: An array mode has the following hereditary

properties:

It has an index mode which is the discrete mode denoted by
index mode if it is not a parameterised array mode,
othernise the index mode is the range mode constructed
as:

&name (lower bound : upper bound)

Khere &name is a virtual synmode name synonymous With the
index mode of origin array mode name, lower bound is the
lower bound of the index moda of the origin array mode
name and upper bound is the upper index.

It has an uprer bound and a lower bound uwhich are
respectively the upper bound and the lower bound of its
index mode.

It has an element mode, which is either ¥ or READ M, Where
M is the element mode, or the element mode of the origin
array mode nare respectively. The elemant mode wWill be

READ M if and only if M is not a read-only mode and the

array mode is a read-only mode.

It has an elerent lavout which, if it 1s a parameterised
array mode, 15 the gplement lavout of its origin array mode
name, otherwise it is eithaer the specified element
layout, or the implementation default, which is either
PACK or NOPACK.

It is a mapped mode if and only if element layout is
specified, and 1s a step. -

It has a number of elements which is the value delivered
by: .
NUM(upper bound) - NUM(lower bound) + 1

static conditions: The class of upper index must be compatible With the
indax moda of the origin array mode name and the value
delivered by it must lie in the range defined by that index
mode.

examples:

The index mode must not be a set mode uith holes nor a range
mode With holes.

5.30 ARRAY(1:16) STRUCT(c%, c2, cl BOQL)
11.10 ARRAY(1line) ARRAY(column) square
11.15 board

34 FASCICLE VI.8 Rec. Z.200

(l1.1)
(1.1)
(1.3)

3.10.4%

syntax:

STRUCTURE MODES

<structure mode> ::=
<nested structure mode>
| <level structure mode>
| <parameterised structure mode>
| [READ] <structure mode name>

<nested structure mode> ::=
IREAD] STRUCT (<fields> {,<fields>}»)

<fields> ::=
<fixed fields>
| <alternative fields>

<fixed fields> ::=
<name list> <mode> [<field layout>]

<glternative fields> ::=
CASE [<tags>1 OF
<variant alternative> {,<variant alternative>}*
[ELSE [<variant fields> {,<variant fields>}*]] ESAC

<variant a@lternative> ::=
{<case label specification>]
: [Kvariant fields> {,<variant fields>}*]

<tags> ::=)
<taqg field name> {,<taq field name>}*

<variant fields> ::=
<name list> <mode> [<field layout>]
<parameterised structure mode> ::=
[READ] <origin variant structure mode name>
(<literal expression list>)
| [READ] <parameterised structure mode name>

<origin varignt structure mode name> ::<
<variant structure mode name>

<literal expression list> :::
<literal expression> {,<literal expression>}

derived syntax: A level structure mode is derived syntax for a nested

structure mode . This is explained in section 3.10.5.

A fixed fields occurrence or variant fields occurrence, where
name list consists of more than ona name, 15 derived syntax
for several fixed fields occurrences or variant fields
occurrences HWith one name respectively, each wWith the
specified mode and optional field layout. In the case of field

FASCICLE VI.8 Rec. Z.200 35

1

(1.1)
(1.2)
(1.3
(1.4)

2)
2.1)

«3)
(3.1)
(3.2)

(%)
(%.1)

(5)

(5.1)
(6
(6.1)

7’
(7.1)

(8)
(8.1)

(9)

(9.1)
(9.2)

(167
(10.1)

(11)
(11.1)

semantics:

layout, this field layout must not be pos. For example:
STRUCT(I,J BOOL PACK)

is derived from:

STRUCT(I BOOL PACK, J BOOL PACK)

structure modes define composite values consisting of a list
of values, selectable by a component name. Each value is
defined by a mode uwhich is attached to the component name.
structure values may reside in (composite) structure
locations, where the component name serves as an access to the
sub-location. The components of a structure value or location
are called fields and their names field names.

There are fixed structures, variant structures and
paramaterised structures.

Fixed structures consist only of fixed fields, i.e. fields
khich are aluays present and which can be accessed Without any
dynamic check.

variant structures have variant fields, i.e. fields which are
not always present. For tagged variant structures the
presence of these fields is khown only at run time from the
value(s) of certain associated fixed field(s) called tag
fields. Tag-less variant structures do not have tag fields.
Becausa the composition of a variant structure may change
during run tima, the size of a variant structure location is
based upon the largest choice (uworst case) of variant
alternatives.

A parameterised structure is determined from a variant
structure moda for which the choice of variant alternatives
is statically specified by maans of literal expressions. The
composition is fixed from the point of the creation of the
parameterised structure and may not change during run tims.
The tagq fields, if present, are read-only and automatically
initialised With the specified values. For a parameterised
structure location, a precise amount of storage can ba
allocated at the point of declaration or genaration. Note
that also (virtual) dynamic parameterised structure modes
exist. Their semantics are defined in section 3.11.4.

The layout of a structure location or value can be controlled
by means of a field layout specification (see section
3.10.6).

Tuo structure values are equal if and only if corresponding
component values are equal. Houwever, if one or both structure
values are tag-less variant structure values, the result of
comparison is implementation defined.

static proegr{ies:

36 FASCICLE VI.8 Rec. Z.200

general:
A structure mode has the following hereditary properties:

. A structure mode is a fixed structure mode if and only if
it is denoted by a nested (or level) structure mode Khich
does not directly contain an alternative fields
occurrence. .

[A structure mode is a variant structure moda if and only
if it is denoted by a nested (or level) structure mode and
contains at least one alternative fields occurrence.

L A structure mode is a parameterised structure mode if and
only i1f it is denoted by a parameterised structure mode.

. A structure mode has a set of field names. This set is
determined belon for the different cases. A nam2 is said
to be a field name if and only if it is defined in a name
list in fixed fields or variant fields in a structure
mode. Each field nama of a given structure mode has a
unique field mode attached to it, which is either ¥ or
READ M, uwhere ¥ is the mode folloWing the field name. The
field mode Will be READ M if the mode folleoling is not a
read-only mode and either it is the tag field name of a
paramaterised structure moda (see beloul, or the
structure mode 18 a read-only mode.

A field nama of a given structure mode has a unique field
layout attached to it which is the field layout following
the field nama, if present, otheruise the dafault field
layout, which is either PACK or NOPACK. A field namg is
{language) referable if and only if its field layout is
NOPACK.

° A structure mode denotes a mapped mode if and only if its
field names have a field layout khich is pos.

fixed structures:

A fixed structure mode has the following hereditary property:

. It has a set of field names which is the set of names
defined by any name list in fixed fields. These field
names are fixed field names.

variant structures:

A variant structure mode has the follouwing hereditary
propertias:

[It has a set of field names, Which is the union of the set

of names definad by any name list in fixed fields and the
sat of names defined by any name 1list 1in alternative

FASCICLE VI.8 Rec. Z.200 37

38

fields. Field names defined by a name list in fixed fields
are the fixed field names of the variant structure mode,
its other field names are the variant field names.

A field name of a variant structure mode is a tag field
nama if and only if it occurs in any tags of an
g@lternative fields. alternative fields in uWhich no tags
are specified, are taa-less alternative fields. The
variant field namas defined by any name list in variant

fields of a tag-less alternative fields are tag-less
variant field names. The other variant field names are

taggad variant field names.

A variant structure mode is a tag-less variant structure
mode if and only if all its alternative fields
occurrences are ta3g-less. Othernise it is a tagged
variant structure mode.

A variant structure mode is a parameterisable variant
structure mode if and only if it. is either a tagged
variant structure mode or a tag-less variant structure
mode wkhere for each of the alternative fields occurrences
a case label specification is given for all the variant
alternative occurrences in it.

A paramaterisable variant structure mode has a list of
classes attached, datermined as follow:

- if it 1s a tagged variant structure mode, the list of
M;-value classes, uthere M; are the modas of the tag
field names in the order as they are dafined in fixed
fields;

- if 1t is a tag-less variant structure mode, the list
is built up from the individual resulting lists of
classes of each alternative fields by concatenating
them in the ordar as the alternative fields occur.
The resulting list of classes of an alternative
fields occurrence is the resulting list of classes of
the list of case label specification occurrences in
it (see section 9.1.3).

parameterised structures:

A parameterised structure mode has the following hereditary
properties:

It has an origin variant structure mode, which is the mode
denoted by origin variant structure mode name

It is a tagged parameterised structure mode if and only if

its oriain variant structure mode is a tagged variant
structure mode, othardise the parameterisad structure

mode is tag-less.

FASCICLE VI.8 Rec. Z.200

] It has a set of field names, which is the union of the set

of fixed field names of its origin variant structure mode

- and the set of those variant field names of its origin

variant structure mode, which are defined in variant

alternative occurrences wkhich are selected by the list of
values defined by literal expression list.

The set of tagq field namas of a parameterised structure
mode is the set of tag field names of its origin variant
structure moda. '

. A parameterised structure mode has a list of values
attached, defined by literal expression list.

static conditions:

general:

All field names of a structure mode must be different.

If any field has a field layout which is pos, all the fields
must have a field layout which must be pos.

variant structures:

A tag field name must be a fixed field name and must be
textually defined before all the alternative fields
cccurrences in whose tags it is mentioned. (As a consequence,
a tag field precedes all the variant fields that depend ugen
it). The mode of a tag field name must be a discrete mode.

In a variant structure mode the alternative fields
occurrences rust be eithar all tagged or all tag-less. For
taa-less alternative fields, case label specification may be
cnitted in all variant alternative occurrences togathar, or
must be specified for all variant alternative occurrences.

If, for a tag-less variant structure mode, any of its
alternative fields has case label specification g9iven, all
its @lternative fields must have case label specification.

For alternative fields, the tase selection conditions must be
fulfilled (sea section 9.1.3), and the same completenass,
consistancy and compatibility requirements must hold as for
the case action (see saction 6.4). Each of the taa field namas
of tags (if prescnt) serves as a case selector wuith the
M-value class, where M is the mode of the tag _field nam2. In
the case of tag-less alternative fields, the checks involving
the case selector are ignored.

For a parameterisable variant structure mode none of the
classes of its attached list of classes may be the all class.
(This condition is automatically <fulfilled by a tagged
variant structure mode.) :

FASCICLE VI.8 Rec. Z.200 39

examples:

parameterised structures:

The origin variant structure mode name must be
paramaterisable.

There must be as many literal expressions in the 1literal
expression list as there are classes in the list of classes of
the origin variant structure mode name. The class of each
literal expression must be compatible With the corresponding
(by position) class of the list of classes. If the latter
class is an M-value class, the value delivered by the literal
expression must be one of the values defined by M.

3.3 STRUCT(re, im INT)
11.5 STRUCT(status SET(occupied, free),
CASE status OF
(occupied): p piece,
(free):
ESAC)
2.5 fraction
11.5 status SET(occupied, free)
11.6 status
11.7 p piece

3.10.5 LEVEL STRUCTURE NOTATION

derived syntax:

<level structure mode> ::=
1 [<array specification>]
[READ] {,<(2) level fields>}*

<(n) level fields> ::=
<(n) level fixed fields>
| <(n) level alternative fields>

<(n) level fixed fields> ::=
n <name list> <mode> [<field layout>]
| n <name list> [<array specification>]
[READ] I<field layout>] {,(n+l) level fields>}*

<(n) level qlternative fields> ::=
CASE [<tags>] OF
<(n) level alternative> {,<(n) level alternative>}
[ELSE [<(n) level variant fields>
{,<(n) level variant fields>}*]1]
ESAC

<(n) level alternative> ::=
{<case label specification>
{,<case label specification>}]

40 FASCICLE VI.8 Rec. Z.200

(2.1)

(2.1)
(1.4)
(¢.1>
(7.1
(8.1)

1)
(1.1
2
(2.1)
(2.2)

3)
(3.1)

(3.2)

(%)

(4.1)

(5)

semantics:.

: [<(n) level variant fields>
{,<(n) level variant fields>}»]

<(n) level variant fields> ::=
n <name list> <mode> [<field layout>]
| n <name list> [<array specification>]
[READ] [<field layout>] {,<(n+l) level fields>}*

<array specification> ::=
[READ] [ARRAY] (<index mode> {,<index mode>}*)
{<element layout>}

N.B. The above description of a level number notation for
structures involves an extension to the syntax description
mathod explainad in chapter 2: the syntax 1is recursively
defined using the structuring level number (n) as parameter.

The level structure mode 15 derived syntax for a unique nested
structure mode. .

The nested nbtation is considered as strict syntax and all
semantics, properties and conditions are explained in terms
of it (see section 3.10.4).

If a structure contains fields which are themsalves
structures or arrays of structures, a hierarchy of structures
is formed and a level number can be associated uith each
field.

Example:

SYNMODE M = STRUCT(B BOOL, .
S ARRAY (1:10) STRUCT (T INT, U BQOL))J;

The structure as a wkhole has level 1, B and § have level 2, T
and U have level 3. Instead of writing nested structure modes,
it is allowed in the level structure mode to uHrite the level
number in the front of the name.

Example:
SYNHODE M = 1, 2 B BOOL,
2 5 ARRAY (1:10),
3 T INT,
3 U BOOL;

In mode definitions and synonym definitions Hith a mode there

"is no name associated with the first level. The association

occurs at the declaration or at the point of formal parameter
specification. At these places, the name of the first level
Will be placed after the level-1 position. -

Example:

FASCICLE VI.8 Rec. Z.200 41

(5.1

(6)
(6.1)

(6.2)

«7)

(7.1

static conditions:

examples:

3.10.6 LAYOUT DESCRIPTION FOR ARRAY MODES AND STRUCTURE MODES

syntax:

bcL 1 A,
2 B BOOL,
2 5 ARRAY (1:107,
3 T INT,
3 U BOOL;

. Hith declarations and formal parameter specifications,
attributes and initialisations, if present, must be specified

at the end of the level-1 position.
Example:
P : PROC (1 X INOUT,

2 8 BOOL,
2 C INT);

If Wwithin a level structure mode an array of structures is
specified, the array specification is given behind after the

lavel indicator.

19.9 DCL 1 BASED (P),
2 I INFO P0OS(0,8:31),
2 PREV PTR P0OS(1,0:15),
2 NEXT PTR P0O5(1,16:31)

<element layout> ::=
PACK | NOPACK | <step>

<field layout> ::=
PACK | NOPACK | <pos>

<step>
STEP(<pos> [,<step size> [,<pattern size>ll)

<pos>
POS(<word> ,<start bit> ,<length>)
| POS(<word> [,<start bit> [: <end bit>11)
Kpattern size> ::=
<integer literal expression>

<word> ::=
<integer literal expression>

<step size> ::=

42 FASCICLE VI.8 Rec. Z.200

Nested and level notations must not be mixed.

(1.1)

1)
(1.1)

2)
(2.1)

3)
(3.1

(%)
(%4.1)
(4.2)

(5)
(5.1)

6)
(6.1

«7)

<integer literal expression>

<start bit> ::=
Kinteger literal expression>

<end bit> ::=
<integer literal expression>

<length> ::=
Kinteger literal expression>

It is possible to control the layout of an array or a
structure by giving packing or mapping information in its
moda. Packing information in eithar PACK or NOPACK, mapping
information is either a step in the case of array modes, or
poss in the case of fields of structure modes. The absence of
element layout or field layout in an array or structure mode
Will aluays be interpreted as packing information, i.e.
either as PACK or as NOPACK.

If PACK is specified for elements of an array or field of a
structure, it means that the use of memory space is optimised
for the array elemesnts or structure fields, whereas NOPACK

Aimplies that the access tima for the array elements or the

structure fields is optimised. NOPACK also implies (language)
referability. :

The PACK, NOPACK information is only applied for one level,
i.e. it is applied to tha elements of the array or fields of
the structure, not for possible componants of tha array
element or structure field. The laycut information is aluays
attached to tha nearest mode to which it may apply and which
dees not already have layout attached. For example, if tha
default packing is NOPACK:

STRUCT (F ARRAY (0:1) M PACK)

is equivalent to:

STRUCT (F ARRAY (0:1) M PACK NOPACK)

It 1s also possible to control the precise layout of a
composite object by specifying positioning information for
its compohents in the mode. This positioning information is
given in tha following ways:

. For array modes, the positioning information is given for
all elements together, in the form of a step following the
array moda.

. For structure modes, the positioning information is given
for each field individually, in the form of a pos,
following the mode of the field.

The precise positioning of C, a component i.e. element or

field of an object, is given hy the follouing three constants:
Hes Be and Le where

FASCICLE VI.8 Rec. Z.200 43

(7.1

(8>
(8.1

9
(9.1)

(10>
(10.1)

44

Hec is the distance in words of the first word which is (maybe
partially) occupied by C, relative to the first word which
is (maybe partially) occupied by the ohject of which is C a
component,

Be is the distance in bits of the first bit which is occupied
by C, relative to the leftmost bit of the first word uhich
is (maybe partially) occupied by C,

Le is the number of bits which are occupied by C.

The positioning information, given for the components of the
ohject, determines the precise positioning of these
compenents, if the object is entire (i.e. it is not a
component of another object). Houaver, if the object is not
entire, thaen the precise positioning of the component is
dependent on the precise positioning of the object itself.

A step specified for the elemants of an array is a shorthand
notation for the explicit enumeration of the pos of each
individual elemant. Informally, the pos and the step size
spacify a "positioning pattern”™ for the elements wuhich
completely fit in the first pattern size Words, assuming the
array to be entire. The positioning of the first element is
determined by pos; the positioning of the subsequent elements
which fit completely in the first pattern size Hords, is such
that the distance in bits betueen the first occupied bits of
successive elements is step size. The positioning pattern
spacified this way 1is repeated as often as’ needed for
subsequent units of pattern size Words.

Pos

Given an object 0 of a mapped mode in which a pos of the form:
POS(<word number>, <start bit> , <length>)

is specified for a component C of that object, the precise
positioning of the the componant € is determined as follous:

. If the object 0 (of which C is a component) is entire,
then

He 1S NUM(word number)
Be 15 NUM(start bit), and
Le 1S NUMC length).

. If the object 0 (of which C is a component) is not entire,
then

uc 182
NUM(word number) + (NUM(start bit) + Bp)/HIDTH,

FASCICLE VI.8 Rec. Z.200

Be is denoted by (NUM(start bit) + Bo) MOD HIDTH,
and

Le 1s denoted by NUM(length)
where WIDTH is the numer of bits in a word.

step

Let element; be
. the element of the louwest index, if i=0

. the element of the index wWwhich is the successor of the
index for the element, where n = i-1 otherunise

Let ig be the number of elements preceding eiemento in its
positioning pattern. Given a step attribute of the form

STEP (<pos> , <step size> , <pattern size>),

the pos of an individual elemant With respect to the beginning
of the positioning pattern of elementg 1i1s determined as
follous:

the pos of element; is:

POS (¢ NUM(pattern size) ¥ ((i + ig) /DENS)

+ RBPOS ;/HIDTH, RBPOS; MOD HIDTH, length)

for 1 < i < "number of elements’
where RBP0OS; is

NUH(C word number) ¥ HIDTH + NUM(start bit)

+ NUM(step size) ¥ ((i + ip) MOD DENS) ,
and DENS is

(NUM(pattern size) % WIDTH)/ NUM(step size) ,»
and HIDTH is the number of bits in a word.

Defaults

The notation: _

POS (<word number> , <start bit> : <end bit>)
is semantically equivalent to:

P0OS (<word number> , <start bit> ,

NUH(C end bit) - NUM(start bit) + 1)

The notation:
P05 (<word number> , <start bit>)
is semantically equivalent to:
POS (<word number> , <start bit> , BSIZE)
where BSIZE is the minimum number of bits which is needed to
be occupied by the component for which the pos is specified.

The notation:

POS (<word number>)
is semantically equivalent to:

FASCICLE VI.S8 Rec. Z.200 45

POS (<word number> , 0 , HSIZE % HIDTH)
Where HSIZE is the size of the mode of the component for which
the pos is specified.

The notation:
STEP (<pos> , <step size>)

is semantically equivalent to
STEP (<pos> , <step size> , PSIZE)

where PSIZE is the smallest integer such that
PSIZE % WHIDTH > NUM(step size)

The notation:
STEP (<pos>)
is semantically equivalent to
STEP (<pos> , SSIZE)
where S5IZE is the <length> specified in pos or derivable from
pos by the above rules.

static properties: For any location of a mapped array mode the element

layout of the modae determines the (language) referability of
its sub-locations (including sub-arrays, array slices) as
follous:

. either all sub-locations are (language) referable, or
none of them are;

. if the element layout is NOPACK all sub-locations are
(languaga) referable.

For any location of a mapped structure mode, the referability
of the structure field selected by a field name is determined
by the field layout of tha field name as follous:

® the field name is (language) referable if the field
layout is NOPACK.

static conditions: If the elemant mode of a given array mode, or the field

46

mode of a field name of a given structure mode, is itself an
array or structure mode, then it must be a mapped mode if the
given array or structure mode is mapped and not a mapped mode
othernise.

Each of the integer literal expression occurrences must
deliver a non-negative value. In addition, length, step size
and pattern size must deliver a non-zero value, and start bit
and end bit must deliver a value less than HIDTH whare HIDTH
is tha number of bits in a word (implementation defined).
Moreover, start bit must deliver a value not sreater than the
value delivered by end bit.

For each field name of a mapped structure mode, the length in
its field layout must not be less than the minimum number of
bits khich need to be occupied hy the field.

FASCICLE VI.8 Rec. Z2.200

For each mapped array mode, the length in the pos in its
element layout must not be less than the minimum number of
bits which is needed to be occupied by the elements. 1In
addition, for any elemznt layout the follouing conditions
must be fulfilled:

® ' NUM(step size) > NUM(C length)

® (NUM(pattern size) ¥ WHIDTH) MOD NUM(step size)
> NUM(word number) ¥ WIDTH + NUM(start bit)

consistency and feasibility

consistency:

No component of an array or structure object may be specified
to occupy any bits occupied by another component of the same
object except in the case of tio variant field names defined
in the sama alternative fields occurrence; houever, in the
latter case the variant fields namas may not both be defined
in the sama variant alternative nor both following ELSE.

Feasibility:

There are no language defined feasibility requirements,
except for the one that can be deduced from the rule that the
referability of a sub-location of any (referable or
non-referable) location is datermined only by the (elemant or
field) layecut, uwhich is a property of the mode of the
location. This places soma restrictions on the mapping of
components which themselves have referable components.

examples:
17.5 PACK (1.1)
19.11 P0OS(1,0:15) (%4.2)

5.11 DYNAMIC MODES

3.11.1 GENERAL

A dynamic mode is a mode some properties of which are knoun only at run
tima. Dynamic modas are always parameterised modes wKith one or more
run-tima paramsters. Dynamic rodes have no danotation in CHILL. Houwever,
for description purposes, virtual denotations are introduced in this
document. These virtual denotations are precedad by the amparsand symkol
(&) to distingsuish them from actual notations which may appear in & CHILL
program text. :

FASCICLE VI.8 Rec. Z.200 &7

3.11.2 DYNAMIC STRING MODES

virtual denotation: &<origin string mode name> (<integer expression>)

semantics: A dynamic string mode is a parameterised string mode wWith
statically unknoun length. The dynamic string length is the
value delivered by the integer expression.

static properties:

. The dynamic string mode is a bit (character) string mode
if and only if the origin string mode name 1is a bit
(character) string mode.

dynamic properties:

. A dynamic string mode has a dynamic length, which is the
value delivered by NUM(integer expression).

3.11.3 DYNAMIC ARRAY MODES

virtual denotation: &<origin array mode name> (<discrete expression>)

semantics: A dynamic array mode is a parameterised array mode With
statically unknoun upper bound. The lower bound, index mode
- and element mode are statically known, the dynamic upper

bound is the value delivered by the discrete expression.

static properties:

. A dynamic array mode has an index mode, element mode,
elemant layout and lower bound attached, which are the
index mode, element mode, elemsnt layout and louwer bound
of the origin array mode name.

dynamic properties:

. A dynamic array mode has a dynamic upper bound, which is
the value delivered by discrete expression, and a dynamic
number of elemants, which is the value delivered by
NUM(upper bound) - NUM(C lower bound) + 1

3.11.¢ DYNAMIC PARAMETERISED STRUCTURE MODES

virtual denotation: &<origin variant structure mode name>
(<expression list>)

48 FASCICLE VI.8 Rec. Z.200

semantics: A dynamic parameterised structure mode is a parameterised
structure mode wuith statically unknoun paramaters. The
composition of the structure mode can only be determined
dynamically from the list of values delivered by expression
list.

- static properties:

L A dynamic parameterised structure mode has & unique
origin variant structure mode attached, nhich is the mode
denoted by the origin variant structure mode name.

] A dynamic parameterised structure mode is tagaed if and
only if its origin_variant structure mode is a tagged
variant structure mode, othernise it is taa-less.

* The set of field names (fixed field names, tag field
namas, variant field namas) of a dynamic paramsaterised
structure mode is the set of field names (fixed field
names, tag field names, variant field namas) of its
origin variant structure mode.

dynamic properties:

(] A dynamic paramaterised structure mode has a list of
values attached, which is the list of values delivered by
the expressions in the expression list.

FASCICLE VI.8 Rec. Z.200 69

4.0 LOCATIONS AND THEIR ACCESSES

4.1 DECLARATIONS

4.1.1 GENERAL

syntax:

semantics:

examples:

<declaration statement> ::=
DCL <declaration> {,<declaration>}*;

<declaration> ::=
<location declaration>
| <loc-identity declaration>
| <based declaration>

A declaration statement declares one or more names to be an

access to a location.

6.9 DCL j INT :% julian_day_number,
d, m, y INT;
6.10 d, m, y INT :
11.34% starting_square LOC := b(m.1lin_l)(m.col_1)

4.1.2 LOCATION DECLARATIONS

syntax:

semantics:

<location declaration> ::~=
<name list> <mode> [STATIC] [<initialisation>]

<initialisation> ::=
<reach-bound initialisation>
| <lifetime-bound initialisation>

<reach-bound initialisation> ::=
<assignment symbol> <value> [<handler>]

<lifetime-bound initialisation> ::=
INIT <assignment symbol> <constant value>

A location declaration creates as many locations as there are
names specified in the name list.

WHith reach-bound initialisation, the value is evaluated each
time the reach in which the declaration is placed is entered
(see section 7.2) and the delivered value is assigned to the

50 FASCICLE VI.8 Rec. Z.200

1)
(1.1)

2)

2.12
(2.2)
2.3)

(1.1
(2.1)
2.2)

1)
(1.1)

2)
(2.1
(2.2)

3
(3.1

%)
(¢.1)

location(s). Before the value is evaluated the location
contains an undefined value (except when a mode With the
tagged parameterised property or uWith the synchronisation
property is specified; see belou).

Hith lifetime-bound initialisation, the value yielded by the
constant value is assighed to the location(s) only once at the
baginning of the lifetima of the location(s) (see sections
7.2 and 7.9).

specifying no initialisation is semantically equivalent to
the specification of a lifetime-bound initialisation With the
undefined value (sea section 5.3). However, if the mode has
the tagged parameterised property, the tag field
sub-locations of the location are initialised With the
corresponding value of the associated parameterised structure
mode.

The meaning of the undefined value as initialisation for a
synchronisation location is that the created event andsor
buffer sub-locations are automatically initialised +to
"empty", i.e. no delayed processes are attached to the event
or buffer, nor are there messages in the buffer..

The semantics of S7ATIC and handler tan be found in section
7.9 and chapter 10, respectively.

static properties: Names declared in a location declaration are
location names. The mode attached to the location name is the
mode specified in the location declaration. A location nanme
is (language]) referable.

static conditions: The class of the value or constant value must be
compatible With the mode.

If the mode has the read-only property, initialisation must
be specified. If the mode has the synchronisation property,
reach-bound initialisation must not be specified.

dynamic conditions: In the case of reach-bound initialisation, the
assignment conditions of value With respect to the mode apply
(see section 6.2).

examples:

8 k2, x, w, t, s, r BOOL
.9 := julian_day_number
% INIT := ['4':'Z2"]

O O \n

FASCICLE VI.8 Rec. Z.200 51

(1.1
(3.1
(%.1)

4$.1.3 LOC-IDENTITY DECLARATIONS

syntax:
<loc-identity declaration> ::*
<name list> <mode> LOC <assignment symbol>
<static mode location> [<handler>1
semantics: A loc-identity daclaration creates as many accesses to the
spacified static mode location as there are names specified
in the name list.
If the static mode location is evaluated dynamically, this
evaluation is done each time that the reach in which the
loc-identity declaration is placed, is entered. In this case,
a declared nama denotes an undefined location prior to the
first evaluation during the lifetime of the access denoted by
the declared name (see sections 7.2 and 7.9]).
static properties: Names declared in a loc-identity declaration are
loc-identity names. The mode attached to a loc-identity name
is the mode specified in the loc-identity declaration. A
loc-identity name is (language) referable if and only if the
spacified static mode location is (language) referable.
static conditions: The specified mode must be read-compatible with

examples:

the mode of the static mode location.

11.3% starting square LOC := b(m.lin_l)(m.col_1)

%4.1.% BASED DECLARATIONS

syntax:

<based declaration> ::= .
<name list> <mode> BASED
[(<bound or free reference location name>)l]

derived syntax: A based declaration Without a pound or free reference

semantics:

location name, is derived syntax for a synmode definition
statement. E.g.
DCL I INT BASED;
is derived from:
SYNMODE I = INT;
The declared names are synmode namaes, synonymous wHWith the
specified mode.

A based declaration (Hith bound or free reference location
name) specifies as many accesses as there are names in the
name list. Namas declared in a based declaration serve as an
alternative way of accessing a location by dareferencing a

52 FASCICLE VI.8 Rec. Z.200

(1)

(1.1)

(1.1)

@Y

(1.1)

reference value. This reference value is contained in the
location specified by the bound or free reference location
name. This dereferencing operation is made each time and only
when an access is made via a declared basad name.

static properties: The names declared in a based declaration are
based names. The mode attached to a based nam2 is the mode
specified in the based declaration. A based hanme is
{language) referable.

static conditions: If the mode of the bound or free reference
location name iS a bound reference mode, the specified mode
must be read-compatible With the referenced mode of the mode
of the bound or free reference location name. '

examples: :
19.9 1 X BASED (P),
2 1 INFO P0O5(0,8:31),
2 PREV PTR P0O5(1,0:15),
2 NEXT PTR P0OS5(1,16:31)

4.2 LOCATIONS

4.2.1 GENERAL

syntax:
<location> ::=
<static mode location>

| <dynamic mode location>

<static mode location> ::=

<g@ccess name>

<dereferenced bound reference>
<dereferenced free reference>
<string element>

<sub string>

<array element>

<sub-array>

Kstructure field>

<location procedure call>
<location built-in routine call>
<location conversion>

— — — —— — — — — — —

<dynamic mode location> ::=
<string slice>
| <array slice>
| <dereferenced row>

FASCICLE VI.8 Rec. Z.200 53

(1,1

1
(1.1
(1.2)

2)
(2.1)
2.2)
2.3)
(2.%)
(2.5)
(2.6)
2.7
(2.8
2.9)
(2.10)
(2.11>

(3>

(3.1)
(3.2)
(3.3

semantics: A location is an object that can contain values. A location is
either denoted by a static mode location, i.e. its mode is
statically determinable, or by & dynamic mode location, i.e.
part of the mode information <can only be obtained
dynamically. Locations have to be accessed to store or obtain
a value.

static properties: A static mode location has a static mode

attached. For descriptive purposes only, a virtual dynamic
mode Will be attached to each dynamic mode 1location (see
section 3.1). In the case of dynamic mode locations the
required compatibility checks can be completely performed
only at run tima. Check failure of the dynamic part Will cause
either the RANGEFAIL or tha TAGFAIL exception.

4.2.2 ACCESS NAHES

syntax:

semantics:

<@ccess name> ::=

<location name>
<loc-identity name>

<based name>

<location enumeration name>
<location do-with name>

An access hama is an access to a location.
An access name is one of the following:

° a location name, i.e. a name explicitly declared in a
location declaration or implicitly declared in a formal
parameter Without the LOC attribute;

) a loc-identity nama, i.e. a name explicitly declared in a
loc-identity declaration or implicitly declared in a
formal parameter With the LOC attribute;

L a based name, i.e. a hame declared in a based declaration;

o a location enumeration name, 1i1.e. & loop counter in
location enumerations

. a location do-uith name, i.e. a field name used as direct
access in the do action With a with part.

If the location denoted by a location do-with name 1S a
variant field of tag-less variant structure location, the
semantics are implementation defined.

54 FASCICLE VI.8 Rec. Z.200

1
(1.
(1
(1.
(1
(1

1)

.2)

3)

.8
.5

static properties: The mode attached to an access name is the mode of the

location name, loc-identity name, based name, location
enumeration name or location do-with name respectively.

An access name is (language) referable if and only if it is a
location name, & referable loc-identity name, a based name, 1
referable location enumeration name, ot & referable location
do-with name.

dynamic coenditions: A loc-identity name must not denote an undefined

examples:

location.

WHhen accessing via based name, the same dynamic conditions
hold as when dereferencing the pound or free reference

location name 1N the associated based declaration (see

sections 4.2.3 and §.2.46).

ACCessing Vvia & location do-with name C€auses a TAGFAIL
exception if the denoted location is a variant field of:

° a tagsaed variant structure mode location and the
associated tag field value(s) indicate(s) that the field
does not exist;

[a dynamic paramneterised structure mode location ahd the
associated list of values indicates that the field does

not exist.
.11 a
11.38 starting
19.1¢4 X
15.25 - EACH

5.11 el

%.2.3 DEREFERENCED BOUND REFERENCES

syntax: , :
<dereferenced bound reference> ::= - -
<bound reference expression> -> [<mode name>]
semantics: The location obtained by dereferencing a bound reference
value is that uhich is referenced by the bound reference
value.
static properties: The mode attached to the dereferenced -bound

reference is the mode name if one is spacified, otheruise the
referenced mode of the mode of the bound reference
expression. A dereferenced bound reference is (languasg2)
referable.

FASCICLE VI.8 Rec. Z.200 55

(1.

B @ A

(l.

C (1.
.5

(1l

1)
(1.

1)
2)

3)
%)

1)

static conditions: The bound reference expression must be strong.
If the optional pmode name is specified, it must be
read-compatible With the referenced mode of the mode of the
bound reference expression.

dynamic conditions: The lifetime of the referenced location must not
have ended.

The EMPTY exception occurs if the bound reference expression
delivers the value NULL.

examples:
10.49 p->

4.2.% DEREFERENCED FREE REFERENCES

syntax:

<dereferenced free reference> ::=
<free reference expression> -> <mode name>

semahtics: The location obtained by dereferencing a free reference value
is that which is referenced by the free reference value.

static properties: The moda attached to the dereferenced free
reference 18 the mode name. A dereferenced free reference is
(language) referable.

static conditions: The free reference expression must be strong.
dynamic conditions: The free reference expression must not deliver a

value obtainad by referencing a non-referable location (see
section 5.2.13). The lifetime of the referenced location must
not have endead.

The EMPTY exception occurs if the free_reference expression
delivers the value NULL.

The MODEFAIL exception occurs if the mode name is not
read-compatible With the mode of the referenced location.

4.2.5 STRING ELEMENTS

syntax:

<string element> ::=
Kstring location> (<position>)

56 FASCICLE VI.8 Rec. Z.200

(1.1)

1)
(1.1J

(1)
(1.1

derived syntax: A string element is derived syntax for a substring of
length 1 (see section §4.2.6). E.9g.
<string location> (<position>)
is derived from:
<string location> (<position> UP 1)

examples: :
18.16 string->¢i) (1.1)

4.2.6 SUBSTRINGS

syntax:
<substring> ::< 1)
<string location> (<left element> : <right element>) (1.1)
| <string location> (<position> UP <string length>) (1.2

<left element> ::= 2
<integer literal expression> (2.1)

<right element> ::= : (3)
<integer literal expression> (3.1)

<position> ::= (%)
<integer expression> (%.1)

semantics: A substring delivers a string location which is a substring of
the specified string location.

static properties: The mode attached to a substring is a
paramaterised string mode, constructed as:
&name (substring length)
where &name is @ virtual synmode name synonymous With the
(possibly dynamic) moda of the string location, and uwhere
substring length is either string length or
NUM(right element) - NUM(C left element) + 1

static conditions: The left element, right element and length must
' deliver non-negative integer values such that the following
relations hold:

1. NUMC left element) < NUM(right element)

2. NUM(C right element 2> £ L-1

3. 1 < RUM(C string length) < L

where L is the string length of the string location. (If the

string location is a dynamic mode location, the relations 2.
and 3. can only be checked at run time; see belou.)

FASCICLE VI.8 Rec. Z.200 57

dynamic conditions: The RANGEFAIL exception occurs if any of the
relations 2. or 3. above does not hold in the case of a
dynamic mode string location, or if any of the follouwing
relations hold:
1. NUMC position) < 0
2. NUM(position) + NUM(string length) > L

whare L is the string length of the mode of the string
location.

examples:

18.23 string->(scanstart UP 10)
$.2.7 ARRAY ELEHENTS
syntax:
<array element> ::=
<array location> (<expression list>)
<expression list> ::*
<expression> {, <expression>}*»
derived syntax: The notation: (<expression list>) is derived syntax

for:

(<expression>) {(<expression>)}»

where there are as many parenthesised expressions as there
are expressions in the expression list. Thus an array element
in the strict syntax has only one (index) expression.

semantics: An array element delivers a (subllocation which is an element
of the specified array location.

static properties: The mode attached to the array element is the
element mode of the mode of the array location.

An array element is (language) referable if the element
layout of the mode of the arrayv location is NOPACK.

static conditions: The class of the expression must be compatible
With the index mode of the mode of the arrayv location.

dynamic conditions: The RANGEFAIL exception occurs if any of the
folloning relations hold:

1. expression < L

2. expression > U

58 FASCICLE VI.8 Rec. Z.200

(1.2)

1)
(1.1)

2)
2.1)

where L and U are the lower bhound and the (possibly dynamic)
upper bound of the mode of the array location, respectively.

examples:
11.3¢4% blm.1lin_1)(m.col_2)

4.2.8 SUB-ARRAYS

syntax :
<sub-array> ::=
<array location>(<louwer element> : <upper element>)
| <array location>
(<integer expression> UP <array length>)

<lower element> ::=
<literal expression>

<upper element> ::=
<literal expression>

<array length> ::=
Kinteger literal expression>

semantics: A sub-array delivers a (sub) array location which is the part
of the specified array location indicated by the lower
element and upper element, Or integer expression and array
‘length. The louer bound of the sub-array is equal to the lower
bound of the specified array; the upper bound is determined
from the specified exprassions.

static properties: The mode attached to a sub-array is a
parameterised array mode defined as follous:
&namelupper index)
where &name is a virtual synmode name synonymouth With the
(possibly dynamic) mode of tha arrav location and upper index
is either L + array length - 1, where L is the louer bound of
the array mode of the array location, or lit, where lit is a
literal whose class is compatible With the classes of lower
element and upper element such that:
NUM(C1it) = NUMCL) + NUMCupper element) - NUM(lower element).
A sub-array is (languagse) referable if the element layout of
the mode of the arrav location is NOPACK.

static conditions: The classes of lower element and upper element or
‘ integer expression and array length nust be compatible with
the index mode of the mode of the array location.

The lower element, upper element, and array length must
deliver values such that the follouing relations hold:

FASCICLE VI.8 Rec. Z.200 59

(1.1)

1)
(1.1)

(1.2)

27
(2.1)

37
(3.1)

(%)
(4.1

1. L

I~

lower element € upper element

2. 1

[la)

array length
3. upper element < U
4. array length < U -L +1

where L and U are respectively the lower bound and upper bound
of the mode of the array location. (If the array location is a
dynamic mode location, relations 3. and 4. can only be checked
at run time; see belou.) ’

dynamic conditions: The RANGEFAIL exception occurs if any of the
relations 3. and 4. above does not hold for a dynhamic mode
array location, or if any of the folloWing relations hold:

1. L > integer expression
2. integer expression + array length - 1 > U

where L and U are the lower bound and upper bound of the array
mode of the array location, respectively.

4.2.9 STRUCTURE FIELDS

syntax:
<structure field> ::= (1
<structure location> . <field name> (1.1)

semantics: A structure field delivers a (subllocation which is a field of
the specified structure location.

If the structure location has a tag-less variant structure
mode and the field name is a variant field name, the semantics
are implementation defined.

static properties: The mode of the structure field is the mode of the
field name. A structure field is (language) referable if the
field name is (language) referable.

static conditions: The field name must be a name from the set of
field names of the mode of the structure location.

dynamic conditions: The TAGFAIL exception occurs if the structure
location denotes:

] a tagged variant structure mode location and the

associated tag field value(s) indicate(s) that the field
does not exist;

60 FASCICLE VI.8 Rec. Z.200

] a dynamic parameterised structure mode location and the
associated list of values indicates that the field does
not exist.

examples:
10.52 last->.info (1.1)

4.2.10 LOCATION PROCEDURE CALLS

syntax:

<location procedure call> ::= 4 (1
<location procedure call> (l.1)

semantics: - A location is delivered as the result of a location procedure
call.

static properties: The mode attached to a location procedure call is
tha mode of the result spec of the location procedure call.

dynamic conditions: The location procedure call must not deliver an
undafined location and the lifetime of the delivered location
must not have ended.

4.2.11 LOCATION BUILT-IN ROUTINE CALLS

syntax:
<location built-in routine call> ::= (1)

<implementation location built-in routine call> (1.1)

semantics: A location is delivered as the result of a implementation
location built-in routine call.

static properties: The mode attached to the location built-in
‘routine call is the result mode of the implementation
location built-in routine call.

dynamic conditions: The implementation location built-in routine call
must not deliver an undefined location and the lifetime of the
dalivered location must not have ended.

¢.2.12 LOCATION CONVERSIONS

syntax:
<location conversion> ::*< (1)
<mode name>(<static mode location>) (1.1)

FASCICLE VI.8 Rec. Z.200 61

semantics:

A location conversion overrides the CHILL mode checking and
compatibility prules. It explicitly attaches a mode to the
specified static mode location.

The Qrecise dynamic semantics of a location conversion are
implementation defined.

static properties: The mode of a location conversion is the que
name. '
static conditions: The static mode location must be referable.

The following relation must hold:
SIZE(mode name) = SIZE(static mode location)

4.2.13 STRING SLICES

syntax: A ‘
<string slice> ::=
<string location>(<start> : <end>)
<start> ::=
Kinteger expression>
‘<end> prE
<integer expression>
N.B. If both start and end are an integer literal expression,
the syntactic construct is ambiguous and Will be interpreted
as a substring.
semantics: A string slice delivers a dynamic mode string location, i.e. a
string with statically unknoun string length.
static properties: The dynamic mode attached to a string slice is a
dynamic parameterised string mode, formed in the sam2 way as
for a substring (see section 4.2.6), but with a dynamic string
length paramater formed by:
NUM(end) - NUM(start) + 1
dynamic conditions: The RANGEFAIL exception occurs if any of the

folloning relations hold:
1. NUMC start) > NUMC end)
2. NUM(start) < 0

3. NUMC end) 2 L

62 FASCICLE VI.8 Rec. Z.200

@D
(1.1)

2>
2.1)

3

- (3.1)

where L is the (possibly dynamic) length of the string mode of
the string location.

examples:
18.26 blanks(count:9)

¢.2.14 ARRAY SLICES

syntax:
<array slice> ::=
<array location>(<first> : <last>)

<first> ;:=
<expression>

<last> ::=
<expression>

N.B. I¥ both first and last are a literal expression, the
syntactic construct is ambiguous and Hill be interpreted as a
sub-array.

semantics: An array slice delivers a dynamic mode array location, i.e. an
array With a statically unknouwn upper bound.

static properties: The dynamic mode attached to an array slice is a
dynamic paramaterised array mode formed in the same way as for
a sub-array (see section 4.2.8) but with a dynamic upper index
paramater formad by exp, Where exp is an expression wKhose
class is compatible With the classes of first and last and
such that: :
NUM(exp 7 = NUMC L) + NUM(C last) - NUM(C first)
where L is the lower bound of the mode of the array location.

An array slice is (language) referable if the element layout
of the mode of the array location is NOPACK.

. static conditions: The classes of first and last must bhe cdmpatible
With the index mode of the mode of the array location.

dvnamic conditions: The RANGEFAIL exception occurs if any of the
follouing relations hold:

1. first > last
2. first < L

3. last > U

FASCICLE VI.S8 Rec. Z.200 63

(1.1)

1)
(1.1)

2)
(2.1)

3
(3.1)

where L and U denote respectively the lower bound and the
(possibly dynamic) upper bound of the mode of the array
location.

examples: -
17.27 res(0:count-1) (1.1)

4.2.15 DEREFERENCED ROHS

syntax:
<dereferenced rouw> ::= (1)
<row expression> -> : (1.1)

semantics: A dereferenced row delivers the dynamic mode location that is
referenced by the row value.

static Eroger{ies: The dynamic mode attached to the dereferenced row
is constructed as follous:
&origin mode name(<parameter> {,<parameter>}»)
where origin ‘mode name is a virtual synmode name synonymous
with the referenced origin mode of the moda of the (strong)
row expression, and where the parameters are, depending on
the referenced origin mode:

® the dynamic length, in the case of a string mode;
o the dynamic upper bound, in the case of an array mode;

[the list of values associated With the mode of the
paramaterised structure location, in the case of a
variant structure mode.

A dereferenced row 18 (language) referable.

static conditions: The row expression must be strong.

dynamic conditions: The lifetime of the referenced location must not have
endad. : :

The EMPTY exception occurs if the row expression delivers
NULL.

examples:
8.1¢ input-> (1.1)

64 FASCICLE VI.8 Rec. Z.200

3.0 VALUES AND THEIR OPERATIONS

5.1 SYNONYM DEFINITIONS

1)
1.1

«2)
2.1)

syntax:

<synonym definition statement> ::=
SYN <synonym definition> {,<synonym definition>};
<synonym definition> ::=
<name list> [<mode>] = <constant value>

derived syntax: A synonym definition Whare name list consists of more
than one nama, is derived from several synonym definition
occurrences, one for each nama, With the same constant value
and mode if present. E.o9. S5YN I,J=3; 1is derived from
SYN I=3, J=3;

semantics: A synonym dafinition defines '@ name to denote the specified
constant value.

static properties: A name dafined in a synonym definition is a
synonym name.
The class of the synonym name is, if a8 mode is specified, the
M-value class, shere M is the mode, otheruise the class of the
constant value.
A svhonym name is undefined if and only if the constant value
18 an undefined value (see section 5.3.1).
A synonvm nama is literal if and only if the constant value is
Q literal expression.

static conditions: If 3 mode is specified, it must be compatible

examples:

With the class of the constant value and the value delivered
by tha constant value nust be one of the values defined by the
mode.

synonym definitions must not be recursive nor mutually
recursive via other synonym definitions or mode definitions,
i.2. no set of recursive definitions may contain synonym
definitions (see section 3.2.1).

1.14 SYN neutral_for_add = 0,
neutral_for_mult = 1;
2.17 neutral_for_add fraction = (0,11

FASCICLE VI.8 Rec. Z.200 65

(1.17
2.1

5.2 PRIMITIVE VALUE

5.2.1 GENERAL

syntax:

<primitive value> ::*=
<location contents>
<value name>

Kliteral>

<tuple>

<value string element>
<value substring>
<value string slice>
<value array element>
<value sub-array>
<value array slice>
<value structure field>
<referenced location>
<expression conversion>
<value procedure call>
<value built-in routine call>
<start expression>
{receive expression>
<zero-adic operator>

———— — — — — —— o— — — Sowwn —— — o o —— —

- semantics: A primitive value is the basic consituent of an expression.

soma primitive values (location contents of a dynamic mode
location, some tuples, value array slices, value string
slices) have a dynamic class, i.e. a class based on a dynamic
mode. For these primitive values the compatibility checks can
only be completed at run time. Check failure Will then result
ih the TAGFAIL or RANGEFAIL exception.

static properties: The class of the primitive value is the tlass of

66

the location contents, value name, ...etc., respectively.

A primitive value is a constant primitive value if and only if
it is a constant value name, literal, constant tuple,
constant referenced location, constant expression conversion
or constant value built-in routine call.,

A primitive value is & literal primitive value, if and only if

it is a literal value name, a discrete literal or a literal

value built-in routine call.

FASCICLE VI.8 Rec. Z.200

1)
(1
@
(1.
(1
(l.
(1
(1.
(1
(1
(1.
(l.
(1
(l.
(1
(1
(1
(1
(1

L1
.2)

3)

%)

5)

.6)

7)

.82
LD

10>
11

122

13)

142
152
.16)
A7
.18

5.2.2 LOCATION CONTENTS

syntax:
<location contents> ::=
<location>

semantics: A location contents delivers the value contained in the
specified location. The location is accessed to obtain the
stored value. ’

static properties: The class of the location contents is the M-value
class, Wwhere M is the (possibly dynamic) mode of the location.

static conditions: The mode of the location must not have the
synchronisation property.

dynamic conditions: The delivered value must not be undaefined (see
section 5.3.1).

examples:
3.6 c2.im

5.2.3 VALUE NAMES

syntax:

<value name> ::=
<synonym name>
| <value enumeration name>
| <valuve do-with name>
| <value receive name>

semantics: A value nama delivers a value.
A value nama is ona of the following:

° a synonym name, i.€. & hame defined in a synonynm
‘definition statement;

° Q loop counter in value enumeration;

] a value do-uwith name, i.e. a ¥ield name introduced as
value name in the do action With a with part;

] a valua receive name, i.e. a name introduced in a receive
case action.

static properties: The class of a value name is the class of the synonvm
name, value enumeration name, value do-with name, value
receive name, respectively.

FASCICLE VI.8 . Rec. Z.200 67

1)
(1.1)

(1.1)

1)

(1.1)
(1.2
(1.3
(1.4)

A value name is constant (literall) if and only if it is a
synonym name (literal synonym namel.

static conditions: The synonym name must not be undefined .

dynamic conditions: Evaluating a value do-with name causes a TAGFAIL
exception if the danoted value is a variant field of:

. a taggsed variant structure mode value and the associated
tag field(s) indicate(s) that the denoted field does not
exist;

. a dynamic parameterised structure mode value and the

associated list of values indicates that the denoted
field doas not exist.

examples:

10.9 Cmax- (l.1)
8.8 i A (1.2)
15.45 THIS_COUNTER (1.4)

5.2.4 LITERALS

5.2.%4.1 General

syntax:
<literal> ::= _ (1

- <integer literal> (1.2
| <boolean literal> (1.2)
| <set literal> (1.3)
| <emptiness literal> “(1.4)
| <procedure literal> (1.5
| <character string literal> (1.6)
| <bit string literal> (1.7)

semantics: A literal delivers a constant value which is known at compile
tina.

static proparties: The class of the literal is the class of the
integer literal, boolean literal, ...8tc, respectively. A
literal is discrete if it is either an integer literal, a
boolean literal, a set literal, a character string literal of
length 1, or a bit string literal of length 1.

68 FASCICLE VI.8 Rec. Z.200

5.2.4.2 Integer literals

syntax:
Cinteger literal> :::=
<decimal integer literal>
| <binary integer literal>
| <octal integer literal>
| <hexadecimal integer literal>

<decimal integer literal> ::=
ID?] {<digit> | _}+*

<binary integer literal> ::=
B* {0 | 11| _k*

<octal integer literal> ::=
orfol1l12131¢«151617_3+

<hexadecimal integer literal> ::=
H' {<hexadecimal digit> | _}+*

<digit> ::*
el1r1l21314«1516171819

<hexadecimal digit> ::=
<digit> | Al BICID]|EI|F

semantics: An integer literal delivers an integer value. The usual
decimal notation is providad as uell as binary, octal,
- hexadecimal and explicit decimal. The underline symbol (_) is
not significant, i.e. it serves only for readability and it
does not influance the denoted value. ’

static properties: The class of an integer literal is the

INT-derived class.
static conditions: The string following the apostrophe (’) and the
_whole integer literal must not consist solely of underline
symbols.

6.11 1.721_119

--- D'1_721_119

--- B'101011_110100
--- 0'53_6%

--- H' AF4

FASCICLE VI.8 = Rec. Z.200 69

@p

(1.1
(1.2)
(1.3)
(1.4)

2)
(2.17

3)
(3.1

(%)
(4.1)

(5)
(5.1)

6)
(6.1)

7
(7.1)

(1.1)
(1.1)
(1.2)
(1.3)
(1.%)

5.2.4.3 Boolean literals

syntax:
<boolean literal> ::=
FALSE | TRUE
semantics: A boolean literal delivers a boolean value.
static properties: Thev class of a boolean literal is the
BOOL-derived class.
examples:
5.46 FALSE
5.2.%4.% Set literals
syntax:
<set literal> ::=
<set element name>

semantics: A set literal delivers a set value. A set literal is a name
defined in a3 set mode.

static properties: The class of a set literal 1is the M-derived
class, where M is the set moda (in the given context) which
has the specified set element name as a sot element name.

examples:
6.51 dec
11.89 king

5.2.4.5 Emptiness literal

syntax:
<emptiness literal> ::=
NULL

semantics: The emptinaess literal delivers either the empty reference
value, i.e. a value which does not refer to a location, the
empty procedure value, i.e. a valua which does not indicate a
procedure, or the empty instance value, i.e. a value which
does not identify a process.

static properties: The class of the emptiness literal is the null
class. ‘

70 FASCICLE VI.8 Rec. Z.200

@D

(1.1)

(1.1

1)
(1.1)

(1.1)
(1.1)

1)
(1.1

examples:
10.4¢0 NULL

5.2.4.6 Procedure literals

syntax: .
<procedure literal> ::=

<general procedure name>

semantics: A procedure literal deliveﬁs a general procedure value. A
procedure literal i1s a name dafined in a procedura definition
or entry definition (see section 7.4). '

static properties: . The class of the procedure literal is the
M-derived class, where M is the mode of the general procedure
name.

5.2.4.7 cCharacter string literals

syntax:
<character string literal> ::-

! {<non-apostrophe character> | <apostrophe>}»’
| ¢ {<hexadecimal digit> <hexadecimal digit>}»'

<character> ::=
<letter>
| <digit>
| <symbol>
| <space>

Xletter> ::=
- AlBIlCIDIEIFIGIHIIIVIKILIM
iNlolPIl@QIRISITIUIVIHIXIYI]Z
<symbol> ::=

SN A B AR PN B 2N B N EVE BRI I A VA B B B

<{space> ::=
spP

<gpostrophe> ::*=

rr

Note: SP denotes the character "space™; see Appendix Al.
semantics: A character string literal delivers a character string value,

which may ba of length 0. A character string literal of length
1 may serve as a character valua. To represent the character

FASCICLE VI.8 Rec. Z.200 71

(1.1

1
(1.1)

oW
(1.1)
(1.2)

2)

2.12
(2.2)
(2.3)
(2.4)

3
(3.1)
(3.2)

(%)
(4.1)

(5
(5.1)

(6)
(6.1

apostrophe (’) Within a character string literal it has to be
uritten twice ('7). The above mentionad characters constitute
the minimum printable character sat that must be provided. An
implementation may allow any printable character within a
character string literal that is in the CCITT alphabet no. 5
(seae Appendix Al). Apart from the printable representation,
the hexadecimal representation may be used. Each hexadecimal
digit pair denotes that character value whose representation
corresponds to the given hexadecimal number (see Appendix
All.

static properties: The lenath of a character string literal is

examples:

. either the number of non-apostrophe character and apostrophe

occurrences, or the number of hexadecimal digit pairs.

The class of a character string literal is the
CHAR(n)-darived class, where n is the lenath of the character
string literal.

8.18 TA-B<ZAASK''’
8.18 re

5.2.%4.8 Bit string literals

syntax:

semantics:

<bit string literal> ::=
<binary bit string literal>
| <octal bit string literal> ,
| <hexadecimal bit string literal>

<binary bit string literal> ::=
Br {0] 1| _}r

<octal bit string literal> ::=
or {0l 112131415161 7] _F*
<hexadecimal bit string literal> ::<
H' {<hexadecimal digit> | _ F»?

A bit string literal delivers a bit string value which may be
of lengath 0. Binary, octal or hexadecimal notations may be
used. The underline symbol (_) is insignificant, i.e. it
serves only for readability and does not influence the
indicated value.

static properties: The length of a bit string literal is either the

number of ¢ and 1 occurrences after B’, or three timaes the
number of 0, 1, 2, 3, %, 5 6 and 7 occurrences after 0', or
four times the number of hexadecimal digit occurrences after
H’O

72 FASCICLE VI.8 Rec. Z.200

(1.1
(6.1)

1

(1.1)
(1.2)
(1.3

2)
(2.1)

3)
(3.1

(%)
(4.1)

The class of a bit string literal is the BIT(n)-derived class,
wkhere n is the length of the bit string literal.

examples:
.- Br101011_110100°
--- 0753_64"
--- H'AFG*

5.2.5 TUPLES

syntax:
<tuple> ::=
{<mode name>] (:
{<powerset tuple> | <array tuple> | <structure tuple>}
2D

<powerset tuple> ::=
[{<expression> | <range>}
{, {<expression> | <range>}}»]

<range> ::=
<expression> : <expression>

<array tuple> ::= :
<unlabelled array tuple
| <labelled array tuple>

<unlabelled array tuple> ::=
<value> {,<value>}*

<labelled array tuple> ::* .
<case label list> : <value>
{, <case label list> : <value>}*
<structure tuple> ::=
<unlabelled structure tuple>
| <labelled structure tuple>

<unlabelled structure tuple> ::=
<value> {,<value>}*

<labelled structure tuple> ::=
<field name list> : <value>
{, <field name list> : <valued>}*

<field name list> ::=
<field name> {, .<field name>}*

derived syntax: The tuple opening and closing brackets [and 7 are

derived syntax for ¢(: and :) respectively. This is not
indicated in the syntax to avoid confusion uWith the use of

FASCICLE VI.8 Rec. Z.200 73

(l1.1)

(1.2)

(1.3

1)

(1.1)

2

2.1)

3)
(3.1)

(%)
(4.1)
(4.2)

(5)
(5.1

6)
(6.1)
(7
(7.1)
(7.2)

8’
(8.1)

(9

(9.1)

(10>
(10.1)

semantics:

square brackets as meta symbols.

A tuple dellvers either a powerset value, an array value or a
structure value.

If it is a pouerset value, it consists of a list of
expressions ands/or ranges, danoting those member values which
are in the pouerset value. A range denotes those values which
lie betusen or are one of the values delivered by the
expressions in the ranga. If the second expression delivers a
value which is less than the value delivered by the first
expression, the range is empty, i.e. it denotes no values. The
powerset tuple may denote the empty pouerset value.

If it 1s an array valua, it is a (possibly labelled) list of
values for the elemsnts of the array; in the unlabelled array
tuple, the values are given for the elements in increasing
ordar of their index; in the labelled array tuple, the values
are given for the elements whose indices are specified in the
case label list labelling the value. It can ba used as a
shorthand for large array tuples where many values are the
sama, The label £LSE denotes all the index values not
mentioned explicitly, the label * denotes all indax values
{for further details, see section 9.1.4).

If it is a structure value, it is a (possibly labelled) set of
values for the fields of the structure. In the unlabelled
structure tuple, the values are given for the fields in the
sane order as they are specified in the attached structure
moda. In the labelled structure tuple, tha values are given
for the fields whose namaes are specified in thae field name
list for tha value.

The order of evaluation of the expressions and values in a
tuple is undefined and they may be consida2red as being
evaluated in mixed order.

static properties: The class of a tuple is the M-value class where M

is the mode name, if specified, otherwise M depends upon the
context where the tuple occurs according to
the tha following list:

® if the tuple is the valuve or constant value in an
initiglisation in a location declaration, then M is the
mode 1N the location declarations

(] if the tuple is the righthand side value in a single
assignment action, then M is the (possibly dynamic) mode
of the lefthand sida location;

. if the tuple is the constant value in a synonym definition
with a specified mode, then M is that modes

76 FASCICLE VI.8 Rec. Z.200

. if the tuple is an actual parameter in a procedure call,
" then M is the mode in the corresponding paramater spec;

. if the tuple is the value in a return action or a result
action, then M is the result mode of the erocedur‘e name of
the result action or return action (see section 6.8);

. if the tuple is a value in & send action, then it is the
associated mode specified in the signal definition of the
signal name or the buffer element mode of the mode of the
buffer location; . i

[3 if the tuple 1S an expression in an array tuple then M is
the alemant mode of the mode of the array tuple;

. if the tuple is an expression in an unlabelled structure
tuple or a labelled structure tuple where the associated
field name list consists of only one field name then M is
the mode of the field in thea structure tuple for which the
tuple is specified.

A tuple is constant if and only if each value or expression
occurring in it is constant.

static conditions: The optiocnal mode name may be deleted only in the
contexts specified above. Depending on whether a powerset
tuple, array tuple or structure tuple is specified, the
folloning compatibility requirements must be fulfilled:

Q. powerset tuple

1. The mode of the tuple must be a pouerset mode.

2. The class of each expression must ba gompatible
With the mgmber mode of tha mode of the tuple.

3. The value delivered by each expression must be one
of the values defined by that membar mode.

b. array tuple
1. The mode of the tuple must be an array mode.

2. The class of each value must be compatible with the
elemant mode of the mode of the tuple.

In the case of an unlabelled array tuple:
3. There must be as many occcurrences of value as
the number of elemants of the array mode of the

tuple.

In the case of a labelled array tuple:

FASCICLE VI.8 Rec. Z.200 75

76

6.

4. The case selection conditions must hold for
the list of case 1label 1list occurrences (see
section 9.1.3). The resulting class must be
compatible with the index mode of the mode of the
tuple .

5. The value delivered by each literal
expression in each case label list and the valuas

‘defined by each mode name in each case label list

must lie betwueen the louer bound and upper bound
{bounds included) of the mode of the tuple.

In an unlabelled array tuple, at least one value

occurrence must be an expression; in a labelled array
tuple, at least one value occurrence following a case
label list Which is not (ELSE) must be an expression
(see section 5.3.1).

7.

For a constant (array) tuple uhere the element

mode of the mode of the tuple is & discrete mode, each
specified value must deliver a valua wWithin the
bounds of the elem2nt mode (bounds included), unless
it is an undafined valua.

C. structure tuple

1. The mode of the tuple must be a structure mode.

2.

This mode must not be a structure mode KHhich has

field names which are invisible (sea section 9.2.7).

In the case of an unlabelled structure tuple:

FASCICLE VI.8

If the mode of the tuple is neither a yvariant
structure mode nor a paranmeterised structure mode
then:

3. There must be as many occurrences of value
as there are field namas in the list of field
names of the mode of the tuple.

%. The class of each value nmust be compatible
With the mode of tha corresponding (by
position) field name of the mode of the
tuple.’

If the mode of the tuple is a tagaed variant
structure mode or a tagqaed parameterised
structure mode then:

5. Each value specified for a tag field must
be 9 literal expression.

Rec. Z.200

6. There must be as many occurrences of
value as there are field names indicated as
existing by the value(s) delivered by the
literal expression occurrences specified for
the tag fields.

7. The class of each value must be
compatible with the mode of the corresponding
field name.

[] If the mode of the tuple is a tag-less variant
structure mode or a tag-less parameterised
structure mode then:

8. NO unlabelled structure tuple is alloued.
In the case of a labelled structure tuple:

o If the mode of the tuple is neither a variant
structure mode nor a paramaterised structure mode
than:

9. Each field name of the list of field
names of the mode of the tuple must be
m2ntioned once and only once in a field nanme
list and in the same order as in tha mode of
the tuple.

10. The class of each value nust be
compatible With the mode of the field name
specified in the field name list labelling
that value.

. If the mode of the tuple is a tagaed variant
structure mode or a tagged paramaterised
structure moda, then:

11. Each value that is specified for a tag
field must be a literal expression,

12. only field names corresponding to
fields indicated as existing by the valuel(s)
delivered by the literal expression
occurrencas specified for the tag fields may
be specified and all of them must be
specifiaed in the same order as in the moda of
the tuple.

13. Thae class of each value must be
compatible with the mode of the field nama
spacified in the field name list labelling
that value.

FASCICLE VI.8 Rec. Z.200 77

. If the mode of the tuple is a tag-less variant
structure mode or a taa-less parameterised
structure mode then:

14, Field names mentioned in field name
list, which are defined in the same
alternative fields, must be all dafined in
the same variant alternative or defined after
ELSE. All the field names of a selected
variant alternative or defined after E£ELSE,
must be mentioned once and only once in the
same order as in the mode of the tuple.

15, The class of each value must be
compatible With the moda of any field name
specified in the field name list in front of
that value.

16. If the mode of the tuple is a tagaed parameterised
structure mode, the list of values dalivered by the
literal expression occurrences specified for the tag
fields must be the same as the list of values of the
mode of the tuple.

17. For a constant (structure) tuple, each value
specified for a field wHith a discrete mode must
daliver a value wWithin the bounds of the mode of the
field (bounds included), unless it is an undefined
value.

18. At least one value occurrence must be an
expression.

dynamic conditions: The assignment conditions of any value wWith respect
to the member mode, element mode or associated field mode, in
the case of powerset tuple, array tuple or structure tuple,
respectively (see section 6.2.3) apply (refer conditions a2,
a3, b2, ¢4, ¢c7, cl0, cl3 and cl15}.

examples:

If the tuple has a dynamic array mode, the RANGEFAIL exception
occurs if any of the conditions b3 or b5 fail.

If the tuple has a dynamic parameterised structure mode, the
TAGFAIL exception occurs if the check clé fails.

[o-JVa V. |
N OV

17.5
12.28
11.16

number_listl]

[2:max]
{CTA"):3,C'B","'K",*Z"):1,(ELSE):01
{(x):r 1]

¢ :NULL,NULL,536:)
{.status:occupied, .p:[uhite, rookll]

78 FASCICLE VI.8 Rec. Z.200

(1.
2.
(6.
(6.
(7.
(9.

1)
1)
1)
D
1
1)

5.2.6 VALUE STRING ELEMENTS

syntax:
<value string element> ::= (1)
<string expression>(<position>) (1.1
derived syntax: A value string element is derived syntax for a value

substring of lengath 1 (see section 5.2.7). I.e.
<slring expression>(<position>)

is derived from:

<string expression> (<position> UP 1)

5.2.7 VALUE SUBSTRINGS

syntax:
<value substring> ::= 1
<string expression>(<left element> : <right element>) (1.1)

| <string expression>(<position> UP <string length>) (1.2)

N.B. if the string expression is a string location, the
syntactic construct is ambiguous and Will be interpreted as a
substring (see saction 4.2.6).

semantics: A value substring delivers a string value shich 18 a sub-value
of the specified string value.

static properties: The class of a value substring is, if the string
expression i hot strong then the CHAR(n)-derived class or
BIT(n)~derived class (depending on Whether the string
expression is a bit or character string expression) otherwise
the &name(n)=-value class, Where n is either <string length>
or)
NUH(C right element) - NUM(left element) + 1 and &name is a
virtual synmode name, synonymous With the mode of the string
expression.

static conditions: The left element, right element and string length
must deliver non-negative integer values such that the
folloning relations hold:

1. NUMC Igft element) £ NUM(right element)

2. NUM(right element) < L-1

3. 1 < NUM(C string length) < L

where L is the string length of the root mode of the class of
the string expression. (If the string expression has a

dynanic class, the checks 2. and 3. can be performed only at
run time; see below.)

FASCICLE VI.8 Rec. Z.200 79

dynamic conditions: The value delivered by a value substring must not be

undefined.

/

The RANGEFAIL exception occurs if any of the relations 2 or 3
above does not hold in the case of a string expression With a
dynamic class, or if any of the following relations hold:

1. NUM(positon) < 0

2. NUM(position) + NUM(string length) > L

where L is the string length of the root mode of the class of
the string expression.

5.2.8 VALUE STRING SLICES

1
(1.1)

syntax:

<value string slice> ::=
<string expression>(<start> : <end>)

N.B. if the string expression i8 a -string location the
syntactic construct is ambiguous and wWill be interpreted as a
string slice (sea section 4.2.13). If both start and end are
an integer literal expression, the syntactic construct is
ambiguous and Hill be intrepreted as a value substring (see
section 5.2.7). ’

semantics: A value string slice delivers a dynamic string value, which is
a sub-value of the specified string value.

static properties: The class of a value string slice is defined the
same way as for the value substring (see section 5.2.7), but
with a dynamic paramater n formad as:
NUH(end) - NUM(start) + 1.

dynamic conditions: The value delivered by a value string slice must

not be undefined.

The RANGEFAIL exception occurs if any of the follouwing
relations hold: -

1. NUM(C start) > NUM(C end)
2. NUM(C start) < 0
3. NUMC end) > L

where L is the (possibly dynamic) length of the root mode of
the class of the string expression.

80 FASCICLE VI.8 Rec. Z.200

5.2.9 VALUE ARRAY ELEMENTS

syntax:
<value array element> ::*=

<array expression> (<expression list>)
N.B. if the array expression is a array location the syntactic
construct is ambiguous and Will be interpreted as a array
element (see section 4.2.7).
derived syntax: See section ¢.2.7

semantics: A value array element delivers a value which is an element of
the specified array value.

static properties: The class of the value array element 1is the

- M-value class, where M is the element mode of the mode of the
array expression. ‘ .
static conditions: The arrav expression must be strong. The class of

the expression must be compatible with the index moda of the
mode of the array expression.

dynamic conditions: The value delivered by a value array element must
not be undefined.

The RANGEFAIL exception occurs if any of the following
relations hold:

1. expression < L
2. expression > U

where L and U are the lower bound and (possibly dynamic) upper
bound of the mode of the array expression, respectively.

5.2.10 VALUE SUB-ARRAYS

syntax:
<value sub-array> ::=
<array expression>
(<lower element> : <upper element>)
| <array expression>
(<integer expression> UP <array length>)

N.B. if the a&array expression 1is an array location the

syntactic construct is ambiguous and will be interpreted as a
sub-array (see section 4.2.8).

FASCICLE VI.8 Rec. Z.200 8l

1)

(1.1)

1)

(1.1

(1.2)

semantics: A value sub-array delivers a (sub) array value which is part
of the specified array value. The louwer bound of the value
sub-array is equal to the lower bound of the specified array
value; the upper bound 1is determined from the specified
(index) expressions.

static properties: The class of a value sub-array is the M-value
class, where M is a parameterised array mode defined as:
&name(upper index) : .
where &name 15 a virtual synmode name synonymous With the
(possibly dynamic) mode of the grray expression and upper
index is either L + array length - 1, where L is the louer
bound of the mode of the array expression, or lit, where lit
is the literal whose class is compatible With the tlasses of
lower element and upper element such that:
NUMCL1it) = NUH(L) + NUMCupper element) - NUH(lower element)

static conditions: ‘The array expression must be strong The classes

. of lower element and upper element Or integer expression and

array length must be compatible With the index mode of the
mode of the array expression. The lower element, upper
element and array length must deliver values such that the
folloing relations hold:

1. L

1A

lower element £ upper element

N
.

o
~

£ array length

3. upper element < U

4. array length < U -L +1

where L and U are respectively the lower bound and upper bound
of the array mode of the array expression. (If the array
expression has a dynamic class, relations 3. and 4. can only

be checked at run time; see balou.)

dynamic conditions: The value delivered by a value sub-array must not be
undefined.

The RANGEFAIL exception occurs if any of the relations 3. or
4. abova does not hold in the case of a dynamic class, or if
any of the following relations hold:

1. L > integer expression

2. linteger expression + array length -1 > U

where L and U are the lower bound and upper bound of the mode
of the array expression, respectively.

82 FASCICLE VI.8 Rec. Z.200

5.2.11 VALUE ARRAY SLICES

syntax:
<value array slice> ::= (1)
<@rray expression> (<first> : <last>) 1.1

N.B. if the agrray expression 18 an garray location, the
syntactic construct is ambiguous and uWill be interpreted as
an array slice (see section 4.2.14). If both first and last
are a literal expression, the syntactic construct is
ambiguous and wWill be interpreted as a value sub-array (see
section 5.2.10). :

semantics: A value array slice delivers a dynamic array value, which is a
sub value of the specified array value.

static properties: The class of a value array slice is the M-value
class, khere M is a dynamic parameterised array mode defined
in the same wray as for value sub-array [(see section 5.2.10)
but With a dynamic upper index paramater formed as exp, where
exp iS an expression whose class is compatible uith the
classes of first and last, and such that:
NUMC exp) = NUM(L) + NUM(last) - NUM(first)

static conditions: The arrav expression must be strong. The classes
of first and last must be compatible with the indasx mode of
the mode of the array expression.

dynamic conditions: The value delivered by a value array slice must
not be undefined.

The RANGEFAIL exception occurs if any of the following
relations hold: ,

1. first > last

2. first <L

3. last > U

‘where L and U denote respectively, the lower bound and

(possibly dynamic) upper bound of the mode of the array
expression.

5.2.12 VALUE STRUCTURE FIELDS

syntax

<value structure field> ::=
<structure expression> . <field name>

FASCICLE VI.8 Rec. Z.200 83

1)
(1.17

N.B. if the structure expression i a structure location the
syntactic construct is ambiguous and will be interpreted as a
structure field (see section §.2.9).

semantics: A value structure field delivers a value which is a field of
the specified structure value. If the structure expression
has a tag-less variant structure mede and the field name is a
variant field nama, the semantics are implementation defined.

static properties: The class of value structure field is the M-value
class, where M is the mode of the field name.

static conditions: The structure expression must be strong. The
field name must be a name from the set of field names of the
rode of the structure expression.

dvnamic conditions: The value delivered by a value structure field
must not be undefined.

The TAGFAIL exception occurs if the structure expression has

L a tagged variant structure mode and the associated tag
field value(s) indicate(s) that the denoted field does
not exist;

¢ & dynamic parameterised structure mode and the associated
list of values indicates that the field does not exist.

examples:
16.49 (RECEIVE USER_BUFFER).ALLOCATOR

5.2.13 REFERENCED LOCATIONS

syntax:
<referenced location> ::=
-> <location>

semantics: A referenced location delivers a reference to the specified
location if the location is referable. If the location is not
referable, it delivers a reference value which may not be
dereferenced (see section 4.2.4) and which may refer to an
implementation defined location.

static properties: If the location is referable, the class of the
referenced location is the M-reference class, where M is the
moda of the location. Otherwise the class of the referenced
location is the PTR-derived class. A referenced location is
constant if and only if the location is static.

examples:
8.23 -3¢

84 FASCICLE VI.8 Rec. Z.200

(1.1)

1)
(1.1)

(1.1)

5.2.14 EXPRESSION CONVERSIONS

syntax:
<expression conversion> ::= 1
<mode name> (<expression>) (1.1)

semantics: An expression conversion overrides the CHILL mode checking
and compatibility rules. It explicitly attaches a mode to the
expression. The precise dynamic semantics of an expression
conversion are implementation defined and depend on internal
represantations of values.

static properties: The class of the expression conversion 1is the
M-value class, where M is the mode name. AN expression
conversion is constant if and only if the expression 1is
constant.

static conditions: The expression must not have a dynamic class. The
class of the expression must be compatible With at least one
mode Whosa size is equal to the size of the mode name. The
mode name must not have the synchronisation property.

5.2.15 VALUE PROCEDURE CALLS

syntax:
<value procedure call> ::= 1
<value procedure call> (1.1)

semantics: A value procedure call delivers the value returned from a

procedure.
static properties: The class of the value procedure c¢all is the

M-value class, uhere M is the mode of the result spec of the
value procedure call.

dynamic conditions: The value procedure call must not deliver an
undafined value (see sections 5.3.1 and 6.81.

examples:
6.51 julian_day_number(l10,dec,19791) (1.1)
11.68 ok_bishopt(b,m) ’ (1.1

5.2.16 VALUE BUILT-IN ROQUTINE CALLS

syntax:
<value built-in routine call> ::= (1

<implementation value built-in routine call> (1.1)

FASCICLE VI.8 Rec. Z.200 85

| <CHILL value built-in routine call>

<CHILL value built-in routine call> ::=

NUM(<discrete expression>)

PRED(<discrete expression>))

PRED(<bgund reference expression>)

SUCC(<discrete expression>)

SUCC(<bound reference expression>)

ABS(<integer expression>)

ADDR(<location>)

CARD(<pouwerset expression>)

MAX(<powerset expression>)

HIN(<powersel expression>)

SIZE({<mode name> | <static mode location>})
UPPER({<array expression> | <sitring expression>})
GETSTACK(<getstack argument>)

— e — —— ittt e ooy e

<getstack argument> ::*=
<mode name> .
| <arrav_mode name>(<expression>)
| <string mode name>(<jinteger expression>)
| <variant structure mode name>(<expression list>)

derived syntax: ADDR(<location>) is derived syntax for -> <location>

semantics:

A value built-in routine call is either an implementation
defined built-in routine call or a CHILL defined built-in
routina call, delivering a value. A CHILL value built-in
routine call is an invocation of one of the CHILL defined
built-in routines which delivers a value.

NUM delivers an integer value With the same internal
representation as the value delivered by the discrete
aragument. NUM for set values delivers the integer value as
specified by the set mode. NUM for character values delivers
the integer valua as specified by CCITT alphabet no. 5 (sece
Appendix Al). NUM(TRUE) delivers 1, NUM(CFALSE) delivers 0.
NUM for integer values delivers that integer value.

PRED and 5UCC on discrete values deliver respectively the
next lower and higher discrete value, if existing. Otheruise
an exception cccurs. If the discrete value is a set valua from
a set mode With holes, tha holes are skipped (i.e. in tha
example in static properties of section 3.4.5, SUCCCA)
delivers B, PRED(B) delivers A).

PRED and SUCC on bound reference values are defined only on
refarence values which refer to array elements. They deliver
respectively the reference value refering to the array
elenent With the next louer and higher index, if existing.

ABS5 is defined on integer values, delivering the absolute
value of the integer value.

86 FASCICLE VI.38 Rec. Z.200

2)

(2.1)
2.2)
(2.3)
(2.4)

- (2.5)

(2.6)
2.7)
(2.8)
2.9)
2.10)
(2.11)
(2.12)
(2.13)

3)

(3.1
(3.2)
(3.3
(3.4)

ADDR is an alternative notation for referencing a location.

CARD, MAX and MIN are defined on pouersat values. CARD
delivers the number of element values in the pouerset value.
MAX and MIN deliver respectively the areatest and smallest
element value in the pouerset value.

SIZE is dafined on referable static mode locations and modes.
In the first case it delivers the numbar of addressable memory
units occupied by that location, in the second case, the
number of addressable memory units that a referable location
of that mode Will occupy. In the first case, the static mode
location Will not bhe evaluated at run time.

UPPER is defined on (possibly dynamic) array values and
string valuaes, delivering the upper index of the array value
or highest string index in the string value (i.e. string
length minus 1].

GETSTACK creates a location of the specified mode on the stack
{see section 7.4) and delivers a reference value for the
created location. If a mode name is specified, a static mode
location of that mode is created and a bound reference value
is delivered. Otherwise a dynamic mode location i1s created,
whose mode is a paramaterised mode With run-time parameters
as specified in’ the GETS5TACK argument and a row value
referring to the location is delivered.

static proparties: The class of a NUM built-in routine call is the
INT-derived class. The built-in routine c¢all is constant
(literal) if and only if the argument is constant (literal).

The class of a PRED or SUCC built-in routine call is the class
of the argument. The built-in routine call is constant
(literall) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is thea class of the
argument. The built-in routine call is constant (literall if
and only if the argument is constant (literal).

The class of a CARD built-in routine call is the INT-derived
class. The built-in routine call is constant if and only if
the argument is constant.

The class of a MAX or MIN built~-in routine call is the M-value
class, where M is the member mode of the moda of the powerset
expression. The built-in routine call is constant if and only
if the argument is constant

The class of a SIZE built-in routine call is the INT-derived
class. The built~in routine call is constant.

FASCICLE VI.8 Rec. Z.200 87

If the argument of an UPPER built-in routine call is an array
expression, the class of the UPPER built-in routine call is
the M-value class, where M is the index mode of the array mode
of the (strong) array expression. 1f the argument of an UPPER
built-in routine call is a string expression, the class of the
built-in routine call is the INT-derived class. An UPPER
built-in routine call is constant and literal if and only i¥f
the class of the array expression or string expression is a
static class.

The class of & GETS5TACK built-in routine call is the
M-reference class, where M is, depending on the getstack
argument, either the mode name or a dynamic parameterised
mode formed by:

&<array mode name>(<expression>) ,or

&<string mode name>(<integer expression> ') , or

&<yariant structure mode name>(<expression list>) ,
respectively.

static conditions: If the argument of a PRED or SUCC built-in

routine call is constant, it must not daliver respectively
the smallest or greatest discrete value defined by the root
mode of the class of the argumant.

If the argument of a MAX or MIN built-in routine call is
constant, it must not deliver the empty pouerset value.

The powerset expression as an argument of a CARD, MAX or MIN
built-in routine call must b2 strong.

The bound reference expression as an argument of a PRED or
SUCC built-in routine call must be strong.

The array expression as an argument of an UPPER built-in
routine call must be strong.

The following compatibility requirements hold for a getstack
argument Which i1s not a single pode name:

[The class of the expression must be compatible With the
ihdax mode of the arrav mode name. '

] There must be as many expressions in the expression list
as there are classes in the list of classes of tha variant
structure mode name and the class of each expression must
be compatible nith the corresponding class in the list of
classes of the variant structure mode name.

dynamic conditions: PRED and SyUcCC cause the OVERFLOW exception if they are

88

applied to the smallest or greatest discrete value dafinad by
the root mode of the class of the argumant. PRED and SUCC
cause the RANGEFAIL exception if they are applied to a bound
reference value referencing the array element with the louest
or highest index. PRED and SUCC cause the EMPTY exception if

FASCICLE VI.8 Rec. Z.200

examples:

the bound reference expression delivers NULL.

MAX and MIN cause the EMPTY exception if they are applied to
empty pouerset values (i.e. containing no member values).

GETSTACK causes the SPACEFAIL exception if storage
requirements cannot be satisfied.

GETSTACK causes the RANGEFAIL exception if in the getstack
argument:

. the expression delivers a value which is outside the set
of values defined by the index mode of the garray mode
names

] the integer expression delivers a negative value or a
value which is greater than the length of the string mode
names; '

° any expression in the expression 1list for uWhich the
corresponding class in the list of classes of the variant
structure mode name is an M-value class (i.e. is strongl,
dalivers a value which is outside the set of values
defined by M.

ABS causes the OVERFLOHW exception if the resulting value is
outside the bounds defined by the root mode of the class of
the argument.

9.11 MIN(sieve)
11.91 - PRED(col_1>
11.91 SUCC(col_1)

5.2.17 START EXPRESSIONS

syntax:

<start expression> ::= ,
START <process name> ([<actual parameter list>])

semantics: The evaluation of the start expression creates and activates
a nen process whose definition is indicated by the process
name (see chapter 8). Parameter passing is analogous to
procedure paramgater passing; houever, additional actual
paranaters may ba given Hith an implementation defined
meaning. The start expression delivers a unique ihstance
value identifying the created process.

static properties: The class of the start expression 1is the

INSTANCE=~-derived class.

FASCICLE VI.8 Rec. Z.200 89

(2.10>
2.2)
(2.4)

(1)
(1.1)

static conditions: The number of actual parameter occurrences ih the

actual parameter list must not be less than the number of
formal parameter occurrences in the formal parameter list of
the process definition of the process name. If the number of
actual paramesters is m and the number of formal parameters is
n (m>n), the compatibility requiremants <for the first n
actual parameters are the same as for procedure parameter
passing (see section 6.7).

dynamic conditions: The start expression can cause any implementation

examples:

defined exception whose name is attached to the process name
(see section 7.5).

For parameter passing, the assignment conditions of any
actual value uith respect to the mode of its associated formal
parameter apply (see section 6.7).

The start expression causes the SPACEFAIL exception if
storage requiremants cannot be satisfied.

15.25 START COUNTER()

5.2.18 RECEIVE EXPRESSIONS

syntax:

<receive expression> ::=
RECEIVE <buffer location>

semantics: The receive expression delivers a value out of the specified
buffer or from any delayed sending process. If the receive
expression is executad wkhile the buffer does not contain a
value or no sending process is delaved on it, the executing
process 18 delayed until a value is sent to the buffer (see
chapter 8 for full details).

static properties: The class o0f the receive expression 1s the
M-valuea class, where M is the buffer element mode of the mode
of the buffer location.

dvnamic conditions: The lifetime of the denoted buffer location must
not end while the executing process is delayed on that buffer
location. -

examples:

16.49 RECEIVE USER_BUFFER

%0 FASCICLE VI.S8 Rec. Z.200

(1.1

(1>
(1.1)

(1.1>

5.2.19 ZERO-ADIC QPERATQR

syntax:
<zero-adic operator> ::= (1)

THIS (1.1) .

semantics: The zero-adic operator delivers the unique instance value
- identifying the process executing it.

static properties: The class of the =zero-adic operator 1is the
INSTANCE-derived class.

5.3 VALUES AND EXPRESSIONS

5.3.1 GENERAL

syntax: .
<value> ::=- 1
<expression> . (1.1)
| <undefined value> (1.2)
<undefined value> ::= ‘ 2)
* 2.1
| <undefined svnonym name> ; €2.2)

semantics: A value is either an undefined value or & (CHILL defined)
value delivered as the result of the evaluation of an
expression.

static properties: The class of a value is the class of the
expression or undefined value respectively.

The class of the undefined value is the all class if the
undefined value is a %, othernise the class is. the class of
the undefined synonym nanme.

A value is constant if and only if it is an undefined value or
an expression which is constant.

dvnamic properties: ‘A value is said to be undefined if it is denoted
by the undefined value or when explicitly indicated in this
documant. A composite value is undefined if and only if all
its sub componcnts (i.e. substring values, elemant values,
field values) are undafined.

(Note: A value can denote an undefined value only in the
following contexts:

FASCICLE VI.8 Rec. Z.200 91

examples:

[] it is an undefined value;
(] it is @ location contents, containing an undefined value;

] it is a value procedure call, delivering an undefined
value;

. it is 3 value substring, a value string slice, a value
array element, a value sub-array, a value array slice, OPF
a value structure field, dalivering an undefined value.)

6.40 (166_097%c)/74+(1l_G61%yl/%
+(153+m+c)/5+day+1_721_119

5.3.2 EXPRESSIONS

syntax:

semantics:

<expression> ::°<
<goperand-1l> .
| <sub expression> { OR | XOR } <operand-1>

<sub expression> ::=
<expression>

The order of evaluation of the constituents of an expression
and their sub-constituents etc. is undefined and they may be
considered as being evaluated in mixed ordar. Thay nzed only
to be evaluated to the point that the value to be delivered is
determined uniquely. If the expression is constant or
literal, the evaluation Will never cause an exception.

If OR or XOR is specified the sub expression and the operand-1
deliver: .

. boolean values, in which case OR and X0R denote the usual
logical operators delivering a boolean value;

. bit string values, in which case 0OR and XOR denote the
usual logical operations on bit strings, delivering a bit
string value;

] powerset values, in which case OR denotes the union of
both pouerset values and XOR denotes the pouerset value
consisting of those member values which are in only one of
the specified pouerset values (e.g9. 4 XOR B = A-B OR B-A).

static properties: If an expression is ah operand-1, the class of the

expression. is the class of the operand-l1. If OR or XOR is
specified, the class of the expression is the resulting class
of the class of sub expression and the operand-1.

92 FASCICLE VI.8 Rec. Z.200

(1.1)

1)
(1.1)
(1.2)

2
2.1)

An expression is constant (literal) if and only if it is
either an operand-1 which is constant (literall), or built up

from an expression and an operand-1 which are both constant
(literall.

static conditions: If OR or XOR is specified, the class of the sub
expression must be compatible With the class of the
operand-1. Both classes must have a boolean, pouerset or bit
string root mode.

dynamic conditions: In the case of OR or XOR a RANGEFAIL exception occurs
if one or both operands have a dynamit class and tha dynamic
~ part of the above mentioned compatibility check fails.

examples:
10.27 i<min
10.27 i<min OR i>max

5.3.3 OPERAND-1

syntax:
<ogperand-1> ::=
<operand-2>
| <sub operand-1> AND <operand-2>

<sub operand-1> ;:=
<pperand-1>

semantics: If AND is specified, sub operand-1 and operand-2 deliver:

[] boolean values, in khich case AND denotes tha usual
logical "and" operation, delivering a boolean values;

[bit string values, in which case AND denotes the usual
logical "and" operation on bit strings, delivering a bit
string value;

] powerset values, in wuhich case AND denotes the
intersection operation of pouwerset values delivering a
poxerset value as a result.

static properties: If an operand-l is an operand-2, the class of the
operand-1 is the class of the operand-2.

If AND is specified, the class of the operand-l1 1is the
resulting class of the classes of the operand-2 and sub
operand-1l. ‘ o

An operand-1 is constant (literal) if and only if it is either
an operand-2 which is constant (literal), or built up from an
operand-1 and an operand-2 which are both constant (literal].

FASCICLE VI.8 Rec. Z.200 93

(1.1
(1.27

1)
(1.1)
(l1.2)

2)
(2.1)

static conditions: If AND is specified, the class of the sub operand-1
rust be compatible With the class of the operand-2. These
classes must both have a boolean, pouerset or bit string root
mode.

dvnamic conditions: In the case of AND a RANGEFAIL exception occurs if onhe
or both operands have a dynamic class and the dynamic part of
the above mentionad compatibility check fails.

examples:
5.11 (al OR bl)

5.11 NOT k2 AND (al OR bl)

5.3.4 OPERAND-2

syntax:
<operand-2> ::=
<operand-3> .
| <sub operand-2> <operator-3> <operand-3>

<sub operand-2> ::<
<operand-2>
<operator-3> ::=
<relational operator>
| <membership operator>
| <powerset inclusion operator>

<relational operator> ::=
= lzz > >] <)<=

<membership operator> ::*-
IN

<powerset inclusion operator> ::=
<= | >z} < | >

semantics: The equality (=) and inequality (/=) operators are defined
betuean all values of a given mode. The other relational
oparators (less than: <, less than or equal to: <=, greater
than: > , greater than or equal to: >:, are dafined betueen
values of a given discrete or string mode. All the relational
operators deliver a boolean value as result.

The membership operator is defined betueen a member value and
a pouerset value. The operator delivers TRUE if the member
value is in the specified pouerset value, othernise FALSE.

The pouerset inclusion operators are defined betwueen pouerset

values, testing whether or not a set value is contained in: <=
» is properly contained in: <, contains: >=, or eproperly

9% FASCICLE VI.8 Rec. Z.200

(1.1)
(1.27

1)
(1.1)
(1.2)

27
2.1)

3)

(3.1)
(3.2)
(3.3

(%)
(%.1)

(5)
(5.1)

6)
(6.1)

contains: > the other set value. The pouerset inclusion
operator delivers a boolean value as result.

static properties: If an operand-2 is an operand-3, the class of the
operand-2 is the class of the operand-3. If an operator-3 is
specified, the class of the operand-3 is the B0OL-derived
class.

An operand-2 is constant (literal) if and only if it is either
an operand-3 which is constant (literal) or built up from an
operand-2 and an operand-3 which are both constant (literal).

static conditions: If an operator-3 is specified, the following
compatibility requirements betuaen the class of sub operand-2
and the class of the operand-3 must be fulfilled: '

° it the operator-3 is = or /=, both classes must be
compatible; v

e _if the operator-3 is a relational operator other than = or
/7=, both classes must be compatible and must have a
discrete or string root mode;

° if the operator-3 is 8 membership operator, the class of
operand-3 must have a powerset root mode and the class of
the sub operand-2 must be compatible with the mamber mode
of that root mode;

. if the operator-3 i a powerset inclusion operator, both
classes must be compatible and must have a pouerset root
mode.

dvnamic conditions: In the case of a relational operator, & RANGEFAIL or

TAGFAIL exception occurs if one or both operands have a

~dynamic class and the dynamic part of the above mentioned

.compatibility check fails. The TAGFAIL exception occurs if

and only if a dynamitc class is based upon a dynamic
parameterised structure mode.

examples:
10.46 NULL (1.1

10.46 last=NULL (1.2)

5.3.5 OPERAND-3

syntax ‘
) <operand-3> ::= 1)
<operand-4> (1.1)
| <sub operand-3> <operator-4> <operand-4%> (1.2)
<sub operand-3> ::* 2)

FASCICLE VI.8 Rec. Z.200 95

semantics:

<operand-3>

<operator-%> ::=
<arithmetic additive operator>
| <string concatenation operator>
| <powerset difference operator>

K@rithmetic additive operator> :
+] -

<string concatenation operator> ::-*
/S

<powerset difference operator> ::

If the operator-4 is an arithmetic additive operator, both
operands deliver integer values and the resulting integer
value is the sum (+) or difference (-) of the two values.

If the operator-4¢ is a string concatenation operator, both
operands deliver either bit string values or character string
values; the resulting value consists of the concatenation of
these values.

If the operator-4 is the pouerset difference operator, hoth
operands deliver pouarset values and the resulting value is
the pouerset value consisting of those member values wuhich
are in the value delivered by sub operand-3 and not in the
value delivered by operand-4.

static properties: If an operand-3 is an operand-4¢, the class of the

operand-3 is the class of operand-¢. If an operator-¢ is
specified, the class of the operand-3 1s determined by the
operator-4 as follous: '

* if operator-¢ is a string concatenation operator, the
class of the operand-3 is, depending on the classes of the
operand-% and sub operand-3:

- if none of them is strong, the class is the
BIT(n)-derived class or CHAR(n)-derived class,
depending on whether both operands are bit or
character strings, where n is the sum of the lengths
of the root modes of both classes,

- otheruwise the class is the &name(n)-value class,
khere &name is a virtual synmode name synonymous With
the mode of one of the strong operands and n denotes
the sum of the length of the root modes of both
classes

(this class is dynamic if one or both operands have a

dynamic class). '

96 FASCICLE VI.8 Rec. Z.200

2.1)

3

(3.1)
(3.2)
(3.3

(%)
(%4.1)

(5
(5.1)

6)
(6.1)

if operator-4 is an arithmetic additive operator .oOr
powerset difference operator, the class of the operand-3
is the resulting class of the classes of the operand-%¢ and
the sub operand-3.

An operand-3 is constant (literal) if and only if it is either
an operand-¢ which is constant (literal), or built up from an
operand-3 and an operand-4% uhich are both constant (literall.

static conditions: If an operator-¢% is specified, the following

compatibility requiraments must be fulfilled:

if operator-4 is an arithmetic additive operator, the
classes of both operands must be compatible and they must
both have an integer root mode;

if operator-4 is a string concatenation operator, the
root modes of the classes of both operands must both be
bit string modes or both be character string modes and, if
both classes are value classes, their root modes must
have the sama novelty;

if operator-4 is a powérset difference operator, the
classes of both operands must be compatible and both must
have a pouerset root moda.

dynamic conditions: In the case of an operand-3 which is not constant , an

examples:

OVERFLOW exception occurs if an addition (+) or a subtraction
} gives rise to a value which is not Within tha - bounds
spacified by the root moda of the class of the operand-3.

(-

b~ b
(S, IS}

i+j

5.3.6 OPERAND-%

syntax

<operand-4¢> ::=

<sub operand-4> ::°<

<operand-5>
| <sub operand-4>
<arithmetic multiplicative operator> <operand-5>

<operand-4¢>

<arithmetic multiplicative operator> ;:=

x| » | HOD | REM

FASCICLE VI.S8 Rec. Z.200 97

(1.2)
(1.2)

1
(1.1)

(1.2)

If an arithmetic multiplicative operator is specified, sub
operand-4 and operand-5 deliver integer values and the
resulting integer value is either the product (%), the
quotient (), modulo (HOD) or division remainder (REM) of
both values.

The modulo operation i1s defined such that I 40D v delivers the
uniqua integer value K, 0 ¢ K < J such that there is an
integer value N such that I = N x v + K. J must be greater
than 0.

The remainder operation is defined such that
X REM Y = X - (XsY) % Y yields TRUE for all integer values X
and Y.

static prbperties: If the operand-4¢ 1S an operand-5, the class of

the operand-% is the class of the operand-5, otheruise the
class of the operand-¢ i1s the resulting class of the classes
of the sub operand-¢ and the operand-5.

An operand-4 is constant (literal) if and only if it is either
an operand-5 khich is constant (litersll), or built up from an
operand-% and an operand-5 which are both constant (literal).

static conditions: If an arithmetic multiplicative operator 1iS

specified, the classes of the operand-5 and sub operand-¢
nust be compatible and both must have an integer root mode.

dynamic conditions: In the case of an operand-%, wKkhich 1i1s not

examples:

constant, an OVERFLOW exception occurs if a nrultiplication
(x) or a division (/) or a modulo (HOD) or a remainer (REH]
operation gives rise2 to a value which is not in tha set of
valuas defined by tha rcot mede of the class of the operand-¢
or is performad on opaerand values for which the operator is
mathematically not defined, i.e. division or remaindar ”ith
an operand-5 delivering 0 or a modulo operation Hith an
operand-5 delivering a non-positive integer value.

6.15 1_461
6.15 (¢ X d + 3) 7/ 1_461

5.3.7 OPERAND-5

syntax

<operand-5> ::=
[<monadic operator>] <operand-6>

<monadic operator> ::=
- | NOT
| <string repetition operator>

98 FASCICLE VI.8 Rec. Z.200

(1.1)
(1.2)

1)
(1.1)

2)
2.1)
(2.2)

samantics:

<string repetition operator> ::=
(<integer literal expression>)

If the monadic operator is a changea-sign operator (-), the
operand-6 delivers an integer value and the resulting integer
value is the previous integer value With i1ts sign changed.

If the monadic operator is NOT, the operand-6 delivers either
a boolean value, or a bit string value or a powerset value. In
the first tuo casas tha logical negation of the boolean or bit
string value is dalivered, in the latter case, the set
complemant value, i.e. the set of those member values which
are not in the operand pouerset value. :

If tha monadic operator is a string repetition operator, the
operand-6 is & character string literal or 8 bit string
literal. If the integer literal expression delivers ¢, the
result is the empty string value, othernise the string value
fornad by concatenating the string with itself as many times
as specified by the value dzlivered by the literal expression
minus 1. : '

static properties: If the operand-5 is an operand-6, the class of

the operand-5 1s the class of the operand-6 .

If a monadic operator is specified, the class of the operand-5
is: » v .

e if the monadic operator is - or NOT then the resulting
class of the operand-6;

° if the monadic operator is the string repetition
operator, then it is the CHAR(n) or BIT(nJ)-derived class
(dapending on khether the literal Was a character string
literal or bit string literal) where n = r ¥ L, where r is
the value dalivered by the integer literal expression
and L is thae longth of the string literal.

An operand-5 is constant (literal) if and only if the
operand-6 i1s constant (literall.

static conditions: If the monadic operator is -, the class of the

operand-6 must have an integer root mode.

If the monadic operator i1s NOT, the class of the operand-6
must have a boolean, bit string or porerset root mode.

If the monadic operator is the string repetition operator,
the operand-6 must be a character string literal or a bit
string literal. The integer literal expression must deliver a
non-negative integar-value.

FASCICLE VI.8 Rec. Z.200 99

(3)
(3.1)

dynamic conditions: If the operand-5 is not constant, an OVERFLOW
exception occurs if a change sign (-) operation gives rise to
a value which is not in the set of values defined by the 'root
mode of the class of the operand-5.

examples:

5.11 NOT k2 (l1.1)
7.5¢0 6)' * v (1.1)
7.50 6) 2.2)

5.3.8 OPERAND-6

syntax:
<operand-6> ::= , 1)
<primitive value> (1.1)
| <parenthesised expression> (l.2)
<parenthesised expression> ::= 2)
(<expression>) (2.1)

semantics: An operand-6 is either a primitive value (see sect{on 5;2) or
a parenthesised expression.

static properties: The class of the operand-6 is the class of the
primitive value or parenthesised expression respectively. The
class of the parenthesised expression is the class of the
expression. : :

An operand-6 is constant (literal) if and only if the
primitive value or expression, respectively is constant
(literall.

examples: .
1.5 i : : (1.1

5.11 (al OR bl) 1.2)

100 FASCICLE VI.8 Rec. Z.200

6.0 ACTIONS

6.1 GENERAL

syntax:

<action statement> ::= .
{<name> :] <action> [<handler>] [<label name>];

<gction> ::=

I
|
I
|
|
|
|
!
|
!
!
|
!
I

<bracketed action>

<assignment action>

<call action>
<exit action>
<return action>
<result action>

" <goto action>

<assert action>
<empty action>
<start action>
<stop action>
<delay action>
<continue action>
<send action>
<cause action>

<bracketed action> ::=

I
I
I
I
I

semantics:

program.

<if action>

<case action>

<do action>
<module>
<begin-end block>

<delay case action>
| <receive case action>

appended.

static properties:

Action statemants constitute the alsorithmic part of a CHILL
Any action statement may be labelled and those

actions that might cause an exception may have a handler

A name followed by a colon and placed in front of

an action,

nama.

static conditions:

specified and only

and only such a name,

is defined to be a

label

The label name before the semicolon may only be
given if the action is a bracketed action or if a handler is

if & name follouad by a colon

is given

before the action. The label name must be equal to the latter

name.

FASCICLE VI.8

Rec. Z.200

101

(1)
(1.1

2)
2.
(2.
2.3)
(2.4
(2.5
(2.6)
2.7
(2.8)
2.9)
(2.102
(2.112
(2.127
(2.13)
(2.1%)
(2.157

1)
27

(3
(3.
(3.
(3.
(3.
(3.5)
(3.6)
(3.7

1
2)
3)
%)

6.2 ASSIGNMENT ACTION

syntax:

<assignment action> ::=
<single assignment action>
| <multiple assignment action>

<single assignment action> ::=
<location> {<assignment symbol> | <assigning operator>}
<value>

<multiple assignment action> ::=
<location> {,<location>}* <assignment symbol>
<value>

<assigning operator> ::= -
<closed dyadic operator> <assignment symbol>

<closed dyadic operator> ::=
OR | XOR | AND
| <powerset difference operator>
| <arithmetic additive operator>
| <arithmetic multiplicative operator>

<assignment symbol> ::=

derived syntax: The = symbol is derived syntax for the :- symbol.

semantics:

The assignmant action stores a value into one or more
locations.

If an assignment symbol is used, the value yielded by the
right hand side is stored into the location(s) specified at
the left hand sida.

If an assigning operator is used, the value contained in the
location is combined With the right hand side value (in that
ordor) according to the semantics of the specified closed
dyadic operator, and the result is stored back into the same
location.

The evaluation of the left hand side location(s),of the right
hand side valua, and the assignment themselves are performad
in an unspecified and possibly mixed order. Any assignmant
may be performad as soon as the value and a location have been
evaluated.’

If the location (or any of the locations) is the tag field of
a variant structure, the variant fields that depend on it will
receive an undafined value.

lo2 FASCICLE VI.8 Rec. Z.200

(1)
(1.1)
(1.2)

2)

2.1)

(%)
(4.1)

(5>

(5.1)
(5.2)
(5.3)
(5.%)

(6)

(6.1)

static conditions: The modes of all location occurrences must be

equivalent and they must have neither the read-only property,
nor the synchronisation property. Each mode must be
compatible With the class of the value. The €hecks are dynamic
in the case where dynamic mode locations ands/or a value Hith a
dynamic class are involved.

If the value 18 a regional expression (see section 8.2.2),
every location must ba regional.

If in a8 single assignment action an assigning operator 18
specified, the specified value must ba an expression.

dynamic conditions: The TAGFAIL exception occurs if, in the case of a

examples:

dynamic parameaterised structure mode location andsor value,
the dynamic part of the above mentioned compatibility check
fails.

The RANGEFAIL exception occurs if any location has range mode
and the value dalivered by the evaluation of value lies
outside the bounds specified by that rangs mode.

The RANGEFAIL exception occurs if, in the case of a dynhamic
parameterised string rode or array mede location andsor
value, the dynamic part of the above mentioned compatibility
check fails.

The above mentioned conditions are called the assignment
conditions of a value Hith respect to a mode (i.e. the mode of
the location).

In the case of an assignment operator the same exceptions are
caused as if the exprassion:

<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered valua stored into the
specified location (note that the location is evaluated once
only).

4.11 a:*b+c

10.21 stackindex-:=1

19.16 X.PREX, X.NEXT := NULL
16.21 -:=

6.3 IF ACTION

syntax:

<if action> ::=
IF <poglean expression> <then clause>
[<else clause>] FI

FASCICLE VI.8 Rec. Z.200 163

(1.1)
(2.1)
(3.1
(4.1

(1

(1.1)

<then clause> ::= _ (2

THEN <action statement list> 2.1)
<else clause> ::= ' : (3
ELSE <action statement list> (3.1)
| ELSIF <boolean expression>
<then clause> [<else clause>] (3.2>

derived syntax: The notation:
ELSIF <boolean expression> <then clause> [<else clause>]
is derived syntax for: »
ELSE IF <bgolean expression> <then clause> [<else clause>] FI;

semantics: The if action is a conditional tuo-way branch. If the poolean
expression yields TRUE, the action statement list follouwing
-THEN is entered, otheruise, the action statemsnt list
following ELSE, if prasent.

examples:
. 7.2% IF n > 10 THEN rn(r):='X";
n-::10; '
r+:z1;
FI (1.1
10.46 IF last = NULL
THEN first,last:=p;
ELSE last->.succ:=p;
p->.pred:-last;

last:=p;
FI (1.1)
6.4 CASE ACTION
syntax:
<case action> ::= (1)

CASE <case selector list> OF [<range list>;]
{<¢ase alternative>}+
[ELSE <action statement list>]

ESAC , (1.1)
<case selector list> ::= 2)
<discrete expression> {,<discrete expression>}* 2.1
<range list> ::= 3
<discrete mode> {,<discrete mode>}» (3.1)
<case aglternative> ::= (%)
<case label specification> : <action statement list> (4.1)

semantics: The case action is a multiple branch. It consists of the
specification of one or more discrete expressions (the casa
selector list) and a number of labelled action statement

104 FASCICLE VI.8 Rec. Z.200

lists (case alternatives). Each action statement list is
labelled with a case label specification which consists of a
list of case label list specifications (one for each case
selector). Each case label dafines a set of values. The use of
a list of discrete expresssions in the case selector list
allous selection of an alternative based on multiple
conditions.

Tha case action enters that action statement list for which
valuas given in the case lahel specification match the values
in the case selector list.

The expressions in the case selector list are evaluated in an
undefined and possibly mixed order. They need to be evaluated
only up to the point where a case alternative is uniquely

determined.

static conditions: For the 1list of case 1label Aspecification
occurrences, the case selection conditions apply (see section
9.1.3).

The number of discrete expression occurrences in the case
selector list must be equal to the numbar of classes in the
resulting list of classes of the list of case 1label list
cccurrencas and, if present, to the number of discrete mode
occurrences in the range list.

The class of any discrete expression ih . the case selector list
must ba compatible With the corresponding (by position) class
of the resulting list of classes of the case 1label 1list
occcurrences and, if present, compatible With the
corresponding (by position) discrete mode in the range list.
The latter mode must also be cempatible With the .
corresponding class of tha resulting list of classes.

Any valug delivered by a ‘discrete literal expression or
defined by a literal range O discrete mode in a case label
(sga section 9.1.3) rust lie in the range of the corresponding
discrete mode of the range list, if presant, and also in the
range defined by the mode of tha corresponding discrete
expression in the case selector list, if it 1is a streng
discrete expression. In the latter case, the values defined
by the corresponding discrete mode of the range 1list, if
present, must also lie in that range.

The optional keyword ELSE, followed by an action statement
list, may only be omitted if the list of case label 1list
occurrences is conplats (see section 9.1.3).

dynamic conditions: The RANGEFAIL exception cccurs if a range list is
specified and the value delivered by a discrete expression in
the case selector list do2s not 1lie wWithin the bounds
specifiad by the corresponding discrete mode inh the range
list.

FASCICLE VI.8 Rec. Z.200 165

examples:

4.10 CASE order OF
(1): a:=bte;
RETURN;
(2): d:20;
(ELSE): d:=1;
ESAC
11.4¢4% starting.p.kind, starting.p.color
11.62 (rook), (¥):)
IF NOT ok_rook(b,m)
THEN
CAUSE illegal;
FI;

6.5 DO ACTION

6.5.1 GENERAL

syntax:
<do action> ::-=
DO [<control part>;] <action statement list> 0D
<control part> ::=
<for control> [(<while control>1
| <while control>
| <with part>
semantics: The do sction has three different forms: thé do-for and the
do-ihile versions, both for looping, and the do-with version
as a convenient short hand notation for accessing structure
fields in an efficient way. If no control part is specified,
the action statemzant list is entered once, each tima the do
action is entered.
Khen the do-for and the do-uhile versions are combined, the
while control is evaluated after the for control, and only if
the do action is not terminated by the for control.
dynamic conditions: The SPACEFAIL exception occurs if the storage

examples:

requiremants cannot be satisfied.

4.16 DO FOR i:=1 TO ¢;
op(a,b,d,order-1);
d:=a;

oD

15.48 DO HITH EACH;
IF THIS_COUNTER = COUNTER
THEN

106 FASCICLE VI.8 Rec. Z2.200

(1.1)
(2.1)

(4.1

(1)
(1.1)

2)

2.1)
2.2)
(2.3)

(1.1)

STATUS:=IDLE;
EXIT FIND_COUNTER;
FI;
oD

6.5.2 FOR CONTROL

syntax:

semantics:

<for control> ::=
FOR {<iteration> {,<iteration>}* | EVER}

<iteration> ::=

<value enumeration>
| <location enumeration>

<value enumeration> ::=
<step enumeration>
| <range enumeration>
| <powerset enumeration>

<step enumeration> ::=
<loop counter> <assignment symbol> ‘
<start value> [<step value>] [DOHN] <end value>

<loop counter> ::*
<name>

<start value> ::=
<expression>

<step value> ::=
BY <inteqger expression>

<end value> ::=
TO <expression>

<range enumeration> ::=
<loop counter> [DOHN] IN <discrete mode>

<powerset enumeration> ::=
<loop counter> [DOWN] IN <powerset expression>

<location enumeration> ::=
<loop counter> [DOHN] IN <array location>

The action statement list is repeatedly entered according to
the specified for control.

The for control may mention several loop counters. The loop

counters are evaluated each tima in an unspecified ordzar,
before entering tha action statement list, and they nheed be

FASCICLE VI.8 Rec. Z.200 107

(1.1)

oV
(1.1>
2>

2.1)
2.2)

3>
(3.1)
(3.2)
(3.3)
(%>
(%.1)

(5’
(5.1)

(6)

(6.1)

«7)
(7.1)

(8>
(8.1

9
(9.1

(102
(10.1)

(11
(11.1)

108

evaluated only up to the point that it can be decided to
terminate the do action. Tha do action is terminated if at
least one of the loop counters indicates termination.

A distinction is made between normal and abnormal
termination. Normal termination cccurs if the evaluation of
at least one of the loop counters indicates termination.
Abnormal termination occcurs if a while condition evaluation
delivers FALSE, if an exit action or a goto action wWith a
(target) labal defined outside the action statemant list is
executad, or if an exception is caused for wuhich the
appropriate handler lies outside, and is not appended to, the
do action.

1. do for ever:

The action list is indefinitely repeated; only abnormal
termination is possible.)

2. Vvalue enumeration:

The action statement list is repeatedly entered for the
set of specified valuas of the loop counters. The set of
values is either specified by a discrete mode (rangs
enumaration), or by a powarsat value (pouarset
enumerationl),. or by a start value, step value and end
value (step enumeration).

The loop counter is always implicitly defined inside the
action statement list. Howaver, if an access name #hich
is equal to the name of the loop counter 15 visible
outsida the do action, the value of the loop counter Will
be stored into the dzsnoted location just prior to
abnormal termination. In the case of normal termination
the value stored into the location denoted by the
external access name is undafined.

range enumepration:

In the case of range enumeration wHithout ((KHith) DOKN
specification, the initial valus of tha loop counter is
the smallest (greatest) value in tha set of values
defined by tha discrete mode. For subsequent exacutions
of the action statem=nt list, tha "next value” Will be
evaluated as:

SUCC("previous value”) (PRED("previous value™)).

The do action is terminated (normal termination) if the
action statenesnt list has been executed for the greatest
(smallest) value defined by the discrete mode.

pouearsat enumeration:

FASCICLE VI.8 Rec. Z.200

In the case of pouerset enumeration. without (with) DOKN
specification, tha initial value of the loop counter is
the smallest (highest) member value in the denoted
pouwerset value. If the pouerset value is empty, the
action statemant list will not be executed. For
subsequent executions of the action statement list, next
value Will be the next greater (smaller) member value in
the pouerset value. The do action is terminated (normal
termination) when the action statement list has been
executaed for the gareatest (smallest) value. When thea do
action is executed, the pouerset expression is evaluated
once only.

step enumaration:

In the case of step enumearation wWithout (With) DOHN
specification, the set of values of the loop counter is
determined by a start value, end value, and possibly step
value. Khan the do action is executed, these exXpressions
are evaluated once only in an unspecified, possibly mixed
order. The step value is always positive. The test for
termination is made before each exscution of tha action
statement list. Initially, a test is made to determine
khather the start value of the loop counter is greater
(smaller) than tha end value. For subsequent executions,
"next value” Will be evaluated as:

"nrevious value" + step value

("previous value” - step value)

in the case of step value specification, othernise as:
SUCC("previous value”) (PRED("previous value”)).

The do action is terminated (normal termination) if the
evaluation yields. a value which is greater (smaller) than
the end value, or Would cause an OVERFLOH exception.

location enumaration:

In the casa of a location enumeration Without (Hith) DOKN
specification, the action statement list is repeatedly
entered for a set of specified locations which ara the
elemants of the array location denoted by tha array
location. Tha semantics are as if initially the
loc-identity declaration:

DCL <loop counter> <mode> LOC := <first location>;

uere encountered, where <mode> is the element mode of the
moda of the arrgy location and <first location> the
element of the smallest (greatest) index; for subsequent
executions, as if before each execution of the action
statement list the loc-identity declaration:

DCL <loop counter> <mode> LOC := <next location>;

where encountered, where <next location> is the array
element with index:

"next index" = SUCC("previous index™)

(PRED("previous index")).

The do action is terminated (normal termination) if the

FASCICLE VI.8 Rec. Z.200 109

loop counter just before the next evaluation indicates
the array element with the greatest (smallest) index.
When the do action is executed, the arrav location is
evaluated once only.

static properties:

value enumeration:

The loop counter is a value enumeration name. If a name is
visible in the reach in which the do action 1is placed
khich is equal to the loop counter, the loop counter is
explicit, otherwise it is implicit.

step enumaration:

The class of an explicit loop counter is the M-value
class, uwhere M is the node of the external access nama
(see below: static conditions).

‘The class of an implicit loop counter is the resulting

class of the classas of the start value, step value 1if
present, and end value.

‘ranga enumaration:

The class of the loop counter is the M-value class, Where
M is the discrete mode.

pousrset enumaration:
Tha class of the loop counter is the M-value class, khere
M is the member mode of the mode of the (strong) powerset

expression. :

location enumaration:

The loop counter is a location enumeration name. Its mode
is the glement mode of the mode of the arrav location.

A location enumsration name is (language) referable if
the elenent layout of the mode of the array location is
NOPACK. .

static conditions:

110

step enumeration:

The classes of start value, end value and step value, if
present, must be pairkise compatible. In the case of 2a
loop counter which is explicit, the externally visible
name must be an access nama. The mode of the external
access nama must be compatible with each of these classes
and must not be a read-only mode.

FASCICLE VI.8 ‘Rec. Z.200

dynamic cond

pouerset enumeration, range enumeration:

In the case of an explicit loop counter, the externally
visible name nust be an access name. The mode of the
external access name must be compatible with the class of
the loop counter.

The powerset expression must be strong.

itions: A RANGEFAIL exception occurs if the value delivered

examples:

6.5.3 HHILE

syntax:

semantics:

examples:

by step value is not greater than 0 or if, in the case of an
explicit loop counter, the value to be stored back into the
external location prior to abnormal termination, does not lie
Within the bounds specified by the modae of the external
location. This exception occurs outside the block of the do
action.

%.16 FOR i:=1 T0 ¢

15.27 FOR EVER

4.16 i:s1 70 ¢

9.11 j:=MIN(sieve) BY MIN(sieve) TO max

l¢.22 I IN INT(1:160)

CONTROL

<while control> ::*
HHILE <boolean expression>

The bonlean expression is evaluated just before entering the
action statement list (after the evaluation of the for
control if present). If it yields TRUE, tha action statemant
list is entered, othernise the do action is terminated
(abnormal termination).

@]
(l.
(3.
(3.
(3.

1)
l.

7.28 HHILE n >= 1 . 1.

6.5.4 HITH PART

syntax:

L1

1)
1
1)
2)

1)

1)

<with part> .=) (1
HITH <with control> {,<with control>}* (1.1
<with control> ::= ' 2)
<structure location> 2.1)
| <structure expression> 2.2)

FASCICLE VI.8 Rec. Z.200 111

semantics:

N.B. if the structure expression is a location, the syntactic
construct is ambiguous and Will be interpreted as a structure
location.

The (visible) field names of the structure locations or
structure value spacified in each with control are made
available as direct accesses to the fields.

If 3 structure location is specified, access names Which are
equal to the field namas of the mode of the structure location
are implicitly created, denoting the sub-locations of the
structure location.

If a structure expression 15 specified, value names which are
equal to the field names of the mode of the (strong) structure
expression are implicitly created, denoting the sub-valuas of
the structure value.

Khen the do action 1is entered, the specified structure
locations ands/or structure values are evaluated once only on
entering the do action, in an unspecified, possibly mixed
ordar.

static properties:

Structure expression: Any name made available in the do
action is a value do-with name. Its class is the M-value
class, where M is the mode of that field name of the structure
mode of the structure expression, Which is made available as
value do-uith nama.

Structure location: Any name made available in the do action
is a location do-with name. Its mode is the mode of that field
nama of tha mode of the structure location, Hhich is made
available as location do-rith nama. A location do-with name
is (lansuaga) referable if the field layout of the associated
field name is NOPACK. :

static conditions: The structure expression must be strong.

examples:

6.6 EXIT

15.48 WITH EACH

ACTION

syntax:

<exit action> ::=
EXIT <label name>

112 FASCICLE VI.8 Rec. Z.200

(1.1)

1)
(1.1)

semantics:

An exit action is used to leave 3 bracketed action. Action is
resumad immadiately after the closest surrounding bracketed
action labelled ®ith the label name.

static conditions: The exit action must lie Within the bracketed

examples:

6.7 CALL

action statement labelled with the label name. If the exit
action i1s placed Within a procedure or process definition,
the exited bracketed action statement must also lie wuithin
the same procedure or process definition (i.e. the exit
action cannot be used to leave procedures or processes).

No handler may be appended to an exit action.

15.52 EXIT FIND_COUNTER

ACTION

syntax:

<call action> ::=
{CALL] { <procedure call> | <built-in routine call>}

<procedure call> ::=

{< procedure name> | <procedure expression>}
([<actual parameter list>])

<gactual parameter list> ::=
<gctual parameter> {,<actual parameter>}*

<gctual parameter> ::*
<value>
| <static mode location>

derived syntax: The keyword CALL is optional. A call action with CALL is

derived from a call action Without CALL.

semantics: A call action causes a call of the general procedure indicated
by the value dalivered by the procedure expression or tha
procedure indicated by the procadure name. The actual values
and locations specified in the actual parameter list are
passed to tha procedure.

static properties: A procedure call has the follouwing properties

attached: a list of parameter sp2cs, rossibly a result spgec, 3
possibly empty sat of exception namaes, a generality, a
recursivity, and possibly it may be regional (the latter is
cnly possible With 3 procedure name, see section 8.2.2).
These properties are inherited from the procedure name or any
moda compatible wWith the class of the procedure expression
(in the latter case, the generality is always gansral).

FASCICLE VI.8 Rec. Z.200 113

(1.1)

1)
(1.1)

22

(2.1

3)
(3.1)

(%)
(%.1)
(4.2)

A procedure call Wwith a result spec is a location procedure
call if and only if LOC is specified in the result spec,
otherwise it is a value procedure call.

static conditions: The number of actual parameter occurrences in the

procedure call must be the sama as the number of its paramater
specs. The compatibility requirements for the actual
varameter and corresponding (by position) parameter spec of
the procedure call are:

) If the the parameter spec has the IN attribute (default),
the actual parameter must be a value Whose class is
compatible With the mode in the corresponding paramater
spec. The latter mode must not have the synchronisation
property. If the procedure call is not pregional, the
{actual) value must not be regional (see section 8.2.2).

L If the parameter spec has the INOUT or OUT attribute, the
actual parameter must be a static mode location, Whose
mode must be compatible with the M-value class, where M is
the mode in the corresponding parameter spec. The mode of
tha (actual) static mode location must not have the
read-only property nor the synchronisation property. If
the procedure call is not reqicnal, the (actual) location
must not be regional (see section 8.2.2).

° If the parameter spec has the INOUT attribute, the mode in
the paramester spec must be compatible with the M-value
class uhere M is the mode of the static mode location.

] If the parameter spec has the LOC attribute, the actual
parameter must be a static mode location Which is both
referable and such that the mode in the paramater spec is
read-compatible wWith the mode of this (actual) static
mode location, or a value Khich is not a location but
whose class is compatible with the mode in the parameter
spec.

dynamic conditions: A procedure call can cause any of the exceptions of

114

the attached set of exception names. It causes tha EMPTY
exception if the procedure expression delivers NULL, it
causas the S5PACEFAIL exception if storage requiremasnts cannot
be satisfied and it causes the RECURSEFAIL exception if the
procedura calls ijtself recursively (i.e. a. previous
invocation is still active) and its recursivity is
non-recursiva. :

Parameter passing can cause the folloning exceptions:

. If the parameter spec has the IN, INOUT or LOC attribute,
tha assignment conditions of the {(actual) value (possibly
contained in an actual location), uith respect to the
mode of the paranmneter spec apply at the point of the call
(see section 6.2) and the possible exceptions are caused

FASCICLE VI.8 Rec. Z.200

examples:

6.8 RESULT

before the procedure is called.

° If the parameter spec has the INOUT or OUT attribute, the
assigninent conditions of the local value of the formal
paramater, With respect to the mode of the (actual)
location spply at the point of return (see section 6.2)
and possible exceptions are caused after the procedure
has returned.

. If the parameter spac has the LOC attribute and the actual
parameter is a value Which 1i1s not a location, the
assignnmant conditions of the (actual) value With respect
to the moda of the paramater spec apply at the point of
the call and the possible exceptions are caused before
the procedure is called (see section 6.2]}.

The procedure expression must not deliver a procedure defined
Within a process definition Whose activation is not tha same
as the activation of the process executing the procedure call
(see section 8.1) and the lifetime of the denoted procedure
must not have ended.

.17 op(a,b,d,order-1)

AND RETURN ACTION

syntax:

<return action> ::=
RETURN [<result>]

<result action> ::=
RESULT <result>

<result> ::=
<value>
| <static mode location>

derived syntax: The return action With result is derived from RESULT

semantics:

<result> ; RETURN. If a handler is appended to such a return
action, it is considered to he appended to the result action
from Hhich it Has derived.

The result action serves to establish the result to be
delivered by a procedure call. This result may be a location
or a value. The return action causes the return from tha
invocation of the procedura Within khose definition it is
placed. If tha procedure returns a result, this result is
determined by the last executed result action. If no result
action has been executed the procedure call dalivers an
undafined location or undefined value, respectively.

FASCICLE VI.8 Rec. Z.200 115

€1.1)

1)
(1.1

2’
(2.1

(3)
(3.1
(3.2

static properties: The result action and return action have a
procedure name attached, which is the name of the closest
surrounding procedure definition.

static conditions: The return action and the result action must be
textually surrounded by a procedure definition. A result
action may only be specified if its procedure name has a

result spec.

A handler must not be appended to a return action (Kithout
result).

If LOC is specified in the result srec of the procedure name
of the result action, the result must be a static mode
location, such that tha mode in the result spec is
read-compatible Wwith the mode of the static mode location. If
the procedure nama of a result action is not regional, the
static mode location in the result must not be regional (see
section 8.2.2).

If LOC is not specified in the result spec of the procedure
name of the result action, the result must be a value, Whose
class is compatible With the mode in the result spec. If the
procedure name of a result action is not regional, the value
in the result must not be regional (see section 8.2.2).

dynamic conditions: If LOC is not specified in the result spec of the
procedure name, the assignmant conditions of the value in the
result action, With respect to the mode in the result spec of
its procedure name apply.

examples:

$.20 RETURN (1.1)
1.5 RESULT i+j i 2.1)

5.20 c (3.1

6.9 GOTG ACTION

syntax:
<goto action> ::= : 1)
GOTO <label name> (1.1D

semantics: The goto action causes a transfer of control. Action is
resumed With the action statement labelled with the label
name.

static conditions: If the goto action i1s placed Within a procedure
or process definition, the label indicated by the label nanme
must alsoc be definad within the definition (i.e. it is not
possible to jump ocutside a procedure or process invocation).

116 FASCICLE VI.8 Rec. Z.200

A handler must not be appended to a goto action.

6.10 ASSERT ACTION

syntax:
<assert action> ::= (1)
ASSERT <boolean expression> (1.1>

semantics: The assert action provides a means of testing a condition.

dynamic conditions: The ASSERTFAIL exception occurs if the boolean
expression delivers FALSE.

examples:
4.6 ASSERT b>0 AND ¢c>@ AND order>0 (1.1

6.11 EHPTY ACTION

syntax: ‘ :
<empty action> ::= 1)
<empty> (1.1)

<empty> ::= 2)
semantics: The empty action does not cause any action.

static conditions: A handler must not be appended to an empty
action.

6.12 CAUSE ACTION

syntax:
<cause action> ::= ' (1)
CAUSE <exception name> ’ (1.1)
semantics: The cause action causes an exception.

static conditions: A handler must not be appended to a cause action.

dvnamic conditions: The cause action causes the exception ihosa name
is indicated by exception name.

examples: ‘
4.8 CAUSE wrong_input (1.1)

FASCICLE VI.8 Rec. Z.200 117

6.13 START ACTION

syntax:
<start action> ::= 1)
<start expression> [S5ET <instance location>l] (1.1)

derived syntax: The start action With the SET option is derived syntax
for the single assignment action:

<instance location> := <start expression>

semantics: The start action evaluates the start expression (see section
5.2.17), without using the resulting instance value.

examples:
14.37 START CALL_DISTRIBUTOR() (l1.1)

6.1 STOP ACTION

syntax:
<stop action> ::*= 1
STOP (1.1

semantics: The stop action terminates the process executing the stop
action (sce section 8.1).

static conditions: A handler mustbnot be appended to a stop action.

6.15 CONTINUE ACTION

syntax:
<continue action> ::= . 1)
CONTINUE <event location> (1.1)

semantics: The continue action allows the process of the highest
priority, ihich is delayed on the specified event location,
to be activated. If there is no unigque process of the highest
priority, ona particular procass of thae highest possible
priority Hill be selected according to an implementation
defined schaduling algorithm. If there are no processes
delayed on the specified event location, the continue action
has no further effect (see chapter 8 for further details).

examples:
13.23 CONTINUE RESOURCE_FREED (1.1)

118 : FASCICLE VI.8 Rec. Z.200

6.16 DELAY ACTION

syntax:)
<delay action> ::= 1)
DELAY <event location> [<priority>] (1.1
Kpriority> ::= 2)
PRIORITY <integer literal expression> 2.12

semantics: The delay action causes the process executihg it to become
delayed. It can becoms activated by a continue action on the
event location specified. The priority indicatas the priority
of the delayed process Hithin the set of processes which are
delayed on the indicated event location. The default and
louest priority is 0 (sege chapter 8 for further details).

static conditions: The integer literal expression must not deliver a
negative value.

dvnamic conditions: The DELAYFAIL axception occurs if the mode of the
event location has a length attached and the number of
processas delayed on the specified event location is equal to
the length just after the evaluation of the event location.
This exception occurs bafore tha dalaying of the process.

The lifetima of the delivered event location must not end
while the process executing tha delay action is delayed on it.

examples:
13.17 DELAY RESOURCE_FREED (l1.1)

6.17 DELAY CASE ACTION

syntax: , .

<delay case action> ::= 1)
DELAY CASE [SET <instance location>;] [<priority>;]
i<delay alternative>}*

ESAC (1.1)
<delay alternative> ::*= 2)

(<event list>) : <action statement list> 2.1)
<event list> ;:= (3)

<event location> {,<event location>} (3.1)

samantics: The dalay case action causes the process executing it to
becoma delayed. It can becoma activated by a continue action
on one of the specified event locations. In that case an
action statemant list that is labelled by the event location
on which the continue action, that re-activated the process,

FASCICLE VI.8 Rec. Z.200 119

was performed, Will be executed (see chapter 8 for further
details). Before the process becomes delayed, each event
location and the instance location if specified, Will be
evaluated. They will all be evaluated in an unspecified and
possibly mixad order, If two or more evaluations deliver the
sama event location, the choice of an action statement list is
non-deterministic.

If an instance location is specified, the instance value
identifying the process that executed the activating continue
action, Will be stored into the instance location.

static conditions: The mode of the instance location must not have

the read-only property. The integer literal expression in
priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the mode of at

examples:

least one event location has a length attached such that the
nunbkar of delayed processes on the specified event location
is equal to the length after the evaluation of tha event
location. This exception occurs before the dalaying of the
process.

The lifetime of none of thé delivered event locations must end
khile the process executing the dealay case action is delayed

-on it.

14.20 - DELAY CASE
(OPERATOR_IS_READY): /% some actions %/
(SHITCH_IS_CLOSED): DO FOR I IN INT(1:100);
CONTINUE OPERATOR_IS_READY;
/¥ empty the queue %/
0D;
ESAC

6.18 SEND ACTION

6.18.1 GENERAL

syntax:

<send action> ::*=
<send signal action>
| <send buffer action>

The send action initiates the transfer of synchronisation
information, from a sending process. The detailed semantics
depend on whether the synchronisation object is a signal or a
buffer.

120 FASCICLE VI.8 Rec. Z.200

(1.1

1)
(1.1
(1.2)

6.18.2 SEND SIGNAL ACTION

syntax:

semantics:

<send signal action> ::=
SEND <signal name> [(<value> {,<value>}*)]
[TO <instance expression>] [<priority>]

The specified signal is sent together with the list of values
and priority (if present). The daefault and lokest priority is
0. If the signal nama has a process nama attached, it means
that only processes of that name may receive the signal. If
the 70 option is specified, it identifies the only process
that may receive the list of values sent in the send signal
action. This process identification must not be in
contradiction With a possible process name attached to the
signal nama. Both the possible process name of the signal and
the possible instance valus are dynamically attached to the
list of values sent (seze chapter 8 for further details).

static conditions: The number of value occurrences must he equal to

the number of modes of the signal name. The class of each
value must be compatible uwith the corresponding mode of the
signal name. NO value occurrence may be pegional (sea section
8.2.2). The integer literal expression in priority must not
deliver a negative valua.

dynamic conditions: The assignmant conditions of each value, With

examples:

6.18.3

syntax:

respect to its corresponding ode of the signal name, apply.

The EMPTY exception occurs i1if¥ the instance exp}ession
delivers NULL.

The EXTINCT exception occurs if and only if the lifetime of
the process indicated by the value delivered by the instance
expression has terminated at the point of the execution of the
send signal action.

The MODEFAIL exception otcurs i1f the signal name has a process
nama attached wkhich is not the nama of the process indicated
by the value delivered by the instance expression.

15.68 SEND READY TO RECEIVED_USER
15.7¢6 SEND READOQUT(COUNT) TO USER

SEND BUFFER ACTION

<send buffer action> ::=
SEND <buffer location>(<value>) [<priority>l]

FASCICLE VI.8 Rec. Z.200 121

1’

(1.1)

(1.1)

(1’
(1.1)

semantics:

The specified value together wWith the priority is stored into
the buffer location if its capacity allouws for it. The latter
is not the case if the mode of the buffer location has a
length attached and the number of values stored in the buffer
is equal to the length just prior to the execution of the send
buffer action. As a result, the sending process Will becone
delayed until there is capacity in the buffer location or
until the value sent is consumad. The default and lowest
priority is 0 (see chapter 8 for further details).

static conditions: The class of the value must be compatible With

the buffer element mode of the mode of the buffer location.
The value must not be regional (see section 8.2.2). The
integer literal expression in priority must not deliver a
negative value.

dynamic conditions: For the send buffer action the assignment

examples:

conditions of the value uWith respect to the buffer element
mode of the mode of tha buffer location apply. The possible
exceptions occur before the delaying of the process.

The lifetime of the delivered buffer location must not end

wkhile the process executing the send buffer action is delayed
on it. ' ' :

16.115 SEND USER->({READY, ->COUNTER_BUFFERI)

6.19 RECEIVE CASE ACTION

6.19.1 GENERAL

syntax:

semantics:

<receive case action> ::=
<receive signal case action>
| <receive buffer case action>

The receive case action receives synchronisation information
that is transmitted by the saend action. The detailed
semantics depend on the synchronisation ohject used, which is
either a signal or a buffer. Entering a receive case action
does not necessarily result in a delaying of the executing
procass (see chaptaer 8 for further details).

122 FASCICLE VI.8 Rec. Z.200

(1.1)

1)
(1.1)
(1.27

6.19.2 RECEIVE SIGNAL CASE ACTION

syntax:

semantics:

<receive signal case action> ::=
RECEIVE CASE [SET <instance location>;]
{<signal receive alternative>}*
[ELSE <action statement list>] ESAC

<signal receive alternative> ::=
(<signal name> [IN <name list>])
: <gction statement list>

The receive signal case action receives a signal, possibly
With a list of values, the signal nama of khich is specified
in a signal receive alternative.

When the receive signal case action is entered, and if a
signal of one of the specified namas which may be received by
a process executing it is present for reception, the signal is
received. If no such signal is present and if ELSE is not
specified, the process executing tha receive signal case
action becomas delayed; if ELSE is specified, the action
statement list following it Will be entered.

A signal may be received by a process only if the follouwing
conditions are fulfilled:

. If a process name is attached to the signal, the name of
the receiving process is that process name.

. If an instance value is attached to the signal it
identifies the receiving process.

If a signal may be received, the action statement list
laballed with the signal name of tha received signal, Will be
entered. If more than one signal may be received, a signal of
the highest priority Will be selected according to an
implementation defined scheduling algorithmn. If the signal
name has a list of modes attached, i.e. a list of valuas is
sent With the signal, a list of names must be specified after
IN. They are introduced value names denoting the received
values. If in the reach in which the receive sighal case
action is placed, an access hamea is visible which is equal to
an introduced nama, the received value Will be stored into the
denoted location immadiately after sisnal reception and
before the execution of the action statement list.

If the SET option is specified, the instance value denoting
the process that has sent the received signal, will be stored
into the specified instance location immediately after signal
reception.

FASCICLE VI.8 Rec. Z.200 123

1

(1.1)

2>

2.12

static properties: Any name defined in the name list of the signal receive
alternative is a value receive name. Its class is the M-value
tlass, where M is the corresponding mode of the signal name
in front of it. If a name is visible in the reach where the
signal receive case action is placed, which is equal to one of
the names introduced after IN, the value receive name is
explicit, othernise it is implicit.

static conditions: The mode of the instance location must not have the
read-only property.

All signal] name occurrences must be different.

The optional IN and the name list in the signal receive
alternative must be specified if and only if the signal name
has a non-empty set of modes. The number of names in the name
list must be equal to the number of modes of the signal name.

If the value receive name is explicit, the externally visible
name must be an access name and its mode must be compatible
With the class of the value receive name. The mode of the
dccess name must not have the read-only property.

dynamic conditions: If the value receive name is explicit the assignment
conditions of the received value With respect to the mode of
the external access name apply. The possible execptions occur
after receiving the signal and before entering the action
statemant list.

The SPACEFAIL exception occurs if, when entering an action
statemant list, stcrase»requirements cannot bhe satisfied.

examples:
15.73 RECEIVE CASE
(STEP): COUNT +:= 1;
(TERMINATE):
SEND READOUT(COUNT) TO USER;
EXIT WORK_LOOP;
ESAC (1.1

6.19.3 RECEIVE BUFFER CASE ACTION

syntax:
<receive buffer case action> ::= . 1
RECEIVE CASE [SET <instance location>;1]
{<buffer receive alternative>}+
[ELSE <action statement list>]
ESAC _ (1.1)

<buffer receive alternative> ;:= 2)
(<buffer location> IN <name>)

124 FASCICLE VI.8 Rec. Z.200

: <action statement list>

The receive buffer case action receives a value from a buffer
location or from a sending process delayed on a buffer
location, which location is indicated in a buffer receive
alternative.

Khen the receive buffer case action is entered and if a value
is present in, or a sending process is dalayed on, one of the
specified buffer locations, the value Will be received and an
action statemant 1list labelled wWith a buffer location
delivering the buffer location from which .the value has been
received, Will be executed.

Khen the receive buffer case action is entered, the buffer
locations are evaluated in an unspecified and possobly mixed
ordar and they need only be evaluated up to a point sufficient
to select an alternative. If none of the specified buffer
locations contains a valus and no sending process is delayed
on a specified buffer location then if ELSE is not specified
the executing process bzcomes delayed, if ELSE is specified
the action statemant list following it Will be executed. If
more than one value can be received, a valua With the highest
priority HWill be selected according to an implementation
dafined scheduling algorithm. If tueo or more buffer location
occurrences daliver the sama buffer location from which the
value is received, the selection of the action statemant list
is non-daterministic.

The valua is received immediately before entering the action
statement list following the colon. The nama after IN is an
introduced value receive name denoting the received value. If
in the reach where the buffer receive case action is placed,
an access nam2 is visible which is equal to a created valua
receive name, the received value is stored into the denoted
location immediately before entering the action statement
list.

If the SET option is specified, the specified instance
location has stored in it, immediately on reception, the
instance value dznoting the process that has sant the
received value. '

rties: The name after IN iin the buffer receive

static prope

alternative is a value receive name. Its class is the M-value
class, where M is tha bhuffer elemant mode of the mode of the
buffer location labelling the buffer receive alternative.

I+ a nama is visible in the reach where the receive buffer
case action 15 placed, which is equal to the name introduced
after IN, tha valua receive name 1i1s called explicit,
otharnise it is implicit.

FASCICLE VI.8 Rec. Z.200 125

(2.1

static conditions: The mode of the instance location must not have

the read-only property. If the valus receive hame is
explicit, the externally visible name must be an access nanme
and its mode must be compatible With the class of the value
receive name With the same name. This mode must not have the
read-only ptroperty.

dynamic conditions: If the value receive name 1is explicit the

126

assignment conditions of the received value with respect to
the mode of the external access name . apply. The possible
exceptions occur after receiving the value and before
entering the action statement list.

The SPACEFAIL exception occurs if, when entering an action
statement list, storage requirements cannot be satisfied.

The lifetime of none of the delivered buffer locations must
end While the process executing the receive buffer case
action is delayed on it.

FASCICLE VI.8 Rec. Z.200

7.0 PROGRAM STRUCTURE

7.1 GENERAL

The bracketed do action, begin-end block, module, region, delay case
action, receive case action, procedure definition and process definition
determine the program structure, i.e. they determine the scope of names
and the lifetima of locations created in them.

® The uord block Hill be used to denote:

- the action statement list in the do action including the loop
counter and while controls;

- thae begin-end block;

- the procedure definition excluding the result spec;

- the process definitions

- the action statement list in a buffer receive alternative or in a
signal receive alternative including the name or name list after

IN;

- the action statement list after ELSE in a receive case action or
handler;

- the on-alternative in & handler.
(] The word modulion will be used to denote either a module or a region.

. The word group KWill dencte either a block or a modulion.

. The word reach or reach of 3 group Will denote that part of the group
- which is not surroundad by an inner group of the group (i.e. the part
consisting of the outermost nesting level of the group).

A group defines a scope for names created in its reach. Names can be
craated in the folloling ways:

® A name appearing in the name list of a declaration, mode definition or
synonym definition Or appearing in a signal definition is created in
the reach Where the declaration, mode definition, synonym definition
or signal definition, respectively, is placed.

] A name appearing in the name list in a formal parameter list is

created in the reach of the associated procedure definition or process
definition.

FASCICLE VI.3 Rec. Z.200 127

. A name in front of a colon followed by an action, region, procedure
definition, entry definition or process definition is created in the
reach where the action, region, procedure definition, procedure
definition containing the entry definition, process definition,
respectively, is placed.

° Each value enumeration name, location enumeration name, value do-uWith
name and location do-with name is created in the reach of the block of
the associated do action.

° Each value-receive name is created in the reach of the block of the
associated signal receive alternative or buffer receive alternative.

° A field name or set element name is created in the reach where the
defining occurrence of its associated structure mode or set mode is
placed.

] An exception name 1is created by means of a cause action or
on-alternative (note: no specific point of creation is given for an
exception name; see chapter 10).

[] A languaga pre-defined name is considered to be created in the reach
of a standard prelude module (see section 7.8).

Programmer introduced (created) names, except exception nhames, have a
unique place where they are created (declared or defined). This place is
called the defining occurrence of the name. The places where the name is
used, are called applied occurrences of the name. The name binding rules
associate a unique defining occurrence Kith each applied occurrence of the
nams (see section 9.2.8). No distinction betusen defining and applied
occurrences is made for exception namas (see chapter 10].

A name has a certain scope, i.e. that part of the program uhere its
definition or declaration can be seen and, as a consequance, where it may
be freely used. The name is said to be visible in that part. Locations
have a certain lifetime, i.e. that part of the program uwhere they exist.
Blocks datermine both visibility of names and the lifetime of the
locations created in them. Modulions datermine only visibility; the
lifetima of locations created in the reach of a modulion Hill be the sama
as if they uere created in the reach of the first surrounding block.
Modulions allow for restricting the visibility of names. For instance, a
nama created in the reach of a module Will not automatically be visible in
inner or outer modules, although the lifetime might allow for it.

7.2 REACHES AND NESTING

syntax: ;
<begin-end body> ::= 1)
<data statement list> <action statement list> (1.1)
<proc body> ::*% 2)

128 FASCICLE VI.8 Rec. Z.200

semantics:

<data statement list>
{<action statement> | <entry statement>}»*

<process body> ::=
<data statement list> <action statement list>

<module body> ::=
{<data statement> | <visibility statement> |
<region> }* <action statement list>

<region body> ::=
{<data statement> | <visibility statement>}

<action statement list> ::=
{<action statement>}»

<data statement list> ::*
{<data statement>}*

<data statement> ::=
<declaration statement>
| <definition statement>
<definition statement> ::=
<synmode definition statement>
| <neumode definition statement>
| <synonym definition statement>
| <procedure definition statement>
| <process definition statement>
| <signal definition statement>
| <empty>;

When a reach of a block is entered, all the lifetime-bound
initialisations of the locations created when entering the
block, are performead. Subsequently the reach-bhound
initialisations in the block reach and the possibly dynamic
evaluations in the loc-idaentity declarations are performed in
the order they are textually specified.

When a reach of a modulion is entered, the reach-bound
initialisations and the possibly dynamic evaluations in the
loc-identity declarations in the modulion reach are performed
in the order they are textually specified.

static properties: Any reach has a unigque directly enclosinhg aroup

defined as follous:

. If the reach is the reach of a do action, begin-end block,
procedure definition, process definition, module or
region, then its directly enclosing group is the group in
whose reach the do action, begin-end block, procedure
definition, process definition, module oOr region,
raespactively, is placed.

FASCICLE VI.8 Rec. Z.200 126

2.

3
(3.

(%)

(%.

(3)
(5.

(6)
(6.

7
(7.

(3)
(8.
(8.

(9’
(9.
(9.
(9.
(9.
(9.
(9.
(9.

1)

1)

1)

1)

1)

1)

1)
2)

1)

/
3)
%)
5
6)
7)

130

° If the reach is thae action statement 1list, possibly
including introduced names, of a buffer receive
alternative Or signal receive alternative, or the action
statement list following ELSE in a receive buffer case
action Or receive signal case action, then its directly
enclesing group is the group in whose reach the receive
buffer case action Or receive signal case action 1S
placed.

e If the reach is the action statement 1list in an
on-alternative or the action statement 1list +following
ELSE, in a handler uwhich is not appended to a group, then
the directly enclosing group is the group in whose reach
the statement, to which the handler is appended, is
placed.

(] If the reach is an on-alternative or action statement
list after ELSE, of a handler which is appended to a
group, then its directly enclosing group is the group to
which the handler is appended.

A reach has a unique directly enclosing reach, which is the
reach of the directly enclosing group. A statement has a
unique directly enclosing group, Khich is the group in khich
reach the statement is placed. A reach i1s said to directly
enclose a group (reach) if and only if the reach is the
directly enclosing reach of the group (reach).

A statement (réach) is said to be surrcunded by a group, if
and only if either the group is the directly enclosing group
of the statemant (reach) or the directly enclosing reach is

surroundoed by the group.

A reach is said to be entered when:

L Module reach: the module is executed as an action (e.g.
the module is not said to be entered when a goto action
transfers contrbol to a3 label name defined inside the
module).

L) Begin-end reach: the begin-end block is executed as an
action.

® Region reach: the region is encountered (e.g. the region
is not said to be entered when one of its critical
procedures 1s called).

° Procedure reach: the procedure is entered via its main
’ entry (i.e. not via an additionally defined entry point).

. Process reach: the process is activated via a start
statement.

FASCICLE VI.8 Rec. Z.200

Do reach: the do action is executed as an action after the
evaluation of the expressions or locations in the control
part.

Buffer-receive alternative reach, signal receive
alternative reach: the alternative is exetuted on
reception of a buffer value or signal.

Oon-alternative reach: the on-alternative is executed on
the cause of an exception.

An action statement list is said to be entered when and only
khen
cutside the action statement list.

its first action, if present, receives control from

7.3 BEGIN-END BLOCKS

syntax:
<begin-end block> ::=
BEGIN <begin-end body> END
semantics: A begin-end block is an action (compound action), possibly
containing local declarations and definitions. It determinas
both visibility of locally created names and the lifetime of
locally created locations (see sections 7.9 and 9.2.5).
dynamic conditions: A SPACEFAIL exception occurs i¥ the begin-end

examples:

block requires local storage for which storage requiremnents
cannot be satisfied.

see 15.63 - 15.80

7.4 PROCEDURE DEFINITIONS

syntax:

<procedure definition statement> ::=

<formal parameter list> ::=

<name> : <procedure definition>
{<handler>] [procedure name>l;

<procedure definition> ::=

PROC ([<formal parameter list>]) [<result spec>]
[EXCEPTIONS(<exception list>)] <procedure attributes>;
<proc body> END

<formal parameter> {,<formal parameter>}*

FASCICLE VI.8 Rec. Z.200 131

L
(1.1)

1

(1.1)

2)

2.1

3)
(3.1

<formal parameter> ::=
<name list> <parameter spec>
<procedure attributes> ::=
{<generality>] [RECURSIVE]

<generality> .;:=
GENERAL
| SIMPLE
| INLINE

<entry statement> ::=
<name> ; <entry definition>;

<entry definition> ::<
ENTRY

derived syntax: A formal parameter, where name list consists of more

semantics:

than one name, is derived from saveral formal parameter
occurrences, separated by commas, one for each name and each

-Hith the same parameter spec. For example: I,J INT LOC is

derived from I INT LOC, J INT LOC.

A procedure definition defines a (possibly) parameterised
sequence of actions that may be called from different places
in the program. Control is returned to the calling point
either by executing a return action, or when reaching the end
of the proc-body or an on-alternative of a handler appended to
the procedure dafinition (falling through). Different degrees
of complexity of procedures may be specified as follous:

simple procedures (SIMPLE) are procedures that cannot be
manipulated dynamically. They are not treated as values,
i.e. they cannot be stored in a procedure location, nor
can they be passed as parameters to or returhed as result
from a procedure call.

Ggeneral procedures (GENERAL) do not have the restrictions
of simple procedures and may be treated as procedure
values.

Inline procedures (INLINE) have the same restrictions as
sinple procedures and they cannot be recursive. They have
the sama semantics 3s normal procedures, but the compiler
Will insert the generated object code at the point of
invocation rather than generating code for actually
calling the procedure.

Only simple and genaral procedures may be specified to be
(mutually) recursive. Hhen no procedure attributes are
spacified, an implementation default will apply.

132 FASCICLE VI.8 Rec. Z.200

(%)
(4.1)

(5)
(5.1)

6)

(6.1)
(6.2)
(6.3)

«7)
(7.1>

(8)
(8.1)

A procedure may return a value or it may return a location
(indicated by the LOC attribute in the result spec).

The name in front of the procedure definition defines the name
of the procedure. If the procedure name is general, it is a
procedure literal for the defined procedure value. Its class
is determined by the modes and attributes in the formal
parameter list and result spec.

A procedure may have multiple entry points by means of entry
statements. These statements are considered as additional
procedure definitions. The name in the entry statement
defines the name of the entry point in the procedure in which
reach it is placed. The entry point is determined by the
textual position of tha entry statement.

paramster passing:

There are basically tuwo parameter passing mechanisms: the
pass by valua and the pass by location (LOC attributel). The
attributes OUT and INQUT indicate variations of tha pass by
value mechanism.

Pass_by value

In pass by value paramater passing, a value is passed as a
paramater to the procedure and stored in a local location of
the specified parameter mode. The effect is as if at the
beginning of the procedure call the location declaration:
DCL <formal parameter name><mode> := <actual parameter>;

were encountered. However, the initialisation cannhot cause an
exception inside the procedure body. Optichally, tha keyword
IN may be specified to indicate pass by value explicitly.

If the attribute INOUT is specified, the actual paramster
value is obtained from a location, and just before returning,
the current value of the formal parameter is restored in the
actual location.

The effect of QUT is the same as for INOUT, With the exception
that tha initial value of the actual location is not copied
into the formal parameter location upon procedure entry,
therefore the formal parameter has an undafined initial
value. The store-back operation need not be performad if the
procedure causes an exception at the calling point.

Pass by location

In the pass by location parameter passing, a locatienh is
passed as a paramater to the procedure body. Neither
non-referable locations, nor dynamic mode locations can be
passed in this Way. The effect is as if at the entry point of
the procedure the loc-identity declaration statement:

DCL <formal parameter name><mode> LOC := <actual parameter>;

FASCICLE VI.8 Rec. Z.200 133

were encountered. Houwever, such a declaration cannot cause
an exception inside the procedure body.

If a value is specified Khich is not a static mode location, a
location containing the specified value Will be implicitly
created and passed at the point of the call. The lifetime of
the created location is the procedure call.

result transmission:

Both a value and a location may be returned from the
procedure. In the first case, a value is specified in any
result action, in the latter case, a static mode location (see
section 6.8). The returned value or location is determined by
the most recently executed result action before returning. If
a proceadure With a result spec returns wHWithout having
executed a result action, the procedure returns an undefined
value or an undefined location. In this case the bprocadure
call may not be used as a location procedure call (see saction
4.2.10) nor as a value procedure call (see section 5.2.15),
but only as a call action (section 6.7).

register specification:

Register specification can be given in the formal parameter
of the procedure, and in the result spec. In the pass by value
case, it ma2ans. that the actual value is contasned in the
specified register; in the pass by location case, it means
that the (hidden) pointer to the actual location is contained
in the specifiad ragister. If it is specified in the result
spec it means that the returned value or the (hidden) pointer
to the returned location is contained in the specified
register.

static properties: A name is a procedure name if and only if it is defined
in a procedure definition statement or in an entry statement
(i.e. placed in front of a colon and a procedure definition or
entry definitionl.

A procedure name has a procedure definition attached which i1s
dafined as:

L] If the procedure name is defined in a procedure
definition statement then the procedure definition in
that statemant.

) If the procedure name is defined in an entry statement,
then the procedure definition in whose reach the entry
statement is placed.

A procedure name has the following properties attached,
defined by its procedure definition:

134 FASCICLE VI.8 Rec. Z.200

° It has a list of parameter specs, which are defined by the
parameter spec occurrences in the formal parameter list,
each parameter consisting of a mode, possibly a parameter
attribute ands/or register name.

° It has possibly a result spec, consisting of a mode,
possibly a LOC attribute and/or register name.

o It has a possibly empty set of exception nhamas, which are
the names mentioned in exception list.

° It has a generality, which is, if generality is specified
then either g2neral or simple or inline, depending on
whether GENERAL, SIMPLE or INLINE is specified, othernise
an implemantation default specifies general or simple. If
the procedure name is defined inside a region, its
aenerality is simple.

. It has a recursivity which is recursive if RECURSIVE is
specified, othernise an implementation default specifies
either recursive or non-recursive. However, 1i1f the
genarality is inline, or if the 'Erocedure name 1is
critical {see section 8.2) the recursivity is

non-recursive.

A procedure name ithich is general, is a procedure literal. A
genaral procedure name has a procedure mode attached, which
is formed as:

PROC([<parameter list>]) [<result spec>]
[EXCEPTIONS(<exception list>)] [RECURSIVE]

where <result spec>, if present, and <exception list> are the
same &8s 1N its procedure definition and <parameter list> is
the saquence of <parameter spec> occurrences in the formal
parameter list, separated by comma's.

A name defined in a name list in the formal parameter is a
location name if and only if the parameter spec in the formal
parameter does not contain the L0C attribute. If it does
contain the LOC attribute, it is a loc~identity nama. Any such
a location nam2 or loc-idantity name is (language) referable.

static conditions: If a procedure name is regional (see section 8.2.2),
its procedure definition must not specify GENERAL.

If a procedur2 name 1is critical (see section 8.2), its
definition may neither specify GENERAL, nor RECURSIVE.

No procedure definition may specify both INLINE and
RECURSIVE. .

I¥ specified, the optional procedure name before the

semicolon must be equal to the name in front of the procedure
definition.

FASCICLE VI.8 Rac. Z.200 135

only if LOC is specified in the parameter spec Or result spec,
may the mode in it have the synchronisation property.

examples:

1.3 add:
PROC(1,j INT) (INT) EXCEPTIONS(OVERFLOH);
RESULT i+j;
END add;

7.5 PROCESS DEFINITIONS

syntax:

<process definition statement> ::=
<name> : <process definition>
{<handler>] [<process name>l;
<process definition> ::=
PROCESS (I<formal parameter list>]);
<process body> END

semantics: A process definition defines a possibly parameterised
sequence of actions that may be started for concurrent
execution from different places in the program (see chapter
8).

static properties: A nama is a process name if and only if it is
definad in a process definition statement (i.e. placed in
front of a colon and a process definition).

A process nama may have an implementation defined set of
exception namas attached.

static conditions: If specified, the optional process name before
the semicolon must aqual to the name in front of the process
definition. :

A process definition statement must not be surrounded by a
region, nor by a block other than the imaginary outermost
process definition (sea section 7.8).

The parameter attributes in the formal parameter list must
not be INOUT nor OUT.

only if LOC is specified in the parameter spec in a formal
parameter in the formal parameter list, may the mode in it
have the synchronisation property.

examples:
14.12 PROCESS();

DO FOR EVER:
HAIT(10 /% seconds ¥/);

136 FASCICLE VI.8 Rec. Z.200

(1.1)

1)

(1.1)

2)

(2.1)

CONTINUE OPERATOR_IS_READY;
0b;
END

7.6 MODULES

syntax:
<module> ::=
HODULE <module body> END

2.1

semantics: A module is an action possibly containing local declarations
and definitions. A module is a means of restricting the
visibility of names; it does not influence the lifetime of the

locally created locations.

The detailed visibility rules for modules are given
section 9.2.

static properties: A name is a module name if and only if it
defined by placing it in front of a colon before MODULE.

examples:
. 7.42 MODULE
' SEIZE convert;
DCL n INT INIT := 1979;
DCL rn CHAR(20) INIT :=(20)' *;
GRANT n, rn;
convert();
ASSERT rn = "MDCCCCLXXVIIII’/s7/(6)' ';
END

7.7 REGIONS

syntax:
<region> ::=
{<name> :]1 REGION <region body> END
[<handler>] [<reqgion name>l;

in

is

semantics: A region is a means of providing mutually exclusive access to
its locally declared data object for the concurrent
executions of processes (see chapter 8). It determines
visibility of locally created names in the same way as a

module.

static properties: A hama is a region name if and only if it
defined by placing it in front of a colon before REGION.

FASCICLE VI.8 Rec. Z.200

is

137

1)
(1.1)

(1.1)

1

(1.1)

static conditions: The optional reqgion name before - the semicolon
must be equal to the name of the region.

A region must not be surrounded by a block other than the
imaginary outermost process definition.

examples:
see 13.1 - 13.25

1.8 PROGRAH

syntax:
. <program> ::= (1)
{<module action statement> | <region>}+* (1.1)

semantics: Programs consist of a list of modules or regions, surrounded
by an imaginary outermost process definition. This process
definition is considered to contain in its reach a standard
CHILL prelude module. This module contains the definitions of
the CHILL pre-defined names and the implementation
pre-defined built-in routines, modes and register namss.

static proparties: The language and implementation defined names
(see Appendix C2) are considered to be created in a module in
the reach of the imaginary outermost process definition and
granted PERVASIVE by that module {see section 9.2.6.2).

7.9 STORAGE ALLOCATION AND LIFETIME

The time during which a location or procedure exists Within its program is
its lifetima.

A location is created by a declaration or by the execution of a GETSTACK
built-in routine call.

The lifetime of a location declared in the reach of a block is the time
during which control lies in that block, unless it is declared With the
attribute STATIC. The lifetime of a location declared in the reach of a
modulicn is the same as if it were declared in the reach of the closest
surrounding block of the modulion. The lifetime of a location declared
with the attribute 5TATIC is the same as if it were declared in the reach
of the imaginary outermost process definition. This implies that for a
location declaration with the attribute STATIC, storage allocation is
made only once, namaly when starting the imaginary outermost process. If
such a declaration appears inside a procedure definition or process
definition, only one location Will exist for all invocations or
activations.

138 FASCICLE VI.8 Rec. Z.200

The lifetime of a location created by executing the GETSTACK built-in
routine call is the time between that execution and the leaving of the
closest surrounding block. If the GETSTACK built-in routine call is
executed while evaluating an actual parameter of a procedure call or start
expression, the lifetime of the created location Will be the procedure
call or the lifetime of the created process.

The lifetime of an access created in a loc-identity declaration is the
closest surrounding block of the loc-identity declaration.

The lifetime of a proceduﬁe is the closest surrounding block of the
procedure dafinition.

static properties: A location 1S said to he static if and only if 1t is a
static mode location of one of the following kinds:

° A location name HWhich is declared wuWith the attribute
STATIC, or whose definition is not surrounded by a block
other than the imaginary process definition.

] A loc-identity name such that the static mode 1location
occurring in its definition is static.

] A string element Or substring Where the string location
i6 static and eithar the left element and right element,
or position are constant.

L An array element or sub-array where the array location is
static and either the expression, or the lower element
and the upper element, or the integer expression
occurring in it are constant.

] A structure field where the structure location is static.
I¥ the structure 1location 18 not a parameterised
structure location then the field name must not be a
variant field name.

(] A location conversion Where the location occurring in it
is static.

FASCICLE VI.8 Rec. Z.200 139

8.0 CONCURRENT EXECUTION

8.1 PROCESSES AND THEIR DEFINITIONS

A process is the sequential execution of a series of statements, the
sequential execution of which may be concurrent uith other processes. The
behaviour of a process is described by a process definition (see section
7.5), which describes the objects local to a process and the series of
action statements to be executed sequentially.

A process is created by the evaluation of a start expression (see section
5.2.17). It bocomes active (i.e. under execution) and is considered to be
executed concurrently Hith other processes. The created process is an
activation of the definition indicated by the process name of the process
definition. An unspecified numbher of processes With the same dafinition
may be created and may be executed concurrently. Each process is uniquely
identified by an instance value, yielded as the result of the start
expression, or the evaluation of the THIS operator. The creation of a
process causes the creation of its locally declared locations, except
those declared with the attribute 5TATIC (sea section 7.9), and of locally
defined values and procedures. The locally declared locations, values and
procedures are said to have the same activation as the created process to
which they bslong. The imaginary outermost process (see section 7.8),
which is the whole CHILL program under execution, is considared to be
created by a start expression executed by the system under whose control
the program is executing. At the creation of a process, its formal
parameters, if present, denote the valuess and locations as delivered by
the corresponding actual parameters in the start expression.

A process is terminated by the execution of a stop action or by reaching
the end of the process body or the end of an on-alternative of a handler
specified at the end of the process definition (falling through). If the
imaginary outermost process executes a stop action or falls throush, the
termination Will be completed when and only hen all its subsidiary
precesses (i.e. processes created by start expressions in it) are
terminated.

A process is, at the CHILL programming level, always in one of tuo states:
it is either active (i.e. under execution) or delaved (i.e. waiting for a
condition to be fulfilled). The transition from active to delayed is
called the delaying of the process, the transition from delayed to active
is called the re-zctivation of the process.

8.2 MUTUAL EXCLUSION AND REGIONS

140 FASCICLE VI.8 Rec. Z2.200

8.2.1 GENERAL

Regions (see section 7.7) are a means of providing processes With mutually
exclusive access to locations declared in them. Static context conditions
{see section 8.2.2) are made such that accesses by a process (ithich is not
the imaginary outermost process) to locations declared in a region can
only be made by calling proceduras which are dafined inside the region and
granted by the region.

A procedure name is said to denote a critical procedure (and it is a
critical procedure nama) if and only if it is defined inside a region and
granted by the region, or if a procedure name WHith the same procedure
definition (see section 7.4) is critical (the latter becomes relevant only
when entry definitions are involved).

A region is said to be free if and only if control lies in none of its
critical procedures nor in the region itself performing reach-bound
initialisations.

The region Hill be locked (to prevent concurrent execution) if:

. The region is entered (note that because regions are not surrounded by
a block, no concurrent attempts can be made to enter the region).

L A critical procedure of the region is called.

) A process, delayed in the region, is re-activated.
The region nill be released, becoming free again if:

e The region is left.

e The critical procedure returns.

. The critical procedure executes an action which causes the executing
process to become delayed (see section 8.3). In the case of
dynamically nestad critical procedure calls, only the latest locked
region Will be released.

If, while the region is locked, a process attempts to call one of its
critical procedures or attempts to enter the region, tha attempting
process is suspendad until the region is released. (Note that the
attempting process remains active in the CHILL sense).

Khen a region is releasaed and more than one process has been suspended
while attempting to enter the region or to call one of its critical
procedures or to be re-activated in ona of its critical procedures, only
one process Will be selected to enter the region according to an
implementation defined scheduling algorithm.

FASCICLE VI.8 . Rec. Z.200 141

8.2.2 REGIONALITY

To allow for checkinhg statically that a location declared in a region can
only be accessed by calling critical procedures or by entering the region
for performing reach-bound initialisations, the following static context
conditions are enforced:

the regionality requirements mentioned in the appropriate sections
(assignment action, procedure call, send action, result action);

regional procedures are not general (see section 7.4)5

critical procedures are neither general nor recursive (see section
7.3).

A location, value or procedure name tan be regional. This property is
defined as follous:

1.

142

Location

A location is regional if and only if any of the folloning conditions
is fulfilled: .

It is an access name that is either:

a location name declared textually inside & region and which
is not defined ina formal parameter 0f a critical procedure,

- a loc-identity name, wWhere the static mode location in its
daclaration is reagional or Which is definad in a formal
parameter of a regional procedure, '

- 3 based name where the bound or free reference location name
in its declaration is regional,

- a location enumeration name, where the array location in the
associated do action 1S regional,

- a location do-with name, Where the structure location in the
associated do action 15 regional.

It is a dereferenced bound reference, where the bound reference
expression in it is regional.

It is a dereferenced free reference, Where the free reference
expression in it is pregional. -

It is a dereferenced row, Where the row expression in it is
reqional.

It is an array element, sub-array or array slice, where the array
location in it is regignal.

FASCICLE VI.8 Rec. Z.200

2.

® It is a string element, substring or string slice, HWhere the
string location in it is regional.

® It is a structure field, where the structure location in it is
regional. .

(] It is & location procedure call, where in the location procedure
call a procedure name is specified which is regional.

° It is a location built-in routine call, that the implementation
specifies it is regional.

[] It is a location conversion, Where the static mode location in it
is regional. ' ‘

Value
A value Or expression is reqgional if and only if it is either a
primitive value which is resional or a parenthesised expression

containing an expression Khich is regional.

A primitive value is pregional if and only if any of the following
conditions is fulfilled:

e It is a location contents Khich is regional and whose mode has the
referencing property.

] It is a value name Which is eithar a:

- synonym name, where the constant value in its definition is
regienal, '

- value do-with name, wWhere the structure expression in the.
associated do action is regional and wuhose mode has the
referencing property. :

. It is a tuple containing an array tuple or structure tuple 1in
which at least one of the specified value occurrences is regional.

] It is a value array element, a value sub-array, or a value array
slice, Where the grray expression in it is regional and the
elemant mode of the mode of the array expression has the
referencing property.

. It is a value structure field, where the structure expression in
it is reaional and the mode of the field has the referencing
proparty.

() It is a referenced location, Where the location in it is regional.

. It is an expression conversion, Where the expression in it is
regional.

FASCICLE VI.8 Rec. Z.200 143

] It is a value procedure call, where in the value procedure call a
procedure name is specified which is regional and whose result
mode has the referencing property.

. It is a value built-in routine call, uWhich is either an
implementation value built-in routine call which returns a value
whose class is compatible lith a mode which has the referencing
property. and for which the implementation specifies that it is
regional, or ADDR(<location>), Whare location is regional.

3. Procedure name

A procedure name is regional if and only if it is defined inside a
region and it is not critical (i.e. not granted by the region).

8.3 DELAYING OF A PROCESS

When a process is active, it can become delayed by executing or evaluating
ona of the following actions or expressions:

Delay action (see section 6.16). When a process executes a delay action,
it becomes delayed. It becomes a member With a priority of a set of
delayed processas attached to the specified event location.

Delay case action (see section 6.17). Hhen a process executes a delay case
action, it becomas delayed. It becomes a member, wWith the specified
priority, of each set of dalayed processes that is attached to an event
location specified in a delay alternative of the delay case action.

Receive expression (see section 5.2.18). khen a process evaluates a
receive expression, it becomes delayed if and only if there are no values
in, nor sending processes delayed on the specified buffer location. It
becomes a membher of a set of delayed receiving processes attached to the
specified (empty) buffer location.

Receive buffer case action (see section 6.19.3). Hhen a process executes a
receive buffer case action it becomas delayed if and only if in none of
the specified buffer locations a value is present, no sending process is
delayed on any of the specified buffer locations, and if ELSE is not
specified. It becomes a member of each set of delayed receiving processes
that is attached to a buffer location specified in a buffer-receive
alternative of the receive buffer case action.

Receive signal case action (see section 6.19.2). When a process executes a
receive signal case action, it becomes delayed if and only if no signal
khich may be received by the process executing the receive signal case
action is pending and only if ELSE is not specified. The process becomas a
member of each set of delayed processes attached to a signal name
specified in the signal-receive alternative.

144 FASCICLE VI.8 Rec. Z.200

send buffer action (see section 6.18.3). When a process executes a send
buffer action, it becomes delayed if and only if the mode of the buffer
location has a length attached and the number of values in the buffer is
equal to the length just prior to the sending operation. The process
becomas a member, uith the specified priority, of the set of delayed
sending processes attached to the buffer location.

Khen a process executes an action which causes it to become delayed while
its control lies within a critical procedure, the associated region Hill
be releasad. The dynamic context of the procedure wWill be retained until
the process is re-activated where is was delayed in the region. The region
Will then be locked again.

8.4 RE-ACTIVATION OF A PROCESS

When a process is delayed, it can hecome re-activated if and only if
another process executes one of the follouing actions:

continue action (see section 6.15). When a process executes a continue
action, it re-activates another process if and only if the set of delayed
processes of the specified event location is not empty. A process of the
highest priority is selected to become active according to an
implementation defined scheduling algorithm. This re~-activated process is
thus removed from all sets of delayed processes.

send buffer action (see section 6.18.3). If a process executes a send
buffer action, it re-activates another process if and only if the set of
daelayed receiving processes of the spacified buffer location is not empty.
A process is selected to become active according to an implemzntation
defined scheduling algorithm. This re-activated process is thus reroved
from all seats of delayed processes. If the set of delayed receiving
processas of a specified buffer location is empty, the sent value will be
stored into the buffer wWwith its specified priority if the buffer capacity
allous for it (see section 8.3).

send signal action (see section 6.18.2). When a process executes a send
signal action, it re-activates another process if and only if the set of
delayad processes of the specified signal name contains a process that may
receive the signal. A process is selected to becoma active according to an
implementation defined scheduling algorithm. This re-activated process is
thus removed from all sets of delayed processes. If no dalayed process is
present to receive the signal, the signal becomes pending, wWith its
specified priority, possible list of values, process name and/or instance
value.

Receive buffer case action (see section 6.19.3). When a process executes a
receive buffer case actionh, it re-activates another process if and only if
the set of dalayed sending processes of any of the specified buffer
locations is not empty. In that case it receives a value of the highest
priority among the values in the buffer location or the delayed sending
processes. Receiving a value from a buffer, the process removes the value

FASCICLE VI.8 Rec. Z.200 145

from the buffer and a delayed sending process With the value of the
highest priority i1s selected to bhecome active according to an
implementation defined scheduling algorithm. This re-activated process is
thus removed from all sets of delayed sending processes and its value is
stored in the buffer, wWith the specified priority. Receiving a value
directly from a delayed sending process, the delayed process carrying the
value with the highest priority is selected to becoma active according to
an implementation defined algorithm. This re-activated process is thus
removed from all sets of delayed sending processes and its value is
received.)

WKhen a process executes an action which causes another process to hecome
active, Khile the re-activating process is active Hithin a critical
procedure, the re-activating process Will remain active, i.e. it Will not
release the region at that point.

8.5 SIGNAIL DEFINITION STATEMENTS

syntax:
<signal definition statement> ::*=

SIGNAL <signal definition> {,<signal definition>}»;
<signal definition> ::=
<name> (= (<mode> {,<mode>}*)] [TQ <process name>]

semantics: A signal definition defines a composing and decomposing
function for. values to be transmitted between processes. If a
signal is sent, the specified list of values is transmitted.
If no process is waiting for the signal in a receive case
action, the values are kept until a process receives the

values.
static properties: A name 1s 3 signal name if and only if it is

defined in a signal definition. A sianal name has the
follouing properties:

. It has an optional list of modes attached, which are the
modes mantioned in the signal definition.

L] It has an optional process name attached which is the
process name specified after T0.

static conditions: NO mode in a signal definition may have the
synchronisation property.

examples:
15.16 SIGNAL INITIATE = (INSTANCE),
TERMINATE;

146 FASCICLE VI.8 Rec. Z.200

@P
(1.1)

2)
2.1)

(1.1

9.0 GENERAL SEMANTIC PROPERTIES

9.1

9.

ODE CHECKIN

.1 PROPERTIES OF MODES AND CLASSES

9.1.1.1 Novelty

Informal

The novelty of a mode indicates whether or not it is defined via a neumode
definition statement. The novelty of a mode is either nil, i.e. it is a
(base) mode not defined via a neumode, or it is the neumode nama2 via which
it 1s definad.

Dafinition

The novelty of a8 mode is defined as follows:

If the mode is denoted by 3 newmode name, its novelty is that neumode
name,

else if the mode is denoted by a svnmode name, its novelty is the
novelty of the defining mode in its definition,

else if the mode 1is denoted by a parameterised array mode,
parameterised string mode, OPF parameterised structure mode, 1itS
novelty is the novelty of the origin array mode name, origin string
mode name OP origin variant structure mode name, respectively, in it,

else if the mode is denoted by a range mode, its novelty is the
novelty uf'its parent mode,

else if tha mode is denoted by a virtually introduced parent mode, its
novelty is the neumode nama which caused i1ts introduction (see section
3.2.3),

else if the mode is denoted by READ <mode>, its novelty is tha novelty
of the <(mode>,

othernise the novelty is nil.

FASCICLE VI.8 Rec. Z.200 147

9.1.1.2 Read-only modes

Informal

A mode is said to be read-only if a location of that mode, as a whole, is
read-only, i.e. naither it nor any part of it may be overuritten.

Definition

A mode has the following hereditary property: it is a read-only mode if
and only if any of the following conditions is fulfilled:

® It is dencted by a mode which is of the form READ <mode>.
] It is denoted by a parameterised array mode, Q parameterised string
mode Or a parameterised structure mode, Where the origin array mode

name, origin string mode name OF origin variant structure mode name, .
respectively, in it denotes a read-only mode.

9.1.1.3 Read-only property

Informal

A mode has the read-only property if a location of that mode is read-only
or contains a component or a sub-component etc. which i1s read-only.

Definition

A mode has the read-only property if and only if one of the following
conditions is fulfilled:

] The mode is a mode name, defined by a mode which has the read-onhly
property.

L The mode is an array mode With an glement mode which has the read-only
prorerty or a structure mode where at least one of its field modes has

the read-only property.

. The mode is a read-only mode.

9.1.1.4 Referencing éroperty

Informal
A mode has the referencing property if a location of that mode has a

reference modg or contains a component or a sub-component etc. which has a
reference mode.

148 FASCICLE VI.8 Rec. Z.200

Definition

A mode has the referencing property if and only if one of the following
conditions is fulfilled:

. The mode is a mode name defined by a mode which has the referencing
property.

. The mode is an array mode With an element mode wKhich has the
referencing property or a structure mode where at least one of its
field modes has the referencing property.

L) The mode is a reference mode.

9.1.1.5 Tagqged parameterised property

Informal

A mode has the tagoed parameterised property if a location of that mode
has a tagged parameterised structure mode or contains a component or a
sub~-component ete. Which has a taggsd parameterised structure mode.

pefinition

A mode has the tagasd paramsterised property if and only if one of the
folloning conditions is fulfilled:

[The mode is a mode name defined by a mode wWwhich has the tagged
paramaterised property.

. The mede is an array mode With an element mode which has the tagged
parameterised property or a structure mode where at least one of its
fiald modes has the tagged parameoterised property.

[] The mode is a tagged paramaterised structure mode.

9.1.1.6 synchronisation property

Informal

A mode has the synchronisation property if a location of that mode has a
synchronisation mode or contains a component or a sub-component etc. which
has a synchronisation mode.

Definition

FASCICLE VI.8 Rec. Z.200 149

A mode has the synchronisation property if and only if one of the
follouing conditions is fulfilled:

. The mode is a mode name defined by a mode which has the
synchronisation property.

® The mode is an array mode With an elemznt mode wWhich has the
synchronisation property or a structure mode where at least one of its
field modes has the synchronisation property.

° The mode is an event mode or a buffer mode.

9.1.1.7 Root mode

Any M-value class or M-derived class, where M is not a composite mode, has
a root mode defined as:

. if M is hot a range mode then the root mode is M,

. if M is a range mode then the root mode is the parent mode of M.

9.1.1.8 Resulting class

Given two compatible classes (see section 9.1.2.6), which are either the
all class, an M-value class or an M-derived class, where M is either a
discrete moda, a powersat mode or a string mode, the resulting class is
dafined as: :

° the resulting class of the M-derived class and the N-deprived class is
the M-derived class;

. the resulting class of the M-value class and the N-derived class, is
- 1f M is not a range mode then the M-value class, othernise the P-value
class, where P is the parent mode of M;

] the resulting class of the M-value class and the N-value class is , if
M is not a range mode then the M-value class, othernise the P-value
class, where.P is the parent mode of M;

[] the resulting class of the all class and any other class is the latter
class.

Given a list C; of pairuwise compatible classes (i=l,...,n), the resulting
class of the list of classas is recursively defined as, if n>1 then as the
resulting class of the resulting class of the list ¢; (i=l,...,n-1) and
the class Cy, otherwnise as the resulting class of Cy and Cx.

150 FASCICLE VI.8 Rec. Z.200

(Note that CHILL is defined in such a uay that the order of taking the
classes C; is irrelevant, i.e. all such resulting classes are compatible.)

9.1.2 RELATIONS ON MODES AND CLASSES

In the following sections, the compatibility relations are defined
betueen modes, betuween classes, and betueen modes and classes. Thease
relations are used throughout the document to define static conditions.

The compatibility relations themselves are defined in terms of some other

relations which are mainly used in chapter 9 for the above mentioned
purpose.

9.1.2.1 The relation "defined by"

Informal

A mode nama2 is said to be dafined by its defining mode and, transitively,
if the latter is also a mode nama, the former is also defined by the
defining moda of its defining mode etc.

Definition

A mode name N is said to be defined by a moda M if and only if:

° M 1s the dafining mode of N

[] the defining mod2 of N is a mode name defined by M.

9.1.2.2 Equivalence relations on modes

GENERAL
Informal

The folloking equivalence relations play a role in the formulation of the
compatibility relations:

L Tuo modes are said to be similar if they are of the same kind, i.e.
they have the same hereditary properties.

° Two modes are s3id to be v-equivalent (value-equivalent) if they are
similar and also have the sama novelty.

FASCICLE VI.8 Rec. Z.200 151

] Tuo modes are said to be equivalent if they are v-equivalent and also
possible differences in value representation in storage or minimum
storage size are taken into account.

. Tuo modes are said to be l-equivalent (location-equivalent) if they
are equivalent and also have the sama read-only specification.

bpefinition

In the following sections, the equivalence relations on modes are given in
the form of a (partial) set of relations. The full equivalence algorithms
are obhtained by taking the symmetric, reflexive and transitive closure of
this set of relations. The modes mentioned in the relations may be
virtually introduced or dynamic. In the latter case, the complete
equivalence check can only be performad at run time. Check failure of the
dynamic part will result in the RANGEFAIL or TAGFAIL exception (see
appropriate sections).

Checking two recursive modes for any equivalence requires the checking of

associated modas in the corresponding paths of the set of recursive modes

by which they are defined. The modes are equivalent if no contradiction is

found. (As a consequence, a path of the checking algorithm stops

successfully if tuo modas which have been compared before, are compared].

The relation "similar"™

TWwo modes are similar if and only if one of the following conditions is

fulfilled: ’

. they are integer modes;

® they are boolean modes;

L they are character modes;

L they are set modes such that they define the same number of values,
the same set element names and for the same names, the NUM built-in
routine call delivers the same value;

e they are range modes With similar parent modes;

. the one is a range mode krhose parent mode i1 similar to the other
mode;

[] the one is a boolean mode and the other a bit string mode of length 1;

. the one is a character mode and the other a character string mode of
length 1;

] they are pouerset modas such that their member modes are equivalent;

152 FASCICLE VI.8 Rec. Z.200

they are bound reference modes such that their referenced modes are
equivalent; '

they are free reference modes;

they are rou modes such that their referenced origin modes are
equivalent;

they are procedure modes such that:

1.

3.

4.

they have the same number of parameter specs and corresponding (by
position) parameter specs have l-equivalent modes, sama parameter
attributes and, if present, the same register specification;

they both have or both do not have a result spec. If present, both
result specs must have l-equivalent modes, the sama attributes
and the same register specification, if present;

they have the same set of exception names;

they have the same recursivity;

they are instance modes;

they are event modes such that they both have no length or the same
length;

they are buffer modes such that:

1.

2.

they both have no length or the same length;

they have l-equivalent buffer element modes;

thay are string modes such that:

1.

2.

they both are bit string modes or character string modes;

they have the same length. This check is dynamic in the case that
one or both modes is (are) dynamic. Check failure Will result in
the RANGEFAIL exception;

they are array modes such that:

their index modes are v-equivalent;

their glement ﬁodes are equivalent;

their element layouts are equivalent (see section 9.1.2.2);

they have the samé number of elements. This check is dynamic if

one or both modes is (are) dynamic. Check failure Will result in
the RANGEFAIL exception;

FASCICLE VI.8 Rec. Z.200 153

The

o

they are structure modes which are not parameterised structure modes
such that:

1. they have the same number of fields and corresponding (by
position) fields are gquivalent (see section 9.1.2.2]);

2. if they are both parameterisable variant structure modes, their
lists of classes must be compatible;

they are parameterised structure modes such that:
1. their origin variant étructure modés-are similar;
2. their corresponding (by position) values must be the same. This

check is dynamic if one or both modes is (are) dynamic. Check
failure will result in the TAGFAIL exception.

relation "v-equivalent"

modes are v-equivalent if and only if they are similar and have the

same novelty.

The

relation "equivalent"

Tuo modes are equivalent if and only if they are yv-equivalent and:

The

if the one mode is a boolean mode, the other mode must also be a
boolean mode;

if the one mode is a character mode, the other mode must also be a
character mode; '

if the one mode is a range mode, the other mode must also be a range
mode and both upper bounds must be equal and both lower bounds must be
equal.

relation "l-equivalent™

THO
one

modes are l-equivalent if and only if they are equivalent and if the
mode has the rexd-only property, the other mode must also have the

read-only property, and:

154

if both are bound reference modes, their referenced modes must be
l-equivalent;

if both are row modes, their referenced origin modes must be
l-equivalent;

if both are array modes, their element modes must be l-equivalent;

FASCICLE VI.8 Rec. Z.200

. if both are structure modes corresponding (by position) fields must be
1-equivalent.

The relations "equivalent” and "l-equivalent” for fields

Tuo fields (both fields in the context of tuwo given structure modes) are
1. equivalent, 2. l-equivalent if and only if both fields are fixed fields
wkhich are 1. equivalent, 2. l-equivalent or both are alternative fields
which are 1. equivalent, 2. l-equivalent.

The relations "equivalent" and "l-equivalent™ are recursively defined for
{corresponding) fixed fields, variant fields, alternative +fields and
variant alternatives respactively in the follouing Way:

1. Fixed fields and variant fields

a. Both fields must have equivalent layout.
b. Both field modes must be 1. equivalent, 2. l-equivalent.

2. Alternative fields

a. Both alternative fields have tags or both have no tags. In the
former case, tha tags must have the same number of tag field namas
and corresponding (by position) tag field names must denote
corresponding fixed fields. ' ‘

b. Both must have the same number of variant alternatives and
corresponding (by position) variant alternatives must be 1.
equivalent, 2. l-esquivalent.

t. Both must have no EL5E specified or both must have ELSE specified.
In the latter case, the sam2 number of variant fields must follow
and corresponding (by position) variant fields must be 1.
equivalent, 2. l-egquivalent.

3. Variant alternatives

a. Both variant alternatives must have the same number of case label
lists and corresponding (by pnsiticn) case label 1lists must
either be both irrelevant, or both (ELSE), or both define the same
set of values.

b. Both variant alternatives must have the same number of var{ant
fields and corresponding (by position) variant fields must be 1.
equivalent, 2. l-equivalent.

The relation "equivalent™ for lavout

In the sequel, it Will be assumed that each pos is of the form:
POS(<word number>,<start bit>,<length>)

FASCICLE VI.8 Rec. Z.200 155

and that each step is of the form:
STEP(<pos>,<step size>,<pattern size>)

Section 3.10.6 gives the appropriate rules to bring pos or step in the
required form.

1. Field layout

Tro field layouts are equivalent if they are both NOPACK, or both
PACK, or both pos. In the latter case the one pos must be equijvalent
to the other one (see below).

2. Element layout

Tro elemant layouts are equivalent if they are both NOPACK, both PACK,
or both step. In the latter case the pos in the one step must be
equivalent to the pos in the other one (see balow) and NUM(step size
) must deliver the same values for the two elemant layouts and NUM(¢
pattern size) must deliver the same values for the tuwo element
layouts.

3. Pos
A pos is equivalent to another pos if and only if both NUHM(word
number) occurrences deliver the same value, both NUM(start bit)

occurrences daliver the same value and both NUM(length) occurrences
daliver the same value.

9.1.2.3 _The relation "read-compatible™

Informal

A mode M is said to be read-compatible with a mode N if and only if M and N
are equivalent and M and its possible (sub-)components have more
restrictive read-only specifications. This relation is therefore
non-symmetric.

Example:
READ REF READ CHAR is read-compatible Wwith REF CHAR

Definition
A mode M is said to be read-compatible with a mode N (a non-symmetric
relation) if and only if M and N are gquivalent and, if N is a read-only

mode, then M must also be a read-only mode and further:

[if M and N are bound reference modes, the referenced mode of M must be
read-compatible Hith the referenced mode of N;

156 FASCICLE VI.8 Rec. Z.200

L) if M and N are row modes, the referenced origin mode of M must be
read-compatible nith the referenced origin mode of N;

[] if M and N are array modes, the eglement mode of M must be
read-compatible with the glement mode of N;

. if M and N are structure modes, any field mode of M must be
read-compatible with the corresponding field mode of N.

9.1.2.4 The relation "restrictable to"

Informal

The.relation "restrictable to" is relevant for equivalent modes with the
referencing property. A mode M is said to be restrictable to a moda N if
it or its possible sub-conmponents refer to locations With equally or less
restrictive read-only specification than those referenced by N. This
relation is therefore non-symmatric. The relation is used in assignments
(see section 9.1.2.5]).

Exampla:
REF INT is restrictable to REF READ INT
STRUCT(P REF BOOL) is restrictable to STRUCT(Q@ REF READ BOOL)

Definition

A mode M is prestrictable to a mode N (a non-symmetric'relation) if and
only if one of the following holds:

] M does not have the referencing property and M is gquivalent to N.

e M and N are bound reference modes and the referenced mode of N is
read-compatible with the referenced mode of M.

[M and N are free reference modes and M and N are gquivalent.

[M and N are row modes and the referenced origin mode of N is
read-compatible with the referenced origin mode of M.

° M and N are array modes and the element mode of M is restrictable to
the element mode of N.

M and N are structure modes and each field mode of M is restrictable
to the corresponding field mode of N.

FASCICLE VI.8 Rec. Z.200 157

9.1.2.5 Compatibility between a mode and a class

° any mode M is compatible with the all class;

] a mode M is compatible with the null class if and only if M is a
refarence mode or a procedure mode or an instance mode;

° a mode M is compatible With the N-reference class if and only if it is
a reference mode and one of the following conditions is fulfilled:

1. N is a static mode and M is a bound reference mode whose
referenced mode is read-compatible nith N3

2. N is a static mode and M is a free reference mode;

3. M is a row mode with referenced origin mode V and:

- if V is a string mode, N must be a string mode such that vip)
is read-compatible With N, where p is the (possibkly dynamic)
length of N3

- if V is an array mode, N must be an array mode such that v(p)
is read-compatible with N, Khere p is the (possibly dynamic)
upper bound of N; ‘ ’

- if V is a variant structure mode, N must be a parameterised
structure mode such that vipi,...pn) is read-comratible With
N, where p1s...pPn denote the list of values of N;

] a mode M 1s compatible With the N-derived class if and only if M and N
are similar;

L] a mode M is compatible with the N-value class if and only if one of the
following holds:

1. if M does not have the referencing prorerty, M and N must be
v-equivalent;

2. if M does have the referencing property, N must be restrictable to
M.

9.1.2.6 cCompatibility betueen classes

. Any class is comeatible With itself.

. The all class is compatible with any other class.

] The null class is compatible with any M-reference class.

158 FASCICLE VI.8 Rec. Z.200

(] The null class is compatible with the M-derived class or M-value class
if and only if M is a reference mode, procedure mode or instance mode.

. The M-reference class is compatible with the N-reference class if and
only if M and N are equivalent. If M and/or N is (are) a dynamic modae,
the dynamic part of the equivalence check 1is ighored, i.e. no
exceptions can occur.

] The M-reference class is compatible with the N-derived class or
N-value class if and only if N is a referance mode and one of the
follouing conditions is fulfilled:

1. M is a static moda and N 1is a bound reference mode whose
referenced mode is equivalent to M.

2. M is a static mode location and N is a free reference mode.
3. N is a rou mode with referenced origin mode V and:

- if V is a string mode, M must be a string mode such that Vip)
is equivalent to M, where p is the (possibly dynamic) length
of N;

C - if V is an array mode, M must be an array mode such that V(p)
is equivalent to M, uhere p is the (possibly dynamic)
upperbound of M; .

- if V is a variant structure modea, M must be a parameterised
structure mode such that Vipi,...pPn) is equivalent to M,
where p1,...pPn denote the list of values of N.

. The M-derived class is compatible nith the N-derived class or N-value
class if and only if M and N are similar.

. The M-value class is compatible with the N-value class if and only if
M and N are v-equivalent. :

Tuo lists of classes are compatible if and only if both lists have the
same number of classes and corresponding (by position) classes are

corpatible.

9.1.3 CASE SELECTION

syntax:
<case label specification> ::=
<case label list> {,<case label list>}*

<case label list> ::=

(<case label> {,<case label>}»)
| CELSE) | <irrelevant>

FASCICLE VI.8 Rec. Z.200 159

1)
(1.1)

2)
(2.1
(2.2’

<case label> ::=
<discrete literal expression>
| <literal range>
| <discrete mode name>

<irrelevant> ::=
(%)

case selection is a means of selecting an alternative from a
list of alternatives. The selection is based upon a specified
list of selector values. -

Case selection may be applied to:

] alternative fields (see section 3.10.4), in khich case a
list of variant fields is selected,

. labelled array tuples (see section 5.2.5), in which case
an array elemant value is selected,

L] case action {see section 6.%), in which case an action
statemaent list is selected. ‘

In the first and last situation, each alternative is labelled
Hith a case label specification; in the labelled array tuple,
each valua is labelled with a case label list. For ease of
description, the case label list in tha labelled array tuple
Will be considered in this section as a case label
specification With only one case label list occurrecnce.

case salection selects that alternative which is labelled by
the case lahbel specification w®khich matches the list of
selector values. (The number of selector values Will aluays
ba the sama as the number of case label list occurrences in
the case label spacification.) A list of values is said to
match a case label specification if and only if each value
matches the corresponding (by position) case label list in
the case label specification.

A value is said to match a case label list if and only if:

. the case label list consists of case labels and the value
is one of the values explicitly indicated by one of the
case labels, .

. the case label list consists of (ELSE) and the value is
one of the values implicitly indicated by (ELSE)

] the case label list consists of irrelevant.

The values explicitly indicated by a case label are the values
delivered by any discrete expression, or defined by the
literal range or discrete mode name. The values implicitly
indicated by (ELSE) are all the possible selector valuas

160 FASCICLE VI.8 Rec. Z.200

€3)

(3.1
(3.2)
(3.3)

(%)
(%.1)

.

which are not explicitly indicated by any associated case
label list (i.e. bhelonging to the same selector value) in any
case label specification.

static properties:

An alternative fields With case label specification, a
labelled array tuple, Or & case action has a8 list of case
label specifications attached, formed by taking the case
label specification in front of each variant alternative,
value Or case alternative, raspectively.

A case label has a class attached, uwhich is, if it is a
discrete literal expression, the class of the discrete
literal expression; if it is a 1literal range, the
resulting class of the classes of each discrete literal
expression in the literal range; if it is a discrete node
name, the resulting class of the M-valua class khere M is
the discrete mode nanme.

A case label list has a class attached, uhich is, if it is
(ELSE) or <irrelevant>, then the all class, otherwise
the resulting class of the classes of each case label.

A case label specification has a 1list of classes
attached, which are the classes of the case label lists.

A list of case label specifications, has a resulting list
of classes attached (providaed that the case label
spacifications have the same number of classes; this Will
aluays be the case). This resulting list of classas is
formad by forming, for each position in the list, the
resulting class of all the classes that have that
position.

A list of case label specifications is complete if and only if
for all lists of possible selector values, a case label
specification is present, which matches the list of selector
values. The set of all possible selector values is determinad
by the context as follous:

For a tagaed variant structure mode it is the set of
valuas defined by the mode of the corresponding tag
field.

For a tag-less variant structure mode it is the set of
values defined by the proot mode of the corresponding
resulting class (this class is never the all class, see
section 3.10.4%).

For an array tuple, it is the set of values defined by the
index mode of the mode of the array tuple.

FASCICLE VI.8 Rec. Z.200 161

.

. For a case action With a range list, it is the set of
values defined by the corresponding discrete mode in the
range list.

. For a case action Without a range list, it is the set of
values defined by M uhere the class of the corresponding
selector is the M-value class or the M-derived class.

static conditions: For each case label specification the number of case
label list occurrences must be equal.

For any tuWo case label specification occurrences, their lists
of classes must be compatible.

The list of case label specification occurrences must be
consistent, i.e. each 1list of possible selector values
matches at most one case label specification.

examples:

11.7 (occupied) (3.1)
11.62 (rook), (%) (1.1)
8.24% (ELSE) (2.2)

9.1.%¢ DEFINITION AND SUMHMARY OF SEMANTIC CATEGORIES

This section gives a summary of all semantic categories wuwhich are
indicated in the syntax description by means of an underlined part. If
these cateseories are not defined in the appropriate sections, the
definition is given here, otherwise the appropriate section Will be
referenced.

9.1.6.1 Names

Mode names

array mode name:
boolean mode name:

bound reference mode name:

buffer mode name:
character mode name:

discrete mode name:
event mode name:
free reference mode

name:

instance mode name:?

162 FASCICLE VI.8

a name defined by an array mode.

a name defined by a boolean mode.
a name defined by a bound
reference noda.

a name defined by a buffer mods

a name definad by a character
mode.,

Q name defined by a discrete mode.
a name defined by an event mode.

a nane defined by a free reference
moda.
Q name
mode.

defined by an instance

Rec. Z2.200

integer mode name:
mode nanme:

newmode name:
parameterised array _mode name:

parameterised string mode name:

parameterised structure mode name:

pouerset mode name:
procedure mode name:

range mode name:
row_mode name:?

set mode name:

string mode name:
structure mode name?

synmode name:
variant structure mode name:

Access names

based name:

location name:

location do-with name: -
location enumeration name:
loc-identity name:

value names

synonym namnes

value do-with name:
value enumeration name:
value receive name:

Miscellaneous names

bound or free reference location

name:

built-in routine name:

field nanme:
qgeneral procedure name:

label name:
module name:

a name defined by an integer mode.
see section 3.2.1

see section 3.2.3

a nanme dafined by a parameterised
array mode.

a name defined by a parameter:sed
string moda.

a name defined by a parameter:sed
structure mode.

a name dafined by
a name defined
mode.

a name defined by
a nane dafined by
a name definad by
a name definad by
a name defined
moda.

see section 3.2.2
a name defined by a
structure mode.

a pouerset mode.
by a procedure

a range mode.

a rou mode,

a set mode.

a8 string mode.
by a structure

variant

section 4.1.4
sactions 4.1.2,
section 6.5.4
section 6.5.2
sections 4.1.3, 7.%

seea
sge
sag
see
see

7.4

section 5.1

section 6.5.2

section 6.5.4%

sections 6.19.2, 6.19.3

see
see
sae
see

a location name HWith a bound
reference mode or a free reference
mode.

any implementation defined name
denoting an implementation
definad built-in routine.

see section 3.10.4%

a procedure name Whose generality
is ganeral.

sea section 6.1

sge section 7.6

FASCICLE VI.8& Rec. Z.200

163

non-reserved name:

procedure name:
process name:
region names
register name:

reserved name list:

set element name:
signal name:

tag field name:
undefined syngnym name:

9.1.4.2 Locations

array location:
buffer location:
event location:
instance location:
string location:
structure location:

9.1.4.3 Expressions

array expression:
boolean expression:

bound reference expressiont

discrete expression:

discrete literal expression:

free reference expression:

instance expression:

164 FASCICLE VI.8

. name Which 1is none of the

reserved names mentioned in
Appendix Cl1.

see saction 7.4%

see section 7.5

see section 7.7

an implemantation defined name
denoting a machine register.

a name list consisting solely of
raserved hames. (see Appendix C1)

~ see section 3.4.5

see section 8.5.2
sea section 3.10.4%
see section 5.1

location With an array mode.
location With a buffer moda.
location Wwith an event mode.
location With an instance mode.
location With a string moda.
location With a structure mode.

¥ oYY Y Y

an expression uWhose class is
compatible with an array mode.

an expression Khose class is
compatible with a boolean mode.

an expression WKhose class is
compatible with a bound reference
mode.

an expression wuWhose class is
compatible With a discrete mode.

Q discrete expression Which is
literal.

an expression Whose class is
compatible with a free reference
moda.

an expression Whose class is
compatible with an instance mode.

Rec. Z.200

integer expression:

integer literal expression:

powerset expression:
procedure expression:
row expression:
string expression:

structure expression:

an expression uWhose class is

compatible with an integer mode.

an integer expression Which is
literal.
an expression Whose class is

compatible with a pouerset mode.
an expression Whose class is
compatible With a procedure mode.

an expression Whose class is
compatible with a rou mode.

an expression Whose class is
compatible Rith a string mode.

an expression Whose class is

compatible nith a structure mode.

static conditions: Neither a boolean expression NOP a discrete ‘expression
{uhen indicated in the syntax) may have a dynamic class. I.e.
the check whather the expression is compatible with a boolean
mode or a discrete mode, can be made statically.

9.1.4.% Miscellanegus semantic catedgories

implementation value built-in

routine call:

location procedure call:

nmodule action statement:

non-apostrophe character:

value procedure call:

see section 11.1.3

see section 6.7

an action statement in Kkhich the

directly contained action is a
module.
a character which is not an
apostrophe.
see section 6.7.

FASCICLE VI.8 Rec. Z2.200

165

9.2 VISIBILITY AND NAME BINDING

9.2.1 GENERAL

The specific CHILL constructs mentioned in section 7.1 create new nhames
within a progsram. The proaram structuring statements and visibility
stataments datermine tha visibility of names throushout the program. This
section deals with the visibility of names with the exclusion of exception
names, i.e. each nama2 is considered not to be in the context of an
exception name . See chapter 10 for excepticn hames.

To enable a precise description of the visibility structure of a program,
the follouwing refineménts of terminology are introduced just for this
section 9.2:

(] A nama string (of a name) is a string. of characters (used as
denotation for the hame) seen as a lexical element isolated from any
context. A hame is a name string associated with ‘a definition

{dafining occurrence, see saction ¢.2.2) of that name string.
Example:
B: BEGIN

MODULE DCL I INT; END;

HODULE DCL I PTR; END;

END B;

In the begsin-end body of the block labelled B tuo names are introduced,
both with tha name string I.

WHithin a reach, each name has one of the folloning four degrees of
visibility: :

Table l.Degrees of visibility

Visibility Properties (informal)
directly Nama is visible by creation, granting or

strongly visible seizing

indirectly Name is inherited via block nesting
strongly visible or by its pervasive attribute

weakly visible Name 1s implied by a strongly visible
nana
Invisible Nama may not be applied

166 FASCICLE VI.8 Rec. Z.200

A name is said to be strongly visible if it is either directly strongly
visible or indirectly stronaly visible. A name is said to be visible if it
is either peakly or stronaly visible,othernise the nama is said to be
invisible. Tha program structuring statements and visibility statements
determina uniquely to which visibility class each name bealongs. The
precise properties of the visibility classes are explainad in the
following sections.

Name binding is the mechanism of associating a unique name to any name
string, i.e. associating a unigqua meaning to the name string.

9.2.2 VISIBILITY AND NAME CREATION

Names are created by the constructs menticned in section 7.1. Except for
field names and set elemant namss, the names have a unigque defining
occurrence, khich is the construct that ‘introduces the nama. In order to
have a uniform treatmznt for any name for establishing the visibility and
nanma binding, the following mechanism for 4giving a unique defining
occcurrence to any created name is considered to be applied:

] Hithin the reach of a group, each mode occurrence is considered to be

' an applied occurrence of a virtual synmode nane dafined Within: that
reach. For procedure definitions, the virtual synmode definition of
the result mode is placed in the reach of the group surrounding the
procedure. The virtual synmode definitions of the formal parameter
modes are placed in the reach of the procedure.

Visibility and name binding rules are applied taking these virtual
definitions into account.

Example:

DCL I SET(A,B),
K INT,
J ARRAY (SET(A,B)) INT;

is considared to be replacad by:

SYNMODE &1 = SET(A,B), &2 = INT;
&3 = ARRAY (&1)&2;
DCL I &1, K &2, J &3;

&1, &2 and &3 are virtual syvnmoda names. The visibility rules are applied
to these virtual replacemesnts. The virtual replacemcnts have the
consequence that name creating modes (5ET, STRUCT) appear only once in a
reach, at the right-hand sida of a virtual synmode definitions. This
synmode definition is considered to be an unique dafining accurrence of
the set elemant names or field names.

FASCICLE VI.8 Rec. Z.200 167

The visibility and nama binding properties of field names are different
(simpler) than those of other names. Therefore, in the remainder of
section 9.2, the word ™name™ does not include field names, unless
othernise stated.

9.2.3 IHMPLIED NAMES
Each strongly visible name in a reach has a (possibly empty) set of
implied names defined as follous;

) Each mode has a (possibly empty) set of implied names, listed in Table
2.

The implied names of a (strongly visible) name are:

e If the name is an access name, the implied names are the names implied
by the mode of the access hame. .

° If the name is a mode name, the implied names are the names implied by
the defining mode. :

° If the name is a procedure name, the implied names are the names
implied by the mode of the result spec.

o If the name is a signal name, the implied names are all names implied
by its attached modes. '

' otheruise there are no implied names.

l68 FASCICLE VI.8 Rec. Z.200 .

Table 2. Implied names of modes

Modes set of implied names

INT, BIN, CHAR
INSTANCE, PTR

BOOL, EVENT Empty

CHAR(n), BIN(n)

BIT(n), RANGE(....)

mode name The set of implied namas

of its defining mode

Mtm:n) The set of implied names of M

REF M, ROH M

READ M, POHERSET M The set of implied names of M
PROC(---) (M)

BUFFER H

ARRAY (M) N The union of the sets of the namaes

implied by ¥ and N

STRUCT(Ny Mz,~~-,Nn Hp) The union of the sets of names
irplied by Mz throush M,.

For variant structures it is the
unionh of the implied names of all
the fields of the variant

structure
Parameterised VM(---) Tha set of implied names of VM
SET(........) The set of set elemant namas

(note that implied names, always being sgt element names, never have
implied names themselves.)

9.2.6 VISIBILITY IN REACHES

A name, Which is strongly visible in a reach, is either directly strongly
visible or indirectly strongly visible in it.

A name is directly strongly visible in a reach only in the following
cases: ‘

. The name has its defining occcurrence in the reach.

] The name is seized into the reach (see section 9.2.6.3).

FASCICLE VI.8 Rec. Z.200 169

. The name is granted into the reach (see section 9.2.6.2).

A name is indirectly strongly visible in a reach only in the following
cases:

. The reach is a block reach and the name is inherited (see section
9.2.5).

. The name is strongly visible in the surrounding reach and has the
parvasive property in that surrounding reach (see section 9.2.6.2)
and the reach has no directly strongly visible name in it With the
same name string. In this case, the name has also the pervasive
property in the reach.

A name is wWeakly visible in a reach only in the follouwing case:

° The name is implied by a strongly visible name in that reach.

The visibility rules are defined such that in any reach, all the strongly
visible names have different nama strings. Houever, tHo or more Weakly

visible namas may have the sama name string. Such a name may then not he
applied in soma cases (sea section 9.2.8).

9.2.5 VISIBILITY AND BLOCKS

The following visibility rule applies to blocks:

] A name, strongly visible in the reach of a group, is indirectly

. stronaly visible in the reach of each directly enclosed block khich

has no directly strongly visible name With the sama2 name string (nama
inharitance by blocksl.

9.2.6 VISIBILITY AND MODULIONS

9.2.6.1 General

syntax:
<visibility statement> ::*= . (1
<grant statement> (1.1)
| <seize statement> _ (1.2)

semantics: Visibility statements, wkhich are only allowed in modulion
reaches, control the visibility of thea names explicitly
mentioned in them (and implicitly their implied names).

170 FASCICLE VI.8 Rec. Z.200

9.2.6.2 Grant statements

syntax:

semantics:

<grant statement> ::=
GRANT <grant window> [PERVASIVEI];

<grant window> ;:=
<granted element> {,<granted element>}»
)} ALL

<granted element> ::=
<non reserved name>
| <newmode name> <forbid clause>

<forbid clause> ::*<
FORBID {<forbid name list> | ALL}

<forbid name 1list> ::=
(<field name> {,<field name>})

6rant statements are mzans of extending the visibility of
names in a modulion reach into the directly surrounding
reach. FORBID can only be specified for neumode namas which
are structure modes. It means that all locations and valuzs of
that mode have fields which may be selected only inside the
granting module, not outsida.

The following visibility rules épply:

e A name, visible in the reach of a modulion, is directly
stronaly visible in the reach of the directly surrounding
group if it is mentioned in a grant statement in the
modulion reach. The name is said to be granted into the
surrounding reach.

] The notation FORBID AlLL is a syntactic shorthand
forbidding all the field names of the pewmode name (see
section 9.2.7).

[] The notation GRANT ALL [PERVASIVE] is a syntactic
shorthand for granting all the names (With the pervasive
property, if specified), Which are strongly visible in
the reach of the granting modulion and whose dafining
cccurrence lies inside the granting medulion.

static properties: A name granted With the attribute PERVASIVE, has the

parvasive prcperty in the surrounding reach.

static conditions: The defining occurrence of any non-reserved name must

lie inside the granting modulion.

FASCICLE VI.8 Rec. Z.200 171

1
1.1

2)
(2.1)
2.27

3
(3.1)
(3.2)

(%)
(4.1)

(5)
(5.1)

examples:

The newmode name With FORBID specification must have its
defining occurrence in the reach of the granting modulion and
must be a structure mode and each field name in the forbid
name list must ba a field name of the newmode name.

If a grant statement is placed in the reach of a region it
must not grant a name which is a regional value name or a
regional access hama.

1.11 GRANT add,mult;

9.2.6.3 seize statements

syntax: .

<seize statement> ::=
SEIZE <seize window>;

<seize window> ::=
<seized element> {,<seized element>}
| ALL
<seized element> ::=
<modulion name> ALL
| <non-reserved name>

“<modulion name> ::=
<module name>
| <region name>

semantics: Seize statements are a means of extending the visibility of

172

namas in aroup reaches into the reaches of directly enclosed
modulions.

The following visibility rules apply:

L A name, visible in the reach of a group, is directly
stronaly visible in the reach of a directly enclosed
modulion if it is mentioned in a seize statement in the
modulion reach. The nama is said to ba seized in the
modulion reach.

U If a name which has the pervasive property in the
surrounding reach is seized, it Will be directly strongly
visible in the reach of the seizing module and it keeps
the pervasive property.

® The notation SEIZE ALL i1s a syntactic shorthand for
seizing all the names which are strongly visible in the
reach of the surrounding group and uhose defining
occurrence lies outside the seizing modulion.

FASCICLE VI.8 Rec. Z.200

(1.1

1)
(1.1)

2)
2.1)
2.2)

(3
(3.1)
(3.2)

(%)
(4.1)
(4.2)

L The notation SEIZE <modulion name> ALL is a syntactic
shorthand for seizing all the names uwhich are strongly
visible in the reach of the surrounding group and are
granted by the module or region dencted by the modulion
name.

static conditions: The defining occurrence of any non-reserved name or
modulion name must lie outside the seizing modulion.

A nama mentioned in & seized element must not be a value
do-with name nor a location do-with name.

examples: .
15.14 SEIZE s*external signals %/
ACQUIRE, RELEASE, CONGESTED, STEP, READOUT;

9.2.7 VISIBILITY OF FIELD NAMES.

Field namas may occur outside their defining occurrence only in the
folloning context:

] Field selection of a8 structure location or a structure value.
. Labelled structure tuples.
. Forbid clauses in the grant statement.

In the first two contexts those field names which are attached to the mode
of the structure location, {(strong) structure value or tuple are visible,
excapt if the novelty of this mode is a neumcde name wuhich has besen
granted by a modulion With a forbid clause. In tha latter case, outside
the granting modulion, only those field names which are not mentioned in
the forbid clause are visible.

In the last context all and only the field names of the granted newumode
name are visible.

9.2.8 NAME BINDING

Name binding is the machanism of associating a unique name wWith any
occurrence of a name string.

The binding rules depend on whether the name string occurs in the context
of:

1. adirective name,

FASCICLE VI.8 Rec. Z.200 173

(1.1)

6.

an exception name,
Q reserved name,
a field name,

& non-reserved name, a module name, OPF reqgion name iNn & seized
element,

any other nanme.

Binding rules

1.

174

A directive name strihg follous an implementation defined binding
scheme which must not influence the CHILL binding rules {(see section
2.6).

An exception name string is treated according to the handler
identification rules given in section 10.3.

A reserved name string khich is not freed by a free directive in a
compilation unit in khich it occurs, has its reserved m2aning. If it
is freed, it follous the rules under 6. Even if freed in a compilation
unit, it may not be granted cutside that unit.

A field name string is bound as follouws, depending uponh the contexts
mentionad in section 9.2.7:

. to the visible field name of the structure mode of the structure
location or (strong) structure expressions;

e to the visible field name of the structure mode of the (strong)
tuple;

] to the visible field name of the heumode name.

If the name string cannot be bound to such a field name, the program
is ih error.

A name string occurring in the context of a seized element is bound
according to the rules mentioned under 6., but in the reach directly
surrounding the reach in khich the seize statement is placed.

For any other occurrence of a name string in the reach of a group:

a. 1if thére is more than one strongly visible name in the reach
Hith that name string, then the program is in error;

b. else if there is one strongly visible name in the reach uith
that name string, then the name string is bound to that name;

c. else if there is exactly one weakly visible name Wwith that name
string in the reach, the name string is bound to that name;

FASCICLE VI.S8 Rec. Z.200

d. else if there is more than one ueakly visible name in the reach
Hith that name string and if all those (set element) names have
compatible classes, then the name string is bound to (an
arbitrary) one of those namas;

e. otheruise the program is in error.
In addition to the rules mantioned above, a name string appearing in a
grant statement or a seize statement must be bound to a name uhose

defining occurrence lies inside or outside, respectively, the granting or
seizing modulion (if there is a choice according to rule d.).

FASCICLE VI.8 Rec. Z.200 175

10.0 EXCEPTION HANDILING

10.1 GENERAL

An exception is either a language defined exception, in khich case it may
have a language defined nama, a user defined exception, or an
implementation dafined exception. A language defined exception Will be
caused by the dynamic violation of a dynamic condition. Any namad
exception can be caused by the execution of a cause action.

When an exception is caused, it may be handled, i.e. an action statement
list of an appropriate handler uill be executed.

Exception handling is defined such that at any statement it is statically
knoun wrhich exceptions might occur (i.e. it is statically known which
axceptions cannot occur) and for which exceptions an appropriate handler
can ba found or which exceptions may be passed to the calling point of a
procedure. If an exception occurs and no handler for it can be found, the
program is in error.

10.2 HANDLERS

syntax:
<handler> ::= 1)
ON {<on-alternative>}*
{ELSE <action statement list>] END (l1.1)
<on-alternative> ::= 2)
(<exception list>) : <action statement list> 2.1)

semantics: An action statement list in an on-alternative is entered if an
exception occurs in the statement to which the handler is
appended and whose name is mantioned in the exception list in
the on-alternative. If ELSE is specified, the action
statemant list following it Hill be entered if an exception
cccurs in tha statement to which the handler is appended and
whosa nama is not specified in any exception list directly
contained in the handler.

If the handler is appendad to an action, when the end of an
action statemant list in an on-alternative is reached control
Will be given to the action statement following the action
statemant in which the handler is placed.

If the handler is appended to a procedure definition, control
Will be returned to the calling point khen the end of an
action statement list is reachad. If the handler is appended
to a process definition, the executing process Will terminate

176 FASCICLE VI.8 Rec. Z.200

when the end of an action statement list in the on-alternative
is reached. :

static conditions: All the names in° all the exception list
occurrences must be different.

dynamic conditions: The SPACEFAIL exception occurs if an action
statemesnt list is entered and storage requirements cannot be
satisfied.

examples:
10.43 ON

(no_space): CAUSE overflow;
END . (1.1)

10.35 HANDLER IDENTIFICATION

Khen an exception E occurs at an action A, or a data statement or region D,
the exception may be handled by an appropriate handler, i.e. an action
statemant list in the handler will be executed or the exception may be
passed to the calling point of a procedure, or, if neither is possible,
the program is in error.

For any action A, or data statement or region D, it can be statically
determined uhether for a given exception E at A or D an appropriate
handler can be found or whether the exception may be passed to tha calling
point.

An appropriate handler for A or D Kith respect to E is determined as
follous:

1. if a handler is appended to A or D which mentions E in an exception
list or khich specifies ELSE, then that handler is the appropriate one
with respect to E;

2. othernise, if A or D is directly enclosed by a bracketed action, the
appropriate handler (if present) is the appropriate handler for the
bracketed action with respect to E;

3. otherwise if A or D is placed in the reach of a procedure definition
then:

. if a handler is specified after the procedure definition uhich
handler specifies E in an exception list or specifies ELSE, then
that handler is the appropriate handler,

° if E is mentionad in the exception 1list of the procedure
definition then E is caused at the calling point,

. otherunise there is no handlers;

FASCICLE VI.8 Rec. Z.200 177

4., othernise if A or D is placed in the reach of a process definition
(possibly the imaginary one) then:

. if a handler is specified after the process definition which
handler specifies E in an exception list or specifies ELSE then
that handler is the appropriate handler,

° otherwise there is no handler;

5. otheruise if A is an action of an action statement list in a handler
then the appropriate handler is the appropriate handler for the action
A' or definition D' With respect to E to which the handler is appended
but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate

handler implies exiting from blocks, local storage Will be released when
exiting from the block.

178 FASCICLE VI.8 Rec. Z.200

11.0 IMPLEMENTATION OPTIONS

11.1 IHMPLEMENTATION DEFINED BUILT-IN ROUTINES

syntax:
<built-in routine call> ::=
Kbuilt-in routine name>
({<built-in routine parameter list>1)
<built-in routine parameter list> ::=
<built-in routine parameter>
{, <built-in routine parameter>}
<puilt-in routine parameter> ::°
<value>
| <location> .
| <non-reserved namwe>
semantics: An implementation may provide for a set of implementation
defined built-in routines in addition to the set of language
defined built-in routines.
A value, a location or any program defined name which is not a
resorved name may be passed as paranater. The built-in
routine call may return a value or a location. The paranmeter
passing machanism is implementation defined.
A built-in routine may be generic, i.e. i1ts class (if it is a
valug built-in routing call) or its mode (if it is a location
built-in routine call) may depend not only on the built-in
routine name but also on the static properties of the actual
paramaters passed and the static context of the call.
static properties: A built-in routine name iS5 an implemsntation

defined name khich is considared to be definad in the standard
prelude module (sea section 7.8). It may have a set of
irplementation defined exception names attached. A built-in
routine call 18 a value (location) built-in routine call i¥f
and only if the implementation specifies that for a given
choice of static properties of the paramaters and the given
static context of the call, the built-in routine call
dalivers a value (location).

11.2 THPLEMENTATION DEFINED INTEGER MODES

An implementation may define other integer modes than the ones defined by
INT, e.g. short integers, long integers, unsigned integers. These integer
modes must be denoted by implementation dafined integsr mode names. Thase

FASCICLE VI.8 Rec. Z.200 179

1)
(1.1)
27
(2.12
(3)
(3.1>

(3.2
(3.3

namas are considered as neumode names, similar to INT. Their value ranges
are implementation defined. These integer-modes may be defined as root
modes of appropriate classes.

11.3 JTHPLEMENTATION DEFINED REGISTER NAMES

An implementation may define a set of pre-defined register names (see
sections 3.7 and 7.8).

11.4 THMPLEMENTATION DEFINED PROCESS NAMES AND EXCEPTION NAMES

An implementation may define a set of implementation defined process
namas,i.e. process names whose daefinition is not specified in CHILL. The
definition is considerad to be placed in the reach of the standard preluds
module. Processes of this name may be started and instance values denoting
such processes may be manipulated.

An implenmentation may defina a set of exception names for any process name

or a group of process namas. These exceptions may bhe caused when starting
the process (see section 6.14).

11.5 THPLEMENTATION DEFINED HANDLERS

An implementation may specify that an implementation defined handler is
arpendad to the imaginary outermost process dafinition (see section 7.8).
The egxception names and actions in the implementation defined handler may
specify any legal CHILL exception hama or action. Note that an
on-alternsative in such handler can be entered only by an exception caused
by the outermost process and not by any inner process.

11.6 SYNTAX OPTIONS

At some places, CHILL allouws for more than one syntatic description for
the sam2 semantics. The choice for one of the following options should be
fixed Within the khole program.

Assignmant symbol

The assighmnant symbol i1s either = or =

ARRAY

180 FASCICLE VI.8 Rec. Z.200

The reserved name ARRAY should be either mandatory or not alloued.

RETURNS

In procedure definitions with a result spec, the reserved name RETURNS,
should be either mandatory or not alloued.

structure modss

structure modes must ba either in the nested structure notation or in the
level numbered notation.

Literal and tuple brackets

In the case that square brackets are available in the representation
alphabet, the brackets [and] may be used instead of (: and :)
respectively.

FASCICLE VI.8 Rec. Z.200 181

APPENDIX A: CHARACTER SETS FOR CHILL PROGRAMS

A.1 CCITT ALPHABET NO. 5 INTERNATIONAL REFERENCE VERSION

Recommendation V3 (The internal representatibon is the binary number
formed by bits b7 to bl, uhere bl is the least significant bit).

b 0 1 0 1) 21_ 010 _'L"'1 1
bl ol 11 o 11 of I of 1
— 0111213415161 7

b4b1 7bl
ofojojo] O gnurfrc| sp Ofja|P p
ofojo[1] 1 R 1c |oc '11T1A1Qlalq
ofojr{o| 2 Rrc:|oc: "l12|BlR]D]}]r
ofojr|1| 3 §ic| e #13]JCIS]|lc]s
ofrjojof & Q¢ foc| B LIDJT|d]t
ojrfojr[5 Qrolrcf %] SfEJU e fu
of1|rfo| 6 Rrc.|rcf& 6 FV]|f]v
ofrfr|r| 7 Weeyf e " | TG WO
1lojojo| 8 J Feo]can (1 8JH|X}|h]X

(BS
h0019 FE| EM >I91IlYLilYy
1lo]1|o| 10Q fe-|sus| * | = | J Zlilz
ol |11 B resfesc]l +] ; KO k] <
ﬁ (vT) —
110012:,,&[%3' ANEANEE
R UERE B R Il Il L I L
ZE1014 solis.| . >INIAINn] ™

2

_1_11115 stlis] /7 1?2]10]-1]0 [oee

182 FASCICLE VI.8 Rec. Z.200

A.2 MINIMAL CHARACTER SET FOR REPRESENTING CHILL PROGRAMS

The following subset of the CCITT alphabet no. 5 Basic code is used in
this document to represent CHILL programs.

o3 (<3
o
o
o
—
—
o
PR =N
—
o
o
o
-—
—
o
—
—-—

o &
(=}
(=)

o
o
o
—

o
N
o
o

o j o
-
—
o

o
-
—
—_

0
1
2
3
4
5
6
I
8

NI I B YK N I N B =] I

o
o
O

Nl=<lXx|l=]l<|clH]|v]|=o]| o] vlw

N
o
N
o
s

r _

V ¥ B
e——

OlZI=RlIr1 Rl +H]TIolMIMololo] >»

FASCICLE VI.8 Rec. Z.200 183

APPENDIX B:

SPECIAL SYMBOLS

Nama Use
; semicolon terminator for statements etc.
’ comma separator in varicus constructs
¢ left parenthesis opening parenthesis of various constructs
) | right parenthesis closing parenthesis of various constructs
[left square bracket opaning bracket of a tuple
] right square bracket closing bracket of a tuple
¢:] left tuple bracket opening bracket of a tuple
;)] right tuple bracket closing bracket of a tuple
: colon label indicator, range indicator
dot field selection symbol
;=1 assignment symbol assignment, initialisation
< less than relational operator
<=z] less than or equal relational operator
= equal ‘ relational operator, assignment,
initialisation
/=] not equal relational operator
>=1 oareater than or equal] relational operator
> greater than relational operator
+ | plus addition operator
- minus subtraction ocperator
* asterisk multiplication operator, undefined value,
unnamed value, irrelevant symbol
/ solidus division operator
s/ double solidus concatenatien operator
->| arrou referencing and dereferencing
<>| diamond start or end of a directive clause
/%| comment opening start of a comment
bracket
x/| comment closing end of a comment
bracket
’ apostrophe start or end symbol in various literals
7| double apostrophe apostrophe within character or
character string literals
- underline spacer in namas and literals
184 FASCICLE VI.8 Rec. Z2.200

APPENDIX C:

C.1 RESERVED NAMES

ALL
ARRAY
ASSERT

BASED
BEGIN
BUFFER
8Y

CALL
CASE
CAUSE
CONTINUE

DCL
DEL AY
DO
DOKWN

ELSE
ELSIF

END ,
ENTRY

ESAC
EVENT
EVER
EXCEPTIONS
EXIT

FI
FOR
FORBID

GENERAL
GOT0
GRANT

IF

IN
INIT
INLINE
INOUT

Loc

MODULE

NEHMODE
NOPACK

CHILL SPECIAL NAMES

0D
oF
ON
ouT

PACK
PERVASIVE
POS
POWERSET
PRIORITY
PROC
PROCESS

RANGE
READ
RECEIVE
RECURSIVE
REF
REGION
RESULT
RETURN
RETURNS
ROH

SEIZE
SEND
SET
SIGNAL
SIMPLE
START
STATIC
STEP
sTop
STRUCT
SYN
SYNMODE

THEN
TO

up

HHILE
HITH

FASCICLE. VI.8

‘Rec.

Z.200

185

C.2 PREDEFINED NAMES

ABS FALSE NOT
ADDR NULL
AND NUM
GETSTACK
BIN OR
BIT INSTANCE
BOOL INT
' PRED
PTR
CARD MAX
CHAR HIN
HOD : REM

C.3 CHILL EXCEPTION NAMES

ASSERTFAIL
DELAYFAIL
EHPTY
EXTINCT
MODEFAIL
OVERFLOHR
RANGEFAIL
RECURSEFAIL
SPACEFAIL
TAGFAIL

C.4 CHILL DIRECTIVES

FREE

186 FASCICLE VI.8 Rec. Z.200

SIZE
Succ

THIS
TRUE

UPPER

XOR

APPENDIX

D: PROGRAM EXAMPLES

1. pperations on integers

QO NP U~

2. Same

integer_operations:
MODULE
add:
PROC (i, 3 INTICINT) EXCEPTIONS (QVERFLOW);
RESULT i+j;
END add;
mult:
PROC (i,j INTI)CINT) EXCEPTIONS (OVERFLOH);
RESULT ixj;
END mult;
GRANT add, mult;
SYNMODE operand_mode= INT.
GRANT operand_mode;
SYN neutral_for_add=0,
neutral_for_mult=l;
GRANT neutral_for_add,
neutral_for_mult;
END integer_operations;

ocerations on fractions

GO SN~

fraction_operations:
MODULE
NENWMODE fraction=58TRUCT (num,denum INT);
add:
PROC (fl,f2 fraction)(fraction) EXCEPTIONS (OQVERFLOH);
RETURN [fl . num*f2.denum+f2.nun¥fl.denun,
fl.denun*f2.denunl;
END add; :
mult:
PROC (fl,f2 fraction)(fraction) EXCEPTIONS (QOVERFLOKH);
RETURN [fl.num*f2.num, f2.denun¥fl.denuml;
END mult;

GRANT add, mult;
SYNMODE operand_modezfraction;
GRANT operand_mode;
SYN neutral_for_add fraction={0,l]'
neutral_for_mult fraction=[1,11;
GRANT neutral_for_add,
neutral_for_mult;

END fraction_operations;

FASCICLE VI.8 Rec. Z.200 187

3. same operations on complex numbers

1 complex_operations

2 HODULE

3 NEHMODE complex=STRUCT (re,im INT);

% add:

5 PROC (cl,c2 complex)(complex) EXCEPTIONS (OVERFLONK);
6 RETURN [cl.retc2.re,cl.imtc2.iml;

7 END add;

8 mult:

9 PROC (cl,c2 complex)(complex) EXCEPTIONS -(QVERFLONW);
10 RETURN [cl.reXc2.re-cl.im%c2.im ,
11 cl.re¥c2.im¥cl.im¥c2.rel;
12 END mult;

13

14 GRANT add, mult

15 SYNMODE operand_mode~complex;

16 GRANT operand_mode;

17 SYN neutral_for_add=complex [0,01,
18 neutral_for_mult=complex {(1,01]1;
19 GRART neutral_for_add,

20 neutral_for_mult;

21

22 END complex_operations:

4. General order arithmetic

1 general_order_arithmetic: /7%from collected algorithms from CACM no.93%/
2 MODULE
3 op:
4 PROC (& INOUT, b,c,order INT) EXCEPTIONS (wrong_input) RECURSIVE;
5 DCL d INT;
6 ASSERT b>0 AND ¢>0 AND order>0
7 ON (ASSERTFAIL):
8 . CAUSE wrong_input;
9 END;
10 - " CASE order OF
11 (l): a :=btc;
12 RETURN;
13 (2): d :30;
14 (ELSE): d :=1;
15 ESAC;
16 DO FOR i :=1 TO c¢;
17 op (a,b,d,order-1);
18 d :rza; ‘
19 . 0D;
20 RETURN;
21 END op;
22
23 GRANT op;
24

25 END general_order_arithmetic;

188 FASCICLE VI.8 Rec. Z.200

5. Adding bit by bit and checking the result

OO N DU~

add_bit_by_bit:
HMODULE
adder:

PROC (a STRUCT(a2,al BOOL)> IN, b STRUCT(b2,bl BOOL) IN)

RETURNS(5TRUCT(c%,c2,cl BOOL));

DCL ¢ STRUCT (c%,c2,¢cl BOOL);
DCL k2,x,u,t,s, r BOOL;
DO HITH a,b,c;
k2 :=al AND bl;
cl :=NOT k2 AND (al OR blJ;
x :=e2 AND b2 ARD k2;
w :=a2 OR b2 OR k2;
t :=b2 AND k2;
s :5a2 AND k2;
r :=a2 AND b2;

c% :=r OR s OR t;
¢c2 :=x OR (w AND NOT c4%);

0D;
RETURN ¢;
END adder;
GRANT adder;
END add_bit_by_bit;

exhaustive_checker:
HODULE
SEIZE adder;

DCL & STRUCT (a2,al BooL),

b STRUCT (b2,bl BOOL),
SYNMODE res=ARRAY (1:16) STRUCT (c%,c2,cl BOOL);
DCL r INT, results res;

DO HITH a,b;
r :=0;

DO FOR a2 IN BOOL;

DO FOR al IN BOOL;
DO FOR b2 IN BOOL;
DO FOR bl IN BOOL;
r+ :=1;
results (r) :-adder (a,b);

0b;
0D;
0b;
0Db;

ASSERT result=res [{FALSE,FALSE, FALSE], [FALSE,FALSE, TRUE],

END exhaustive_checker;

{FALSE, FALSE, TRUE], [FALSE, TRUE, TRUE],
[FALSE,FALSE, TRUE]I, [FALSE, TRUE, FALSE],
[FALSE, TRUE, TRUE], [TRUE, FALSE, FALSE],
[FALSE, TRUE,FALSE], [FALSE, TRUE, FALSE],
[TRUE,FALSE,FALSE], [TRUE,FALSE, TRUE .1,
{FALSE, TRUE, TRUE], [TRUE, FALSE,FALSE],
{TRUE, FALSE, TRUE], [TRUE, TRUE,FALSE]1;

FASCICLE VI.8 Rec. Z.200

189

6. Playing uith dates

1 playing_with_dates:

2 HODULE s/% from collected algorithms from CACH no. 199 %/
3 SYNHODE month=5ET(jan, feb,mar, apr,mnay, jun,
4 jul,aug,sep,oct,nov,dec); :
5 KREHMODE date=STRUCT (day INT (1:31), mo month, year INT):
6

7 gregorian-date:

8 PROC (julian_day_number INTJ)(date);

9 DCL j INT :=julian_day_number,

10 d,m,y INT;

11 F-:=1_721_119;

12 y :5(% ¥ j - 1) 7/ 146_097;

13 J :%4 ¥ j -1 - 166_097 * y;

1¢ d :55 / 4;

15 j (% ¥ d + 3) /7 1_661;

16 d :=¢ ¥d+ 3 -1_661 % j;

17 d :=(d + &) / 4&;

18 m :=(5 ¥d - 3) /7 153;

19 d :=5 %d - 3 - 153 ¥ m;

20 d :=(d + 5) 7 5;

21 y :5100 ¥y + j;

22 IF m<l0C THEN m+::=3;

23 - ELSE m-:%9;

2% y+:21;

25 - FI;
26 RETURN [d,month (m+1), yl;
27 END gregorian_date;
28
29 julian_day_number

30 PROC (d date)(INT);

31 DCL ¢c,y,m INT;

32 DO HITH d;

33 m :=NUM (mol+1;

34 IF m>2 THEN m-:=3;

35 ELSE m+:59;

36 year-:<1;

37 FI;

38 ¢ :Tyear/100;

39 y :=year-100%c;
40 RETURN (146_097%c)/4+(1_6G6l1l%y)/%
41 +(153+m+c)/5+day+1_721_119;

42 0D;

43 END julian_day_number;

44 GRANT gregorian_date, julian_day_number;
45 END playing_with_dates
%6

47 test:

48 MODULE

49 SEIZE gregorian_date, julian_day_number;

50 ‘ASSERT julian_day_number ([10,dec,1979])=julian_day_number(
51 gregorian_date(julian_day_number([10,dec,19791)));

52 END test;

190 FASCICLE VI.8 Rec. Z.200

7.

VOO PN

R JEE ST VTR Y FY R ST VT V7]
~ O OO U W

F S
©w N

DD DD
0w

u W
~ S

n
N

Roman humarals

Roman:
HODULE
SEIZE n, rn;
convert:
PROC () EXCEPTIONS (string_too_small);
DCL r INT :=0;
DO HHILE n>=1_000;
rn(r):="M?;

r+:<1;
n-:%1_000;

0D;

IF n>500 THEN rn(r):='D7%;
n-::500;
r+:<1;

FI;

IF n>=100 THEN rn(rl):='C?*;
n-::100;

r+:<1;

FI;

IF n>=50 THEN rn(r):='L’;
n-:350;
r+:<1;

FI;

IF n>=10 THEN rn(rl:='X?;
n-:10;
r+:°1;

FI;

DO HHILE n>=1;
rn(r):=*'17;
r+:1;
n-:<1;
0D;
RETURN;
END ON (RANGEFAIL): DO FOR i :=0 TO UPPER (rnJ;
rni) :=7.7;
oD;
CAUSE string_too_small;
END convert;
END Roman;
test:
MODULE
SEIZE convert;
DCL n INT INIT ::1979;
DCL rn CHAR (20) INIT :3(2G)" *;
GRANT n, rn;

convert ();
ASSERT rn="MDCCCCLXXVIIII*/s7/7(6)7 7;

END test;

FASCICLE VI.8

Rec.

Z.200

191

8. Ccocunting letters in a character string of arbitrary length

1 letter_count:

2 HODULE

3 SEIZE max;

% DCL letter POHERSET CHAR INIT :=['A' : 'Z2'];

5 count: L
6 PROC (input ROHW CHAR (max) IN, output ARRAY(TA?:'Z') INT 0QUT);
7 DO FOR i :=0 TO UPPER (input ->);

8 IF input -> (i) IN letter

9 THEN

10 output (input -> (il))+:=1;

11 FI; '

12 0D;

13 END count;

14 GRANT count;

15 END letter-count;

16 test:

17 MODULE .

18 DCL ¢ CHAR (102 INIT :='A-B<ZAA9K''’;

19 DCL output ARRAY ('A' : 'Z’') INT;
20 SYN max=10_000;
21 GRANT max;
22 SEIZE count;
23 count (-> c,output);
2% ASSERT output=I{(TA*) : 3,('B',’K*,'Z*) : 1, (ELSE) : Q];
25 ‘

26 END test;

9. Prime numbers

l prime:

2 MODULE

3 SEIZE max;

% NEHWMODE number_list =POHERSET INT(2:max);
5 SYN empty = number_list [];

6 DCL sieve number_list INIT := [2:maxl;

7 primes number_list INIT :=empty;

8 GRANT primes;

9 DO HHILE sieve/=empty;

10 primes OR :=[MIN (sieve)l;

11 DO FOR j :=MIN (sieve) BY MIN (sieve) TO max;
12 sieve-:=[jl;

13 0D; :

14 0D;

15 END prime;

192 FASCICLE VI.8 Rec. Z.200

10. Implementing stacks in two different ways, transparent to the user

31

33
34

stacks_1:
HMODULE

SEIZE element

SYN max=10_000,min=1;

DCL stack ARRAY (min : max) element,
stackindex INT INIT :=min;

push:

PROC (e element) EXCEPTIONS (overflow);

IF stackindex=max
THEN CAUSE overflouw;
FI;
stackindex+:-1;
stack (stackindex) :<e;
RETURN;
END push;
pop:
PROC () EXCEPTIONS (underflow);
IF stackindex=min
THEN CAUSE underflow;
FI;
stackindex-:%1;
RETURN;
END pop;

elem: :

PROC (i INT)(element LOC) EXCEPTIONS
IF i<min OR i>max

THEN CAUSE bounds;

FI; '
RETURN stack (i);

END elem;

GRANT push, pop,elen;

END stacks-1;

(bounds);

FASCICLE VI.8

Rec. Z.200

193

35 stacks_2:

36 MODULE

37 SEIZE element;

38 NEHHODE cell=STRUCT (pred, succ REF cell,
39 info element);

40 DCL p,last, first REF cell INIT :=NULL;
41 push:

42 PROC (e element) EXCEPTIONS (overflow);
%43 p :=allocate (cell) ON

4% (nospace) : CAUSE overflouw;
45 END;

%46 IF last=NULL

47 THEN first,last :=p;

43 ELSE last ->. succ :°p;

49 p ->. pred :=last;

50 last :<p;

51 FI;

52 last ->. info :%e;

53 RETURN; ‘

5¢ END push;

55 pop:

56. PROC () EXCEPTIONS (underflow);

57 IF last=NULL;

58 - THEN CAUSE underflouw;

59 FI;

60 last :=last ->, pred; IF last = NULL THEN first := NULL FI;
61 last ->. succ :=NULL;

62 RETURN;

63 END pop;

6% elem: o
65 PROC (i INT) (element LOC) EXCEPTIONS (bounds);
66 IF first=NULL »
67 THEN CAUSE bounds;

68 FI;

69 p :=first;

70 DO FOR 7j=2 TO i;

71 IF p ->. succ=NULL

72 THEN CAUSE bounds;

73 FI;

7% p :Sp ->. succ;

75 0D;

76 RETURN p ->. info;

77 END elenm;

78

79 GRANT push, pop,elen;

a0

81 END stacks_2;

194 FASCICLE VI.8 Rec. Z.200

11.

Fraagment for playing chess

QO ~NONUT D U~

NEHMODE piece=STRUCT(color SET(white,black),
kind SET(pawun, rook,knight,bishop,queen,kingl);
NEWMODE column=SET (a,b,c,d,e,f,q,h); ’
NEWMODE 1ine=INT (1 : 8);
NEHMODE square=STRUCT (status SET (occupied, free),
CASE status OF
{occupied) : p piece,
(free) :
ESAC); :
NEHMODE board=ARRAY (line) ARRAY (column) square;
NEHHODE move=STRUCT (lin_1,1in_2 line,
col_l,co0l_2 column);

initialise:
PROC (bd board INOUT);
bd :={(l) : l(a,h):[.status: occupied, .p : [{white, rookll,
(b,g):{.status: occupied, .p : [white,knightll,
(c,f):[.status: occupied, .p : [white,bishopll,
(d):[.status: occupied, .p : l[uhite,queenlil],
(e):l.status: occupied, .p : {white,kinglll,
(2):[(ELSE) : [.status: occupied, .p : {uhite,paunlll],
(3:6):[(ELSE) : [.status: freell, -
(7):[(ELSE) : [.status: occupied, .p : I[black,paunlll,
(8):l¢a,h) : [.status: occupied, .p : [black,rookll],
(b,g):[.status: occupied, .p : [black,knightll,
(e, f) : [.status: occupied, .p : [black,bishopll,
(d) : [.status: occupied, .p : [black,kingll,
(e) : [.status: occupied, .p : [black,queenlll];
RETURN; : '

END tnitialise;

FASCICLE VI.8 Rec. Z.200

195

32 register_move:
33 PROC (b board LOC,m move) EXCEPTIONS (illegal);

34 DCL starting square LOC :=b (m.lin_l)(m.col_2),

35 arriving square LOC :=b (m.1lin_l)(m.col_2);

36

37 DO HITH m;

338 IF starting.status=free .

39 OR (1in_2<1 OR 1in_2>8 OR col_2<a OR col_2>h)

%0 OR (arriving.status/=free AND arriving.p.kind~king)
41 THEN

42 CAUSE illegal;

%43 FI;

4% CASE starting.p.kind, starting.p.color OF

45

46 (paun), (uhite):)

47 IF col_l = col_2 AND (arriving.status/=free

%38 OR NOT (1in_2=1in_1+1 OR 1in_2=1in_1+2 AND 1in_2=2))
49 . OR (col_2=PRED(col_1) OR col_2=SUCC(col_1))

50 AND arriving.status=free OR arriving.p.color=uhite
51 THEN

52 CAUSE illegal; s¥capturing en passant not implemented¥*/
53 F1;

54 {(pawn), (black):

55 IF col_l=col_2 AND (arriving.status/=free

56 OR NOT (1in_2=1in_1-1 0OR 1in_2=1in_1-2 AND 1in_1=7))
57 OR (col_2=PRED(col_1) OR col_2:5UCC(col_1)

58 AND arriving.status=free OR arriving.p.color=black
59 THEN

60 : CAUSE illegal; /% same remark ¥/

6l FI;

62 (rook), (%):

63 IF NOT ok_rook (b,m)

6% THEN

65 CAUSE illegal;

66 FI;

67 (bishop)l, (¥):

638 IF NOT ok_bishop (b, m)

69 THEN

70 CAUSE illegal;

71 FI;

72 (queenl, (%):

73 IF NOT ok_rook (b,m)

74 THEN

75 IF NOT ok_bishop (b,m)

76 THEN

77 CAUSE illegal

78 FI;

79 FI;

80 (knight, ¥):

81 IF ABS(ABS(NUM(col_2)-NUM(col_1)>

82 ~ABS(1lin_2-1in_1)) /= 1

83 OR ABS(NUM(col_2)-NUM((col_1))

8% +ABS(lin_2-1in_l1l) =/ 3

85 OR arriving.statuss/=free AND

196 FASCICLE VI.8 Rec. Z.200

86 arriving.p.color=starting.p.color

87 THEN CAUSE illegal;

38 FI;

89 (king), (%)

9¢ IF ABS(NUM(col_2)-NUM(col_1)3) > 1

9l OR ABS(1lin_2-1in_1) > 1

92 OR 1in_2=1in_1 AND col_2=col_1

93 OR arriving.status/=free AND

94 arriving.p.color=starting.p.color
95 THEN CAUSE illegal;

96 FI; s¥checking king moving to check not implemented*/
97 ESAC;

98 oD;

99 arriving :=starting;

100 RETURN;

181 END register_move;
102 ok_rook:
105 PROC (b board,m move)(BOOL); .

104 DO HITH m;

105 IF NOT (col_2:¢col_1 OR lin_1%1in_2)

106 OR arriving.status/=free AND

107 arriving.p.color=starting.p.color

108 THEN RETURN FALSE;

109 FI;

110 IF col_l=col_2

111 THEN IF lin_1<1lin_2

112 THEN DO FOR 1 := 1in_1+1 70 1lin_2-1;

113 IF board (1)(col_l).status/=free
114 THEN RETURN FALSE;

115 FI;

116 oD;

117 ELSE DO FOR 1 := 1in_1-1 DOHN TO 1lin_2+1;
118 IF board (1)(col_1).status/=free
119 THEN RETURN FALSE;

120 FI;

121 ’ 0D;

122 FI;

123 ELSE IF col_l<col_2

124 THEN DO FOR ¢ := SUCC(col_1) TO PRED(col_2);
125 IF board (lin_l)(c).status/=free
126 THEN RETURN FALSE;

127 , FI;

128 0oD;

129 ELSE DO FOR ¢ := SUCC(col_2) DOWN TO PRED(col_1);
130 IF board (lin_l)(c).status/=free
131 THEN RETURN FALSE;

132 FI; '

133 0D;

134 FI;

135 FI;

136 RETURN TRUE;

137 0b;

138 END ok_rook;

FASCICLE VI.8 Rec. Z.200 197

139 ok_bishop:
140 PROC (b board,m move)(BOOL);

141 DO HITH m;

142 CASE 1in_2>lin_l,co0l_2>col_1l OF

143 (TRUE),(TRUE): ¢ :% col_1l

144 DOFOR 1 :=1in_1+1 70 1lin_2-1;
145 ¢ :¥ SUCC(c);

146 IF board (1)(c).status/=free
147 » THEN RETURN FALSE;

148 FI;

149 0oD;

150 IF SUCC(cl)/=col_ 2

151 THEN RETURN FALSE;

152 FI; :

153 (TRUE), (FALSE): ¢ := col_ 1l

15¢% DO FOR 1 := 1in_1+1 T0 lin_2-1;
155 c :% PRED(c);

156 IF board (1)(c).status/=free
157 THE RETURN FALSE;

158 FI; '

159 : oD;

160 IF PRED(c)/=col_2

161 THEN RETURN FALSE;

162 FI;

163 (FALSE),(TRUE): ¢ :5 col_1

164 DO FOR 1 := 1in_1-1 DOKN TO 1in_2+1;
165 ¢ :% 5UCC(c)

166 } IF board (1)(c).status/=free
167 THEN RETURN FALSE;

168 FI;

169 0b;

170 , IF SUCC(lcr)/=col_2

171 , THEN RETURN FALSE;

172 FI:

173 (FALSE),(FALSE): ¢ :% col_1;

174 DO FOR 1 := 1in_l-1 DOKN TO 1in_2+1;
175 ¢ 7 PRED(c);

176 IF board (1)(c).status/=free
177 , : THEN RETURN FALSE;

178 FI;

179 0D;

180 IF PRED (c)/=col_ 2

181 THEN RETURN FALSE;

182 FI; :

183 ESAC;

18¢ RETURN arriving.status=free OR

184) arriving.p.colors=starting.p.color;
186 0D;

187 END ok_bishop;

FASCICLE VI.8 Rec. Z.200

12. Building and manipulating a circularly linked list

N

10

12

13
1%

15
16
17
138
19
20
21
22
23
2%
25
26

27

28
29
30
31
32

(Y = IV W T, I~ PV

CIRCULAR_LIST:
MODULE

HANDLE_LIST:
MODULE
GRANT INSERT, REMOVE, NODE;
NEHHODE NODE=STRUCT(PRED, SUC REF NODE,
DCL POOL ARRAY(1:1000)NODE;
DCL HEAD NODE:=(: NULL,NULL,CQ :2;
INSERT :
PROC(NEH NODE);
7% INSERT ACTIONS %/
END INSERT;

REMOVE :
PROC();

. /% REMOVE ACTIONS %/
END REMOVE;

INITIALIZE_LIST:
BEGIN
DCL LAST REF NODE:= ->HEAD;
DO FOR NEHWH IN POOL;
NER .PRED := LAST;
LAST->.5UC:= ->NEH;
LAST:= ->NEH;
NEH.VALUE:=0;
0D;
HEAD .PRED :=LAST;
LAST->.5UC:= ->HEAD;
END INITIALIZE_LIST

END HANDLE_LIST;

DCL NODE_A NODE:=(: NULL,NULL, 536 :J;
REMOVE();
REMOVE();
INSERT(NODE_A);
END CIRCULAR_LIST;

VALUE INT);

FASCICLE VI.8 "Rec. Z.200

199

13. A region for managing competing accesses to a resource

1 ALLOCATE_RESOURCES:

2 REGION

3 GRANT ALLOCATE, DEALLOCATE;

4 NEWMODE RESOURCE_SET = INT(0:9);

5 DCL ALLOCATED ARRAY(RESOURCE_SET)BOOL :=

(: (RESOURCE_SET): FALSE :);

6 DCL RESQURCE_FREED EVENT;

7 ALLOCATE:

38 PROC()(INT);

9 DO FOR EVER;

10 DO FOR I IN RESOURCE_SET;

11 IF NOT ALLOCATED(I)

12 THEN

13 ALLOCATED(I) := TRUE;
14 RETURN I;

15 FI;

18 Co;

17 DELAY RESOURCE_FREED;

18 0oD;

19 END ALLOCATE;
20 DEALLOCATE:
21 PROC(I INT);
22 ALLOCATE(I) := FALSE;
23 CONTINUE RESOURCE_FREED;
24 END DEALLOCATE;

25 END ALLOCATE_RESOURCES;

200 FASCICLE VI.8 Rec. Z.200

l14¢. Queuing calls to a suitchboard

1
2
3
4
5
6
7
8

0

11
12
13
14
15
16
17

138
19
20
21
22

23

- 24
25
26
27

28
29
30
31
32
33
34
35
36

37
38
39
40
¢1
42

SHITCHBOARD :

MODULE

/7% This example illustrates a switchboard which queues incoming calls
and feeds them to the operator at an even rate. Every time the
operator is ready one and only one call is let through. This is
handled by a call distributor which lets calla through at fixed
intervals. If the operator is not ready or there are other calls
waiting, a new call must queue up to wait for its turn. %/

DCL OPERATOR_IS_READY,
SHITCH_IS_CLOSED EVENT; -

CALL_DISTRIBUTOR:
PRQCESS();
DO FOR EVER;
HAIT(10 /%seconds¥/);
CONTINUE OPERATOR_IS_READY;
0D;
END CALL_DISTRIBUTOR;

CALL:
PROCESS();
DELAY CASE
(OPERATOR_IS_READY): /% some actions %/
(SHITCH_IS_CLOSED): DO FOR I IN INT(1:100);
CONTINUE OPERATOR_IS_READY;
/¥empty the queuex/
0D;
ESAC;
END CALL;

OPERATOR:
PROCESS();
DO FOR_EVER;
IF TIME = 1700
THEN »
CONTINUE SHITCH_IS_CLOSED;
FI;
0oD;
END OPERATOR;

START CALL_DISTRIBUTOR():
START OPERATOR();
DO FOR I INT(1:1G0);
START CALL();
0D;
END SHITCHBOARD;

FASCICLE VI.8 Rec. Z.200

201

15. Allocating and deallocating a éet of resources

202

QO U!RUN M~

14
15
16
17

18
19
20
21
22
23
2%
25
26

<> FREE (STEP);

COUNTER MANAGER:

MODULE :

/7% To illustrate the use of signals and the receive case, (buffers
might have been instead) we will look at an example where an
ALLOCATOR manages a set of resources, in this case a set of
COUNTERs . The module is part of @ larger system where there are
USERs, that can request the services of the COUNTER_MANAGER. The
module is made to consistof two process definitions, one for the
ALLOCATION and one for the COUNTERS. INITIATE and TERMINATE
are internal signals sent from the ALLOCATOR
to the COUNTERs. All the other signals are external, being sent
from or to the USERs. %/

SEIZE /% external signals */
ACQUIRE, RELEASE, CONGESTED,STEP,READOUT;
SIGNAL INITIATE = (INSTANCE),) :
TERMINATE;

ALLOCATOR:
PROCESS();
KEHHODE NO_OF_COUNTERS = INT(1:100);

DCL COUNTERS ARRAY (NO_OF_COUNTERS)

STRUCT (COUNTER INSTANCE,
STATUS SET (BUSY, IDLE));

DO FOR EACH IN COUNTERS;

EACH:= (: START COUNTER(), IDLE :J;

0D;

DO FOR EVER;
BEGIN)
DCL USER INSTANCE;
AHAIT_SIGNALS: :
RECEIVE CASE SET USER;
CACQUIRE) :
DO FOR EACH IN COUNTERS;
DO HITH EACH;
IF 5TATUS = IDLE
THEN
STATUS :=BUSY;
SEND INITIATE (USER) TO COUNTER;
EXIT AHAIT_SIGNALS;
FI;
0D;
0D;
SEND CONGESTED TO USER;
(RELEASE IN THIS_COUNTER);
SEND TERMINATE TO THIS_COUNTER;

FASCICLE VI.S8 Rec. Z.200

46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
7%
75
76
77
78
79
80
81
82

83
84

FIND_COUNTER:
DO FOR EACH IN COUNTERS;
DO HITH EACH;
IF THIS_COUNTER = COUNTER
THEN
STATUS:= IDLE;
EXIT FIND_COUNTER;
FI;
0p;
0D FIND_COUNTER;
ESAC AHAIT_SIGNALS;
END;
oD;
END ALLOCATOR;

COUNTER:
PROCESS();
DO FOR EVER;
BEGIN
DCL USER INSTANCE;
COUNT:= 0;
RECEIVE CASE
(INITIATE IN RECEIVED_USER):
SEND READY TO RECEIVED_USER;
USER:= RECEIVED_USER;
ESAC;
HORK_LOOP:
DO FOR EVER;
RECEIVE CASE
(STEP): COUNT +::1;
(TERMINATE) :
SEND READOUT(COUNT) TO USER;
EXIT WHORK_LOOP;
ESAC; '
0D HORK_LOOP;
END;
0D;
END COUNTER;

START ALLOCATOR();
END COUNTER_MANAGER;

FASCICLE VI.8

Rec. Z.200

203

16. Allocating and deallocating a set of resources using buffers

204

oI RN - RNV INE SR PYR VR

44

<> .FREE(STEP);

USER_HORLD :

HODULE

/% This example is the same as no.l5 except that buffers are
used for communication in stead of signals.
The main difference is that processes are now identified
by means of references to local message buffers rather than
by instance values. There is one message buffer declared
local to each process. There is one set of message types
for each process definition. Hhen started each process must
identify its buffer address to the starting process.
The USER_HORLD module sketches some of the environment in
which the COUNTER_MANAGER is used. %/

GRANT USER_BUFFERS,
ALLOCATOR_MESSAGES, ALLOCATOR_BUFFERS,
COUNTER_MESSAGES, COUNTER_BUFFERS;
NEHMODE
USER_MESS5AGES =

STRUCT(TYPE SET(CONGESTED, READY,
READOUT, ALLOCATOR_ID),
CASE TYPE OF
(CONGESTED)
(READY) : COUNTER REF COUNTER_BUFFERS,
(READOQUT? : COUNT INT,
(ALLOCATOR_ID): ALLOCATOR REF ALLOCATOR_BUFFERS
ESAC),

USER_BUFFERS = BUFFER(1) USER_MESSAGES,
ALLOCATOR_MESSAGES =
STRUCT(TYPE SETCACQUIRE, RELEASE, COUNTER_I1D),
CASE TYPE OF
(ACQUIRE) : USER REF USER_BUFFERS,
(RELEASE,
COUNTER_IDJ): COUNTER REF COUNTER_BUFFERS
ESAC),
ALLOCATOR_BUFFERS = BUFFER(1)> ALLOCATOR_MESSAGES,
COUNTER_MESSAGES =
STRUCT(TYPE SET(INITIATE, STEP, TERMINATE),
CASE TYPE OF
(INITIATE) : USER REF USER_BUFFERS,
(STEP,
TERMINATE) :
ESAC,
COUNTER_BUFFERS = BUFFER(1) COUNTER_MESSAGES;
DCL USER_BUFFER USER_BUFFERS,
ALLOCATOR_BUF REF ALLOCATOR_BUFFERS,
COUNTER_BUF REF COUNTER_BUFFERS;
START ALLOCATOR(->USER_BUFFER); ’
ALLOCATOR_BUF := (RECEIVE USER_BUFFER).ALLOCATOR;
END_USER_HORLD;

FASCICLE VI.8 Rec. Z.200

51 COUNTER_MANAGER:

52 HMODULE

53 SEIZE USER_BUFFERS,

54 ALLOCATOR_MESSAGES, ALLOCATOR_BUFFERS,
55 COUNTER_MESSAGES, COUNTER_BUFFERS;
56 '

57 ALLOCATOR:

58 PROCESS(STARTER REF USER_BUFFERS);

59 DCL ALLOCATOR_BUFFER ALLOCATOR_BUFFERS;
60 NEHMODE NO_OF _COUNTERS = INT(1:10);

61 DCL COUNTERS ARRAY(NO_OF_COUNTERS)

62 STRUCT(COUNTER REF COUNTER_BUFFERS,
63 : STATUS SET(BUSY, IDLE)),
64 MESSAGE ALLOCATOR_MESSAGES;

65 SEND STARTER->(IALLOCATOR_ID, ->ALLOCATOR_BUFFERI1);
66 DO FOR EACH IN COUNTERS;

67 START COUNTER(->ALLOCATOR_BUFFER);

(Y] EACH := [(RECEIVE ALLOCATOR_BUFFER).COUNTER, IDLEI;
69 oD;

70 DO FOR EVER;

71 BEGIN

72 DCL USER REF USER_BUFFERS;

73 HESSAGE :- RECEIVE ALLOCATOR_BUFFER;
74 HANDLE_MESSAGES:

75 CASE MESSAGE.TYPE OF

76 (ACQUIRE):

77 USER := HESSAGE .USER;

78 DO FOR EACH IN COUNTERS;

79 DO HITH EACH;

80 IF STATUS= IDLE

81 THEN STATUS := BUSY;

82 SEND COUNTER->(LINITIATE, USERI);
83 EXIT HANDLE_MES55AGES;

8¢ FI;

85 oD;

86 0D; ‘

87 SEND USER->([CONGESTEDI);

88 (RELEASE):

89 SEND HESSAGE .COUNTER(ITERHINATEL);
90 FIND_COUNTER:

91 DO FOR EACH IN COUNTERS;

92 DO HITH EACH;

93 IF MESSAGE .COUNTER = COUNTER
94 THEN STATUS := IDLE: *
95 EXIT FIND_COUNTER;

96 FI;

97 0D;

938 0D FIND_COUNTER;

99 ESAC HANDLE_MESSAGES;

100 END;

101 0D;

102 END ALLOCATOR;

FASCICLE VI.8 Rec. Z.200 205

206

103 COUNTER:
104 PROCESS(STARTER REF ALLOCATOR_BUFFERS);
DCL COUNTER_BUFFER ALLOCATOR_BUFFERS;
SEND STARTER->(ICOUNTER_ID, ->COUNTER_BUFFERI]);
DO FOR EVER;
BEGIN

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

END;
0D;

DCL USER REF USER_BUFFERS,
COUNT INT := 0,
MESS5AGE COUNTER_MESSAGES;
MESSAGE :- RECEIVE COUNTER_BUFFER;
CASE MESSAGE.TYPE OF
(INITIATE): USER := MESSAGE .USER;
SEND USER->([READY, ->COUNTER_BUFFERI1);
ELSE /% some error action %/
ESAC;
HORK_LQOP:
DO FOR EVER; .
MESSAGE := RECEIVE COUNTER_BUFFER;
CASE MESSAGE.TYPE OF
(STEP) ©: COUNT +:= 1;
(TERMINATE) :SEND USER->(IREADOUT, COUNTI);
EXIT HORK_LOOP;
ELSE /% some error action ¥/
ESAC;
0D HWORK_LOOP;

130 END COUNTER;
131 END COUNTER_MANAGER;

FASCICLE VI.8 Rec. Z.200

17. string scannerl

stringptr = ROHW ARRAY(lineindex)CHAR PACK,
INT(0:1inelength-1);

lineindex

1 string_scannerl: 7% This program implements strings by means
2 of packed arrays of characters . %/

3 MODULE

4 SYN

5 blanks ARRAY(0:9)CHAR PACK = [(%):* '], linelength = 132;

6 SYNMODE

7

8

9

10 scanner:
11 PROC(string stringptr, scanstart lineindex INOUT,

12 scanstop lineindex, stopset POWERSET CHAR)
13 RETURNS(ARRAY(0Q:9)CHAR PACK);

14 DCL count INT:=0,

15 res ARRAY(Q:9)CHAR PACK:=blanks;-

16 Do

17 FOR ¢ IN string->(scanstart:scanstop)
18 WHILE NOT (c IN stopset);

19 count+:<1;

20 0b;

21 IF count>0

22 THEN

23 IF count>10

2% THEN

25 count:=10;

26 FI;

27 res(0:count-1)::string->(scanstart:scanstart+count-1J;
28 FI;

29 RESULT res;

30 IF scanstart+count < scanstop

31 THEN .

32 scanstart:>scanstarttcount+l;

33 FI;

34 END scanner;

35

36 GRANT

37 scanner;

38

39 END string_scanner;

FASCICLE VI.8 Rec. 2.200 207

18. string scannere

1l string_scanner2: /% This example is the same as no.18 but it uses
2 character string in stead of packed arrays.»/
3 MODULE

% SYN

5 blanks = (10)* ', linelength = 132;

6 SYNMODE

7 stringptr = ROH CHAR(linelength),

8 lineindex = INT(CQ:1linelength-1);

9

10 scanner:

11 PROC(string stringptr, scanstart lineindex INOUT,
12 scanstop lineindex, stopset POHERSET CHAR)

13 RETURNS (CHAR(10));

14 DCL count INT:=0;

15 DO FOR i := scanstart TO scanstop

16 WHILE NOT (string->(i) IN stopset);

17 count+:51;

138 0D;

19 . IF count>¢

20 THEN

21 IF count>=10

22 THEN

23 RESULT string->(scanstart UP 10);

2% ELSE

25 RESULT string->(scanstart:scanstarttcount-1)
26 //sblanks(count:9);

27 FI;

28 ELSE

29 RESULT blanks;

30 FI;

31 IF scanstart+count < scanstop

32 THEN

33 scanstart:=scanstarttcount+l;

3¢ FI;

35 END scanner;

36

37 GRANT

38 scanner;

39

40 END string_scanner;

208 FASCICLE VI.8 Rec. Z.200

19. Removing an item from a double linked list

QUEUE_REMOVAL :

MODULE

SEIZE INFO;
GRANT REMOVE;
REHMOVE: PROC(P PTR) RETURNS(INFO) EXCEPTIONS(EMPTY);

/7% This procedure removes the item referred to by

P from a queue and returns the information contents

of that queue elerment.*/
DCL 1 X BASED (P),
2 I INFO P0S(0,8:31),
2 PREV PTR P05(1,0:15),
2 NEXT PTR P0S5(1,16:31);
DCL PREV, NEXT PTR;

END

PREV := X.PREV;
NEXT := X.NEXT;
X.PREV, X.NEXT
RESULT X.INFO;

P := PREV;
X.NEXT := NEXT;
P := NEXT;

X.PREV := PREV;
REHOVE;

END QUEUE_REMOVAL;

FASCICLE VI.8

Rec. Z.200

209

APPENDIX E: SYNTAX DIAGRAMS

The diagrams in this appendix describe the syntax of CHILL.

The diagrams have been designed for human readability, not as a basis for
parsing. : '

simplifications have been made in order to enhance readability and
therefore they cannot be considered as definitiva, only as an aid to
undarstanding CHILL. The definition of the context-free syntax is
specified in Backus-Naur Form elserhere in this document.

210 FASCICLE VI.8 Rec. Z.200

program

.'! MODULE)—»| body |—»("END)J-’Uandler]—l—L[name]—L@:l—o

body

] ‘[PERVASIVE B N

non reserved name |

¥ »(GRAND)

newmode name

...i
"ALL

NG T
»(ALL)
20 >
modulion name
ALL
@D | (yes————
SYNMODE name (=)»{ mode N
ST *s[rane c : —

()
] | name]-Oo(PRO_C 0 formal parameter [.o()) " (()»| mode LOC)¥s{register name)

EXCEPTIONS ascuaswe}‘-‘—@»{ body HCEND m

l—_1

—o[namerOoG’ROCESS (O (1)»(;)»{ body]-»(END)J-»rhandler}—L-D name]»ib{ F—>

E—]’C—)LGWO@»{ body J»(END)L[handter}H.[name J:LQ >
. (e

\h
= AN >)
SIGNAL name =»{l mode D-Y-Lo((70) »]process name}-¥Ls()
i g VIl :
\ A
ocL)**»{name J-'»[mode sm@}--[»(INIT)0 value J-s[handler} *-¥——L+ () >
©
LOC : Srz~* static mode location handler

BASED {)»{bound of free reference location namej+()

0

FASCICLE VI.8 Rec. Z.200 211

action statement

m action }l»[handler]iLrnTrﬁ»O——v

action

v

——#{ lacation 3

. actual parameter l
ll d name '

non reserve:

—>(EXIT)—+{ label name } ’ »>

v

static mode location

RESULT value
static mode locatiung'—T
—>{(60T0)—»{ label name|-

ASSERT boolean expression }

v

v

v

—{(START)—»{ process name instance location)

STOP >
DELAY event IocationjlbchORlTY H integer literal expression}‘ >

—»(CONTINUE }»{event location} L

—»(SEND buffer Iomtiothlue}»@ 1 L PRIORITY)#{integer literal expression

instance expression

IF boolean expression}s(THEN)ﬁaction smtement% ELSIF

ELSE y

list

action statement

+GLS®1£»[action statement J-—Lfv(ESAﬂ——p

—>(MODULE)»{ body }»(_END) >
BEGIN)—»| body }+(END)
>—v(CAUSE}-b| exception name LI .
[name J-»(.)}—»(ENTRY

v

v

v

v

212 FASCICLE VI.8 Rec. Z.200

do action

-D.'-.:I_. »(FOR EVER

(FoR)) O
A\

name}‘-L 'expression]-[»@-olirﬁge_r expression f—{ (DOWN}—.” expression} :

v

discrete mode }

powerset expression

action statement

0D)

t

acon senent]

buffer location]-.@-.[name

%ELSE)TW%.(ES)

delay-case action

—»(DELAY)—»{ CASE SET)—»M’O—’ PRIORITY)>{integer literal expression L

@-;O.rll action statement DT’(ESAC)_’

F‘

case label list’

| discrete literal expression] -] 4;@_’

discrete literal expression |-

formal parameter
param spec

register name name param spec

actual parameter

static mode location

FASCICLE VI.8 Rec. Z.200 213

LGyt (W

214

*(BIN}L@»@ger literal express:ﬂ@ 1 >
~(BOOL)}
»(CHAR) —

name } 1 -

SET

integer literal expression

g } “Wuscrete literal expression |»(")| discrete literal expression }»@———-—v
-p' discrete mode name |—]

L»(POWERSET)#{ discrete mode } >
-»(ﬁ_E_f_)—» referenced mode | >

H(ROW +l smng mode } ‘

> array mode

variant structure mode name [——
»(PROC »[pjram MeruaWnde LoC register name }

ETnitos
' [+ CSPLE)

v

EXCEPTIONS

v

+(INSTANCE)-
—»(EVEN'D-WM length expression }» () v

BUFFER buffer length expression H)—iﬂbuﬁer | t mode}
g (D Sialent pression }+(D
L) S

L»| string mode name]—J

MG

v

v

o™
A

L{) J»{element mode}sfelement layout | ¥

literal expression

literal expression

A

Ne
»(CASE)%tag nam‘e_af(OF)T;[case label list_J'3 name |+{ mode }*{field layout | L3
e .

?""@_‘

-»{ variant structure mode name |-»(()

—.I level structure mode } : —

mode name

FASCICLE VI.8 Rec. Z.200

level structure mode

—»@-Lliarray speciﬁcatiﬂl—‘—l;(READ ()

(n) level fields

(n) level fixed fields

(n) level alternative fields
{n) level fixed fields

| name mode }—E[field layout | l
array specifiation }LL{READ)}E field fayout

v

1 (n + 1) level fields

{n) level alternative fields

F’q
el tag name
H

Jiiteral expression }.O—.Uiteral e)(pression]-T

v

STMposition step size literal expression pattern size literal expression

field layout

(PACK)
(NOPACK)
 position

‘position

——@’@-b[w_ord literal eXPfeS$i°ﬂ|'LO~|start bit literal expression length literal expressioﬂ—’i’@’

end bit literal expression]-—’

FASCICLE VI.8 ° Rec. Z.200 215

location

O [mEam .
stnng index expression |—>® =
left element literal expression }o@»t_ight element literal expressﬂl—»@—J
position expression |—(_UP_)#{ length literal expression |——T

v

start expression end expression)
l I index expression l —{()- 5+

lower element literal expressioﬂ’O’[upper element literal expression 50@—»

'»| integer expression (" UP)—»{ array length literal expression
first expression }»@a[last expression]—>®

v

v

location procedure name

location procedure expression nonreserved name

lgcation built-in routing name

»‘ TOW expression 0@— >
static mode IocatioLHC)}

value expression

expression

operand 1

expression

operand 1 operand 2
operand 2 > operand 3
operand 1 AND operand 2 operand 2 | é @ é é @ :
% » 'opetand 3
operand 3 " operand 4

operand 4

> operand 5 —p
operand 4
operand 5

operand 5 operand 6

— +>| operand 6 1> primitive value F——ap
NoT — ® oJ

to@o[string repetition expressionw

216 FASCICLE VI.8 Rec. Z.200

primitive value

——,-.I location F

v

— |
0 igit

4

-®
PV
. ()

Lot

v

v

~O
olojelololololole

NS

NS N

BN
3 NS

v

N
C 1 digit

-y digit I

POOOQQ

JoTeXlo

(et }-

v
Continued

O~

|

v

D e

A\
expression
expressiorﬂ»@oLexpression|—T

expression

——l»[case label list

FASCICLE VI.S8

Rec. Z.200

217

218

primitive value (continued)

—»l string expression

right element literal expression

v

O
length litorg! BKDNSSW—’%—-j

array expression { expression) y

()ofiower element literal expmssion}@ﬂﬂer element literal expressitrnh@-*

{)»{ integer expression up array length literal expression H@——»

(first expression : last expression)

y

-»] structure expression]—»O»[field name |

v

mode mmg}-’@ﬂgpression]»»Q/L

value procedure name

[|
d

non reserved name

NUM discrete expression)

‘ 0] >
bound reference expression

ABS integer expression) >

ADDR location) >

v

Or[meemstopessan }»(
-i
LGy

string mode name integer expression}»{))

vaniant structure mode WW

A 4

A) S namer»@[»[@

A 4

v

»(RECEIVE)->{ buffer location }

s THIS)}—

FASCICLE VI.8 Rac. Z.200

v

Igit

eeeeee

e L L

S8

Ny Ny A N

O

dddddddddddddd

S E TSI I

APPENDIX F: INDEX OF PRODUCTION RULES

non-terminal defined used on
section page paga(s)

<gccess name> 4.2.2 54 53

<action> 6.1 101 101

<gction statement> 6.1 101 129,138

<gction statement list> 7.2 129 104,106,119,123

124,125,128, 129
. 176

<gctual parameter> 6.7 113 113

<gctual parameter list> 6.7) 113 89,113

<alternative fields> 3.10.4 35 35

<apostrophe> 5.2.6.7 - 71 71

<arithmetic additive operator> 5.3.5 96 96,102

<a@rithmetic multiplicative operator>| 5.3.6 97 97,102

<array element> 4.2.7 58 53

<array length> %.2.7 59 59,81

<array mode> 3.10.3 33 27,31

<array slice> $.2.14 63 53

<array specification> 3.10.5 %1 40

<array tuple> 5.2.5 73 73

<assert action> 6.10 117 101

<assigning operator> 6.2 102 102

<assignment action> 6.2 102 101

<assignment symbol> 6.2 102 50,52,102,107

<bgsed declaration> 4.1.4 52 50
<begin-end block> 7.3 131 101
<begin-end body> 7.2 128 131
<binary bit string literal> 5.2.4.8 72 72
<binary integer literal> 5.2.%4.2 - 69 69
<bit string literal> 5.2.4.8 72 68
<boolean literal> 5.2.4.3 70 68
<boolean mode> 3.4.3 2l 20
<bound reference mode> 3.6.2 26 26
<bracketed action> 6.1 101 101
<buffer element mode> 3.9.3 30 30
<buffer length> 3.9.3 30 30
<puffer mode> 3.9.3 30 29
<buffer receive alternative> 6.19.3 124 124
<built-in routine call> 11.1 179 61,85,113
<built-in routine parameter> 11.1 179 179
<built-in routine parameter list> 11.1 179 179

220 FASCICLE VI.8 Rec. Z.200

non-terminal defined used on
section page paga(s)
<call action> 6.7 113 101
<case action> 6.% 104 101
<case aglternative> 6.% 104 104
<case label> 9.1.3 160 159
<case label list> 9.1.3 159 73,159
<case label specification> 9.1.3 159 35,40,104
<case selector list> 6.% 104 104
<cause action> 6.12 117 101
<character> 5.2.4.7 71 13,71
<character mode> 3.4.4% 22 20
<character string> 2.4 13 13
<character string literal> 5.2.%.7 71 68
<CHILL directive> 2.6 16 14
<CHILL value built-in routine call> 5.2.16 86 86
<closed dyadic operator> 6.2 102 102
<comment> 2.% 13
<composite mode> 3.10.1 31 20
<continue action> 6.15 118 101
<control part> 6.5.1 106 106
<data statement> 7.2 129 129
<data statement list> 7.2 129 128,129
<decimal integer literal> 5.2.4.2 69 69
<declaration> 4.1.1 50 50
<declaration statement> 4.1.1 50 129
<defining mode> 3.2.1 17 17
<definition statement> 7.2 129 129
<delay action> 6.16 119 101
<delay alternative> 6.17 119 119
<delay case action> 6.17 119 101
<dereferenced bound reference> 4.2.3 55 53
<dereferenced free reference> %.2.% 56 53
<dereferenced row> %.2.15 6% 53
<digit> ‘ 5.2.%.2 60 12,69,71
<directive> 2.6 14 14
<directive clause> 2.6 14
<discrete mode> 3.4.1 20 20,25,33,104,107
<do action> 6.5.1 106 101
<dynamic mode location> 6.2.1° 53 53

FASCICLE VI.8 .

Rec. Z.200

221

non-terminal : o B definead used on
' B " section page | page(s)
<element layout> 3.10.6 42 33,641
<element mode> 3.10.3 33 33
<else clause> 6.3 . 104 103,104
<emptiness literal> 5.2.4.5 70 68 o
<empty> o 6.11 117 117,129
<empty action> 6.11 117 101l
<end> %.2.13 62 62,80
<end bit> 3.10.6 43 42
<end value> 6.5.2 107 107
<entry definition> 7.% 132 132
<entry statement> 7.4 132 129
<event length> 3.9.2 30 30
<event list> 6.17. 119 119
<event mode> 3.9.2 30 .29
<exception list> 3.7 28 28,131,176
<exception name> 3.7 28 28,117
<exit action> 6.6 112 101
<expression> 5.3.2 92 22,24%,30,32,33
1 35,42,43,55,56
57,58,59,62,63
64’ 73’ 79,80,81
83,85,86,89,%0
91,92,99,100,103
104,107,111,113
. 117,119,121, 160
<expression conversion> 5.2.14 85 66
<expression list> %$.2.7 58 58,81,86
<field layout> 3.10.6 42 35,40,41
<field name list> 5.2.5 73 73
<fields> 3.10.4% 35 35
<first> %.2.14 63 63,83
<fixed fields> 3.10.4% 35 35
<forbid clause> 9.2.6.2 171 171
<forbid name list> 9.2.6.2 171 171
<for control> 6.5.2 107 106
<formal parameter> 7.6 132 131
<formal parameter list> 7.% 131 131,136
<free directive> 2.6 14 14
<free reference mode> 3.6.3 27 26

222 FASCICLE VI.8 Rec. Z.200

non-terminal defined used on
section page page(s)

<generality> 7.% 132 132

<getstack argument> 5.2.16 86 86 -

<goto action> 6.9 116 101

<granted element> 9.2.6.2 171 171

<grant statement> 9.2.6.2 171 170

<grant window> 9.2.6.2 171 171

<handler> 10.2 176 50,52,101,131
136,137

<hexadecimal bit string literal> 5.2.4.8 72 72

<hexadecimal digit> 5.2.%.2 69 69,71,72

<hexadecimal integer literal> 5.2.4.2 69 69

<if action> 6.3 103 101

<implementation directive> -—— - 14

<index mode> 3.10.3 33 33,41

<initialisation> %.1.2 50 50

<instance mode> 3.8 29 20

<integer literal> 5.2.4.2 69 68

<integer mode> 3.4.2 21 20

<irrelevant> 9.1.3 160 159

<iteration> 6.5.2 107 107

<labelled array tuple> 5.2.5 73 73

<labelled structure tuple> 5.2.5 73 73

<last> 4.2.14 63 63,83

<left element> %4.2.6 57 57,79

<length> 3.10.6 43 42

<letter> 5.2.%.7 71 12,71

<level structure mode> 3.10.5 %0 35

<lifetime-bound initialisation> %.1.2 50 50

<literal> 5.2.4.1 68 66

<literal expression list> 3.10.4% 35 35

<literal range> 3.4.6 26 26,33,160

<location> %4.2.1 53 £6,57,58,59,60
62,63,67,84,86
90,102,107,111
118,119,121,123
124,179

<location built-in routine call> %4.2.11 61 53

<location contents> 5.2.2 67 66

<location conversion> %.2.12 61 83

<location declaration> 4.1.2 50 50

<location enumeration> 6.5.2 107 107

<location procedure call> %.2.10 61 53

<loc-identity declaration> %.1.3 52 50

<loop counter> 6.5.2 107 107

<lower bound> 3.6.6 24 26

<lower element> %.2.8 59 59,81

\
' Rec. Z.200 223

FASCICLE VI.8

non-terminal defined used on
section page page(s)

<member mode> 3.5 25 25

<membership operator> : 5.3.% %% G4

<mocde> 3.3 20 17)28,30,33’35
40,4%41,50,52,65
1646

<mode definition> 3.2.1 17 18,19

<module> 7.6 137 101

<module body> 7.2 129 137

<modulion name> 9.2.6.3 172 172

<monadic operator> 5.3.7 %8 %8

<multiple assignment action> 6.2 102 102

<name> 2.2 12 14,21,22,23,24%
25,26,27,28,29
30,32,33,35,52
54,55,56,60,61
67,70,71,73,83
85,86,89,91,
101,107,111,112
113,116,121,123
124,131,136,137
146,160,171,172
179

<name list> 2.6 14 0 14,17,35,640,41
50,52,65,123
132

<nested structure mode> 3.10.4 35 35

<newmode definition statement> 3.2.3 19 129

<(n) level alternative> 3.10.5 40 40

<(n) level alternative fields> 3.10.5 40 40

<(n) level fields> 3.10.5 40 %0,4%1

<(n) level fixed fields> 3.10.5 40 40

<(n) level variant fields> 3.10.5 41 40,41

<non-composite mode> 3.3 20 20

<numbered set element> 3.4.5 22 22

<numbered set list> 3.4.5 22 22

224 FASCICLE VI.8 Rec. Z.200

non-terminal defined used on

saction page pagel(s]
<octal bit string literal> 5.2.4%.8 72 72
<pctal integer literal> 5.2.4.2 69 69
<on-alternative> 10.2 176 176
<operand-1> 5.3.3 93 92,93
<operand-2> 5.3.4 - 94 93,%%
<operand-3> 5.3.5 95 94,96
<operand-4%> 5.3.6 97 95,97
<operand-5> 5.3.7 98 97
<operand-6> 5.3.8 100 98
<operator-3> 5.3.4 94 94
<operator-4%> 5.3.5 96 95
<origin array mode name> 3.10.3 33 33
<origin string mode name> 3.10.2 32 32
origin variant structure mode name>| 3.10.% 35 35
<parameter attribute> 3.7 28 28
<parameterised array mode> 3.10.3 33 33
<parameterised string mode> 3.10.2 32 32
<parameterised structure mode> 3.10.4 35 35
<parameter list> 3.7 28 28
<Kparameter spec> 3.7 28 28,132
<parenthesised expression> 5.3.8 100 100
<pattern size> 3.10.6 42 42
<pos> 3.10.6 42 42 -
<position> %4.2.6 57 56,57,79
<powerset difference operator> 5.3.5 96 96,102
<powierset enumeration> 6.5.2 107 107
<powerset inclusion operator> 5.3.% 9% 19
<Kpowerset mode> ’ 3.5 25 20
<powerset tuple> 5.2.5 73 73
<primitive value> 5.2.1 66 100
<priority> 6.16 119 119,121
<proc body> 7.2 128 131
<procedure attributes> 7.6 132 131
<procedure call> 6.7 113 61,85,113
<procedure definition> 7.4 131 131
<procedure definition statement> 7.4 131 129
<procedure literal> 5.2.4.6 71 638
<procedure mode> 3.7 28 20
<process body> 7.2 129 136
<process definition> 7.5 136 136
<process definition statement> 7.5 136 129
<program> 7.8 138

FASCICLE VI.8 Rec. Z.200 225

non-terminal defined used on
section page page(s)
<range> 5.2.5 73 73
<range enumeration> 6.5.2 107 107
<range list> 6.% 104 104
<range mnode> 3.4.6 24 20
<reach-bound initialisation> %.1.2 50 50
<receive buffer case action> 6.19.3 124 122
<receive case action> 6.19.1 122 101
<receive expression> 5.2.18 90 66
<receive signal case action> 6.19.2 123 122
<reference mode> 3.6.1 26 20
<referenced location> 5.2.13 84 66
<referenced mode> 3.6.2 26 26
<region> 7.7 137 129,138
<region body> 7.2 129 137
<relational operator> 5.3.4% 94 94
<result> 6.8 115 115
<result action> 6.8 115 101
<result spec> 3.7 28 28,131
<return action> 6.8 115 101
<right element> %.2.6 57 57,79
<row mode> 3.6.% 27 26
<seized element> 9.2.6.3 172 172
<seize statement> 9.2.6.3 172 170
<seize window>’ 9.2.6.3 172 172
<send action> 6.18.1 120 101
<send buffer action> 6.18.3 121 120
<send signal action> 6.18.2 121 120
<set element> 3.4.5 23 22
<set list> 3.4.5 22 22
<set literal> 5.2.4.% 70 68
<set node> 3.4.5 22 20
<signal definition> 8.5 146 146
<signal definition statement> 8.5 146 129
<signal receive alternative> 6.19.2 123 123
<single assignment action> 6.2 102 102
<space> : 5.2.4.7 71 71
<start> %.2.13 62 62,80
<start action> 6.13 118 101
<start bit> 3.10.6 43 42
<start expression> 5.2.17 89 66,118

226 FASCICLE VI.8 - Rec. Z.200

non-terminal defined used on
section page page(s]
<start value> 6.5.2 107 107
<static mode location> %.2.1 53 52,53,61,86,113
115

| <step> 3.10.6 42 42
<step enumeration> 6.5.2 107 107
<step size> 3.10.6 42 42
<step value> 6.5.2 107 107
<stop action> 6.14 118 101
<string concatenation operator> 5.3.5 96 96
<string element> %4.2.5 56 53
<string length> 3.10.2 32 32,57,79
<string mode> 3.10.2 32 27,31
<string repetition operator> 5.3.7 99 98
<string slice> 4.2.13 62 53
<string type> 3.10.2 32 32
<structure field> %4.2.9 60 53
<structure mode> 3.10.4 35 31
<structure tuple> 5.2.5 73 73
<sub-array> 4.2.8 59 53
<sub expression> 5.3.2 92 62
<sub-operand-1> 5.3.3 93 93
<sub-operand-2> 5.3.4% %4 94
<sub-operand-3> 5.3.5 95 95
<sub-operand-4> 5.3.6 97 97
<substring> %4.2.6 57 53
<symbol> 5.2.%.7 71 71
<synchronisation mode> 3.9.1 29 20
<synmode definition statement> 3.2.2 18 129
<synonym definition> 5.1 65 65
<synonym definition statement> 5.1 65 129
<tags> 3.10.4 35 35,40
<then clause> 6.3 104 103,104
<tuple> 5.2.5 73 66

FASCICLE VI.8

Rec. Z.200

227

non-terminal defined used on
section page paga(s)
<undefined value> 5.3.1 91 o1
<unlabelled array tuple> 5.2.5 73 73
<unlabelled structure tuple> 5.2.5 73 73
<unnamed value> 3.%.5 23 23
<unnumbered set list> 3.4.5 22 22
<upper bound> 3.4.6 26 2%
<upper element> %4.2.8 59 59,81
<upper index> 3.10.3 33 33
<value> 5.3.1 91 50,65,73,102
113,115,121,179

<value array element> 5.2.9 81 66
<value array slice> 5.2.11 83 66
<value built-in routine call> 5.2.16 85 66
<value enumeration> 6.5.2 107 107
<value name> 5.2.3 67 66
<value procedure call> 5.2.15 85 66
<value string element> 5.2.6 79 66
<value string slice> 5.2.8 30 66
<value structure field> 5.2.12 83 66
<value sub-array> 5.2.10 81 66

" <value substring> 5.2.7 79 66
<variant alternative> 3.10.4 35 35
<variant fields> 3.10.4 35 35
<visibility statement> 9.2.6.1 170 129
<while control> 6.5.3 111 106
<with control> 6.5.4% 111 111
<with part> 6.5.4% 111 106
<word> 3.10.6 42 42
<zero-adic operator> 5.2.19 91 66

228 FASCICLE VI.8

Rec. Z.200

APPENDIX G: INDEX

ABS 86

access 5%

access hame 54

action 101

action statement 101
action statemant list 131
active 140

actual paramater 113,133
actual parameter list 113
addition 96

ADDR 86

ALL 171,172

all class 16,91
alternative fields 38

AND 93,102

and 93

apostrophe 72

applied occurence 128
arithmetic additive operator 96
arithmetic multiplicative oparator 98
ARRAY 33,61

array element 58

array expression 164
array location 164

array moda 33

array mode nama 162

array slice 63

array tuple 74

ASSERT 117

assert action 117
ASSERTFAIL 117

assighing operator 102
assignmnent action 102
assignment conditions 103
assignment symmbol 102

Backus-Naur Form 10
BASED 52

based declaration 52
based nam2 53

BEGIN 131

begin-end block 131

BIN 21,24

binary bit string literal 72
binary intezer literal 69
BIT 32

bit string 32

hit string literal 72

bit string mode 32

FASCICLE VI.8

-Rec. Z.200

229

block 127

BooL 21

boolean expression 164

boolean literal 70

boolean mode 21

boolean mode name 162

bound or fres reference location name 163
bound reference expression 164
bound reference mode 26

bound reference mode nama 162
bracketed action 101,127
BUFFER 30

buffer element mode 31

buffer length 31

buffer lccation 164

buffer moda 31

buffer moda name 162

buffer recaive alternative 125
built-in routine call 179
built-in routina nama 163
built-in routine paramater 179
built-in reoutine parameter list 179
built-in routines 179

BY 107

CALL 113

call action 113

CARD 86

CASE 35,40,104,119,123,124
case action 104

case alternative 105

case labal 105,160

case label list 160

case selection 160

casa selector 105

case selector list 104
CAUSE 117

cause action 117
change-sign cparator 99
CHAR 22,32

character 72

character mode 22
character mode nama 162
character set 12

character string 32
character string literal 71
character string mode 32
CHILL directive 14

CHILL value built-in routine call 86
class 15

commant 13

compatible 158,159
complemant 99

230 FASCICLE VI.8 Rec. Z.200

complete 161

composite mode 31
concatenation operator 96
consistent 162

constant value 5,91
CONTINUE 118

continue action 118
critical procedure 141

bct 50

decimal integer literal 69
declaration 50

dzclaration statement 50
defined by 151

defining moda 17

dafining occurence 128

DELAY 119

dalay action 119

delay alternative 119

dalay case action 119
DELAYFAIL 119,120

delaying 140,144

dereferenced bound reference 55
dereferenced free reference 56
dereferenced rou 64
dereferencing 26

derived class 16

darived syntax 10

digit 69

directive 14

directive clause 1%

directly stronsly visible 166
discrete expression 164
discrete literal expression 164
discrete moda 20

discrete mode name 162
division 98

Do 106

do action 106

DOKN 107

dvnamic array mode 48

dynamic class 66

dynamic conditions 11

dynamic mode 15,47

dynamic mode location 54
dynamic paramaterised structure mode 49
dynamic properties 11

dynamic string mode 48

.element layout 34,43
elenent mode 34
ELSE 35,40,104,123,124,159,176

FASCICLE VI.8

Rec. Z.200

231

ELSIF 10%
emptiness literal 70
EMPTY 56,64,88,89,114,121
empty action 117
END 131,136,137,176
enter 130,131
ENTRY 132
entry statement 133
equality 94
equivalent 154
ESAC 35,40,1064,119,123,124
EVENT 30
event length 30
avent location 164
event mode 30
event moade name 162
EVER 107
examples 11
exception 176
exception handling 176
exception list 176
exception name 29,135,176
EXCEPTIONS 28,131
exclusive or 92
EXIT 112

xit action 113
expression 92
exprassion conversion 85
EXTINCT 121

FALSE 70

FI 103

field 36

field layout 37,43

field name 36,37

fixed field 36

fixed structure mode 36,37
FOR 107

FORBID 171

forbid clause 171

for control 107

formal paramater 133

format effector 13

FREE 146

free directive 14

free referance expressioh 164
free reference mode 27

frea referance mode namae 162

- GENERAL 132
general 132
genarality 135

232 FASCICLE VI.8 Rec. Z.200

general procedure 28
general procedure name 163
GETS5TACK 86

GOTO 116

goto action 116

GRANT 171

granted 171

grant statement 171
grant "Windou 171
greater than 94

greater than or equal 94
_ group 127

handler 176

handler identification 177
hereditary property 16
hexadecimal bit string literal 72
haxadecimal integer literal 69
holes 23,25

IF 103

if action 104

implementation directive 14
implementation options 179
implemantation value built-in routine call 86,179
implied name 168

IN 28,%4,107,123,124

index mode 3%

indirectly strongly visible 166
inequality 94

INIT 50

initialisation 50,129

INLINE 132

inline 132

INOUT 28

INSTANCE 29

instance expression 164
instance location 164

instance moda 29

instance mode name 162

INT 21

integer expression 165

intager literal 69

integer literal expression 165
integer mode 21

integer mode name 163

labelled array tuple 74
labelled structure tuple 76
label name 101

layout description 43

FASCICLE VI.8

Rec. Z.200

233

l-equivalent 154

less than 94

less than or equal 94

level structure mode 41

level number 41

lexical element 12

lifetime 138

lifetima-bound initialisation 51
literal 68

literal expression 5,93
literal range 2%

Loc 28,52

location 15,54

location built-in routine call 61,179
location contents 67

location conversion 62
location daclaration 50
location do-uith name 112
location enumaration 109
location enumaration name 110
location equivalence 152
location nama 51,135

location procedure call 61,114
loc-identity declaration 52
loc-identity nama 52,135

loop counter 107

louar bound 20,34%

lowor case 12

mapped mode 34,37

MAX 86

maember mode 25
membership operator 94
maetalanguage 10

MIN 86

HOD 97

mode 15

mode checking 147

mode definition 17
MODEFAIL 56,121

mode name 17

MODULE 137

module 137

module action statement 165
module name 137

modulion 127

modulo operator 98
multiple assignment action 102
multiplication 98

mutual exclusion 137,141

234 FASCICLE VI.8 Rec. Z.200

name 12

name binding 167,173

name creation 127

name string 166

negation 99

nested structure mode 35
NEHHODE 19

neumode definition stateament 19
neumoda name 19
non-apostrophe character 165
non-composite mode 20
non-resarved name 164

NOPACK 42

NOT 98

novelty 147

NuLL 70

null class 16,70

NUMY 86

numbered set element 23
numbered set list 23

octal bit string literal 72
occtal integer literal 69
0D 106

0F 35,4%0,104

ON 176

on~alternative 176

OR 92,102

or 92

origin variant structure mode 38,49
ouT 28

OVERFLOH 88,97,98,100

PACK 62

paramater attribute 28
parameterisable 38

paramzterised array mode 33
paramaterised array mods name 163
paramaterised string mode 32
paramaterised string mode name 163
paramatrised structure mode 36,37
paramaterised structure mode name 163
paramater list 28

parameter spec 28,135

paramater passing 133

parent moda 2%

pass by location 133

pass by value 133

path 18

PERVASIVE 171

pervasive 171

PO5 42

FASCICLE VI.8

Rec. Z.200

235

POWERSET 25

pouersat difference operator 96
pouerset enumeration 108
ponerset expression 165
porersaet inclusion operator 94
pouarset mode 25

poiarset mode name 163
pouerset tuple 74

PRED 86

predafined nama 186

primitive value 66

PRIORITY 119

priority 119,121,122

PROC 28,131

procedure attributes 132
procedure call 113

procedure definition 132
procedure definition statement 131
procedure expression 165
procedure literal 71

praocadure mode 28

procedure moda name 163
procedure nama 134

PROCESS 136

process 140

process creation 140

process definition 136
process definition statement 136
process nama 136

program 138

pirogram structure 127

PTR 27

RANGE 24

ranga enumeration 108

RANGEFAIL 58,60,62,63,78,80,81,82,83,88,89,93,94,95,103,105,111
range maode 24

range mode name 163

reach 127

reach-bound initialisation 50

re-activation 140,145

READ 21,22,2%,25,26,27,28,29,30,32,33,35,40,41
raad-compatible 156

read-only node 148

read-only property 148

RECEIVE 90,123,124

receive buffer case action 125

receive case action 122

receive expression 90

receive signal case action 123

RECURSEFAIL 114

RECURSIVE 28,132

recursive definition 17

236 FASCICLE VI.8 Rec. Z.200

recursive mode 18
recursive procedure 132
recursivity 29,135

REF 26

referability 4
referable 26

reference class 16
referenced location 84
refarenced mode 26
referenced origin mode 27
reference moda 26
reference value 26
referencing property 148
REGION 137

region 137,141

regional 142
regionality 142

region nama 137
register nama 164
register specification 134
relational operator 94
relations on modes 151
REM 97

remainder operator 98
raserved nama 12,185
reserved name list 164
restrictable to 157
RESULT 115

result 115

result action 115
resulting class 150
result spec 29,135
result transmission 134
RETURN 115

return action 115
RETURNS 28

root moda 150

ROH 27

rod expression 165

rou mode 27

rol mode name 163

scope 6

SEIZE 172

seized 172

seize statement 172
seize Window 172
semantic catesories 162
sgmantic description 11
semantics 11

SEND 121

send action 120

send buffer action 122

FASCICLE VI.8

Rec. Z.200

237

send signal action 121
SET 22,118,119,123
set elemant name 23
sat list 23

set literal 70

sat moda 23

set mode nama 163
SIGNAL 146

signal dafinition 146
signal definition statement 146
signal nama 146
signal receive alternative 123
similar 151,152
SIMPLE 132

simple 132

single assignment action 102
SIZE 86

size 20

space 13

SPACEFAIL 89,90,106,1164,124,126,131,177
spacial name 12,185

special symbol 12,184

START 89

start action 118

start expression 89

STATIC 50

static 139

static conditions 11

static moda 15

static mode location 54

static properties 11

STEP 42

step enumeration 109

step value 109

STOP 118

stop action 118

storase allocation 138

strict syntax 10

string concatenation operator 96
string elerant 57

string expression 165

string length 32,48

string location 164

string mode 32

string moda nama 163

string repetition cperator 99
string slice 62

string type 32

strongly visible 167

strong value 15

STRUCT 35

structure field 60

structure expression 165
structure location 164

238 FASCICLE VI.8 Rec. Z.200

structure mode 36

structure moda name 163
structure tuple 74

sub-array 59

substring 57

subtraction 96

succ 86

SYN 65

synchronisation mode 30
synchronisation property 149
SYNMODE 18

synmode definition statement 18
synmode nama2 18

synonym definition 65
synonym hama 65

synonymouth with 18

syntax description 10

syntax options 180

TAGFAIL 55,60,68,78,84,95,103

tag field 36

tag field name 38

tagged paramaterised proparty 149

tagged paramaterised structure mode 38,49
tagged variant structure mode 38

tag-less parameterised structure mode 38,49
tag-less variant structure mode 38 ‘
termination 140

THEN 106

THIS 91

TO 107,121,146

TRUE 70

tuple 74

undafined location 52,115
undefined synonym namg 65
undafined value 51,%91,102,115
undarline symbol 12,69,72
unlabelled array tuple 74
unlabelled structure tuple 74
unnamad value 23

unnunkered sat list 23

up 57,59,79,81

UPPER 86

upper bound 20,34

value 15,91

value array element 81

value array slice 83

value built-in routine call 86,179
value class 16

FASCICLE VI.8

‘Rec. Z2.200

239

value
value
value
value
value
value
value
value
value
value
value
value

do-With name 112
enumaration 108
enuneration name 110
equivalence 151, 154
name 67

procedure call 85,114
receive name 124,125
string elenant 79
string slice 80
structure field 84
sub-array 82
substring 79

variant alternative 36

variant field 36

variant structure mode 36,37
variant structure mode name 163
v-aquivalent 154

visibility 166

visibility statement 170
visible 167

Weakly visible 166

WHILE
while

111
control 111

HITH 111
with control 112

XOR 92,102

Zero-adic operator 91

240

FASCICLE VI.8 Rec. ‘Z.200

Printed in Switzerland — ISBN 92-61-01121-7

	CORRIGENDUM
	CONTENTS OF THE CCITT BOOK APPLICABLE AFTER THE SEVENTH PLENARY ASSEMBLY (1980)
	CCITT HIGH LEVEL LANGUAGE (CHILL) - CONTENTS
	1.0 Introduction
	2.0 Preliminaries
	3.0 Modes and classes
	4.0 Locations and their accesses
	5.0 Values and their operations
	6.0 Actions
	7.0 Program structure
	8.0 Concurrent execution
	9.0 General semantic properties
	10.0 Exeption handling
	11.0 Implementation options
	Appendix A: Character sets for CHIKK programs
	Appendix B: Special symbols
	Appendix C: CHILL special names
	Appendix D: Program examples
	Appendix E: Syntax diagrams
	Appendix F: Index of production rules
	Appendix G: Index

